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Abstract

Background: Current technology has demonstrated that mutation and deregulation of non-coding RNAs (ncRNAs)
are associated with diverse human diseases and important biological processes. Therefore, developing a novel
computational method for predicting potential ncRNA-disease associations could benefit pathologists in
understanding the correlation between ncRNAs and disease diagnosis, treatment, and prevention. However, only a
few studies have investigated these associations in pathogenesis.

Results: This study utilizes a disease-target-ncRNA tripartite network, and computes prediction scores between
each disease-ncRNA pair by integrating biological information derived from pairwise similarity based upon
sequence expressions with weights obtained from a multi-layer resource allocation technique. Our proposed
algorithm was evaluated based on a 5-fold-cross-validation with optimal kernel parameter tuning. In addition, we
achieved an average AUC that varies from 0.75 without link cut to 0.57 with link cut methods, which outperforms a
previous method using the same evaluation methodology. Furthermore, the algorithm predicted 23 ncRNA-disease
associations supported by other independent biological experimental studies.

Conclusions: Taken together, these results demonstrate the capability and accuracy of predicting further biological
significant associations between ncRNAs and diseases and highlight the importance of adding biological sequence
information to enhance predictions.
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Background
Recent studies have investigated the biological functions,
transcriptome, and regulation of non-coding RNAs
(ncRNAs) of all sizes in a wide range of organisms [1].
siRNA (short interfering RNA), miRNA (microRNA) and
piRNA (piwi-interacting RNA) are the three main types of
short ncRNAs (less than 30 nucleotides). They play an im-
portant role in histone modification, gene silencing, het-
erochromatin formation, and DNA methylation, targeting
at the transcriptional and post-transcriptional levels. Long

non-coding RNAs (lncRNAs), which are greater than 200
nucleotides, are relevant in fundamental processes of gene
regulation, such as chromatin modification and transcrip-
tional regulation [2]. Studies indicate that lncRNAs can be
categorized in one or more of the four archetypes, which
include signal archetype (molecular signal or transcrip-
tional activity indicator), decoy archetype (measure and
adjust the balance of RNA regulation), guide archetype
(directs the localization of ribonucleoprotein complexes to
their targets), and scaffold archetype (a structural role for
relevant proteins or RNAs to resemble). However, the
main functions, structures, and mechanisms of lncRNAs
remain unknown [3].
Because of their categorization into the four arche-

types, ncRNAs have been proposed to have strong
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connections with the development and pathophysiology
of diseases. Computational and experimental studies
have demonstrated that alteration and deregulation of
both short ncRNAs and lncRNAs at the structural and
expression levels, can cause various types of cancer, such
as breast cancer, leukemia, hepatocellular, and colon
cancer, as well as neurodegenerative disorders, cardio-
vascular diseases, and immune-mediated diseases [4].
X-inactive specific transcript (Xist) is a lncRNA lo-

cated on the X chromosome of the placental mammals
that plays an important role in the X inactivation
process. Lee et al. [5] demonstrated that Xist is a potent
suppressor of hematological cancer in mice. Xist is re-
quired for hematopoietic stem cell survival and function.
Therefore, Xist deletion results in leukemia, marrow fi-
brosis, and histiocytic sarcoma.
Yang et al. [6] also demonstrated a strong correlation

between lncRNAs in tumor tissues and hepatocellular
carcinoma (HCC). According to their experimental re-
sults, Cox regression analysis showed that both lncRNAs
H19 and UCA1 were serious risk factors for HCC. Fur-
thermore, logistic regression also indicated that H19 was
overexpressed in hepatitis B virus-infected individuals.
A study on lncRNA PRINS (Psoriasis susceptibility-

related RNA Gene Induced by Stress) provides further
evidence on an association between ncRNAs and dis-
eases. PRINS is transcribed by RNA polymerase II and
expressed at various levels of human tissues [7]. PRINS
is believed to play a role in susceptibility to psoriasis and
has been linked to autoimmune diseases [8].
These findings are representative of the small number

of ncRNA-disease connections that have been function-
ally established. This poses a major obstacle for bio-
physicians in their quest to formulate new hypotheses
for molecular mechanisms underlying complexes dis-
eases, and to enhance the efficacy and efficiency of dis-
ease diagnosis and treatment. For the purpose of
determining an association, bio-physicians must parti-
tion patients into appropriate groups and accurately in-
vestigate them. This method indeed establishes the
correlation and expands the acknowledgement of the as-
sociation in various phenomena. Although it is necessary
to predict and infer ncRNA-disease associations, it is an
incredible cost and time burden for bio-physicians.
To address this problem, some computational models

have been proposed for ncRNA-disease association infer-
ence. Chen et al. [9] introduced Laplacian Regularized
Least Squares for LncRNA-Disease Association
(LRLSLDA), a semi-supervised learning method based
on the framework of Laplacian Regularized Least Square
and the assumption that ncRNAs with similar functions
tend to interact with similar diseases. LRLSLDA can pre-
dict ncRNA-disease associations reliably. Yet, there are
obstacles with parameter selection and classifier

combinations. Another method called RWRLncD has
been proposed by Sun et al. [10] that infers ncRNA-
disease associations by integrating ncRNAs functional
similarity network, disease similarity network, and
known ncRNA-disease associations. RWRLncD cannot
be employed without any known ncRNA-disease associ-
ations. Li et al. [11] introduced a genomic location-
based computational method for ncRNA-disease associ-
ation prediction. However, the approach has not been
evaluated with statistical tests, and not all ncRNAs were
associated with their neighbor genes, a major limitation
of the method. Yang et al. [12] introduced a method
employing a bipartite network with resource-allocation
technique to infer new ncRNA-disease connections.
Their experiment to validate the performance of their
method mainly focused on only one dataset collected
from Chen et al. (2013), with roughly 1028 interactions
between 322 ncRNAs and 221 diseases. They also in-
cluded additional interactions via deep literature mining.
Alaimo et al. then proposed a new ncRNA-disease asso-
ciation prediction method called ncPred, which was
shown to outperform Yang et al.’s method [13]. ncPred
is a resource-propagation-based method applied on an
ncRNA-target-disease tripartite network. The tripartite
network, formed up by ncRNA-target and target-disease
interaction bipartite networks, guided the resource
transferring process to infer new associations. Targets
refer to a group of genes, microRNAs or proteins that
are related to particular ncRNAs in terms of expression
regulation and binding activities etc. With inclusion of
the targets, ncPred was experimentally shown to infer
more biological information with higher reliability than
Yang et al.’s method. Yet, there is still some room for
improvement, particularly with regards to establishing
the biological significance of identified associations.
Chen et al. [14] developed hypergeometric distribution
for lncRNA-disease association inference (HGLDA) to
predict lncRNA-disease associations by integrating
miRNA-disease interactions and lncRNA-miRNA associ-
ations. HGLDA applied p-value matrices obtained from
interaction networks, with false discovery rate (FDR)
correction. lncRNA-disease pairs with FDR less than
0.05 were predicted to be potential lncRNA-disease as-
sociations. However, HGLDA provided the least bio-
logical information, which led to weaker biological
significance reliability.
Here, we introduce a method that improves on Alaimo

et al.’s ncPred. The proposed method integrates a
resource-allocation technique in the ncRNA-target-
disease tripartite network, with pairwise similarity infor-
mation obtained from sequence expressions. The prior
knowledge combined with the biological information is
carried and transferred throughout the network, and fi-
nally utilized to infer new associations.
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To validate the performance of our proposed method,
we conducted a 5-fold-cross-validation procedure to
demonstrate its reliability, accuracy and efficiency, on a
dataset reconstructed from Chen et al. (2013) [15]. In
addition, by using a database of experimentally con-
firmed interactions between ncRNAs and miRNAs
shown in Helwak et al. [16], we performed another val-
idation of our proposed method. Our results demon-
strate that our proposed method outperforms ncPred.

Methods
Data sources
In order to evaluate the performance of the approach,
we prepared two kinds of data, ncRNA-target interaction
matrix (LncRNADisease database (2015)) and target-
disease interaction matrix (DisGeNET database) which
are the same database sources used in Chen et al. (2013)
[15], to form the tripartite network, as well as the se-
quence expression of those targets and ncRNAs (ex-
tracted from Uniprot and LncRNADisease databases,
respectively). Since there are ncRNA sequence expres-
sions and targets that are still unknown, we could only
collect 76 ncRNAs, 109 targets, and 514 diseases (see
Table 1). In Fig. 1, the degree distribution of the result-
ing network is shown. The results indicate that the en-
tire network may follow a power law distribution.
Moreover, we collected experimentally confirmed inter-
actions between ncRNAs and miRNAs from the data-
base shown in [16] and from Alaimo [13]
Supplementary Information files and reconstructed an-
other dataset composed on 151 ncNRAs, 179 targets
and 134 diseases (see Helwak dataset in Table 1).

Computational approach
In our approach, disease-target and target-ncRNA inter-
action matrices are required to construct the tripartite
network (See Fig. 2). Sequence expressions of both tar-
gets and ncRNAs are also needed to generate string-
kernel features for the prediction method. The overall al-
gorithm of our method is shown in Fig. 3.
Let D = {d1, d2,…, dm} be a set of diseases, let T = {t1,

t2,…, tn} be a set of targets which refer to genes or
microRNA, and let R = {r1,r2,…, rp} be a set of non-

coding RNAs. Let SRl ¼ fsrl1; srl2 ; srlpg and let STl

¼ fstl1; stl2;…; stlng be sets of the sequence expressions of
the targets and ncRNAs respectively.

L-gram-string kernel feature extraction and
standardization
In our approach, the features of sequence expressions
were extracted via the l-gram-string kernel method [17],
in which each string is transformed into a vector consist-
ing of the number of occurrences of each substring of
length l. In bioinformatics, string kernel is considered a
function that measures the similarity of a pair of se-
quence expressions (strings) with finite length, for the
purpose of generating real-value feature vectors. In our
case, the method was evaluated experimentally using
length l = 1, 2, 3 and 4.

Table 1 Description of the datasets

Type of Data Chen et al Helwak et al.

Diseases 514 134

Targets 109 179

ncRNAs 76 151

Disease-target interactions 580 1572

Target-ncRNA interactions 111 610

Average degree 1.977 9.405

Fig. 1 Cumulative degree distribution of the tripartite ncRNA-target
disease network for Chen et al. dataset

Fig. 2 Example of a tripartite network used in this work. Targets
integrate information from ncRNAs and diseases
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In order to improve the quality and reduce the
redundancy of the computed features from the previ-
ous step, the standardization method below was
applied [18].

x0 ¼ x−x
σ

;

where x is the original feature vector, x is the mean and
σ is the standard deviation.
Thus, let SSTl ¼ fsstl1; sstl2;…; sstlng and SSRl ¼ fssrl1;

ssrl2;…; ssrlpg be sets of the normalized real-value feature

vectors computed from the sequence expressions of the
targets and ncRNAs respectively.

RBF kernel similarity among ncRNAs and targets
To effectively compute the similarity among each pair of
ncRNA-ncRNA and target-target, the RBF kernel simi-
larity technique was employed. In statistical learning,
RBF kernel can be viewed as a common kernel function
to measure the similarity [19].
Let k_rna (i, j) and k_target (i, j) be the RBF kernel

similarity function of pair ncRNA-ncRNA and target-
target respectively.
Thus, the RBF similarity of ith ncRNA and jth ncRNA

can be computed as

k rna i; jð Þ ¼ exp −γ1 ssrli−ssr
l
j

��� ���2� �
;

where γ1 ¼ 1
2σ21

; σ1 is the parameter 0 < σ1 < 1:

The RBF similarity of ith target and jth target can be
computed as

k target i; jð Þ ¼ exp −γ2 sstli−sst
l
j

��� ���2� �
;

where γ2 ¼ 1
2σ22

; σ2 is the parameter 0 < σ2 < 1:

Constructing the tripartite network disease-target-ncRNA
G (D, T, R, E), where E denotes a set of edges, is a tripar-
tite network (Fig. 2) representing the disease-target
interactions and target-ncRNA interactions. ADT

¼ faDTij g
m�n

denotes the adjacency matrix of the

disease-target network, and ATR ¼ faTRij g
n�p

represents

the adjacency matrix of target-ncRNA network.
Targets represent a group of biomolecules function-

alized by non-coding RNAs. Targets can be genes,
proteins, microRNAs, etc., whose activities include ex-
pression regulation, binding, and complex formation.
In our method, targets function as a bridge allowing
us to extract further biological information, for

Fig. 3 Illustration of the proposed computational method. Sequence information analysis is combined with a tripartite network structure.
A multi-layer resource-allocation technique integrates the information and predicts associations between ncRNAs and human diseases
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enhancing the accuracy of disease-ncRNA association
inference.
Our method integrates the resource-allocation algo-

rithm in the network with pairwise similarity informa-
tion derived from sequence expressions to produce
scores showing the level of certainty of the interaction.
Essentially, the resource-allocation algorithm carries
prior understanding of the bipartite network, which can
be employed to predict the interactions.

Multi-layer resource-allocation technique with sequence
(MRAS) information
Since the tripartite network consists of two bipartite
networks, two-layer resource-allocation techniques
were applied. For the first-layer (disease-target bipart-
ite network), the resource will be transferred from the
nodes in T (targets) to the nodes in D (diseases) inte-
grating with pairwise similarity information between
each pair of the diseases, then move back to the
nodes in T. For the second-layer (target-ncRNA bi-
partite network), the resource integrated with pairwise
similarity information between each pair of the
ncRNAs, is allocated from the nodes in R (ncRNAs)
to the nodes in T, and then combined with the re-
source from the previous layer. Finally, the weights
computed within the two layers were merged into
one, called combined weight (WC), indicating the like-
lihood that in case a disease associates with a target
ti, it then possibly interacts with ncRNA rj. Prediction
scores (P) can then be computed from the combined
weight WC, and the higher the score, the greater the
certainty that the ncRNA will associate with a par-
ticular disease.
Let deg(x) be the degree of node x in the disease-

target network, and deg′(y) be the degree of node y in
the target-ncRNA network.

� Layer 1: disease-target bipartite network
Let WT ¼ fwT

ij gn�n
be the probability that the ith

target interacts with the jth target when both of
them interact with the same disease:

wT
ij ¼ k target i; jð Þ �

Xm
l¼1

aDTli aDTlj
deg dlð Þ

� Layer 2: target-ncRNA bipartite network
Let WR ¼ fwR

ijgp�p
be the probability that the ith

ncRNA interacts with the jth ncRNA when both of
them interact with the same target:

wR
ij ¼ k rna i; jð Þ �

Xn
l¼1

aTRli aTRlj
deg tlð Þ

Hence, the combined weight WC ¼ fwC
ij gn�p

of the

two bipartite networks together with the similar neigh-
borhood of both targets and ncRNAs can be obtained as
follows. The formula assigned more weight to the path
with higher frequency.

wC
ij ¼

Xn
t¼1

wT
it

Xp
r¼1

aTRtr � wR
rj

� �" #

Finally, the prediction score matrix can be computed
based on the following formula: P = {pij}m × p =ADT ⋅WC

Based on the above procedures, the prediction score
matrix was produced via the integration of biological
similarities of sequence expressions and the resource-
allocation technique in the tripartite network. The score
matrix thus predicted associations between ncRNAs and
diseases. The higher the score, the higher the certainty
of ncRNA-disease connectivity.

Results
Algorithm prediction performance and evaluation
As mentioned, the performance of our method was mea-
sured by applying a 5-fold-cross-validation procedure as
well as other computational operations. The evaluation
algorithm is described as follows:

1) First, we consider all pairs of ncRNA and disease (N
pairs) exiting in the tripartite network. These pairs
are expected to be predicted by the algorithm in the
score matrix P.

2) Fix a pair of values for σ1 and σ2 .
3) Consider k-fold cross validation with k = 5. There-

fore, all N pairs are divided into 5 groups.
4) Each group of N/5 elements becomes a test data one

time. The rest four groups are training data
5) From each test data group, we scan those pairs that

are connected through targets and disconnect them
(see Fig. 4b)

6) Run the algorithm and make predictions only for the
pairs in the test group Ptest.

7) Construct a ROC curve for the test group based on
N/5 scores for Ptest.

8) Repeat 3~ 7 for different folds. We average all five
ROC curves.

9) Repeat 3~ 8 for randomization of test and training
groups five more times and obtained an averaged
ROC curve.

10)Repeat 2~ 9 for each σ1 [0.1,0.2,...,0.9] x σ2
[0.1,0.2,..,0.9] and pick up the best AUROC among
all results.
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Evaluation results
We took into account the area under receiver operating
characteristic (ROC) curve (AUC) values to assess the
reliability, credibility, and accuracy of the prediction
method. Table 2 demonstrates that our proposed
method clearly outperforms ncPred in terms of the aver-
age values of AUC for the analysed datasets as shown in
Table 1. These results emphasize the improved reliability
and accuracy of predicting new ncRNA-disease associa-
tions or biological relevance using our approach, com-
pared to that of Alaimo et al. which uses ncPred.
In our approach, the RBF kernel technique was se-

lected to conduct the similarity measure. In order to
prove that RBF kernel can interpret the similarity of bio-
logical significance more appropriately, we conducted
comparison experiments on the dataset listed in Table 1
with three representative kernel functions: linear kernel,
polynomial (degree = 2) kernel and RBF kernel. Table 3
clearly illustrates the prediction performance of our ap-
proach underlying each kernel function. The results
demonstrate that RBF kernel successfully outperforms
the other two kernel techniques, showing the highest
average AUC values (see Fig. 5b).
The l-gram-string kernel technique was applied to ex-

tract biological features from the sequence data of
ncRNAs and targets in the proposed method. In order
to investigate which length of l can interpret and extract

better information from the sequence data, we validated
the performances underlying different lengths of l. We also
compared the results of the proposed method under two
assumptions. By using the cut link method described in al-
gorithm performance evaluation section and without cut
link. Table 4 shows the comparison for both methods and
for l-gram-string kernel (when l = 1, 2, 3 and 4) in terms of
AUC values using the dataset described in Table 1. The re-
sults show that link cut notably decreases the prediction of
the algorithm as expected from 0.75 to 0.57 (see Fig. 6a and
b). However, even though we perform this strict procedure,
the algorithm is able to predict correctly interactions with
an AUC above 0.5. The results also show that performance
slightly improved at l = 3. Thus, l = 3 is the optimal param-
eter for the method (see Table 4 and Fig. 6b). Note that for
Helwak dataset the optimal length is l = 1.
For parameter tuning of RBF kernel similarity function

σ1 and σ2 we selected the optimal parameters as ex-
plained in the evaluation method procedure. Table 5
shows the optimal values identified in our computation.

Case studies
In order to demonstrate the credibility and functionality
of the proposed method, we compared predicted
disease-ncRNA pairs using Chen et al. dataset with re-
cent experimental studies, as shown in Table 6, on six
diseases, namely lung cancer, liver cancer, breast cancer,

Fig. 4 Algorithm performance evaluation methodology using 5-fold cross validation. From the constructed network as shown in (a), we divide all
ncRNA-disease pairs into 5 groups. Each time one group performs as a testing dataset. To evaluate whether the algorithm is able to predict the
interacting pairs without memory of existing interactions, we delete links that connect ncRNAs with disease if they belong to the testing set as
shown in (b)

Table 2 Comparison of the proposed method and ncPred
through averaged area under ROC curve (ROC)

AUC

Proposed method ncPred

Chen et al.(2013) 0.57135 0.50242

Helwak et al.(2013) 0.77444 0.50295

Italic numbers indicate the best performance

Table 3 Comparison of performance using three representative
kernel functions

Dataset AUC

Linear Kernel Polynomial Kernel (d = 2) RBF Kernel

Chen et al. (2013) 0.51561 0.54175 0.57135

Performance results for the following three kernel functions: linear kernel,
polynomial (degree = 2) kernel and RBF kernel. The length of l-gram is set to l
= 3 in this experiment
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urinary bladder neoplasms, prostatic neoplasms and
stomach neoplasms.

Lung cancer
Lung Cancer (LC) is one of the most deadly diseases af-
fecting both men and women worldwide. There are
three types of lung cancer: non-small cell lung cancer,
small cell lung cancer, and lung carcinoid tumor. In
2015 lung and bronchus cancer accounted for 13.3% of
all cancer cases in the US. The proposed method pre-
dicted that seven ncRNAs, H19, HOTAIR, MALAT1,
PVT1, WRAP53, XIST, CDKN2B-AS1 are associated
with LC. Kondo et al. reported that the alteration and
deregulation of H19 impacts lung cancer cell growth
[20]. HOX transcript antisense RNA (HOTAIR) prevents
gene expression via collection of chromatin modifiers.
Loewen et al. demonstrated that HOTAIR plays an im-
portant role in the intervention of lung cancer [21].
lncRNA metastasis associated lung adenocarcinoma
transcript 1 (MALAT1) can impair in vitro cell motility

of lung cancer cells and simultaneously influence a num-
ber of genes (Tano et al. & Tseng et al. [22, 23]). Yang et
al. reported that an increased expression of the lncRNA
PVT1 promotes tumorigenesis in non-small cell lung can-
cer [24]. Tantai et al. suggested a combined identification
of long non-coding RNA XIST and HIF1A-AS1 in serum
as an effective screening for non-small cell lung cancer
[25]. Park et al., observed evidences for lung cancer with
two variants located in cancer pleiotropic regions, namely
TERT and risk of lung adenocarcinoma and CDKN2BAS1
with risk of lung squamous cell carcinoma [26].

Liver cancer
Liver cancer is the third most deadly cancer worldwide
[27]. Very few patients receive curative treatments, while
the majority do not recover since they are diagnosed at
later stages. Our method predicted that ncRNAs H19,
PCNA-AS1 and WRAP51 are correlated with liver can-
cer. H19 ncRNA expression was shown to result in high
H19 protein expression in liver cancer whenever there is
a loss of imprinting [28]. Iizuka et al. investigated further
the epigenetic abnormalities in the insulin-like growth
factor 2 (IGF2) and H19 genes observed in hepatocellu-
lar carcinoma (HCC) [29]. Yuan et al. reported that anti-
sense long non-coding RNA PCNA-AS1 promotes
tumor growth in hepatocellular carcinoma [30]. Several
studies have also linked WRAP51 with HCC [31].

Breast cancer
Breast cancer is a ductal carcinoma beginning in the
cells of lobules, ducts and other tissues of the breast. In
the United States, breast cancer is the second most com-
mon cancer, just after skin cancer. Both women and

Fig. 5 Comparison between the proposed method (MRAS) and ncPred. a shows an ROC curves comparison between the proposed method
(MRAS) and ncPred with evaluation of the Chen et al. dataset. The ROC curves were drawn up based on the average results of the simulation,
and repeated to ensure reliable estimates as described in the evaluation method procedure. The results also convey that the proposed method
produced a higher true positive rate, which demonstrates its superior performance over its competitor. b shows the results of the proposed
method using different kernel functions

Table 4 Comparison of l-gram-string kernel in terms of average
Area Under the Curve (AUC) values

l = 1 l = 2 l = 3 l = 4

Chen et al.(2013) AUC 0.7507 0.7506 0.7513 0.7433

Cut link AUC 0.5706 0.5644 0.5713 0.5476

Helwak et al.(2013) AUC 0.8543 0.7855 0.7338 0.7080

Cut link AUC 0.7744 0.7098 0.6430 0.6441

The performance of the l-gram-string kernel for l = 1, 2, 3 and 4 was examined
using the AUC metric. The computation was done using the RBF kernel. Table
also shows the prediction performance when the links between a disease and
their associated ncRNAs are deleted (Cut link UAC). Italic numbers indicate the
best performance
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men can suffer from this severe disease. Our method
predicted that four ncRNAs, H19, PVT1, SRA1 and
WRAP53 may be associated with this disease. Berteaux
et al. found out that H19 transcript antisense RNA
stabilize breast cancer cells and is overexpressed in
breast tumors [32]. Others evidences were found across
literature [33, 34]. Zhang et al. reported that the non-
protein coding plasmacytoma variant translocation 1
(PVT1) has been implicated in human cancers [35, 36].
In addition, Hube et al. reported that alternative splicing
of SRA1 could lead to the generation of coding and
non-coding RNA isoforms in breast cancer cell lines
[37]. Cao et al. recently reported about the association
between the WRAP53 gene rs2287499 C > G poly-
morphism and cancer risk [38].

Urinary bladder Neoplasms
Urinary bladder neoplasms are the result of abnormal
growth of bladder cells, and are considered as one of the
common cancers. Men are at higher risk for this disease
than women. The predictive results derived from our
method inferred that ncRNAs H19 and WRAP53 might
be associated with urinary bladder cancer. Luo et al.
demonstrated that the abnormal expression of H19, par-
ticularly its up-regulation, contributed to cell prolifera-
tion in bladder neoplasms [39]. Wrap53 is a multi-
functional gene which is capable of regulating p53 levels
in both normal and cancer cell lines [40].

Prostatic Neoplasms
Prostatic neoplasm is caused by uncontrolled growth of
cells located in the prostate causing tumors. Based upon
our proposed method, prostate cancer was predicted to
be associated with H19, MALAT1, CDKN2B-AS1,
HOTAIR, PCAT1, SRA1, XIST. Zhu et al. demonstrated
that H19 was significantly downregulated in the meta-
static prostatic tumor cell line M12 [41]. Perez et al.

Fig. 6 Illustration of the ROC curves for the proposed algorithm. ROC curves for the proposed algorithm MRAS using different values of l-gram
string (l = 1, 2, 3 and 4) and using RBF kernel (a) without link cut (AUC = 0.75) and (b) with link cut (AUC = 0.57) for the Chen dataset. The results
for the Helwak dataset using RBF kernel (c) without link cut (AUC = 0.85) and (d) with link cut (AUC = 0.77)

Table 5 Optimal values of σ1 and σ2 parameters

σ1 σ2
Chen et al.(2013) 0.6 0.7

Helwak et al.(2013) 0.9 0.1
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showed that the antisense intronic transcript of
MALAT1 is correlated with tumor differentiation in
prostate cancer [42]. Fehringer reported the involvement

of CDKBN2B-AS1in Cross-cancer genome-wide analysis
of lung, ovary, breast, prostate and colorectal cancer
using a cross-cancer genome-wide analysis [43]. Zhang
et al. discovered that LncRNA HOTAIR enhances the
Androgen-Receptor-Mediated Transcriptional Program
and Drives Castration-Resistant Prostate Cancer [44].
Ren et al. suggested the Long noncoding RNA MALAT-
1 as a potential therapeutic target for castration resistant
prostate cancer [45]. Presner et al. results implied that
rhe Long Non-Coding RNA PCAT-1 Promotes Prostate
Cancer Cell Proliferation through cMyc [46]. The same
research group used a transcriptome sequencing across
a prostate cancer cohort to identify PCAT-1 as an unan-
notated lincRNA implicated in disease progression [47].
Several works also reported on the involvement of SRA1
[48] and XIST [49] in prostatic neoplasm.

Stomach Neoplams
Stomach neoplams that occurs as a consequence of ab-
normal grothw of stomach cells have also been associ-
ated to ncRNAs in several works. Our method predicted
CDKN2B-AS1, HOTAIR and MALAT1 as main corre-
lated molecules with stomach neoplasms. Zhang et al.,
reported that ANRIL (CDKN2B-AS1) which recruits
and binds to PRC2 is usually observed upregulated in
human gastric cancer (GC) tissues [50]. Lee et al. found
that long non-coding RNA HOTAIR tends to promote
not only carcinogenesis but also invasion of gastric
adenocarcinoma [51]. Wang et al. also observed that
MALAT1 promotes cell proliferation in gastric cancer
by recruiting SF2/ASF [52].

Discussion
Our work has improved the prediction quality and per-
formance of Alaimo et al.’s method ncPred by integrat-
ing a biological feature information derived from
sequence data with weight calculated by the multi-layer
resource allocation technique, throughout the whole
disease-target-ncRNA tripartite network.
The proposed method is unique because involves three

types of biological information, namely ncRNAs sequences,
target sequences and diseases. This rich biological informa-
tion is also organized in a complex tripartite network in
which targets integrate information from ncRNAs and dis-
eases. Our study extended Alaimo’s approach [13] because
we integrated biological sequence information. The unique-
ness of the datasets and the complexity of the networks
structure make it difficult to perform a straightforward
comparison of our predictions with other approaches be-
sides ncPred algorithm [13]. Indeed, most of the previous
works have been done using a more simple approach in-
volving a bipartite network. For example, Yang el al [12]
constructed a bipartite network composed of only lncRNAs
and diseases. On this network, a propagation algorithm

Table 6 The predicted ncRNAs related to the six diseases
examined in this study

Disease ncRNA Evidence (PMID)

Breast
Neoplasms

H19 15985428;27540977;9811352;24780616

Breast
Neoplasms

PVT1 17908964;10485452;23907597

Breast
Neoplasms

SRA1 17710122;26460974

Breast
Neoplasms

WRAP53 27525856;15736456

Carcinoma,
Hepatocellular

H19 9570364

Carcinoma,
Hepatocellular

PCNA-
AS1

24704293

Carcinoma,
Hepatocellular

WRAP53 23836507

Lung
Neoplasms

HOTAIR 25010625;22088988

Lung
Neoplasms

MALAT1 23243023;26490983

Lung
Neoplasms

PVT1 25400777

Lung
Neoplasms

XIST 26339353

Prostatic
Neoplasms

CDKN2B-
AS1

27197191;24988946

Prostatic
Neoplasms

H19 19513555;25895025

Prostatic
Neoplasms

HOTAIR 26411689

Prostatic
Neoplasms

MALAT1 23845456

Prostatic
Neoplasms

PCAT1 21804560

Prostatic
Neoplasms

SRA1 16607388

Prostatic
Neoplasms

XIST 16261845

Stomach
Neoplasms

CDKN2B-
AS1

24810364;26187665

Stomach
Neoplasms

HOTAIR 25063030;23898077

Stomach
Neoplasms

MALAT1 24857172

Urinary Bladder
Neoplasms

H19 23354591

Urinary Bladder
Neoplasms

WRAP53 27912092

The predicted ncRNAs related to lung cancer, liver cancer, breast cancer,
urinary bladder neoplasms, prostatic neoplasms and stomach neoplasms
based upon our method. Each research article reporting on a specific ncRNA is
shown with a unique ID (PMID) by PubMed
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navigated to infer lncRNAs implicated in diseases. Alaimo
et al. [13] have already shown that their method outper-
formed the method by Yang et al. [12].
Our computational analyses indicate that our approach

could result in more reliable and biologically efficient
disease-ncRNA associations prediction than ncPred (See
Tables 2 and 6). The prediction scores were obtained
based on significant biological information, which pro-
vided useful suggestions of which ncRNA-disease associa-
tions have stronger interactions. This paves an easy path
for pathologists to analyze and interpret ncRNA-disease
associations. However, in order to accurately determine
and confirm the associations, suitable patients and docu-
ment cases are still needed.
The proposed method still has limitations that need to

be considered. For instance, it lacks ncRNA-target inter-
action data and their particular sequence data. Those se-
quence data are required to extract the feature vector,
which could extend the computational time. Further-
more, the lengths of ncRNAs and targets vary, ranging
from less than 100 nucleotides to more than 10,000 nu-
cleotides. This impacts the ranking of predicted ncRNA-
disease associations. Accordingly, more related datasets
are required to improve and expand the reliability and
quality of ncRNA-disease association inference.
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