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Abstract

This thesis consists of two independent parts: random matrices, which form
the �rst one-third of this thesis, and machine learning, which constitutes the
remaining part.

The classical Wishart matrix has been de�ned only for the values β = 1, 2
and 4 (corresponding to real, complex and quaternion cases respectively),
where β indicates the number of real matrices needed to de�ne a particular
type of Wishart matrix. The moments and inverse moments of Wishart
matrices have their theoretical and practical importance. In the works of
Graczyk, Letac and Massam (2003, 2004), Matsumoto (2012), Collins et
al. (2014), a certain additional condition is assumed in order to derive a
formula for �nite inverse moments of Wishart matrices. Here, we address the
necessity of this additional condition. In general, we consider the question of
having �nite inverse moments for two bigger classes of Wishart-type matrices:
the (m,n, β)-Laguerre matrices de�ned for continuous values of β > 0 and
compound Wishart matrices for the values of β = 1 (real) and 2 (complex).

We show that the c-th inverse moment of a (m,n, β)-Laguerre matrix is
�nite if and only if c < (m−n+ 1)β/2, for β > 0. Moreover, we deduce that
the c-th inverse moment of a compound Wishart matrix is �nite if and only
if c < (m − n + 1)β/2, for β = 1, 2. The de�nition of compound Wishart
matrix in quaternion case (β = 4) is not so coherent yet, so the condition for
�niteness of inverse moments in this case is a future work.

The second part of the thesis is devoted to the subject of the universal
consistency of the k-nearest neighbor rule in general metric spaces. The
k-nearest neighbor rule is a well-known learning rule and one of the most
important. Given a labeled sample, the k-nearest neighbor rule �rst �nd `k'
data points in the sample, which are closest to x based on a distance function
and then predicts the label of x as being the most commonly occurring label
among the picked `k' labels. There is an error if the predicted label is not
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same as the true label. A learning rule is universally weakly consistent if the
expected (average) learning error converges to the smallest possible error for
the given problem (known as the Bayes error).

According to the 2006 result of Cérou and Guyader, the k-nearest neigh-
bor rule is universally weakly consistent in every metric space equipped with
probability measure satisfying the strong di�erentiation property. A 1983
result announced by Preiss states necessary and su�cient condition for a
metric space to satisfy the strong di�erentiation property for all �nite Borel
measures. This is the condition of being metrically sigma-�nite dimensional
in the sense of Nagata. Thus, in every sigma-�nite dimensional metric space
in the sense of Nagata, the k-nearest neighbor rule is universally weakly
consistent.

The main aim of this part of the thesis is to prove the above result by
direct means of statistical learning theory, bypassing the machinery of real
analysis. Our proof is modeled on the classical proof by Charles Stone for the
Euclidean space. However, the main tool of his proof, the geometric Stone
lemma, only makes sense in the presence of the �nite dimensional linear
structure. The lemma gives an upper bound on the number of points in a
sample for which a given point can serve as one of the k-nearest neighbors. We
search for an analogue of the geometric Stone lemma for metrically (sigma)
�nite dimensional spaces in Nagata's sense, making a number of interesting
discoveries on the way. While in the absence of distance ties there is a
straightforward analogue of the lemma, it is provably false in the presence
of ties, and besides, we show that the distance ties in general metrically
�nite-dimensional (even zero-dimensional) spaces are unavoidable. At the
same time, it turns out that the upper bound in the Stone lemma, although
unbounded, grows slowly in n (as the n-th harmonic number), which allows
to deduce the universal consistency.

Further, we establish strong consistency in a metrically �nite dimensional
space, under the additional condition of zero probability of ties. In the Eu-
clidean case, the result is known in the general case, but historically, it was
also �rst proved in the absence of ties. We leave the question of validity of
the result in a metrically sigma-�nite dimensional space as an open question.

Finally, we work out in detail the necessity part of the proof of the Preiss
theorem above. The original note by Preiss only brie�y outline the ideas of
the proof in a few lines, and to work out su�ciency, Assouad and Quentin
de Gromard had written a 61-page long article. The details of the necessity
part appear in our thesis for the �rst time.
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List of Notations

Here, we list the main notations, which are used in both parts of the thesis
but in di�erent context.

Part I

β parameter to de�ne matrix ensemble

A,B matrix

Q compound Wishart matrix

λ, ξ eigenvalues

n,m size of a matrix

Part II

β dimension of a metric in Nagata sense

A,B measurable sets

Ω separable metric space

Q metric space, Q ⊆ Ω

n,m sample size, sub-sample size

Some of the frequently used notations in the thesis are:

I{xi∈A} indicator function, equal to 1 if xi is in

set A, otherwise 0

]{A} cardinality of set A

ρ metric

B(x, r), B̄(x, r), S(x, r) open ball, closed ball, sphere respectively, at x

and radius r
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An Overview

I started my `research life' in the second year of my Masters at Indian Insti-
tute of Technology, Hyderabad under the guidance of Dr. Balasubramaniam
Jayaram. I worked with Dr. Jayaram on the �nding a yardstick to empiri-
cally measure the concentration of various distance functions. We published
a paper entitled `Measuring Concentration of Distances-An E�ective and Ef-
�cient Empirical Index' in IEEE-TKDE.

In 2015, I joined as a doctoral student under Dr. Benoît Collins to pur-
sue my newly developing interest in random matrices. In the �rst year of my
PhD, I worked on the problem of �nding a necessary and su�cient condition
to have �nite inverse moments for (m,n, β)-Laguerre matrices. Based on
this work, a paper [28] entitled `Finiteness of Inverse Moments of (m,n, β)-
Laguerre matrices' has been accepted in In�nite Dimensional Analysis, Quan-
tum Probability, and Related Topics.

As, I had some research experience in machine learning, after discussing
with Dr. Collins, I decided to work in machine learning in the remaining time
of my PhD. Dr. Collins introduced me to Dr. Vladimir Pestov, both of them
were colleagues at University of Ottawa. Although I had known Dr. Pestov
thorough his works on concentration of measure which I studied during my
masters, the wish to work with him was made possible by Dr. Collins and
Kyoto University. Dr. Pestov is my PhD co-supervisor and we studied the
universal consistency of the k-nearest neighbor rule in metrically sigma-�nite
dimensional spaces. We hope to convert this joint work, which constitutes
the second part of this thesis, to a scienti�c paper in the near future.

Overview of the thesis

This thesis is based on two di�erent areas of mathematics broadly known
as random matrix theory and statistical machine learning. The �rst part of
the thesis examines the �niteness of inverse moments of (m,n, β)-Laguerre
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matrices and the second part investigates the universal consistency of k-
nearest neighbor rule in metrically sigma-�nite dimensional spaces. Accord-
ing to the literature, the theory of random matrices are often employed
in di�erent areas of machine learning such as in dimensionality reduction
and random projections. Some recent works of Romain Couillet and others
[30, 32, 31] presents the emerging applications of random matrices in machine
learning.

However, the two topics discussed in this thesis are entirely independent
of each other.

Part I

The extensive study of random matrices speci�cally, Wishart matrices, is
credited to the pioneering work of John Wishart [44] in 1928. John Wishart
studied the real Wishart matrices in relation to the sample covariance matri-
ces from a multivariate Gaussian distribution. The complex Wishart matrices
were introduced by N. R. Goodman [24]. Originally, the classical Wishart
ensemble was de�ned only for the parameter β = 1, 2 and 4 corresponding to
real, complex and quaternion Wishart matrices respectively. A while later in
2002, Dumitriu and Edelman [17] generalized the classical Wishart ensemble
to a tri-diagonal matrix ensemble called (m,n, β)-Laguerre ensemble, for the
general values of β > 0 having similar eigenvalue distribution. Another gen-
eralization of the Wishart matrices, called compound Wishart matrices for
the values β = 1 and 2, was introduced by Roland Speicher [41].

Let A be a random matrix then for integer c > 0, E{TrAc} and E{TrA−c}
are called the c-th moment and c-th inverse moment of A, respectively. Letac
and Massam [29] were the �rst to compute all the general moments of Wishart
and inverse Wishart matrices of the form E(Q(S)) and E(Q(S−1)) in both real
and complex cases, where Q is a polynomial depending only on eigenvalues
of the corresponding matrix S or S−1. Later, Sho Matsumoto [33] gave the
formula for all the general moments and inverse moments of Wishart matrices
using Weingarten function. The explicit expression for the inverse moments
of a compound Wishart matrix was obtained by Collins et al. in [8].

In [8, 25, 29, 33], an additional condition such as c < m−n+ 1 for β = 2
(in complex case) and c < (m − n + 1)/2 for β = 1 (in real case) was as-
sumed to compute the �nite c-th inverse moment of a Wishart and compound
Wishart matrix. Interestingly, it is not known whether this additional condi-
tion is necessary to have �nite inverse moments. This work is motivated by
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this question. We consider this property, to have �nite inverse moments, in
general for a broader family of (m,n, β)-Laguerre matrices. In this thesis, we
present a necessary and su�cient condition for the �nite inverse moments of
(m,n, β)-Laguerre matrices and compound Wishart matrices to exist. The
main contribution of the �rst part of the thesis is as follows:

(i) Let S be a (m,n, β)-Laguerre matrix, then

E{Tr(S−c)} is �nite if and only if c <
(m− n+ 1)β

2
.

The �niteness condition is derived from the eigenvalue distribution. Since
Wishart matrices and (m,n, β)-Laguerre matrices have same eigenvalue dis-
tribution for β = 1, 2 and 4, in particular, the �niteness condition also holds
for Wishart matrices. As a natural consequence, we also give a necessary and
su�cient condition for the compound Wishart matrices to have �nite inverse
moments.

Part II

The k-nearest neighbor rule is one of simplest, oldest and yet the most pop-
ular learning rules in statistical machine learning. To predict a label for x,
the k-nearest neighbor rule �rst �nd `k' labeled data points among a given
labeled sample of n data points, which are closest to x with regard to some
distance function, not necessarily a metric, and takes a majority vote among
the selected `k' labels. Large part of the theory developed for the k-nearest
neighbor rule is for metric spaces due to their well-understood properties.
The �rst proof for universal weak consistency of the k-nearest neighbor rule
in a �nite dimensional Euclidean space Rd was given by Charles Stone [42]
in 1977. He showed that the expected misclassi�cation error converges in
probability to the smallest possible error (also known as Bayes error) as the
sample size grows. Stone listed three important conditions that are su�cient
to yield universal weak consistency of a learning rule in any �nite dimen-
sional normed space. Indeed, these conditions by Stone have more general
importance, two of the Stone's conditions hold for any separable metric space
whenever n, k →∞ and k/n→ 0.

The proof of Stone's theorem was based on a geometrical argument, the
so-called (geometric) Stone's lemma. The basic idea is to partition Rd into
L number of sets with some special convexity properties and show that a
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point cannot serve as the k-nearest neighbor of more than kL sample points,
where L is a constant depending only on dimension d and norm. The proof
of geometric Stone's lemma highly relies on the structure of Rd and thus
is limited to �nite dimensional Euclidean spaces or, more generally, �nite
dimensional normed spaces [16]. The third condition by Stone is called the
Stone's lemma and is known to be true only for �nite dimensional normed
spaces.

After almost three decades, Cérou and Guyader [6] proved, developing
the ideas of Devroye [12], that the k-nearest neighbor rule is universally
weakly consistent in a broader class of metric spaces namely, those satisfying
the weak Lebesgue-Besicovitch di�erentiation property. It is known (1983,
David Preiss [38]) that a complete separable metric space satis�es the strong
Lebesgue-Besicovitch di�erentiation property if and only if the space is met-
rically sigma-�nite dimensional. Therefore, the k-nearest neighbor rule is
universally weakly consistent in a complete separable and metrically sigma-
�nite dimensional space. It was left open by Preiss whether sigma-�nite
metric dimension of a space is necessary for the weak Lebesgue-Besicovitch
di�erentiation property to hold. Mattila [34] showed that for a given mea-
sure the strong and weak Lebesgue-Besicovitch di�erentiation property may
not be equivalent. Strengthening the conclusion of Stone's theorem, Devroye
et al. [14] proved that the universal weak consistency and universal strong
consistency are equivalent in Euclidean spaces.

Our focus is primarily on metric spaces with �nite and sigma-�nite metric
dimension. The following �ow diagram illustrate the bridge between univer-
sal consistency, di�erentiation property and dimension of a metric.

2. sigma-
�nite metric
dimension

1. �nite metric
dimension

3. strong LB-
di�erentiation

property

5. univer-
sal strong
consistency

4. weak LB-
di�erentiation
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6. univer-
sal weak

consistency

n
o
ties

Prei
ss

Asso
uad

& Grom
ard

C
é
r
o
u
&
G
u
y
a
d
e
r
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In the above diagram, the thick double line represent our results. We
already have the following implications:

(i) Preiss, Assouad and Gromard: 2⇔ 3.

(ii) Cérou and Guyader: 4⇒ 6.

(iii) Always true: 1⇒ 2, 3⇒ 4 and 5⇒ 6.

Our principal goal is to investigate the universal consistency of the k-nearest
neighbor rule in a metrically sigma-�nite dimensional space, from the ma-
chine learning perspective. The classical method to establish the universal
consistency is to use Stone's theorem. While generalizing the Stone's the-
orem in a metrically �nite dimensional space, we encountered a number of
interesting observations, presented in chapter 4. Furthermore, the study of
strong consistency in Euclidean spaces was fundamentally initiated by De-
vroye around 1981 [12]. The strong consistency was �rst proved under the
assumption of absolute continuity of measures (that is zero probability of ties)
[13], while the universal strong consistency was established under appropri-
ate tie-breaking method much later [14]. In fact, a much stronger statement
is true, the notions of weak and strong consistency for the k-nearest neigh-
bor rule are equivalent in Euclidean spaces [15]. When working with strong
consistency in the presence of ties, a good tie-breaking method is needed
as the solution become much more complicated. In our attention, there are
almost no developments on strong consistency of the k-nearest neighbor rule
in metric spaces other than Euclidean spaces.

After a brief review of the literature on universal consistency of the k-
nearest neighbor rule, we see that there are numerous directions for theoreti-
cal work. We have accomplished some of them in this thesis. We outline our
contributions for part II of this thesis as following:

(ii) (3 ⇒ 2): Preiss has sketched the proof of 2 ⇔ 3 very brie�y without
any details, where the su�ciency part was completed by Assouad and
Gromard [1]. A thorough explanation of necessity of sigma-�nite met-
ric dimension has not been done before. We give a detailed proof of
necessity part of the Preiss' result (refer to Section 1.4), that is, the
strong Lebesgue-Besicovitch di�erentiation property holds only if the
space is metrically sigma-�nite dimensional.
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(iii) We generalize the Stone's lemma in metric spaces with �nite Nagata di-
mension under the assumption of no distance ties. As a consequence, we
give an alternate proof for weak consistency of the k-nearest neighbor
rule in metric spaces with �nite Nagata dimension under the additional
assumption of no distance ties (refer to Section 4.1). We also present
some examples re�ecting the problem with distance ties. One of the
major issues is that the Stone's lemma fails in presence of distance ties,
which indicates that the classical method of using Stone's theorem may
not be a right way to prove universal consistency in such metric spaces
(refer to Section 4.2).

(iv) (2⇒ 6): We reestablish the universal weak consistency of the k-nearest
neighbor rule in a metrically sigma-�nite dimensional space under the
random uniform tie-breaking method. Stone's lemma fails in the pres-
ence of distance ties, so we give another geometric lemma to work with
distance ties. Using this lemma and not the argument of di�erentia-
tion property, we give a direct and simpler proof for universal weak
consistency of the k-nearest neighbor rule (refer to Section 4.2). This
may provide an insight in establishing universal consistency for other
learning rules where the Lebesgue-Besicovitch di�erentiation property
and other real analysis techniques are not so coherent.

(v) (1⇒ 4 partially): We also prove the strong consistency of the k-nearest
neighbor rule in a separable space which has �nite metric dimension
under the assumption of zero probability of distance ties (refer to Sec-
tion 4.3). This is a new result in this direction as all the previous results
on strong consistency in [15] are limited to Euclidean spaces.

(vi) Davies [11] has constructed an example of a compact metric space of
diameter 1 and two distinct Borel measures which gives equal values
to all closed ball of radius < 1. The Davies' example fails the di�er-
entiation property and therefore, by the result of Cérou and Guyader,
the k-nearest neighbor rule is not consistent on Davies' example. We
modify the two Borel measures, constructed by Davies, to show the
inconsistency of k-nearest neighbor rule on Davies' example directly
without using the di�erentiation argument.

This thesis is organized in the following way: In Part I, the Chapter 1
introduces the (m,n, β)-Laguerre matrix, Wishart and compound Wishart
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matrix and their joint eigenvalue distribution. While in Chapter 2, a neces-
sary and su�cient condition to have �nite inverse moments has been derived.

In part II, the Chapter 1 introduces the various notions of metric dimen-
sionality and di�erentiation property followed by our proof for the necessary
part of Preiss' result. Further, Chapter 2 gives an introduction to mathemat-
ical concepts in statistical machine learning and then the k-nearest neighbor
rule is presented in Chapter 3 with a proof of Stone's theorem. In Chap-
ter 4 and Chapter 5 we present our main results and some possible future
directions based on it.
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Part I

Finiteness of Inverse Moments of

(m,n, β)-Laguerre Matrices
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Chapter 1

Random Matrices

In this chapter, we introduce the Wishart matrices and two of its generaliza-
tions, namely, (m,n, β)-Laguerre matrices and compound Wishart matrices.
We also brie�y discuss the joint eigenvalue densities of Wishart matrices and
(m,n, β)-Laguerre matrices.

1.1 Wishart matrix

A matrix whose at least one of the entries is a random variable is called a
randommatrix. Consider the experiment of tossing a coin and let Ω = {H,T}
denote the outcomes. De�ne a set of random variables Mij from Ω to {0, 1}
such that Mij(H) = 0 and Mij(T ) = 1 for 1 ≤ i, j ≤ 2. Then,

M =

(
M11 M12

M21 M22

)

is a 2× 2 random matrix and

(
0 1
1 1

)
is one of the realizations of M .

Random matrix theory is a subject which evolved mainly because of its
applications. Random matrices are relevant in numerous �elds ranging from
number theory and physics to mathematics and machine learning.

Based on the distribution of its entries, random matrices are categorized
as ensembles. Wigner ensemble, Gaussian orthogonal (unitary) ensemble
and Wishart ensemble are the most studied with entries from Gaussian dis-
tribution. The exceptional properties of Gaussian distribution make these
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ensembles special in their areas of applications. The main interests of ran-
dom matrix theory share its interests with probability and matrix theory, like
studying the limiting distribution of its eigenvalues. The study of random
matrices has progressed very rapidly and now there are lots of books avail-
able based on the prospects of random matrices you want to explore. [36, 22]
are the classical texts whereas [43] is a nice way to get introduced to random
matrices. Other books like [9] and [23] introduces the applications of random
matrices in machine learning and compressed sensing with an adequate �avor
of pure mathematics.

This thesis focuses only on Wishart matrices and its generalizations. Let
Km,n denote the space of all m×n random matrices having independent and
identically distributed entries from standard Gaussian distribution.

De�nition 1.1.1 (Wishart matrix [44]). Consider four random matrices A1,
A2, C1, C2 ∈ Km,n.
(i) The matrix P1 = A∗1A1 is called a real Wishart matrix, where A∗1 is the

transpose of A1.

(ii) Let A = A1 + iA2. The matrix P2 = A∗A is called a complex Wishart
matrix, where A∗ denotes the conjugate transpose of A.

(iii) Let C = C1 + iC2. Then a matrix of the form

P4 =

(
A C
−C A

)∗(
A C
−C A

)
is called a quaternion Wishart matrix.

Therefore, a Wishart matrix is of the form Pβ = A∗A de�ned for the
parameter β = 1, 2 and 4 corresponding to real, complex and quaternion
Wishart matrices, respectively. Here, the parameter β denote the number of
di�erent real matrices require to de�ne a Wishart matrix such as, we require
2 real matrices A1 and A2 to de�ne a complex Wishart matrix.

Without explicitly stating, we always assume m ≥ n, in the �rst part of
this thesis. Suppose Pβ is a positive-de�nite matrix, then there are n real
and positive eigenvalues. Let 0 < λ1 ≤ . . . ≤ λn be the eigenvalues of Pβ
such that the exact value of β will be speci�ed whenever necessary. The joint
eigenvalue density of a Wishart matrix [44] can be stated as following.

hβ(λ1, λ2, . . . , λn) = Zβ
m,n

n∏
i=1

λα−1
i e(−

1
2

∑n
i=1 λi)

∏
k<j

(λj − λk)β, (1.1)
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where Zβ
m,n is the normalization constant and can be explicitly computed.

The equation (1.1) is de�ned only for the values of β = 1, 2 and 4. In
simpler words, corresponding to the values of β = 1, 2 and 4, there are
real, complex and quaternion Wishart matrices which have eigenvalue density
function hβ(λ1, λ2, . . . , λn).

Then, the natural question is whether there any randommatrix of Wishart-
type which has similar joint eigenvalue density for every values of β > 0? This
was answered by Dumitriu and Edelman [17], where they constructed a tri-
diagonal matrix of Wishart-type having same joint eigenvalue density as in
the equation (1.1). The (m,n, β)-Laguerre matrix is presented in Section 1.3.

1.2 Compound Wishart matrix

A di�erent yet interesting generalization of Wishart matrices are compound
Wishart matrices, which were introduced by Roland Speicher [41]. A com-
pound Wishart matrix is de�ned only for β = 1 and 2 corresponding to real
and complex compound Wishart matrices, respectively.

De�nition 1.2.1 (Compound Wishart matrix [41]). Let B be a m × m
complex deterministic matrix and let A be a m× n complex random matrix
with independent and identically distributed entries from a standard complex
Gaussian distribution, then

Q = A∗BA

is called a complex compound Wishart matrix. The matrix B is known as
the shape parameter.

The matrix Q is a complex Wishart matrix if B is an identity matrix. We
note the following observation for Q when B is a positive de�nite Hermitian
matrix.

Remark 1.2.2. If B is a positive de�nite Hermitian matrix, then B has an
eigenvalue decomposition that is, B = UDU∗, where D = diag(ξ1, . . . , ξm)
such that 0 < ξ1 ≤ · · · ≤ ξm and U is a unitary matrix consisting of eigen-
vectors of B. As, U∗A has the same distribution as A, the matrix Q has the
same distribution as A∗DA. 4

In this thesis, we assume that B is positive de�nite and Hermitian so that
the matrix Q has real and positive eigenvalues. The real compound Wishart
matrices can also be de�ned analogously.
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1.3 The (m,n, β)-Laguerre matrix

Ioana Dumitriu and Alan Edelman generalized theWishart matrix to (m,n, β)-
Laguerre matrix such that the equation (1.1) is de�ned for all positive values
of β. By the process of bi-diagonalization, a Wishart matrix can be reduced
to its corresponding (m,n, β)-Laguerre matrix for β = 1, 2 and 4. In this
section, we study the (m,n, β)-Laguerre matrix and its joint eigenvalue dis-
tribution.

De�nition 1.3.1 ((m,n, β)-Laguerre matrix [17]). Let X be a bi-diagonal
matrix with mutually independent diagonal and sub-diagonal non-zero en-
tries following the distribution,

X ∼


χmβ χ(n−1)β

χ(m−1)β χ(n−2)β

. . . . . .

χ(m−n+2)β χβ
χ(m−n+1)β

 ,

where χs is the chi distribution with parameter s. The tri-diagonal matrix
S = X∗X is called a (m,n, β)-Laguerre matrix.

As, S is a n × n positive-de�nite Hermitian matrix, there are n real
and positive eigenvalues. Dumitriu and Edelman has computed the explicit
expression for the joint eigenvalue density function of (m,n, β)-Laguerre ma-
trices, which can be stated as the following theorem.

Theorem 1.3.2 (Joint eigenvalue density [17]). Suppose β > 0 and let 0 <
λ1 ≤ λ2 ≤ · · · ≤ λn be the n ordered eigenvalues of (m,n, β)-Laguerre matrix
S. The joint eigenvalue density function is

hβ(λ1, λ2, . . . , λn) = Zβ
m,n

n∏
i=1

λα−1
i e(−

1
2

∑n
i=1 λi)

∏
k<j

(λj − λk)βI{λ1≤...≤λn},

(1.2)

where α = (m− n+ 1)β/2 and the normalization constant given by

Zβ
m,n =

2−mnβ/2

n!

n∏
j=1

Γ
(
1 + β

2

)
Γ
(
1 + β

2
j
)
Γ
(
β
2
(m− n+ j)

) .
12



The indicator function I{λ1≤...≤λn} in the equation (1.2) ensures that the
density function hβ is non-zero if and only if the eigenvalues λ1, . . . , λn are
ordered. We omit writing I{λ1≤...≤λn} in the remaining sections as we work
only with ordered eigenvalues. The joint eigenvalue density function of a
real, complex and quaternion Wishart matrix is same as the joint eigenvalue
density function of a (m,n, β)-Laguerre matrix for the values of β = 1, 2 and
4, respectively.

It is important to acknowledge the fact that the Wishart ensemble have
invariance properties. It means that a complex Wishart matrix is invari-
ant under unitary conjugation, that is, a complex Wishart matrix P2 has
same distribution as U∗P2U for any non-random unitary matrix U . Simi-
larly, a real Wishart matrix and a quaternion Wishart matrix is invariant
under orthogonal and symplectic conjugation, respectively. However, while
generalizing the Wishart matrix ensemble to (m,n, β)-Laguerre ensemble in
order to have the equation (1.2) well-de�ned for all positive values of β, we
lose this invariance property.

13



Chapter 2

Finiteness of Inverse Moments

We start this chapter by discussing the research problem and the motivation
behind it. We compute the gap probability for the smallest eigenvalue of
a (m,n, β)-Laguerre matrix and then, we present our results for (m,n, β)-
Laguerre matrices and compound Wishart matrices followed by some re-
marks.

2.1 Motivation

Here, we examine the formula for the inverse moments of complex Wishart
matrices as given by Graczyk et al. in [25]. The moments and inverse
moments of some random matrices, in particular, Wishart matrices can be
expressed as sums of Weingarten functions, as can be seen in Theorem 2.1.1.
Weingarten functions were �rst introduced by Don Weingarten in 1978 and
further studied in depth by Collins [7]. Weingarten functions are used to
compute the integrals of product of matrix coe�cients over unitary groups
with respect to Haar measure . This section has been adapted from [8], we
refer to [8] for detailed understanding of the technical terms.

Let c be a positive integer. Consider a set of l positive integers η =
(η1, . . . , ηl) such that

∑l
i=1 ηi = c then η is called a partition of c. Let Sc

be the symmetric group de�ned on [c] = {1, 2, . . . , c}. Every permutation
σ ∈ Sc can be decomposed uniquely into cycles of lengths η = (η1, η2, . . . , ηl)
such that η is a partition of c associated to σ. Let p(σ) denote the length of
vector η. The identity permutation in Sc is denoted by σe.

14



For z ∈ C and a partition λ = (λ1, . . . , λm) of c de�ne,

ψλ(z) =
m∏
i=1

λi∏
j=1

(z + j − i).

Let χλ be the irreducible characters in Sc. Given a complex number z and a
permutation σ ∈ Sc, the unitary Weingarten function is,

Wg(σ, z) =
1

c!

∑
λ

ψλ(z)6=0

χλ(σe)

ψλ(z)
χλ(σ), (2.1)

where the sum is over all partitions λ of c such that ψλ(z) 6= 0. The following
result states the inverse moment formula for a complex Wishart matrix.

Theorem 2.1.1 ([25]). Let P be a n × n complex Wishart matrix and π =
(12 . . . c) be a cycle in Sc. If c < (m− n+ 1), then

E{Tr(P−c2 )} = (−1)c
∑
σ∈Sc

Wg(πσ−1;n−m)np(σ),

where Wg(πσ−1;n −m) is the unitary Weingarten function as described in
the equation (2.1).

In Theorem 2.1.1, a su�cient condition c < (m − n + 1) is assumed to
de�ne the c-th inverse moment of a complex Wishart matrix. A similar con-
dition has been assumed in [8, 29, 33] to �nd the inverse moments of real,
complex Wishart matrices and compound Wishart matrices. We wonder if
this condition is necessary too. We aim to �nd a necessary and su�cient con-
dition to have �nite inverse moments for the bigger class of (m,n, β)-Laguerre
matrices and hence the �niteness condition hold for Wishart matrices also.

Statement of problem: given a (m,n, β)-Laguerre matrix S and a com-
pound Wishart matrix Q, �nd functions g1(m,n, β) and g2(m,n, β)
such that

(i) E{Tr(S−c)} <∞ if and only if c < g1(m,n, β).

(ii) E{Tr(Q−c)} <∞ if and only if c < g2(m,n, β).

We make a note in advance that the �niteness of inverse moments of a
(m,n, β)-Laguerre matrix depends on the behavior of its smallest eigenvalue
near zero. So, we �rst estimate the gap probability of the smallest eigenvalue
of a (m,n, β)-Laguerre matrix in the following section.
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2.2 Gap probability near zero

Let 0 < λ1 ≤ · · · ≤ λn be the ordered eigenvalues of the (m,n, β)-Laguerre
matrix S, hence λ1 denote the smallest eigenvalue of S in the remaining
sections of part I of this thesis.

De�nition 2.2.1 (Gap probability [22]). The term `gap probability near zero'
means the probability that no eigenvalue of a matrix lies in the neighborhood
of zero. Let a ∈ (0, 1]. Then,

P(no eigenvalues ∈ (0, a)) = P(λ1 /∈ (0, a))

= 1− P(λ1 < a).

We prove in the following that the probability of the smallest eigenvalue
being less than a is asymptotically equivalent to some constant times aα,
where the constant depends only on m,n and β.

Lemma 2.2.2. Let S be a (m,n, β)-Laguerre matrix. Then for a ≤ 1, we
have

P(λ1 < a) ≈
a→0

Cβ
m,na

α, (2.2)

where α = (m − n + 1)β/2 and Cβ
m,n is a non-zero constant depending only

on m,n and β. In simpler words, when a is small enough the probability of
λ1 belonging to the interval (0, a) is asymptotically equivalent to Cβ

m,na
α at

the neighborhood of 0.

Proof. From the equation (1.2), we have P(λ1 < a) =

Zβ
m,n

∫ a

0

∫ ∞
λ1

. . .

∫ ∞
λn−1

n∏
i=1

(
λα−1
i

)∏
k<j

(λj − λk)βe(−
1
2

∑n
i=1 λi)dλn . . . dλ1.

By the change of variables (λ1, λ2, . . . , λn) = (ax1, ax1 + x2, . . . , ax1 + x2 +
. . . xn), we have

P(λ1 < a) = Zβ
m,na

α

∫ 1

0

∫ ∞
0

· · ·
∫ ∞

0

fa(x1, . . . , xn)dxn . . . dx1,
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where,

fa(x1, . . . , xn) = xα−1
1 e(−nx1a/2)

n∏
i=2

(
ax1 +

i∑
j=2

xj

)α−1 n∏
j=2

xβj e
−(n−j+1)xj/2

n∏
k=3

( k−2∏
i=1

( k∑
j=i+1

xj

)β)
.

The function fa has a point-wise limit,

lim
a→0

fa(x1, . . . , xn) = xα−1
1

n∏
i=2

(
i∑

j=2

xj

)α−1 n∏
k=3

k−2∏
i=1

(
k∑

j=i+1

xj

)β


n∏
j=2

xβj e
−(n−j+1)xj/2

:= f(x1, . . . , xn).

Now, we try to �nd a dominating function for fa. By simple calculations and
using the fact that a ≤ 1, we have the following bounds for the expressions
in the function fa(x1, . . . , xn).

(i)
n∏
i=2

(
ax1 +

i∑
j=2

xj

)α−1

≤
n∏
j=2

xj
−1

n∏
i=2

(
1 +

i∑
j=2

xj

)α

≤
n∏
j=2

xj
−1

(
1 +

n∑
j=2

xj

)(n−1)α

.

(ii)
n∏
k=3

k−2∏
i=1

(
k∑

j=i+1

xj

)β
 ≤ n∏

k=3

k−2∏
i=1

(
1 +

n∑
j=2

xj

)β


≤

(
1 +

k∑
j=2

xj

)((n−1)(n−2)β/2)+(n−1)α

.

From the above computations, we have an upper bound for fa,

fa(x1, . . . , xn) ≤ xα−1
1

n∏
j=2

xj
β−1e−(n−j+1)xj/2

(
1 +

n∑
j=2

xj

)((n−1)(n−2)β/2)+(n−1)α

.

(2.3)
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For any positive real numbers w1, w2 and p, the following inequality holds

(w1 + w2)p ≤ 2p(wp1 + wp2).

Set p = (n − 1)α + (n − 1)(n − 2)β/2 > 0. Using the above inequality in
the equation (2.3), we obtain a dominating function for fa,

g(x1, . . . , xn) = x1
α−1

n∏
j=2

xj
β−1e−(n−j+1)xj/2

(
2p(1 + x2)p +

n∑
j=3

2(j−2)pxj
p

)
,

such that
fa(x1, . . . , xn) ≤ g(x1, . . . , xn).

The function g is a �nite sum of integrable functions and hence is integrable.
By the Dominated Convergence Theorem, we have∫ 1

0

∫ ∞
0

· · ·
∫ ∞

0

fa(x1, . . . , xn)dxn . . . dx1

≈
a→0

∫ 1

0

∫ ∞
0

· · ·
∫ ∞

0

f(x1, . . . , xn)dxn . . . dx1

= zβm,n (is strictly positive by the positivity of f).

Hence, we have

P(λ1 < a) ≈
a→0

aαZβ
m,nz

β
m,n

= aαCβ
m,n.

2.3 A �niteness condition

Moments of a random matrix are useful in various theoretical and practical
settings. It is always useful to know whether an expression is �nite or not
without explicitly having to compute it. Here, we present one such �niteness
condition, with only three values m,n and β known beforehand, which tells
the �niteness of the c-th inverse moment of a (m,n, β)-Laguerre matrix.
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2.3.1 Preliminaries

In this part, we simply state the results (without proofs) which is needed to
�nd the �niteness condition. The proof of all these lemmas can be found in
standard texts.

Let Mm,n denote the space of m× n matrices with entries from either R
or C which will be clear from the context. For m = n, we simply write Mn

for Mn,n. Let Tr(A) denote the un-normalized trace of the matrix A ∈Mn.

De�nition 2.3.1 (Loewner Partial order [27]). Let A,B ∈ Mm. We write
A � B if A and B are Hermitian matrices and B−A is positive semi-de�nite.
The relation ” � ” is a partial order, which is known as Loewner partial order.

The following lemma helps in proving the necessity to have �nite inverse
moments for a compound Wishart matrix.

Lemma 2.3.2 ([27, Theorem 7.7.2]). Suppose A,B are two m×m Hermitian
matrices. Let σ1(A) ≤ σ2(A) ≤ · · · ≤ σm(A) and σ1(B) ≤ σ2(B) ≤ · · · ≤
σm(B) be the ordered eigenvalues of the matrices A and B, respectively. If
A � B, then

(i) S∗AS � S∗BS for S ∈Mm,n.

(ii) σi(A) ≤ σi(B) for every i = 1, . . . ,m.

The following lemma for a positive random variable assists in �nding the
condition for the �niteness of inverse moments.

Lemma 2.3.3 ([40]). Let Z be a positive random variable and let g(z) be a
measurable function of z. If there is a non-negative real number a such that
P(Z ≥ a) = 1, then

E{g(Z)} = g(a) +

∫ ∞
a

g′(z)P(Z > z)dz.

2.3.2 Inverse moments of a (m,n, β)-Laguerre matrix

Now, we present the necessary and su�cient condition for (m,n, β)-Laguerre
matrices to have �nite inverse moments.

Theorem 2.3.4. Let β > 0 and let S be a n× n (m,n, β)-Laguerre matrix.
Then for integer c > 0, we have

E{Tr(S−c)} is �nite if and only if c < (m− n+ 1)β/2.
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Proof. For c > 0, we have

λ−c1 ≤
n∑
i=1

λ−ci ≤ nλ−c1 ,

so it follows that,

E
{
λ−c1

}
≤ E

{
Tr(S−c)

}
≤ nE

{
λ−c1

}
. (2.4)

From the equation (2.4), we understand that E{Tr(S−c} is �nite if and only
if E

{
λ−c1

}
is �nite. Thus, it is su�cient to �nd the necessary and su�cient

condition for the �niteness of E
{
λ−c1

}
.

Let δ > 0 be small enough. By applying the Lemma 2.3.3 to the positive
random variable λ−1

1 , we get

E
{
λ−c1

}
=

∫ ∞
0

ctc−1P
(
λ−1

1 > t
)
dt

= c

∫ ∞
0

tc−1P
(
λ1 < t−1

)
dt

= c

∫ ∞
0

w−c−1P (λ1 < w) dw (put 1/t = w)

= c

∫ δ

0

w−c−1P (λ1 < w) dw + c

∫ ∞
δ

w−c−1P (λ1 < w) dw.

So, we have

(i) c

∫ δ

0

w−c−1P (λ1 < w) dw ≤ E
{
λ−c1

}
and,

(ii) E
{
λ−c1

}
≤ c

∫ δ

0

w−c−1P (λ1 < w) dw + c

∫ ∞
δ

w−c−1dw.

Consider the inequality (i), then by the Lemma 2.2.2 we have

E
{
λ−c1

}
≥ c

∫ δ

0

w−c−1P (λ1 < w) dw

≈ c Cβ
m,n

∫ δ

0

w−c−1wα dw

= ∞ whenever (α− c) ≤ 0.
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Using the Lemma 2.2.2 to evaluate the inequality (ii),

E
{
λ−c1

}
≤ c

∫ δ

0

w−c−1P (λ1 < w) dw + c

∫ ∞
δ

w−c−1 dw

≈ c Cβ
m,n

∫ δ

0

w−c−1wαdw + c

∫ ∞
δ

w−c−1dw

< ∞ whenever (α− c) > 0.

This implies that E
{
λ−c1

}
is �nite if and only if c < α. Thus, E {Tr(S−c)}

is �nite if and only if c < (m− n+ 1)β/2.

2.3.3 Inverse moments of a compound Wishart matrix

A simple but interesting consequence of the Theorem 2.3.4 is the following
necessary and su�cient condition for the �niteness of inverse moments of
compound Wishart matrices.

Theorem 2.3.5. Let Q be a n×n non-degenerate complex compound Wishart
matrix. For c > 0,

E{Tr(Q−c)} is �nite if and only if c < (m− n+ 1).

Proof. As, Q is a n× n complex compound Wishart matrix, it follows from
De�nition 1.2.1 that Q has the same distribution as A∗DA, where A is a
complex random matrix with i.i.d. entries from a standard complex Gaussian
distribution. We can understand A∗A = P2 as a (m,n, β)-Laguerre matrix
S for β = 2. It follows from the Lemma 2.3.2 that ξ1S � Q � ξmS because
ξ1I � D � ξmI, where I is a m × m identity matrix. Let 0 < µ1 ≤ µ2 ≤
· · · ≤ µn be the ordered eigenvalues of Q, it follows from part (ii) of Lemma
2.3.2,

ξ1λ1 ≤ µ1 ≤ ξmλ1.

This implies that for c > 0, we have

ξ1E{λ−c1 } ≤ E{µ−c1 } ≤ ξmE{λ−c1 }.

It follows from the proof of the Theorem 2.3.4 for β = 2 that, E{µ−c1 } is �nite
if and only if c < (m− n+ 1). Revisiting the initial part of the proof of the
Theorem 2.3.4, we know that the inverse moments of a random matrix with
positive eigenvalues is �nite if and only if the inverse moments of its smallest
eigenvalue is �nite. So, E{Tr(Q−c)} is �nite if and only if c < (m−n+1).
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We have a similar result for real compound Wishart matrix stated as the
following remark.

Remark 2.3.6. The c-th inverse moment of a real compound Wishart ma-
trix, which is de�ned analogous to complex compound Wishart matrix as in
De�nition 1.2.1, is �nite if and only if c < (m− n+ 1)/2. 4

2.4 Some remarks

The Lemma 2.2.2 investigates the probability of the smallest eigenvalue of
a (m,n, β)-Laguerre matrix in the neighborhood of zero. Our main results,
Theorem 2.3.4 and Theorem 2.3.5 give a necessary and su�cient condition
to have �nite inverse moments for the smallest eigenvalue of a (m,n, β)-
Laguerre matrix and a compound Wishart matrix, respectively. These results
may �nd their use where the inverse moments of the smallest eigenvalue are
relevant. The existence of inverse moments for a (m,n, β)-Laguerre matrix
is equivalent to the existence of inverse moments of the smallest eigenvalue
of a (m,n, β)-Laguerre matrix.

We summarize our result for (m,n, β)-Laguerre matrix S as: E{Tr(S−c)}
<∞ if and only if c < (m−n+1)β/2, that is, all the �nite integer inverse mo-
ments of a (m,n, β)-Laguerre matrix lies in the interval (0, (m− n+ 1)β/2).

We studied the compound Wishart matrix for the values β = 1 and 2.
As, compound Wishart matrices are the generalization of Wishart matrices,
so the result extend naturally to compound Wishart matrices. The c-th
inverse moment of a compound Wishart matrix exists if and only if c <
(m−n+1)β/2 and thus, we obtain that all the �nite integer inverse moments
lies in (0, (m− n+ 1)β/2).

Recently, the inverse moments of (m,n, β)-Laguerre matrices has been
studied in [37]. Our results are consistent and complete with the other re-
sults on the inverse moments of (m,n, β)-Laguerre matrices and compound
Wishart matrices as in [8, 29, 33, 37]. We expect that our results can be ex-
tended to more general matrix models involving Wishart matrices and leave
it for the future work.

Remark 2.4.1. In the general β case, there is no well de�ned notion of a
compound Wishart matrix, which explains why we focused on compound
Wishart case for the values of β = 1 and 2. 4
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Part II

Universal Consistency of the

k-Nearest Neighbor Rule
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Chapter 1

Dimension of a Metric

In this chapter, we discuss about the various properties of dimension of a
metric space in the sense of Nagata and Preiss. We also give a detailed proof
of the necessity part of the Preiss' result.

1.1 Sigma-�nite metric dimension

David Preiss introduced the notion of sigma-�nite metric dimension in his
article [39] in order to describe the metric spaces having strong Lebesgue-
Besicovitch di�erentiation property. Let β ≥ 1 denotes an integer and let
(Ω, ρ) be a metric space throughout the remaining sections of this thesis.

De�nition 1.1.1 ([39]). A subset Q of Ω has metric dimension β on a scale
s ∈ (0,+∞) in Ω if any �nite set F = {x1, . . . , xm} ⊆ Q, m > β and
r1, . . . , rm ∈ (0, s), where each ri depends on xi to satisfy the condition that
for i 6= j, xi /∈ B̄(xj, rj) and xj /∈ B̄(xi, ri), implies that for every x ∈ Ω∑

xi∈F

χ
B̄(xi,ri)

(x) ≤ β.

Generally, we consider families of closed balls satisfying certain property
stated as the following de�nition.

De�nition 1.1.2 (Unconnected family [1]). Let I be an index set and F =
{B̄(xi, ri) : i ∈ I} be a any family of closed balls. Then, F is called an
unconnected family if for every i 6= j in I, xi does not belong to B̄(xj, rj)
and vice-versa. In simpler words, distance between xi and xj is strictly
greater than ri and rj.
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Figure 1.1: An unconnected family means that each center belongs to exactly
one ball.

Figure 1.2: The real line has metric dimension 2 on any scale as any real
number can belong to at most 2 balls in a unconnected family of balls in R.

In other words, Q has metric dimension β on scale s if every element of Ω
can belong to at most β closed balls in an unconnected family of closed balls
having centers inQ and radius bounded by scale s. The value β is the smallest
possible integer and s is the largest possible positive real number satisfying
the above property. A metric space is called metrically �nite dimensional
if there is a pair of β < ∞ and 0 < s < ∞ satisfying De�nition 1.1.1, or
sometimes we simply say, a space has metric dimension β on scale s. The
real line has metric dimension 2 as illustrated in �gure 1.2.

De�nition 1.1.3 (Sigma-�nite metric dimension). The space (Ω, ρ) is met-
rically sigma-�nite dimensional if there is a sequence of subsets Q1, Q2, . . .
of Ω such that Ω =

⋃∞
i=1Qi and each Qi has �nite metric dimension in Ω.

Note that in the above de�nition, it is possible that each Qi has di�erent
metric dimension. The de�nition of metric dimension trivially implies that
any metric space with �nite number of elements has metric dimension equal
to its cardinality on any scale. Therefore, every metric space with countable
number of elements has sigma-�nite dimension. Similarly, a metric space
with 0-1 metric (refer to A.1.11) has metric dimension 1 on scale s ∈ (0, 1].
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Moreover, a �nite union of metric spaces having �nite metric dimension also
has �nite metric dimension.

Lemma 1.1.4. Suppose that Q1, Q2 ⊆ Ω have metric dimension β1 and β2

on scale s1 and s2 in Ω, respectively. Then Q1 ∪ Q2 has metric dimension
β1 + β2 on scale s = min{s1, s2} in Ω.

Proof. Consider a �nite set F = F1 ∪ F2 ⊆ Q1 ∪Q2 of cardinality > β1 + β2,
where F1 ⊆ Q1 and F2 ⊆ Q2. It implies that either F1 has cardinality > β1

or F2 has cardinality > β2. As, s is the minimum of s1, s2 and Q1, Q2 are
metrically �nite dimensional, it follows from the De�nition 1.1.1 that Q1∪Q2

has metric dimension β1 + β2 on scale s.

However, the countable union of metrically �nite dimensional spaces may
not have �nite metric dimension and which is why we need the concept of
sigma-�nite metric dimension. The following is an example of a metric space
which does not have �nite metric dimension but is metrically sigma-�nite
dimensional.

Example 1.1.5. Let Ω = {x1, x2, x3, . . .} and de�ne a function on Ω,

ρ(xn, xm) =

{
1/n+ 1/m if n 6= m

0 otherwise

Then ρ is a metric as ρ(xn, xm) = 0 if and only if n = m. Let Ql =
{x1, . . . , xl} and Ω is the union of all Ql, l ∈ N. For a �xed l, Ql is a �nite
set and so has metric dimension l on any scale s′ > 0 in Ω.

Let β ≥ 1 be a integer and s be a positive real number. Choose l ∈ N
large enough that s > 1/l and pick β + 1 elements, F = {xl+1, . . . , xl+β+1}
from Ω. For l + 1 ≤ i ≤ l + β + 1, set ri = ρ(xi, xl+β+2) then we have
ρ(xi, xj) > max{ri, rj}. This means the any closed balls in F = {B̄(xi, ri) :
xi ∈ F} does not contain the center of any other ball in F , hence F is an
unconnected family. However, xl+β+2 belongs to every ball in F and has
multiplicity β + 1 in F . Therefore, Ω does not have �nite metric dimension
but it is the countable union of such spaces, hence Ω is metrically sigma-�nite
dimensional. 4

We make the following important remark about subsets inheriting the
metric dimension.
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Remark 1.1.6. Let (Ω, ρ) be a metric space and suppose Q1 ⊆ Q2 ⊆ Ω.
If Q2 is metrically �nite dimensional in Ω, then Q1 is also metrically �nite
dimensional in Ω. Given a family of subsets {Qi : i ∈ I} of Ω such that at
least one of the Qi is metrically �nite dimensional in Ω. Then, ∩i∈IQi is also
metrically �nite dimensional in Ω. 4

Furthermore, we show that a set has �nite metric dimension if and only
if its closure has �nite metric dimension.

Lemma 1.1.7. Let Q ⊆ Ω has metric dimension β on scale s in Ω, then Q̄
has metric dimension β on scale s in Ω.

Proof. Let F = {x1, . . . , xm} ⊆ Q̄ such that m > β and let {r1, . . . , rm} ⊆
(0, s) such that for every distinct 1 ≤ i, j ≤ m, ρ(xi, xj) > max{ri, rj}. Then
F = {B̄(xi, ri) : ri < s, 1 ≤ i ≤ m} is an unconnected family of closed balls.
It is su�cient to show that the multiplicity of F is at most β.

Let ρ(x1, xj) = kj > max{r1, rj}. Choose ε1 > 0 such that for all j 6= 1,
kj − 2ε1 > max(r1, rj) and r1 + ε1 < s. Let y1 ∈ Q such that ρ(y1, x1) < ε1.
It is clear that ρ(xj, B̄(x1, ε1)) = kj − ε1 and so ρ(xj, y1) ≥ kj − ε1 > r1 + ε1

for all j 6= 1. Thus, we have B̄(y1, r1 + ε1), which contains B̄(x1, r1) but not
any other xj, j 6= 1. Moreover, note that y1 /∈ B̄(xj, rj) for all j 6= 1.

Replace x1 and r1 by y1 and r1 + ε1 in the original set F and form a
new set F ′, and apply the same technique for x2 but for F ′. Then, we have
B̄(y2, r2 + ε2), where y2 ∈ Q and r2 + ε2 < s with ε2 > 0, such that B̄(x2, r2)
is contained in it and none of the points in F \ {x2} belongs in the ball.

Doing in the same way for all the m−2 points {x3, x4, . . . , xm}, we obtain
a new family of closed balls F ′ = {B̄(yi, ri + εi) : 1 ≤ i ≤ m}, where yi ∈ Q
and ri + εi < s with εi > 0 for all 1 ≤ i ≤ m, such that yj /∈ B̄(yi, ri + εi)
whenever i 6= j and B̄(xi, ri) ⊆ B̄(yi, ri + εi) for all 1 ≤ i ≤ m.

Since Q has metric dimension β on scale s, then x ∈ F belongs to at
most β balls in F ′.

An interesting result is that Q is metrically �nite dimensional in itself but
there is a super-set Ω which contains Q but Q does not have �nite metric
dimension in Ω.

Example 1.1.8. Let (Q∪{a∗}, ρ′) be a metric space, where a∗ is not an element
of Q, such that the distance ρ′(a, b) is 1, if a, b are distinct elements of Q,
1/2 if only one of a, b is a∗ and 0 otherwise. Now, we consider disjoint copies
of Q ∪ {a∗}. For n ∈ N, set Qn = (Q ∪ {a∗}, n) and let the metric on Qn be
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ρn. The distance between any two elements an = (a, n), bn = (b, n) of Qn is
ρ(a, b)/n where a, b ∈ Q ∪ {a∗}. Since ρ′ is a metric so ρn is metric for each
n.

Let Ω = ∪n∈NQn and de�ne a function ρ on Ω, for an, bm ∈ Ω, ρ(an, bm) =
ρn(a, b) if n = m, otherwise 1. We have ρ(an, bm)⇔ ρn(a, b) = 0⇔ ρ(a, b) =
0, and for an, bm, cp ∈ Ω, ρ(an, cp) + ρ(cp, bm) ≥ ρ(an, bm). Therefore, ρ is a
metric. It is evident that Q has metric dimension 1 on any scale s ∈ (0, 1] in
Q with respect to ρ′.

Q is not metrically �nite dimensional in Ω: Let β be any positive integer
and suppose that s ∈ (0, 1]. We choose a m ∈ N large enough so that 1/m <
s, and consider a family of closed balls in Qm, F = {B̄(aim, 1/2m) : aim =
(ai,m) ∈ Qm, a

i ∈ Q, 1 ≤ i ≤ β + 1}. For i 6= j, ρ(aim, a
j
m) = ρ(ai, aj)/m =

1/m, so any two balls in F with distinct centers does not contain each other's
center and F form an unconnected family. The closed balls are actually in
Ω, like B̄(aim, 1/2m) = {bn ∈ Ω : ρ(aim, bn) ≤ 1/2m < 1/m < s ≤ 1}. As the
radius of every ball in F is less than equal to 1/2m < 1, this implies that bn
is in Qm and B̄(aim, 1/2m) = {aim, a∗} for 1 ≤ i ≤ β + 1.

It means that the multiplicity of a∗ is more than β in F and because
centers of balls in F are in Q, so Q is not metrically �nite dimensional in
Ω. For the other case when s > 1, we choose m > 1 large enough such that
1/m < s. The rest of the argument is same as for s ≤ 1. 4

The following characterization for a metrically sigma-�nite dimensional
space is important and so we state it as a remark.

Remark 1.1.9. If Ω = ∪∞i=1Ai such that each Ai has �nite metric dimension
βi on scale si. Let Ql = ∪li=1Ai, and the sets {Ql}l∈N form an increasing
chain. Since for a �xed l, Ql is a �nite union of �nite metric dimensional
space, due to the Lemma 1.1.4, Ql has metric dimension β1 + . . .+βl on scale
s = min{si : 1 ≤ i ≤ l} in Ω. Without loss of generality, we can assume each
Ql is closed (because of Lemma 1.1.7). Therefore, Ω = ∪∞l=1Ql, where each
Ql is closed and has �nite metric dimension. 4

Now, we present an important result about complete metric spaces. Every
metrically sigma-�nite dimensional complete metric space contains a non-
empty open set which is metrically �nite dimensional.

Proposition 1.1.10. Suppose (Ω, ρ) is a complete metric space and is met-
rically sigma-�nite dimensional. Then there is a non-empty open set which
is metrically �nite dimensional in Ω.
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x1 a x2 x3

Figure 1.3: The real line has Nagata dimension 1, for every four reals, there
is a pair (x2, x3) such that ρ(x2, x3) ≤ max{ρ(a, x2), ρ(a, x3)}.

Proof. There is a sequence of metrically �nite dimensional subsets (Qi)i∈N
such that Ω = ∪i∈NQi. Due to the Lemma 1.1.7, we can assume each Qi is
closed.

It follows from the Baire Category Theorem [18] that at least one of the
Qi has non-empty interior. So there is an non-empty open ball contained
in Qi, which is metrically �nite dimensional in Ω (follows from the Remark
1.1.6).

Assouad and Gromard [1] have studied the dimension of a metric in more
general environment, for example, they considered families of balls (open or
closed) in a semimetric space 1. A related yet somewhat di�erent notion
called, Nagata dimension, is presented in the following section.

1.2 Nagata dimension

This section is based on an important paper by Assouad and Gromard [1].
The essence of their paper is the generalization of many dimension related
concepts to general metric spaces. As, the paper is in French language so
it is di�cult for researchers not knowing french language to absorb their
interesting results. Here, we present an English translation of some of the
dimension related concepts picked from their article. In general, Nagata
dimension is de�ned somewhat di�erently in dimension theory, but we tend
to follow the same notions as in paper by Assouad and Gromard.

We also want to state that the Nagata dimension was �rst introduced
by Nagata and then it was modi�ed by Preiss to de�ne metric dimension by
introducing scales s. In this thesis, our major focus is �nite metric dimension
in the sense of Preiss, as it will clear after this section that a metric space

1a semimetric is a distance function which satisfy every axioms of a metric but not

necessarily the triangle's inequality
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Figure 1.4: Ball-covering dimension is 3 as the subfamily has multiplicity at
most 3. We cannot extract a subfamily from the original family such that it
contains every centers from the original family and has multiplicity less than
3.

with �nite Nagata dimension has �nite metric dimension for all scales but
the converse statement is not true.

De�nition 1.2.1 (Nagata dimension [1]). A subset Q of Ω has Nagata di-
mension β − 1 ≥ 0 in Ω if for every set of β + 1 elements x1, . . . , xβ+1

in Q and every a ∈ Ω, there exist distinct i, j in {1, . . . , β + 1} such that
ρ(xi, xj) ≤ max{ρ(a, xi), ρ(a, xj)}.

A space with 0-1 metric has Nagata dimension zero whereas, it has metric
dimension 1. The real line with usual metric has Nagata dimension one (see
�gure 1.3). The following proposition follows immediately from the de�nition
of Nagata dimension.

Proposition 1.2.2. An ultrametric space has Nagata dimension zero.

Proof. Let (Ω, ρ) be an ultrametric space and let Q ⊆ Ω. Then by the
strong triangle's inequality of ρ, for any x1, x2 ∈ Q and a ∈ Ω, we have
ρ(x1, x2) ≤ max{ρ(a, x1), ρ(a, x2)}.

We say Ω has sigma-�nite Nagata dimension, if Ω can be written as
countable union of subsets having �nite Nagata dimension in Ω. Another
interesting notion for a family of balls is the ball-covering dimension.

De�nition 1.2.3 (Ball-covering dimension). A subset Q of Ω is said to have
ball-covering dimension β in Ω, if for every countable family F of closed balls
with centers in Q, there exists a subfamily F ′ ⊆ F such that center of every
ball in F belongs to some ball in F ′ and the multiplicity of F ′ is at most β
in Ω.
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The ball-covering dimension of a family of balls is shown in �gure 1.4.
Assouad and Gromard proved that Nagata dimension + one is equal to ball-
covering dimension of the space.

Lemma 1.2.4 ([1]). The following are equivalent:

(i) Q has Nagata dimension β − 1 in Ω.

(ii) An unconnected family of closed balls with centers in Q have multiplicity
at most β in Ω.

(iii) Q has ball-covering dimension β in Ω.

Proof. (i)⇒ (ii): Let I be an index set and consider an unconnected family
of balls, F = {B̄(ai, ri) : ai ∈ Q, i ∈ I} such that for i 6= j, ai /∈ B̄(aj, rj)
and aj /∈ B̄(ai, ri). Let a ∈ Ω and suppose that every ball in {B̄(ai, ri) :
ai ∈ Q, i ∈ J ⊆ I} contains a. Since the balls are from unconnected family,
max{ρ(ai, a), ρ(aj, a)} < ρ(ai, aj), but Q has Nagata dimension β − 1 which
implies that ]J ≤ β. Therefore, F has multiplicity at most β in Ω.

(ii) ⇒ (iii): Consider a family of closed balls F = {B̄(ai, ri) : ai ∈
Q, i ∈ N}. Choose I1 as the maximal set of all indices in N such that
ρ(ai, aj) > max{ri, rj} for all i 6= j in I1 and let F1 = {B̄(ai, ri) : i ∈ I1}.
Again choose I2 to be the maximal set of all indices i ∈ N \ I1 such that
ai /∈ F1 and for all i 6= j in I2, ρ(ai, aj) > max{ri, rj} and let F2 = {B̄(ai, ri) :
i ∈ I2}. Continuing these steps until we exhaust F gives I = ∪∞p=1Ip and
F ′ = ∪i∈IB̄(ai, ri) such that, every center of balls in F is in F ′. Since F ′ is
an unconnected family, so by (ii), any x ∈ Ω belongs to at most β balls in
F ′.

(iii) ⇒ (i) Suppose Q does not have Nagata dimension β − 1 in Ω.
Then, there exists a set of β + 1 elements, x1, . . . , xβ+1 ∈ Q and a ∈ Ω such
that for every i 6= j, ρ(xi, xj) > max{ρ(a, xi), ρ(a, xj)}. This implies that
F = {B̄(xi, ρ(xi, a)) : 1 ≤ i ≤ β+ 1} is an unconnected family of closed balls
and hence we cannot extract a proper sub-family containing every xi. Also,
F has multiplicity more than β. So, Q cannot have ball-covering dimension
β.

The Lemma 1.2.4 gives an impression that the metric dimension in the
sense of Preiss and Nagata dimension seems to be interrelated. To �nd metric
dimension, we consider an unconnected family of closed balls but with radius
of each ball bounded by scale s, whereas to �nd ball-covering dimension or
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Nagata dimension there is no restriction on radius of a ball. Because of
scale s, there is a subtle di�erence between metric dimension and Nagata
dimension. Let us look at an example.

Example 1.2.5. Let R be equipped with metric,

ρ(x, y) =


0 if x = y

1/2 if x 6= y & xy = 0

1 otherwise

Let Q = (0, 1). Then

(i) Q has in�nite Nagata dimension in R. Let a = 0 and xi = 3−i for
i ∈ N. For all i 6= j, ρ(xi, xj) = 1 > max{ρ(0, xi), ρ(0, xj)} = 1/2.
Then there is no β− 1 for which ρ(xi, xj) ≤ max{ρ(0, xi), ρ(0, xj)} and
so, Q has in�nite Nagata dimension.

(ii) Q has �nite metric dimension in R. For β = 1 and any s ∈ (0, 1/2],
there are �nite sets F ⊆ Q with cardinality > 1 such that if we consider
an unconnected family of closed balls B̄(x, rx) with centers in F and
rx ∈ (0, s) then B̄(x, rx) = {x} and the multiplicity of any real number
can be at most 1. 4

It is easy to see that if a set Q has Nagata dimension β − 1 in Ω, then it
has metric dimension β for all scales s, in the sense of Preiss. However, the
Example 1.2.5 shows that a metric space can be metrically �nite dimensional
for one scale and not for another scale, that is, not every metrically �nite
dimensional space will have �nite Nagata dimension.

We can tweak the notion of Nagata dimension to de�ne a new concept
called `weak Nagata dimension' which is equivalent to metric dimension.

De�nition 1.2.6 (Weak Nagata dimension). A subset Q of Ω has weak
Nagata dimension β−1 on scale s > 0 in Ω if for any a ∈ Ω, whose open ball
B(a, r), r < s contains at least β+ 1 elements from Q say x1, . . . , xβ+1, there
exist distinct i, j ∈ 1, . . . , β + 1 such that ρ(xi, xj) ≤ max{ρ(a, xi), ρ(a, xj)}.

In the similar way, we can de�ne the notion of weak ball-covering dimen-
sion from the ball-covering dimension with respect to �nite family of closed
balls having radius < s. Now, we prove the equivalency of metric dimension,
weak Nagata dimension and weak ball-covering dimension.
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Lemma 1.2.7. Let Q be a subset of metric space (Ω, ρ). The following are
equivalent:

(i) Q has weak Nagata dimension β − 1 on scale s in Ω.

(ii) Q has metric dimension β on scale s in Ω. In other words, any uncon-
nected �nite family of closed balls with centers in Q and radius strictly
less than s, has multiplicity at most β in Ω.

(iii) Q has weak ball-covering dimension β on scale s in Ω.

Proof. (i)⇒ (ii): Suppose Q has weak Nagata dimension β − 1 on the scale
s in Ω. Let a ∈ Ω and consider an unconnected �nite family of m closed balls
containing a, F = {B̄(xi, ri) : xi ∈ Q, ri < s, xi /∈ B̄(xj, rj), 1 ≤ i 6= j ≤ m}.
Choose ε > 0 such that r = max{ri : 1 ≤ i ≤ m} + ε < s. So, the open
ball B(a, r) contains every xi. Since every closed ball at xi contain a, for all
distinct i, j ∈ {1, . . . ,m} we have ρ(xi, xj) > max{ρ(a, xi), ρ(a, xj)}. By our
assumption, m ≤ β. So, an element x ∈ Ω can belong to at most β numbers
of ball in F .

(ii) ⇒ (iii): Consider any �nite family of closed balls with centers in
Q and radius bounded by r, then we can extract an unconnected sub-family
which contain every centers in the original family and has multiplicity at most
β. The rest of the argument is exactly same as in the proof of (ii)⇒ (iii) in
Lemma 1.2.4 considering �nite families of closed balls.

(iii) ⇒ (i): Suppose the weak Nagata dimension of Q is not β − 1 on
scale s. Then, there exist a in Ω and x1, . . . , xβ+1 ∈ Q such that the open
ball B(a, r) for some 0 < r < s contains every xi and for all i 6= j, ρ(xi, xj) >
max{ρ(a, xi), ρ(a, xj)}. Let F = {B̄(xi, ρ(a, xi)) : xi ∈ Q, 1 ≤ i ≤ β + 1},
then for any 1 ≤ i 6= j ≤ β + 1, ρ(a, xi) < r < s and B̄(xi, ρ(a, xi)) contains
element a but does not contain xj. So, a belongs to β + 1 balls in F .

A result by Preiss says that all the complete and separable metric spaces
satisfying strong Lebesgue-Besicovitch di�erentiation property are essentially
the spaces having sigma-�nite metric dimension. In the following section, we
present the di�erentiation property of a metric space.

1.3 The di�erentiation property

Let f be an integrable (with respect to Lebesgue measure) real-valued func-
tion on R. Henri Lebesgue proved that derivative of integral of f at x with
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respect to Lebesgue measure is f(x) almost everywhere, which is known
as Lebesgue di�erentiation theorem. Later in 1945, Abram Besicovitch ex-
tended this result for any locally �nite Borel measure on a Euclidean space.
This result is called the Lebesgue-Besicovitch di�erentiation theorem. Based
on the type of convergence, we have two notions of di�erentiation property.

De�nition 1.3.1 (Strong di�erentiation property [2]). We say the strong
di�erentiation property holds for a locally �nite Borel measure ν on a metric
space (Ω, ρ), if for any f ∈ L1

ν(Ω)

lim
r→0

1

ν(B̄(x, r))

∫
B̄(x,r)

f(y)dν(y) = f(x), for ν a.e. x, (1.1)

where L1
ν(Ω) is the space of all ν-integrable functions on Ω.

If we replace almost everywhere convergence with convergence in measure
in the equation (1.1) then it is called as weak di�erentiation property for ν.

If f = χ
M

for any measurable M ⊆ Ω , then we get a special case of
di�erentiation property.

De�nition 1.3.2 (Strong density property). The strong density property is
said to hold for a locally �nite Borel measure ν, if for any measurable set
M ⊆ Ω such that ν(M) <∞, we have

lim
r→0

ν(B̄(x, r) ∩M)

ν(B̄(x, r))
= χ

M
(x) for ν a.e. x,

where χ
M

is a characteristic function of M . In the same manner, the weak
density property is de�ned with convergence in measure instead of almost
everywhere convergence.

To avoid ambiguity, we state the following remark regarding notations.

Remark 1.3.3. If the di�erentiation or density property holds for all locally
�nite Borel measures on Ω, then we say Ω satisfy the Lebesgue-Besicovitch
di�erentiation or density property. 4

1.4 A result by Preiss

This section explains the necessary part of the following theorem given by
Preiss.

34



Theorem 1.4.1 ([39]). Let (Ω, ρ) be a complete separable metric space. The
strong Lebesgue-Besicovitch di�erentiation property holds for Ω if and only
if Ω is metrically sigma-�nite dimensional.

In his short paper, Preiss did not give the proof of the above theorem as
such, instead he just outlined the basic ideas of the proof in a few sentences.
To work out a complete proof of su�ciency, Assouad and Gromard have
written a 61-page long paper [1]. The necessity condition was never given a
full proof. It is the �rst time that we give a detailed proof of necessity of Ω
to be metrically sigma-�nite dimensional in the theorem.

To prove the necessary part of Theorem 1.4.1, we require several results.
Firstly, we prove the following lemma about the existence of a non-empty
open subset of a metrically not sigma-�nite dimensional space, which does
not contain any non-empty open metrically �nite dimensional set.

Lemma 1.4.2. Let (Ω, ρ) be a complete separable metric space. Suppose
(Ω, ρ) is not metrically sigma-�nite dimensional, then there is a non-empty
open subset W of Ω such that W is not metrically sigma-�nite dimensional in
itself and does not contain any non-empty open metrically �nite dimensional
subset.

Proof. Suppose the collection F = {O ⊆ Ω : O is non-empty, open and has
�nite metric dimension in Ω} is non-empty (otherwise, there is nothing to
prove). Let U denote the union of F .

Since U is both metrizable and separable, from the two lemmas A.1.5
and A.1.8, there is a countable open locally �nite re�nement of F , say {Vj :
j ∈ N} such that each Vj is a subset of some O in F . So Vj is metrically
�nite dimensional in Ω and therefore U = ∪∞j=1Vj is metrically sigma-�nite
dimensional in Ω. It follows from the Lemma A.1.6 that Ū = ∪∞j=1V̄j. Further
the Lemma 1.1.7 implies that each V̄j is metrically �nite dimensional in Ω.
Thus Ū is metrically sigma-�nite dimensional and hence a proper subset of
Ω, for otherwise Ω would be metrically sigma-�nite dimensional.

The set W = Ω \ Ū is a non-empty open set. Let us prove that W
contains no non-empty open subsets which are metrically �nite dimensional
in W . Suppose there is a non-empty open subset Y of W which has metric
dimension β on some scale s > 0 in W . Notice that Y is open in W and
W is open in Ω, so Y is open in Ω. Let x ∈ Y and choose r > 0 such that
BΩ(x, r) is contained in Y and is metrically �nite dimensional in W .
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Let t = min{s, r/2}. We show that indeed BΩ(x, t) is metrically �nite
dimensional on scale t in Ω and get the contradiction. Let G = {B̄Ω(xi, ri) :
xi ∈ BΩ(x, t), 0 < ri < t} be any �nite family of closed balls in Ω with
centers in BΩ(x, t) and radius bounded above by t. By the �nite metric
dimensionality of Y , there exists a subfamily G ′ which contain all xi and has
multiplicity at most β in W .

If a ∈ B̄Ω(xi, ri), then by triangle's inequality ρ(a, x) ≤ ρ(a, xi)+ρ(xi, x) <
r. So every B̄Ω(xi, ri) is a subset of BΩ(x, r) and hence a subset of Y . This
implies that no element of U can belong to any ball in G ′ and therefore G ′ has
multiplicity at most β in Ω. Thus BΩ(x, t) is a non-empty open set which
has metric dimension β on scale t in Ω and by the de�nition of U , BΩ(x, t)
must be a subset of U which is not possible.

As W is homeomorphic to a complete metric space, from the Proposition
1.1.10 we conclude thatW is not metrically sigma-�nite dimensional in itself.

Suppose (Ω, ρ) is a complete separable metric space. Let PΩ be the set
of all probability measures on Ω. By the Portmanteau theorem [4], the
convergence of measures in weak topology is equivalent to the convergence
of measures in the metric space (PΩ, π), where for µ, ν ∈ PΩ, π(µ, ν) is the
in�mum of the set

{δ > 0 : µ(A) ≤ ν(Aδ) + δ, ν(A) ≤ µ(Aδ) + δ ∀A ∈ B(Ω)}.

Here Aδ = ∪x∈AB(x, δ). This metric is known as Lévy-Prokhorov metric.
Note that if µ(A) ≤ ν(Aδ)+δ holds for all Borel subsets A of Ω then π(µ, ν) <
δ [4].

For each n ∈ N, de�ne Mn ⊆ PΩ as the collection of measures µ such
that for each µ, there exists a measure ν ∈ PΩ such that

µ{x : ν(B̄(x, r)) ≤ nµ(B̄(x, r)) for every r < 1/n} < 1/n.

Let M◦
n denote the interior of Mn. We denote by δx the Dirac measure

supported at x, that is, δx(A) is equal to 1 if x ∈ A and is 0 otherwise. Our
goal is to prove that M◦

n is dense in PΩ, for which it is enough to show that
the closure of M◦

n contains the set N of all �nitely supported measures:

N =

{ k∑
i=1

βiδdi : k ∈ N, di ∈ S, βi ∈ [0, 1],
k∑
i=1

βi = 1

}
.
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Here, S is the countable dense subset of Ω. It is known that N is a dense
subset of PΩ [4].

For each n ∈ N, let Cn denote the collection of all probability measures
of the form { m∑

i=1

αiδai

}
,

satisfying the following properties:

(i) m > n, each 0 < αi < 1/n and
∑m

i=1 αi = 1,

(ii) corresponding to the set {a1, a2, . . . , am}, there exist 0 < r1, . . . , rm <
1/n such that aj /∈ B̄(ai, ri) for 1 ≤ i 6= j ≤ m and there is an element
y ∈ Ω which belongs to every ball B̄(ai, ri).

Let µi ∈ Cn. Let the support of µi be denoted by Fi = {ai1, . . . , aimi},mi >
n, corresponding to which the set of radii and the common element are de-
noted by {ri1, . . . , rimi} and yi respectively. Also, let {αi1, . . . , αimi} denote
the set of coe�cients.

Let An be the collection of all probability measures of the form{ l∑
i=1

λiµi : µi ∈ Cn, λi ∈ [0, 1],
l∑

i=1

λi = 1

}
,

such that the set {Fi}, where Fi is the support of µi, produces an unconnected
family of balls, that is, no closed ball at aik ∈ Fi of radius rik < 1/n intersects
Fj for all 1 ≤ i 6= j ≤ l and 1 ≤ k ≤ mi.

Lemma 1.4.3. Every element of An is an element of Mn.

Proof. It is easy to check that every µ ∈ An belongs to Mn. Indeed, let
ν =

∑l
i=1 λiδyi . Let aij ∈ F = ∪li=1Fi. By the assumption on the family

{Fi : 1 ≤ i ≤ l}, B̄(aij, rij) ∩ F = {aij}. Therefore, µ(B̄(aij, rij)) = λiαij.
Also, yi ∈ B̄(aij, rij), which implies ν(B̄(aij, rij)) ≥ λi. Since µi ∈ Cn for all
1 ≤ i ≤ l,

ν(B̄(aij, rij))

µ(B̄(aij, rij))
≥ 1

αij
> n.
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Since µ is supported on F ,

µ

{
x : ν(B̄(x, r)) ≤ nµ(B̄(x, r)) for all r < 1/n

}
= 0.

Hence, µ ∈Mn.

Furthermore, µ ∈M◦
n, which we show in the following lemma.

Lemma 1.4.4. Let µ ∈ An. Then µ is an element of M◦
n.

Proof. Let ω be a probability measure such that π(µ, ω) < ε, where ε >
0. Then from the de�nition of the metric π, there exists δ > 0 such that
π(µ, ω) ≤ δ ≤ ε and

ω(B) ≤ µ(Bδ) + δ for all B ∈ B(Ω).

We will �nd the conditions on δ, and hence on ε, such that whenever π(µ, ω) <
ε, the measure ω belongs to Mn. This will imply that the measure µ belongs
to M◦

n.
Let ν =

∑l
i=1 λiδyi . Let D = Dω denote the set of all x in Ω such that

ν(B̄(x, r)) ≤ nω(B̄(x, r)) for all r < 1/n. It is evident that if ω(D) < 1/n
then ω ∈Mn.

Set F = ∪li=1Fi, which is the support of µ. Let A be the set of all x ∈ Ω
such that B̄(x, δ) ∩ F is empty, then A is a subset of F c. We write D as the
disjoint union of intersection of D with three sets F,A and F c\A. Therefore,

ω(D) = ω(D ∩ F ) + ω(D ∩ (F c \ A)) + ω(D ∩ A). (1.2)

The set Aδ does not intersect F , so µ(Aδ) = 0. Therefore, we have

ω(D ∩ A) ≤ ω(A) ≤ µ(Aδ) + δ = δ.

We now show that the sets D ∩ F and D ∩ (F c \ A) can be made empty by
choosing an appropriate δ > 0, denoted by δ0. Note that the choice of such
δ could be made beforehand. It then follows that for ε < min{1/n, δ0}, the
open ball centered at µ of radius ε with respect to the metric π lies in Mn,
and hence, µ is an element of M◦

n.
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• Suppose z ∈ D ∩ F , then z is equal to some aij ∈ Fi. This implies
ω(B̄(aij, rij)) ≤ µ(B̄(aij, rij + δ)) + δ ≤ λiαij + δ, whenever

rij + δ < min{ρ(aij, a) : a ∈ F, a 6= aij}.

Let pij = min{ρ(aij, a) : a ∈ F, a 6= aij}. Note that there always exist
such δ satisfying the above inequality since by the assumption on the
family {Fi}, rij < pij. By choosing δ > 0 such that

λi
λiαij + δ

> n,

which is always possible since αij < 1/n, the fraction ν(B̄(aij, rij))/
ω(B̄(aij, rij)) ≥ (λi)/(λiαij+δ) is strictly greater than n, which implies
aij does not belong to D ∩ F . Thus, by taking δ < min{t1, t2}, where

t1 = min
ij
{pij − rij} and t2 = min

ij

{
λi

(
1

n
− αij

)}
,

we conclude that the set D ∩ F is empty.

• Now, let z be an element of D ∩ (F c \ A) then there is an element aij
in B̄(z, δ). Let tij = ρ(B̄(aij, δ), yi). If we choose δ such that

4δ + tij < pij,

which is always possible since tij < pij, B̄(z, 2δ + tij) will contain the
common element yi. It follows from the triangle's inequality, ρ(z, yi) ≤
ρ(z, aij) + ρ(aij, yi) ≤ 2δ + tij. Note that the ball B̄(z, 2δ + tij) may
also contain some yj, j 6= i.

On the other hand, B̄(z, 3δ + tij) will not contain any element except
aij from F . To see this, suppose a ∈ F such that a 6= aij is in the closed
ball B̄(z, 3δ + tij). Then ρ(a, aij) ≤ ρ(a, z) + ρ(z, aij) < 4δ + tij < pij,
which is a contradiction.

This implies that ω(B̄(z, 2δ + tij)) ≤ λiαij + δ and

ν(B̄(z, 2δ + ti))

ω(B̄(z, 2δ + ti))
≥ λi
λiαij + δ

.
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The left hand side of the above inequality is strictly greater than n
since we will choose δ < min{t1, t2}. In addition, if we take δ < t3,
where

t3 = min
ij
{pij − tij},

the set D ∩ (F c \ A) will be empty.

Hence, whenever δ0 < min{t1, t2, t3}, we will have ω(D) ≤ δ0 < 1/n, implying
ω ∈Mn.

From the Lemma 1.4.4, it is su�cient to prove that An is dense in N to
prove the denseness of M◦

n in PΩ, which is shown under the assumption that
no nonempty open set of Ω is metrically �nite dimensional.

Lemma 1.4.5. Suppose that no nonempty open subset of Ω is metrically
�nite dimensional in Ω. Then for each n, the set M◦

n is dense in PΩ.

Proof. Let ω =
∑l

i=1 λiδdi be an element of N , where di ∈ S. Let t =
min{ρ(di, dj) : 1 ≤ i 6= j ≤ l} and let 0 < ε < t. Note that B(di, ε) ∩
B(dj, ε) = ∅, for all 1 ≤ i 6= j ≤ l.

By the assumption, B(di, ε/2), 1 ≤ i ≤ l is not metrically �nite dimen-
sional on scale ε/2. Therefore, we have a set of measures {µi : 1 ≤ i ≤ l} in
Cn, where each µi has support Fi ⊆ B(di, ε/2). This implies that for a ∈ Fi,
the closed ball B̄(a, r), r < ε/2 is contained in B(di, ε) and does not contain
any other element of Fj. So, F = ∪li=1Fi will form an unconnected family of

closed balls and hence, from the Lemma 1.4.4, µ =
∑l

i=1 λiµi is in M
◦
n.

Let A be any Borel measurable subset of Ω. We will show that ω(A) ≤
µ(Aε/2) + ε/2, which then completes the proof. It is trivial if A does not
contain any di. Suppose di belongs to A. Then Fi ⊆ Aε/2 since Fi is contained
in B(di, ε/2), and hence, µ(Aε/2) ≥ λi = ω(A), if no dj, j 6= i is contained in
A. Therefore,

ω(A) ≤ µ(Aε/2).

Now we are ready to give the proof of the necessity condition in the
Theorem 1.4.1. We state it as a separate lemma as follows.
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Proof of Necessary part of Theorem 1.4.1. We want to prove the following:
Let (Ω, ρ) be a complete separable metric space. Suppose the strong Lebesgue-
Besicovitch di�erentiation property for Ω. Then Ω is metrically sigma-�nite
dimensional.

Suppose Ω is not metrically sigma-�nite dimensional. From the Lemma
1.4.2, without loss of generality we can assume that there is no non-empty
open subset of Ω which is metrically �nite dimensional in Ω. Let S be a
dense countable subset of Ω.

From the Lemma 1.4.5, we have that each M◦
n is a dense open subset of

PΩ. It follows from the Baire Category Theorem that ∩n∈NM◦
n is dense and

hence ∩n∈NMn is non-empty.
Let µ ∈ ∩n∈NMn, then for each n there is a sequence of probability

measures νn such that

µ

(
An = {x ∈ Ω : νn(B̄(x, r)) > nµ(B̄(x, r)) for some r < 1/n}

)
≥ 1− 1

n
.

Since lim supn µ(An) ≤ µ(lim supnAn) (See Theorem 4.1 [5]) and that µ is a
probability measure, we have

µ

(
lim sup

n
An

)
= 1.

Let ν =
∑∞

n=1 αnνn, where αn = 1
n(n+1)

. De�ne the following set.

A =

{
x : lim sup

r→0

ν(B̄(x, r))

µ(B̄(x, r))
=∞

}
We now show that lim supnAn ⊆ A. Given any x ∈ lim supnAn, x belongs
to An for in�nitely many n and so there is an increasing sequence m1,m2, . . .
in n such that x ∈ Amt for every t ∈ N.

For each mt, we have a 0 < rt <
1
mt

such that

αmtνmt(B̄(x, rt))

µ(B̄(x, rt))
> αmtmt.

We can assume that (rt) is a decreasing sequence converging to zero. Let �x
t ≥ 2. For all 1 ≤ j ≤ t− 1, we have

αmjνmj(B̄(x, rt))

µ(B̄(x, rt))
> αmjmj

µ(B̄(x, rj))

µ(B̄(x, rt))
≥ αmjmj,
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while for all t+ 1 ≤ j,

αmjνmj(B̄(x, rt))

µ(B̄(x, rt))
> αmjmj

νmj(B̄(x, rt))

νmj(B̄(x, rj))
.

Let st =
∑t

j=1 αmjmj. Then for all t ≥ 1,

ν(B̄(x, rt))

µ(B̄(x, rt))
=
∞∑
j=1

αmjνmj(B̄(x, rt))

µ(B̄(x, rt))
> st +

∞∑
j=t+1

αmjmj

νmj(B̄(x, rt))

νmj(B̄(x, rj))
> st.

Since st tends to in�nity as t tends to in�nity, it implies x ∈ A. Hence,
lim supnAn ⊆ A. Since µ (lim supnAn) = 1, we have then µ(A) = 1. In
other words,

lim sup
r→0

ν(B̄(x, r))

µ(B̄(x, r))
=∞ for µ− a.e.

This means that

lim sup
r→0

µ(B̄(x, r))

(µ+ ν)(B̄(x, r))
= 0 for µ− a.e.. (1.3)

As µ is absolutely continuous with respect to µ+ ν. By the Radon-Nikodym
theorem, there is a measurable function f : Ω → [0,∞) such that for any
measurable A, we have µ(A) =

∫
A
f(y)(µ+ ν)(dy). Then we have,

lim sup
r→0

µ(B(x, r))

(µ+ ν)(B(x, r))
= lim sup

r→0

1

(µ+ ν)(B(x, r))

∫
B(x,r)

f(y)(µ+ ν)(dy)

Suppose that µ + ν satis�es the strong di�erentiation property, then the
right-hand side of the above equation is equals to f(x) for (µ + ν)-almost
everywhere and hence also for µ-almost everywhere, while the left-hand side
is equals to 0 for µ-almost everywhere. This gives that f(x) = 0 for µ-almost
everywhere and therefore contradicts the fact that µ is a probability measure.
This completes the proof.
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Chapter 2

Statistical Machine Learning

In this chapter, we introduce the fundamentals of statistical machine learning.
We start with the binary classi�cation problem and then discuss about the
learning rules, error of a learning rule and consistency.

2.1 Binary classi�cation problem

A classi�cation problem is categorizing a set of data, for example sorting the
clothes based on its colors like blue, white, red, yellow etc. These categories
are referred as labels for a data. In general, any classi�cation problem can
be understood as a binary classi�cation problem that is, with two labels.
Almost every machine learning concepts can be modeled mathematically.

Let Ω be a non-empty set and let {0, 1} be the set of labels. A labeled
sample σn of size n is an element of (Ω× {0, 1})n,

σn = (x1, y1), . . . , (xn, yn),

where (xi, yi) ∈ Ω × {0, 1} such that each data point xi has label yi. Then,
the binary classi�cation problem (see �gure 2.1) is de�ned as follows.

De�nition 2.1.1 (Binary classi�cation problem [15]). Given σn, a binary
classi�cation problem is to construct a Borel measurable function g : Ω →
{0, 1} such that g(xi) = yi for every 1 ≤ i ≤ n and that g assigns a label 0
or 1 to every element x of Ω. The function g is called a classi�er.

Let's see an example. We want to classify the emails in our email account
as spam and non-spam emails. We would like to construct a machine to
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?

Figure 2.1: A binary classi�cation problem: given a set of labels `rectangle'
and `black dot', predict the label of new data point `ellipse'?

do this work. We take a set of emails called training data and based on it
we set a hypothesis that if subject of an email contain `credit or win' then
it is a spam. Now, the machine has to classify the new emails based on
this hypothesis. This is a binary classi�cation problem with labels `spam' or
`non-spam'.

Suppose we have a way to classify emails, is it what we want? A human
can pick spam emails without an error by seeing the email content but a ma-
chine cannot. There is always some uncertainty in classifying emails such as
emails having no subject, and hence there a possibility of error. In principle,
we prefer those machines which give less error and hence are more accurate.
Due to such uncertainties, the probabilistic settings are the best.

Let µ be a probability measure on Ω×{0, 1} and (X, Y ) be a Ω×{0, 1}-
valued random variable having distribution µ. Here, X is a random element
having label Y .

De�nition 2.1.2 (Misclassi�cation error). The misclassi�cation error for a
classi�er g is the measure of set of all labeled data points whose predicted
label and actual label are di�erent,

`µ(g) = P(g(X) 6= Y )

= µ{(x, y) ∈ Ω× {0, 1} : g(x) 6= y}.

The prime aim of a classi�er is to predict label for a new data point.
The misclassi�cation error gives the probability that we will predict a wrong
label. Like in our example of emails, the machine can classify an email from
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a friend as spam based on the hypothesis, whereas the actual label is `non-
spam'. The De�nition 2.1.2 gives the probability of such cases. It is evident
that a classi�er with low misclassi�cation error will be preferred.

2.2 Learning rule and consistency

Here, we discuss the Bayes error and constructing good classi�ers based on
labeled samples to attain minimum possible error.

Given a probability measure µ on Ω × {0, 1}, it is possible to de�ne the
minimum possible misclassi�cation error for µ.

De�nition 2.2.1 (Bayes Error [15]). The Bayes error is the in�mum of
misclassi�cation error for µ,

`∗µ = inf{`µ(g) : g is a classi�er on Ω}

The set of classi�ers is non-empty as we can always de�ne a function as
g : Ω → {1} and also, the misclassi�cation error is bounded between 0 and
1. This implies that the in�mum always exists and indeed is attained by the
Bayes classi�er (de�ned later). So, Bayes classi�er can be a solution to the
classi�cation problem, but Bayes error depends on µ which is unknown. The
only thing we have are labeled samples.

We know that (X, Y ) is distributed according to µ. We de�ne two mea-
sures ν and ν1 on Ω. For any measurable A ⊆ Ω, let

ν(A) = µ(A× {0}) + µ(A× {1}), ν1(A) = µ(A× {1}).

As ν1 ≤ ν, so ν1 is absolutely continuous with respect to ν. By the Radon-
Nikodym theorem [5], there exists a measurable function η such that,

ν1(A) =

∫
A

η(x)ν(dx).

Here, η is the Radon-Nikodym derivative of ν1 with respect to ν. Proba-
bilistically, η is equal to the conditional probability of getting label 1, given
X = x,

η(x) = P(Y = 1|X = x).
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In statistics, η is called regression function. Note that, η is function on Ω
and takes values in [0, 1]. We show below that the distribution of (X, Y ) can
be completely described by the pair (ν, η), where ν is a probability measure
and η a regression function on Ω obtained from the underlying probability
measure µ on Ω × {0, 1}. We can write any measurable set A ⊆ Ω × {0, 1}
as,

A = {A0 × {0}} ∪ {A1 × {1}}.

Therefore, we have

P((X, Y ) ∈ A) = P(X ∈ A0, Y = 0) + P(X ∈ A1, Y = 1)

=

∫
A0

(1− η(x))dν(x) +

∫
A1

η(x)dν(x).

In the above equation, the left hand-side is in terms of µ, while the right
hand-side is de�ned by ν and η. So, the distribution of (X, Y ) is com-
pletely determined by ν and η. The distribution of (X, Y ) is described by
(ν, η) means that the random element X is distributed according to ν with a
random label Y following Bernoulli distribution with probability of success
η(x) = P(Y = 1|X = x).

Remark 2.2.2. We will intermittently describe the distribution of (X, Y ) by µ
or (ν, η). In case of (ν, η), there is always an underlying probability measure
µ on Ω× {0, 1}. 4

With the help of the regression function, we can also de�ne the important
notion of the Bayes classi�er.

De�nition 2.2.3 (See p. 10 of [15]). The Bayes classi�er is de�ned as:

g∗(x) =

{
1 if η(x) ≥ 1

2
,

0 otherwise
(2.1)

The above de�nition is well de�ned and the error of the Bayes classi�er
can be de�ned as P(g∗(X) 6= Y ). We can infer from the following theorem
that the Bayes error is indeed attained by the Bayes classi�er.

Theorem 2.2.4 (Optimality of Bayes classi�er, see Theorem 2.1 in [15]).
Let g be a classi�er on Ω, then we have

P(g(X) 6= Y )− P(g∗(X) 6= Y ) ≥ 0.
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Proof. We �rst �nd the probability of no error for g given an element x,

P(g(X) = Y |X = x)

= P(g(X) = 1, Y = 1|X = x) + P(g(X) = 0, Y = 0|X = x)

= P(Y = 1|X = x)I{g(x)=1} + P(Y = 0|X = x)I{g(x)=0}

= η(x)I{g(x)=1} + (1− η(x))I{g(x)=0}.

Similarly, we have the probability of zero error for g∗.

P(g∗(X) = Y |X = x) = η(x)I{g∗(x)=1} + (1− η(x))I{g∗(x)=0}.

Then the di�erence of error probabilities of g and g∗ is,

P(g(X) 6= Y |X = x)− P(g∗(X) 6= Y |X = x)

= P(g∗(X) = Y |X = x)− P(g(X) = Y |X = x)

= η(x)(I{g∗(x)=1} − I{g(x)=1}) + (1− η(x))(I{g∗(x)=0} − I{g(x)=0})

= 2

∣∣∣∣η(x)− 1

2

∣∣∣∣I{g(x)6=g∗(x)},

which is equal to 0 if g = g∗, (η(x) − 1/2) if g∗(x) = 1, g(x) = 0 and
(1/2 − η(x)) if g∗(x) = 0, g(x) = 1. By the de�nition of g∗, 2η(x) − 1 is
non-negative if and only if g∗(x) = 1. So,

P(g(X) 6= Y |X = x)− P(g∗(X) 6= Y |X = x) ≥ 0, (2.2)

taking the expectation over all x ∈ Ω,

P(g(X) 6= Y )− P(g∗(X) 6= Y )

= E{P(g(X) 6= Y |X = x)} − E{P(g∗(X) 6= Y |X = x)} ≥ 0.

From the above theorem we have `∗µ = P(g∗(X) 6= Y ). The Bayes classi-
�er depends on the underlying distribution µ of (X, Y ), which is unknown,
thus g∗ is unknown. We assume the existence of µ to make the theoretical
study possible. We have labeled samples, in our hand, we try to construct a
classi�er based on labeled samples. We cannot in general expect misclassi�-
cation error of a classi�er to be zero, but we can strive for error of a classi�er
to be closer to the minimum possible error, that is, Bayes error. To achieve
this, we construct a family of classi�ers based on labeled samples, which are
known as learning rule.

47



De�nition 2.2.5 (Learning rule). A learning rule of size n is a mapping
de�ned on all labeled samples of size n which assigns a label to a data point
given a labeled sample,

gn : (Ω× {0, 1})n × Ω→ {0, 1}

In simpler words, a learning rule take a labeled sample σn and assigns a
classi�er gn(σn) to it. This classi�er gn(σn) then �nds the label gn(σn)(x) =
g(x, σn) for x ∈ Ω. A learning rule is a sequence of maps (gn), n ∈ N for
labeled samples of all sizes. We sometimes write gn(x) = gn(x, σn), with an
understanding that a learning rule is also a function of labeled samples.

A learning rule is entirely a deterministic function, but further analysis
to measure the error of a learning rule require randomness and probabilis-
tic settings. Let D∞ denote the in�nite sequence (X1, Y1), (X2, Y2), . . . of
independently and identically distributed random variables according to a
probability measure µ. Then, D∞ is called a random sample path and the
product measure µ∞ =

∏∞
i=1 µ is the distribution of D∞. The �rst n pairs

from D∞, denoted by Dn = (X1, Y1), . . . , (Xn, Yn) is called a random labeled
sample of size n and follows distribution µn =

∏n
i=1 µ. Let σn, σ∞ denote a

realization of Dn and D∞, respectively. We have an underlying assumption
that each (Xi, Yi) from the random sample path is distributed according to
µ and is independent of (X, Y ).

A random sample of size n, W = (W1,W2, . . . ,Wn), is a vector of i.i.d.
random variables, while a sample viewed as an instance is one possible re-
alization of the sample W . In other words, if Wi(p) = wi for p ∈ Ω then,
w = (w1, w2, . . . , wn) is one realization of W = (W1,W2, . . . ,Wn), and w is
considered as an instance of the random sample W . For example, let X1, X2

is the result of throw of two dices respectively. Then, (X1, X2) is a random
sample of size 2 and (1, 4) is one instance of this sample. Now, we de�ne the
error of a learning rule.

De�nition 2.2.6 (Error probability of a rule [15]). The error probability of
(gn) is the conditional probability,

`µ(gn) = P(gn(X) 6= Y |Dn), (2.3)

and the expected error probability is given by,

E{`µ(gn)} = P (gn(X) 6= Y ) , (2.4)

where the average is over all labeled samples of size n.
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Figure 2.2: Consistent rule: (hn) is weakly consistent because its expected
error converges to Bayes error (`∗µ), whereas (gn) is not weakly consistent as
its expected error does not converges to Bayes error. The expected error of
(gn) is monotonically non-increasing, so (gn) is a smart learning rule.

Note that, the equation (2.3) is a function of random data and hence
`µ(gn) is a random variable. In simpler words, `µ(gn) is a function from
set of all labeled n-samples (Ω × {0, 1})n to [0, 1] such that `µ(gn)(σn) =
P(gn(X) 6= Y |σn) = µ{(x, y) : gn(x)(σn) 6= y}. While the expectation in the
equation (2.4) is with respect to µn and hence the value is a real number.

The accuracy of a learning rule is measured by the convergence of its
error probability to Bayes error.

De�nition 2.2.7 (Consistent rule [15]). A learning rule (gn) is called weakly
consistent for a probability measure µ, if the error probability converges to
Bayes error in probability, that is,

E{`µ(gn)} → `∗µ, as n→∞,

while, (gn) is said to be strongly consistent if

`µ(gn)→ `∗µ almost surely, as n→∞,

Note that, the almost sure convergence in the de�nition of strong consis-
tency is with respect to random sample path D∞. That is, the set of in�nite
labeled samples σ∞ for which the error probability `µ(gn)(σn) converges to
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Bayes error has measure one with respect to µ∞, in other words,

µ∞{σ∞ : lim
n→∞

`µ(gn)(σn) = `∗µ} = 1.

The notion of weak consistency demonstrates that if we increase the data size
then with high probability we have the average error over all labeled samples
of size n to achieve Bayes error. While, for a strongly consistent rule, the error
probability converges to Bayes error for almost every in�nite labeled sample.
In addition, a learning rule may be consistent for a particular distribution and
may not be consistent for another distribution. It is preferable to construct
a learning rule which is consistent for every distribution without having the
need to know the unknown distribution.

De�nition 2.2.8 (Universally consistent rule [15]). A learning rule (gn) is
said to be universally weakly consistent if it is weakly consistent for every
probability measure µ on Ω×{0, 1}. Similarly, a universally strongly consis-
tent rule is strongly consistent for every probability measure on Ω× {0, 1}.

The k-nearest neighbor rule is an example of a universally consistent
learning rule. In fact, the k-nearest neighbor rule is also universally strongly
consistent in Euclidean spaces. We will explore more about consistency of
the k-nearest neighbor rule in Chapter 3 and Chapter 4. From a theoreti-
cal perspective, we prefer universally consistent rules but learning rules like
Random forests rule which is not universally consistent are also employed in
practical applications due to their high accuracy [3]. A learning rule whose
expected error decreases monotonically with increasing n is called a smart
learning rule. It has been conjectured that a universally consistent rule is
not a smart rule (see Problem 6.16 of [15]).

Recently, a mutual notion of consistency has been introduced [45], which
measures the closeness between two learning rules.

De�nition 2.2.9 (Mutually consistent [45]). Two learning rules (gn) and
(hn) are called mutually weakly consistent if for every distribution µ on Ω×
{0, 1},

Eµ{|gn(X)− hn(X)|} → 0 as n→∞.

A learning rule is universally weakly consistent if and only if it is mutually
weakly consistent with Bayes rule. The notion of mutual strong consistency
can be de�ned similarly.
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2.3 How to construct a learning rule?

We know that a possible way to �nd a good classi�er with low misclassi�-
cation error is to construct a sequence of learning rules whose error can be
made as small as possible. However, the real question is what is the form
of such a learning rule when the only thing being available are the labeled
samples. A formal way to construct a learning rule is elucidated in [15]. The
basic idea is to devise a function ηn with the help of labeled samples and
try to approximate the regression function η. The most common way is to
assign weights to the labeled sample.

Given a labeled sample σn = (x1, y1), . . . , (xn, yn), let us de�ne a function,

ηn(x) =
n∑
i=1

yiW
n
i (x) (2.5)

where W n
i = W n

i (x, σn) are non-negative weights and
∑n

i=1W
n
i (x) = 1. To

be precise, ηn(x) is actually ηn(x, σn) in the equation (2.5), it is a function
of labeled samples and x. Then a learning rule is de�ned as,

gn(x) =

{
1 if ηn(x) ≥ 1

2
,

0 otherwise
(2.6)

The above de�ned learning rule (gn) is also called as plug-in rule [15]
(see �gure 2.3). We do not state explicitly every time but it is important to
understand that gn(x) = gn(x, σn) always. The error probability of (gn) is
stated in De�nition 2.2.6. The following theorem conveys that the expected
error probability of (gn) is more than the error probability of Bayes rule but
cannot increase the error probability of Bayes rule by more than twice the
average di�erence between η and its approximation ηn. The proof of the
following theorem has been adopted from [15].

Theorem 2.3.1. Let (Ω, ρ) be a separable metric space and let gn be a learn-
ing rule as in the equation (2.6), then

P(gn(X) 6= Y )− P(g∗(X) 6= Y ) ≤ 2E{|η(X)− ηn(X)|},

and,

P(gn(X) 6= Y )− P(g∗(X) 6= Y ) ≤ 2
√
E{(η(X)− ηn(X))2}.

51



Ω

re
g
re
ss
io
n
fu
n
ct
io
n

η

1/2

1 g∗

Figure 2.3: If regression function η is greater than or equals to 1/2, then
Bayes rule g∗ (thick black line) is equal to one. If η is strictly less than 1/2
then g∗ is equal to zero.

Proof. In the proof of the Theorem 2.2.4, we have deduced the following
di�erence between error probabilities,

P(gn(X) 6= Y |X = x)− P(g∗(X) 6= Y |X = x) = 2

∣∣∣∣η(x)− 1

2

∣∣∣∣I{gn(x)6=g∗(x)}.

We see that if gn(x) = 0, g∗(x) = 1, then ηn(x) < 1/2, η(x) ≥ 1/2. In
the other case, if gn(x) = 1, g∗(x) = 0, then ηn(x) ≥ 1/2, η(x) < 1/2. So,
|η(x) < 1/2| ≤ |η(x)− ηn(x)|.

Now we take the average of di�erence between conditional error proba-
bilities, over all x ∈ Ω,

P(gn(X) 6= Y )− P(g∗(X) 6= Y )

= E{P(gn(X) 6= Y |X = x)− P(g∗(X) 6= Y |X = x)}

= 2E
{∣∣∣∣η(X)− 1

2

∣∣∣∣I{gn(X) 6=g∗(X)}

}
≤ 2E{|η(X)− ηn(X)|}

By the Cauchy-Schwarz inequality on the above inequality, we get

P(gn(X) 6= Y )− P(g∗(X) 6= Y ) ≤ 2
√
E{(η(X)− ηn(X))2}.
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The Theorem 2.3.1 is important because it gives su�cient condition to
prove weak consistency, that is, if ηn is asymptotically close to η then the
average error converges to Bayes error. Indeed, we can even deduce a su�-
cient condition from the Theorem 2.3.1 to have strong consistency. A simple
corollary to the Theorem 2.3.1 is as follows.

Corollary 2.3.2. The di�erence between the error probability of learning
rule (gn) and Bayes rule g∗ is,

`µ(gn)− `∗µ ≤ 2E{|η(X)− ηn(X)||Dn},

where Dn is a random labeled sample.
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Chapter 3

The k-Nearest Neighbor Rule

Here, we introduce the simplest learning rule called the k-nearest neighbor
rule. We discuss about some of important results such as Stone's lemma,
Stone's theorem and Cover-Hart lemma, together they establish the universal
weak consistency of k-nearest neighbor rule in �nite dimensional normed
spaces. We also prove the inconsistency of the k-nearest neighbor rule on
Davies' example.

3.1 The k-nearest neighbor rule

The origin of k-nearest neighbor rule can be dated back to the work of Fix
and Hodges [20] in 1951. Since then, the k-nearest neighbor rule has become
a hub of statistical machine learning.

The k-nearest neighbor rule is very simple. The `k' in the k-nearest
neighbor rule is a positive integer and is less than or equal to n, the number
of data points in a sample. We explain in the following, the major steps of
applying the k-nearest neighbor rule algorithmically:

• Suppose we have a set of n data points, {x1, . . . , xn} with their labels
{y1, . . . , yn}. Let x be a new data point and our task is to predict the
label of x given the labeled sample.

• Let ρ be a distance function, not necessarily a metric. Arrange the
distances of x to xi in increasing order,

ρ(x(1), x) ≤ ρ(x(2), x) ≤ . . . ≤ ρ(x(n), x).
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k = 2

k
=
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3

Figure 3.1: For k = 1, `ellipse' has label `rectangle'; for k = 2, there is a
voting tie among `rectangle' and `black dot'; for k = 3, there is a distance tie
(represented by dashed lines) as two data points with label `rectangle' are at
equal distance to `ellipse', so we cannot decide which one to choose as the
3-rd nearest neighbor for `ellipse'.

• Then the �rst k data points, {x(1), . . . , x(k)} are called the k-nearest
neighbors of x with corresponding labels {y(1), . . . , y(k)}.

• The label of x is the most frequent label among {y(1), . . . , y(k)}. In
other words, we take a majority vote among {y(1), . . . , y(k)} and assign
this as the label of x.

There are two major issues that hinder the implementation of the k-nearest
neighbor rule (see �gure 3.1): Voting ties and distance ties. Voting ties is
the di�culty in �nding the majority vote among the picked `k' labels. If k
is an even integer and suppose exactly k/2 of {y(1), . . . , y(k)} are 0 and rest
are 1, then there is no clear majority vote. Voting ties are usually avoided
by taking k to be odd. We pick label 1 as the majority vote in case of a
voting tie as stated in the formal de�nition of the k-nearest neighbor rule in
the later part of this section.

Distance ties occur when two or more data points are at the same distance
to x, that is ρ(xi, x) = ρ(xj, x). This is a problem because there may be many
data points at same distance to x and hence it is di�cult to choose exactly
k nearest neighbors for x. The solution to distance ties are complicated and
often the consistency is derived under the assumption of no distance ties. To
obtain universal consistency, we need a tie-breaker to overcome the problems
due to distance ties.
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There are several methods of breaking distance ties, however in this the-
sis, we discuss only two methods of breaking distance ties. The simplest
one is index-based tie-breaking method or in simpler words, breaking dis-
tance ties by comparing indices. Given a sample of ordered n + 1 data
points (x, x1, . . . , xn), the k-nearest neighbors of xi are picked from the sam-
ple (x1, . . . , xi−1, x, xi+1, . . . , xn). Suppose there is a distance tie between xj
and x for xi, that is, ρ(xi, x) = ρ(xi, xj), then we choose xj to be closer to
xi if xj ∈ {x1, . . . , xi−1}, otherwise we choose x. In Euclidean spaces, tie-
breaking by comparing indices is su�cient to avoid any bad situation but the
same is not true for general metric spaces. Some issues related to distance
ties for metric spaces with �nite Nagata dimension are discussed in section
4.2. The second method is to break distance ties randomly and uniformly.
A distance tie basically appears on the sphere, so in case of ties, a point is
chosen uniformly on the sphere. Suppose ρ(Xi, X) = ρ(Xi, Xj), then X and
Xj are chosen with equal probability, that is, 1/(]{S(Xi, ρ(Xi, X))}).

Now, we present a formal and mathematical de�nition of the k-nearest
neighbor rule. According to [15], the k-nearest neighbor classi�cation rule
belong to the family of plug-in rules, which are de�ned in the equation (2.6).
Intuitively, it is clear that data points which are closer to x will have more
in�uence on x rather than the data points lying far from x. This is the
fundamental idea of the k-nearest neighbor rule, so it is convincing to assign
high weights to the data points closer to x.

Given a labeled sample, σn = (x1, y1), . . . , (xn, yn), let Nk(x) denote the
set of k-nearest neighbors of x. Note that, ]Nk(x) = k. Each data point
in Nk(x) is assigned equal and non-zero weight, that is 1/k. The k-nearest
neighbor approximation for η is,

ηn(x) =
1

k

n∑
i=1

I{xi∈Nk(x)}yi. (3.1)

Then, the k-nearest neighbor rule is de�ned as :

gn(x) =

{
1 if ηn(x) ≥ 1/2,

0 otherwise
(3.2)

In the equation (3.2), the k-nearest neighbor rule gn assigns label 1 to a data
point x, if the average weights of the k-nearest neighbors of x having label 1
is greater than the average weights of the k-nearest neighbors with label 0.
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The k-nearest neighbor rule is the earliest example of a universally weakly
consistent rule. There are two known methods to prove the universal weak
consistency of the k-nearest neighbor rule: Stone's theorem [42] and using
the weak Lebesgue-Besicovitch di�erentiation property [6, 12]. We discuss
the Stone's theorem in detail in the following section as the Stone's argument
is our center of focus.

3.2 Universal consistency

In this section, we make some mathematical preparations for the proof of
Stone's theorem. We start by proving some results that holds in any separable
metric space such as Cover-Hart lemma and then using the argument of cones
we prove the Stone's lemma and Stone's theorem in Euclidean spaces.

3.2.1 Cover-Hart lemma and other results for general

metric spaces

A separable metric space has some nice properties such as the support of a
probability measure in a separable metric space has full measure. A set has
full measure if its complement has zero measure. Let Sν denotes the support
of probability measure ν.

Lemma 3.2.1 ([10]). Let (Ω, ρ) be a separable metric space and let X be
distributed according to a probability measure ν on Ω. Then P(X ∈ Sν) =
ν(Sν) = 1.

Proof. Let D be a countable dense subset of Ω. For each x in Scν , there exists
r > 0 such that ν(B(x, r)) = 0. Due to the denseness ofD, there is an element
a in D such that ρ(x, a) < r/3. We show that every element z ∈ B(a, r/2)
belongs to B(x, r). By triangle's inequality ρ(x, z) ≤ ρ(x, a) + ρ(a, z) <
r/3 + r/2 = 5r/6 < r. So, B(a, r/2) ⊆ B(x, r), and as ν(B(x, r)) is zero so
ν(B(a, r/2)) = 0. Observe that ρ(x, a) < r/3 < r/2, so x ∈ B(a, r/2).

So, for every x ∈ Scν , there is an element a such that x belongs to the open
ball B(a, r/2). We can cover Scν by the countable union of B(a, r/2), a ∈ D
which have measure zero. The countable sub-additivity of ν implies Scν has
zero measure.

In a separable metric space, the distance of a data point to its k-th nearest
neighbor can be made small under appropriate values of k, n. The Lemma
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3.2.2 stated below was originally proved by Cover and Hart for the k-nearest
neighbor rule in a separable metric space with �xed k (See pages 23, 26 of
[10]), moreover, the result is true even if k increases with n but slower than n
such that k/n converges to zero (See Lemma 5.1 in [15] for Euclidean spaces).
However, the proof remains same for any separable metric space. The proof
of Cover-Hart lemma for any separable metric space presented here has been
adapted from Hatko's masters thesis (see Lemma 2.3.4 of [26]), where the
proof has been done in separable C-inframetric space 1.

Lemma 3.2.2 (Cover-Hart lemma [10]). Let (Ω, ρ) be a separable metric
space. Let X,X1, . . . , Xn be an i.i.d. random sample distributed according to
ν. Let X(k)(X) denote the k-th nearest neighbor of X among a sample of n
points. If (kn) is a sequence of values such that limn→∞ kn/n→ 0, then

P
(

lim
n→∞

ρ(X(kn)(X), X) = 0

)
= 1.

Proof. If x is in the support of the measure ν, then for all ε > 0, ν(B(x, ε)) >
0. We note that the distance ρ(X(kn)(x), x) > ε if and only if

∑n
i=1 I{Xi∈B(x,ε)}

< kn, which is equivalent to

1

n

n∑
i=1

I{Xi∈B(x,ε)} <
kn
n
. (3.3)

We see that the right side of the equation (3.3) goes to 0 as kn/n → 0,
whereas the left side of the equation (3.3) converges to ν(B(x, ε)) almost
surely by the strong law of large numbers. But ν(B(x, ε)) is strictly positive
as x is in the support of ν, therefore, ρ(X(kn)(x), x) converges to 0 almost
surely whenever x ∈ Sν and kn/n→ 0.

If (kn) is a constant sequence, then ρ(X(kn)(x), x) is a monotone non-
increasing sequence in n. We will show that the sequence ρ(X(kn)(X), X)
converges in probability to 0, and hence will converge almost surely. Let
ε > 0. From the Lemma 3.2.1, we have P(X ∈ Sν) = 1, then

P(ρ(X(kn)(X), X) > ε) = P(X ∈ Sν)P(ρ(X(kn)(X), X) > ε|X ∈ Sν)+
P(X /∈ Sν)P(ρ(X(kn)(X), X) > ε|X /∈ Sν)

= P(ρ(X(kn)(X), X) > ε|X ∈ Sν)
= E{I{ρ(X(kn)(X),X)>ε}|X ∈ Sν},

1a inframetric space is a semimetric space satisfying weak-triangle's inequality, ρ(x, y) ≤
C max{ρ(x, z), ρ(z, y)}
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which converges to 0, by the Monotone Convergence Theorem. So, ρ(X(kn)(X),
X) converges to 0 in probability and therefore, converges to 0 almost surely.

Now, suppose (kn) is a sequence increasing with n but kn/n → 0. Let
X(kn,n)(X) denote the k-th nearest neighbor of X among the sample X1, . . . ,
Xn. Since, supm≥n ρ(X(km,m)(x), x) → 0 almost surely whenever x is in Sν
(as proved above), as a consequence we have supm≥n ρ(X(km,m)(x), x) → 0
almost surely as n→∞.

Let ε > 0. As, ρ(X(kn,n)(X), X) ≤ supm≥n ρ(X(km,m)(X), X), we have

P(ρ(X(kn,n)(X), X) > ε) ≤ P
(

sup
m≥n

ρ(X(km,m)(X), X) > ε

)
.

So, it is enough to show that the sequence supm≥n ρ(X(km,m)(X), X) converges
to 0 almost surely. We follow the similar argument as above by showing
that supm≥n ρ(X(km,m)(X), X) converges to 0 in probability. As the sequence
supm≥n ρ(X(km,m)(x), x) is monotonically non-increasing, this implies that
supm≥n ρ(X(km,m)(X), X) converges to 0 almost surely as n→∞. We know
that P(X ∈ Sν) = 1 from the Lemma 3.2.1, as a result

P
(

sup
m≥n

ρ(X(km,m)(X), X) > ε

)
= P

(
sup
m≥n

ρ(X(km,m)(X), X) > ε|X ∈ Sν
)

= E
{
I{supm≥n ρ(X(km,m)(X),X)>ε}|X ∈ Sν

}
,

The expectation of indicator functions of events that is, E{I{supm≥n ρ(Xkm ,X)>ε}
|X ∈ supp(ν)} goes to 0 by the Monotone Convergence Theorem.

It has been shown in Theorem 5.2 of [15] that if k is �xed but n → ∞,
then the expected error of the k-nearest neighbor rule converges to some
constant which is greater than the Bayes error. So, for �nite values of k,
the k-nearest neighbor fails to be universally weakly consistent. Also, two
of the conditions of Stone's theorem are satis�ed whenever n, k → ∞ and
k/n→ 0 in �nite dimensional normed spaces. Therefore, to obtain universal
consistency we always consider the limit that k increases with n but slowly,
that is, k/n→ 0 as k, n→∞.

The proof of the following result is based on [15], where it was proven
in Euclidean settings, but the same proof works for every separable metric
space. This result shows that the expected di�erence between the k-nearest
neighbor approximation ηn in the equation (3.1) and another approximation
η̃n in the equation (3.4) decreases for large values of k.
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Lemma 3.2.3. Let (Ω, ρ) be a separable metric space and let ν be a probability
measure on Ω. Given a labeled sample σn, which takes values in (Ω×{0, 1})n,
de�ne a function η̃n,

η̃n(x) =
1

k

n∑
i=1

I{xi∈Nk(x)}η(xi). (3.4)

If k →∞, then E{(ηn(X)− η̃n(X))2} → 0.

Proof. By the de�nition of ηn and η̃n,

(ηn(X)− η̃n(X))2 (3.5)

=

(
1

k

n∑
i=1

I{Xi∈Nk(X)}Yi −
1

k

n∑
i=1

I{Xi∈Nk(X)}η(Xi)

)2

=

(
1

k

n∑
i=1

I{Xi∈Nk(X)}(Yi − η(Xi))

)2

=
1

k2

n∑
i=1

n∑
j=1

I{Xi∈Nk(X)}I{Xj∈Nk(X)}(Yi − η(Xi))(Yj − η(Xj)) (3.6)

We know that E{η(Xi)} = E{E{Yi|X = Xi}} = E{Yi}. And if i 6= j, then
(Xi, Yi) and (Xj, Yj) are independent of each other. So,

E
{

1

k2

n∑
i,j=1,i 6=j

I{Xi∈Nk(X)}I{Xj∈Nk(X)}(Yi − η(Xi))(Yj − η(Xj))

}
= 0.

Since (Yi − η(Xi))
2 is bounded above by one, we have

E{(ηn(X)− η̃n(X))2} = E
{

1

k2

n∑
i=1

I{Xi∈Nk(X)}(Yi − η(Xi))
2

}
≤ E

{
1

k2

n∑
i=1

I{Xi∈Nk(X)}

}
= E

{
1

k

n∑
i=1

1

k
I{Xi∈Nk(X)}

}
= 1/k,

where the last equality is true because Nk(X) contains exactly k data points
from the sample. In case of distance ties, we break ties and choose k data
points for Nk.
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In fact, we prove in the Lemma 3.2.4 that the expected di�erence between
η̃n and η can be bounded above by the expected di�erence of η and an
uniformly continuous function with the help of Luzin's theorem (see Theorem
A.1.3). A initial part of the following proof is based on [15], where it was
drafted for Euclidean spaces.

Lemma 3.2.4. Let ν be a probability measure on Ω, where (Ω, ρ) is a sepa-
rable metric space. Let η̃n be same as de�ned in the equation (3.4) of Lemma
3.2.3. Let ε > 0, then there exists a set K ⊆ Ω and a uniformly continuous
function η∗ on Ω such that, E{(η̃n(X)− η(X))2} is less than or equal to

E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(Xi)− η(Xi))

2

∣∣∣∣X ∈ K,Xi ∈ U
}

+ 12ε,

where U = Ω \K.

Proof. By the Jensen's inequality we have,

(η̃n(X)− η(X))2 =

(
1

k

n∑
i=1

I{Xi∈Nk(X)}η(Xi)− η(X)

)2

=

(
1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η(X))

)2

≤ 1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η(X))2.

Then, we have

E
{

(η̃n(X)− η(X))2

}
≤ E

{
1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η(X))2

}
.

Given ε > 0, the Luzin's theorem (see chapter 7 of [21] or see Theorem A.1.3)
implies that there exists a compact set K ⊆ Ω such that η|K is continuous
and ν(Ω \K) < ε. Let U = Ω \K. Due to Lemma A.1.1 and Lemma A.1.2,
we can extend η|K to a uniformly continuous function η∗ : Ω → [0, 1] such
that η∗(X) = η(X) for X ∈ K and (η∗(X)− η(X))2 ≤ 1 whenever X /∈ K.

Using the inequality (a + b + c)2 ≤ 3(a2 + b2 + c2), where a, b, c are real
numbers, we have
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E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η(X))2

}
= E

{
1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η∗(Xi) + η∗(Xi)− η∗(X) + η∗(X)− η(X))2

}
= 3E

{
1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η∗(Xi))
2

}
+ 3E

{
1

k

n∑
i=1

I{Xi∈Nk(X)}

(η∗(Xi)− η∗(X))2

}
+ 3E

{
1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(X)− η(X))2

}
. (3.7)

We bound the three expressions in the right-hand side of the above inequality
in the following way,

• Third term of (3.7): As η∗ and η are equal onK and 1
k

∑n
i=1 I{Xi∈Nk(X)} =

1 after breaking the distance ties, we have

E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(X)− η(X))2

}
≤ E{(η∗(X)− η(X))2|X ∈ K}+ E{(η∗(X)− η(X))2|X ∈ U}
≤ ν(U) < ε.

• Second term of (3.7): We �rst divide the expectation in two disjoint
cases: ρ(Xi, X) > δ and ρ(Xi, X) ≤ δ. As η∗ is a uniformly continuous
function, given ε > 0 there exists δ > 0 such that (η∗(Xi)−η∗(X))2 ≤ ε
whenever ρ(X,Xi) ≤ δ. For the second case, we use Cover-Hart lemma
(Lemma 3.2.2). As k/n goes to zero, by Cover-Hart lemma the distance
between X and its k-th nearest neighbor X(k) will tend to zero almost
surely. That is, for all ε > 0, P(ρ(X(k), X) > δ) → ε. Note that, all
k − 1-nearest neighbors are closer to X than Xk. This implies that
E{(1/k)

∑n
i=1 I{ρ(Xi,X)>δ)}} < ε.

So, we have

E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(Xi)− η∗(X))2

}
= E

{
1

k

n∑
i=1

I{Xi∈Nk(X)}I{ρ(X,Xi)>δ}(η
∗(Xi)− η∗(X))2

}
+
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E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}I{ρ(X,Xi)≤δ}(η
∗(Xi)− η∗(X))2

}
≤ 2ε.

Now, we will analyze the �rst term of the equation (3.7). Let Zi denote the
expression I{Xi∈Nk(X)}(η

∗(Xi)−η(Xi))
2. We use Zi here for easy calculations.

Then, the �rst term in the equation (3.7) looks like,

E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η∗(Xi))
2

}
= E

{
1

k

n∑
i=1

Zi

}
. (3.8)

We further divide the equation (3.8) into two cases,

E
{

1

k

n∑
i=1

Zi

}
≤ E

{
1

k

n∑
i=1

Zi

∣∣∣∣X ∈ U}+ E
{

1

k

n∑
i=1

Zi

∣∣∣∣X ∈ K}. (3.9)

The value of (1/k)
∑n

i=1 Zi is at most one, so the �rst term on the right hand
side of the equation (3.9) is bounded above by ν(U) < ε. For the second
term of the equation (3.9), we again consider two disjoint cases,

E
{

1

k

n∑
i=1

Zi

∣∣∣∣X ∈ K} = E
{

1

k

n∑
i=1

Zi

∣∣∣∣X,Xi ∈ K
}

+

E
{

1

k

n∑
i=1

Zi

∣∣∣∣X ∈ K,Xi ∈ U
}
.

If Xi ∈ K, then η(Xi) = η∗(Xi) and so we have

E
{

1

k

n∑
i=1

Zi

∣∣∣∣X,Xi ∈ K
}

= 0.

Now summing all the bounds calculated above, we obtain

E{(η̃n(X)− η(X))2}

≤ E
{

1

k

n∑
i=1

Zi

∣∣∣∣X ∈ K,Xi ∈ U
}

+ 3(ε+ 2ε+ ε)

= E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(Xi)− η(Xi))

2

∣∣∣∣X ∈ K,Xi ∈ U
}

+ 12ε.
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It is important to recall again that all the results in Subsection 3.2.1 holds
for any separable metric space.

3.2.2 Stone's theorem

Charles Stone proved that the k-nearest neighbor rule is universally consis-
tent in an Euclidean space. The result can be extended to �nite dimensional
normed spaces without much di�culty, see for example Duan's thesis [16].
Here, we discuss the proof of Stone's theorem in Euclidean spaces using the
cones argument adopted from section 5.3 of [15].

Let θ ∈ (0, π/2). A cone C(x, θ), around an element x ∈ Rd of angle θ,
is the set of all y from Rd such that the angle between x and y is less than
or equal to θ, that is,

C(x, θ) =

{
y ∈ Rd :

〈x, y〉
||x|| ||y||

≥ cos(θ)

}
,

where 〈x, y〉 = xt.y is the dot product of x and y. A cone of angle π/6 is
shown in �gure 3.2.

Lemma 3.2.5. If θ ∈ (0, π/6], then the cone C(x, θ) has the following geo-
metrical property: for x1, x2 ∈ C(x, θ),

||x1|| < ||x2|| ⇒ ||x1 − x2|| < ||x2||.

Proof. If x1, x2 is in C(x, θ), then the angle of x1 and x2 with x, respectively,
is at most θ. From the �gure 3.2, we see that the angle between x1 and x2 is
at most 2θ,

cos(2θ) = 2 cos2(θ)− 1

≤ 2
〈x, x1〉
||x|| ||x1||

〈x, x2〉
||x|| ||x2||

− 1

=
xt1.x2 x

t.x

||x||2 ||x1|| ||x2||
+

xt1.x2 x
t.x

||x||2 ||x1|| ||x2||
− 1

≤ 〈x1, x2〉
||x1|| ||x2||

,

where the last inequality is due to Cauchy-Schwarz inequality. We see that

if ||x1|| < ||x2||, then ||x1||
||x2|| < 1, which gives ||x1||2

||x2||2 + 1 < ||x1||
||x2|| + 1. If θ ≤ π/6,
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x1

x2

π/6

π/6 x

Figure 3.2: A cone of angle π/6 at x has the geometrical property: if ‖x1‖ <
‖x2‖, then ‖x1 − x2‖ < ‖x2‖.

then cos(2θ) ≥ 1/2, so we have

||x1 − x2||2 = 〈x1 − x2, x1 − x2〉
= ||x1||2 + ||x2||2 − 2〈x1, x2〉

= ||x1||2 + ||x2||2 − 2
〈x1, x2〉
||x1|| ||x2||

||x1|| ||x2||

≤ ||x1||2 + ||x2||2 − 2 cos(2θ)||x1|| ||x2||
≤ ||x1||2 + ||x2||2 − ||x1|| ||x2||

= ||x2||2
(
||x1||2

||x2||2
+ 1− ||x1||

||x2||

)
< ||x2||2.

The following covering lemma (see pp. 67-68, Lemma 5.5 of [15]) for Rd
is true for any �xed positive value of θ < π/2.

Lemma 3.2.6 (Covering lemma for Rd [15]). Let (Rd, ||.||) be an Euclidean
space. Let θ ∈ (0, π/2), then there exists a constant βd, depending only on
the dimension d and norm, such that there is a �nite subset {z1, . . . , zβd} of
Rd and the �nite union of cones C(zi, π/6) covers Rd. The constant βd is

less than or equal to

(
1 + 1

sin(θ/2)

)d
− 1.

Now we present the proof of the important geometric Stone's lemma for
Euclidean spaces using the beautiful argument of cones, as given in [15].
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Lemma 3.2.7 (Geometric Stone's lemma [15]). Let x, x1, . . . , xn be a sample
of n+1 points in an Euclidean space (Rd, ||.||). Suppose that xi 6= xj for i 6= j.
Then, x can be the k-nearest neighbor for at most kβd number of data points
xi,

n∑
i=1

I{x∈Nk(xi)} ≤ kβd,

where βd is a constant as given in Lemma 3.2.6.

Proof. By the Lemma 3.2.6, we can cover Rd by βd numbers of cones at zi
of angle θ ≤ π/6. Let x + C(zi, θ) be the translation of C(zi, θ) and it still
covers Rd due to translation invariance property of norm. So, Rd = ∪βdi=1(x+
C(zi, θ)). See �gure 3.3. The data points xi are lying around x belonging
to some set (x + C(zi, θ)). In each set (x + C(zi, θ)), we mark xi which are
k-nearest neighbors of x. If there are fewer than k points in a particular
set, then we mark all the points in that set. From the �gure 3.3, we can see
that marked points form an insulation belt around x separating unmarked
points and x. If a data point xj is unmarked then there are at least k data
points in that cone which are closer to xj than x, after breaking distance
ties by comparing indices. So, we can assume that ||x− xi|| < ||x− xj|| for
every marked point xi in that particular cone. By the geometrical property
of cones, we have ||xi − xj|| < ||x− xj||, which means that xi is closer to xj
than x. This implies that if xj is not marked then x cannot be the k-nearest
neighbor of xj. Hence, we need to count the marked points. There are βd
sets and in each set there are at most k marked points, so there are at most
kβd marked points.

n∑
i=1

I{x∈Nk(xi)} ≤ ]{xi : xi is marked}

≤ kβd.

We are now ready to present the classical Stone's theorem. As a result
of geometric Stone's lemma, the conditions of Stone's theorem are satis�ed,
which establishes the universal weak consistency of the k-nearest neighbor
rule in Euclidean spaces.
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x

xj xi

π/4

Figure 3.3: Illustration of Stone's lemma: Cover Rd by cones of angle π/8 at
x. In each cone, mark at most (k = 3) nearest neighbors of x (eye-shaped
data points). The points xi and xj are at same distance to x and i < j so by
the index based tie-breaking we choose xi as the 3-rd nearest neighbor of x
in that particular cone.

Theorem 3.2.8 (Stone's theorem [42, 15]). Let gn be the k-nearest neighbor
rule on Euclidean space (Rd, ||.||). If k/n→ 0 as n, k →∞, then the expected
error probability of gn converges to Bayes error. In other words, the k-nearest
neighbor rule is universally weakly consistent.

Proof. From the Theorem 2.3.1, it is su�cient to show that

E{(η(X)− ηn(X))2} → 0.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2, where a, b are real numbers,

E{(ηn(X)− η(X))2} = E{(ηn(X)− η̃(X) + η̃(X)− η(X))2}
≤ 2E{(ηn(X)− η̃(X))2}+ 2E{(η̃(X)− η(X))2}

The Lemma 3.2.3 implies that the �rst term in the above equation goes to
zero when k → ∞. From the Lemma 3.2.4, we have an upper bound on
the second term. Then we exchange X and Xi , as X,Xi are i.i.d., and use
the (Stone's) Lemma 3.2.7. We also use the fact that (η∗(X) − η(X))2 is
bounded above by one, where η∗ is a uniformly continuous function as stated
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in Lemma 3.2.4. We have (by Lemma 3.2.4),

E{(η̃n(X)− η(X))2}

≤ E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(Xi)− η(Xi))

2

∣∣∣∣X ∈ K,Xi ∈ U
}

+ 12ε

= E
{

1

k

n∑
i=1

I{X∈Nk(Xi)}(η
∗(X)− η(X))2

∣∣∣∣Xi ∈ K,X ∈ U
}

+ 12ε

≤ βdE{(η∗(X)− η(X))2|X ∈ U}+ 12ε

≤ βdν(U) + 12ε

≤ βdε+ 12ε.

We observe that the Stone's lemma 3.2.7 is the heart of the Stone's the-
orem. If the Stone's lemma holds for any general metric space, then the
Stone's theorem holds and hence we achieve universal weak consistency in
any general metric space. But, the argument of cones which has been used to
prove Stone's lemma is extremely restricted to �nite dimensional Euclidean
spaces. In general, Stone's lemma is known to be true for any �nite dimen-
sional normed space [16]. Indeed, the proof of Stone's lemma is limited to
�nite dimensional normed spaces. In the next chapter, we make an attempt
to generalize Stone's lemma for spaces with �nite Nagata dimension.

There is another method worked out by Cérou and Guyader [6] to prove
the universal weak consistency in more general metric spaces. They showed
that the weak Lebesgue-Besicovitch di�erentiation property of a metric space
is su�cient to guarantee the universal weak consistency.

Theorem 3.2.9 (Cérou and Guyader [6]). Let (Ω, ρ) be a separable metric
space. Suppose that Ω satis�es the weak Lebesgue-Besicovitch di�erentiation
property. Then, the k-nearest neighbor rule is universally weakly consistent.

The above theorem by Cérou and Guyader, along with the result by Preiss
(Theorem 1.4.1) imply that the k-nearest neighbor rule is universally weakly
consistent in a complete separable metric space having sigma-�nite metric
dimension. The main aim of this thesis is to reprove this result directly,
by using the means of statistical learning theory while trying to imitate the
proof by Stone in as much as possible. We investigate to what extent the
geometric Stone's lemma can be adapted in such metric spaces, and make a
number of interesting observations.
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3.3 An example of inconsistency

In this section, we �rst discuss the example by Davies in detail and then
prove the inconsistency of the k-nearest neighbor rule on this example.

3.3.1 Davies' example

Roy Davies in his article [11] constructed an interesting example of a com-
pact metric space and two di�erent Borel measures, say µa, µb, whose values
on all closed balls of radius strictly less than 1 are equal to each other, such
that the Radon-Nikodym derivative dµa/d(µa + µb) fails the di�erentiation
property. According to Cérou and Guyader [6], the universal weak consis-
tency is unachievable if the di�erentiation property fails. It would be nice
to give a complete proof of the di�erentiation property using the consistency
argument, mentioned as a future work in Chapter 5. Now, we present the
construction of Davies' example.

Let n be a natural number and let (pn) be a sequence of natural numbers,
which will chosen recursively later. For each n, de�ne a set Mn = {(i1, i2) :
1 ≤ i1 ≤ pn, 0 ≤ i2 ≤ pn} consisting of p2

n+pn pair of elements. An element of
type (i1, i2), i2 > 0 is called a peripheral element corresponding to its central
element, (i1, 0). Let Gn = (Mn, En) be a graph with Mn and En being the
set of vertices and edges, respectively. The edges between the vertices are
de�ned as: every central element is joined to other central elements, that
is there is an edge between (i1, 0) and (i2, 0) for 1 ≤ i1 6= i2 ≤ pn, and
every peripheral element (i1, i2), i2 > 0 is joined to its corresponding central
element (i1, 0). Based on these edges, we will de�ne the distance between
any two elements.

Let Ω =
∏

n∈NMn = {(xn) = (x1, x2, . . .) : xn = (i1, i2) ∈ Mn}. Let
(xn), (yn) be two elements of Ω, they are distinct if xn = yn for every n. Let
m be the smallest index such that xm 6= ym. De�ne the distance between
x = (xn) and y = (yn) as,

ρ(x, y) =


0 if xn = yn,∀n
(1/2)m if xm 6= ym, ∃ edge between xm and ym

(1/2)m−1 otherwise

The function ρ is similar to the metric de�ned in the Lemma A.1.10. Fol-
lowing the similar argument as in Lemma A.1.10, we will obtain that ρ is a
metric. In fact, (Ω, ρ) is a compact metric space of diameter equals to 1.
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Let α0 = 2/3 and β0 = 1/3 and now we will de�ne the values of pn, αn, βn,
recursively. Given α0 > β0, choose p1 > (α0/β0) large enough that for some
positive real numbers α1 > β1, we have p

2
1α1 + p1β1 = 2/3 and p2

1β1 + p1α1 =
1/3. Given αn−1 > βn−1, choose pn > (αn−1/βn−1) so large that there are
positive real numbers that

p2
nαn + pnβn = αn−1, p

2
nβn + pnαn = βn−1. (3.10)

Let Ω[x1, . . . , xn] = {x1}× . . .×{xn}×Mn+1×Mn+2× . . . and Ω[φ] = Ω.
We de�ne two functions based on the number of central elements in the set
{x1, . . . , xn}. If there are even number of central elements in {x1, . . . , xn},
then µa assigns value βn and µb assigns value αn and similarly, if there are
odd number of central elements then the values are �ipped. That is,

µa(Ω[x1, . . . , xn]) =

{
βn if ]{i : 1 ≤ i ≤ n, xi is central} = even,

αn otherwise

(3.11)

In the similar way, the function µb is de�ned,

µb(Ω[x1, . . . , xn]) =

{
αn if ]{i : 1 ≤ i ≤ n, xi is central} = even,

βn otherwise

(3.12)

It follows from the above de�nitions that µa(Ω) = β0 = 1/3 and µb(Ω) =
α0 = 2/3. By the Carathèodary's extension theorem and Dynkin's π − λ
theorem, such measures exist and are unique if they are �nitely additive.

Lemma 3.3.1. Let l = {a, b}, we have

µl(Ω[x1, . . . , xn−1]) =
∑

xn∈Mn

µl(Ω[x1, . . . , xn])

Proof. A set Ω[x1, . . . , xn−1] is the �nite union of disjoint sets Ω[x1, . . . ,
xn] over all xn ∈ Mn. Suppose there are odd number of central elements
in the set {x1, . . . , xn−1}, then we have µa(Ω[x1, . . . , xn−1]) = αn−1. Also,∑

xn∈Mn
µl(Ω[x1, . . . , xn]) can be divided into two sums, when xn is a central

element and when xn is a peripheral element. Observe that there are pn cen-
tral and p2

n peripheral elements inMn. So, we have
∑

xn∈Mn
µl(Ω[x1, . . . , xn])
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= pnβn + p2
nαn, which is equal to αn−1 by the equation (3.10). In the same

way, by the equation (3.10) we have that µb(Ω[x1, . . . , xn−1]) = βn−1 =
p2
nβn + pnαn =

∑
xn∈Mn

µb(Ω[x1, . . . , xn]).
The �nite additivity of both functions, in the other case when there are

even number of central elements in {x1, . . . , xn−1} follows likewise.

We show in the following lemma that both the measures agree on all
closed balls of radius strictly less than 1.

Lemma 3.3.2. The values of the measures µa and µb are equal on each closed
ball in Ω of radius strictly less than 1.

Proof. If r = 1, then any closed ball in Ω of radius one is equal to the whole
space Ω, and we know that µa(Ω) = 1/3 6= µb(Ω). Let x = (xn) ∈ Ω. Since
all the distances between the points of Ω are of the form (1/2)n. Suppose
r = (1/2)t < 1 for a �xed integer t ≥ 1. The closed ball B̄(x, r) will contain
all those y = (yn) which are at distance at most (1/2)t to x. So, B̄(x, r)
contain two types of elements:

• All y ∈ Ω such that ρ(x, y) = 2−t belong to B̄(x, r). That is, xi = yi
for 1 ≤ i ≤ t− 1, xt 6= yt and there is an edge between xt and yt.

• All y ∈ Ω such that ρ(x, y) = 2−m < 2−t are also in B̄(x, r). This means
that for every m = t + 1, t+ 2, . . ., we have xi = yi for 1 ≤ i ≤ m− 1,
xm 6= ym.

In simpler words, B̄(x, r) contains all those (yn) for which, either there is
an edge between xt and yt, or xt = yt. We consider the following cases to
compute the measure of a closed ball,

(i) Let xt be a central element of Mt, say xt = (i1, 0). Then, the possible
values of yt are denoted by E = {(j, 0), (i1, j) : 1 ≤ j ≤ pt}, there
are pt central and pt peripheral elements. Therefore, the closed ball
can be written as, B̄(x, r) = ∪yt∈EΩ[x1, . . . , xt−1, yt]. To evaluate the
measure of B̄(x, r), we further have two cases, either number of central
elements in {x1, . . . , xt−1} is odd, or even. We treat only the case having
odd number of central elements (the other case follows similarly). If the
number of central elements in {x1, . . . , xt−1} is odd, then by the Lemma
3.3.1 and de�nition of µa, µb, we have µa(B̄(x, r)) = ptαt + ptβt =
µb(B̄(x, r)), because there are equal number of central and peripheral
elements in E.
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(ii) Let xt be a peripheral element of Mt, say xt = (i, j). Then the possible
values for yt is {(i, j), (i, 0)}. This implies that if the number of central
elements in {x1, . . . , xt−1} is odd or even, then µa(B̄(x, r)) = αt + βt =
µb(B̄(x, r)).

In any case, the values of both measures are equal on every closed ball of
radius < 1.

Now, we will show that the di�erentiation property fails.

Lemma 3.3.3. The di�erentiation property does not holds for µa + µb.

Proof. As, µa is absolutely continuous with respect to µa+µb, by the Radon-
Nikodym theorem, there is a measurable function fa : Ω→ [0,∞) such that
for any measurable set A ⊆ Ω,

µa(A) =

∫
A

fa(x)(µa + µb)(dx).

Suppose that the di�erentiation theorem holds for µa + µb, then we have

lim
r→0

1

(µa + µb)(B̄(x, r))

∫
B̄(x,r)

fa(y)(µa + µb)(dy) = fa(x) for (µa + µb) a.e. x

As, µa(B̄(x, r)) = µb(B̄(x, r)), r < 1, then fa(x) = 1/2 for (µa + µb)-almost
everywhere. Let θ = {x ∈ Ω : fa(x) = 1/2}, so (µa + µb)(θ

c) = 0. Therefore,
we have

µa(Ω) =

∫
θ

fa(x)(µa + µb)(dx)

=
1

2
,

which is a contradiction.

Davies extended Ω to Ω̂ and also µa and µb to become probability mea-
sures on Ω̂, to conclude that there are two distinct probability measures µ

′
a

and µ
′

b such that they have equal values on every closed ball in Ω̂ of radius
< 1.

Although, the original space Ω and measures µa and µb are enough to
show the inconsistency of the k-nearest neighbor rule. We explain in brief
the further argument by Davies in the following paragraph.
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We can de�ne Ω̂ as the union of disjoint copies of Ω, such as Ω̂ = Ω ×
{a} ∪ Ω× {b}. The Borel measures µ

′
a, µ

′

b are de�ned as, for Â ⊆ Ω̂,

µ
′

a(Â) = µa(A1) + µb(A2), µ
′

b(Â) = µb(A1) + µa(A2),

where Â = A1×{a}∪A2×{b}. This implies that µ
′
a and µ

′

b are two distinct
probability measures on Ω̂. The distance ρ̂ between two elements, where each
element is from Ω × {a} and Ω × {b}, respectively, is equal 1. If both the
points are from same space, say Ω × {a}, then the distance is given by the
original metric ρ. The metric properties of ρ implies that ρ̂ is a metric and
thus, Ω̂ is of diameter 1. It follows from the properties of µa, µb that the
values of µ

′
a and µ

′

b are equal on all closed balls of radius strictly less than 1.

3.3.2 Inconsistency of the k-nearest neighbor rule on

the Davies' example

Here, we show that the k-nearest neighbor is not weakly consistent without
using the di�erentiation argument. It also give a hope that the consistency
can be studied directly without involving any di�erentiation argument.

The following lemma suggest that if the values of two measures are equal
on every closed ball, then the values of both measures will be equal on every
open ball and every sphere.

Lemma 3.3.4. For every x ∈ Ω, we have

µa(B(x, r)) = µb(B(x, r)), µa(S(x, r)) = µb(S(x, r)),

where r ≤ 1 for open balls and r < 1 for spheres.

Proof. Let (rn) be an increasing sequence converging to r such that r1 ≤
r2 ≤ . . . < r ≤ 1 and ∪∞n=1B̄(x, rn) = B(x, r). Then, by the σ-additivity of
µa and µb, we have

µa(B(x, r)) = µa(∪∞n=1B̄(x, rn))

= lim
n→∞

µa(B̄(x, rn))

= lim
n→∞

µb(B̄(x, rn))

= µb(∪∞n=1B̄(x, rn))

= µb(B(x, r)).
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As, the values of measures are equal on every closed ball of radius < 1 and
on every open ball with radius ≤ 1, it follows that, for r < 1

µa(S(x, r)) = µa(B̄(x, r))− µa(B(x, r))

= µb(B̄(x, r))− µb(B(x, r))

= µb(S(x, r)).

Let us de�ne two measures µ0 and µ1 such that,

µ0 =
6

5
µa, µ1 =

9

10
µb. (3.13)

Then, µ0(Ω) = (6/5)(1/3) = 0.4 and µ1(Ω) = 0.6. For r < 1, we know that
µa(B̄(x, r)) = µb(B̄(x, r)) and so, by the equation (3.13) we have, µ0(B̄(x, r))
= (4/3)µ1(B̄(x, r)).

Similarly, from the Lemma 3.3.4 and the equation (3.13) it follows that
µ0(B(x, r)) = (4/3)µ1(B(x, r)) and µ0(S(x, r)) = (4/3)µ1(S(x, r)), whenever
r < 1.

Let µ = µ0+µ1, then µ(Ω) = 1 is a probability measure on Ω. We observe
that, µ1 is absolutely continuous with respect to µ, by the Radon-Nikodym
theorem, there exists a function η, called the Radon-Nikodym derivative such
that for measurable A ⊆ Ω,

µ1(A) =

∫
A

η(x)µ(dx). (3.14)

The distribution of the pair of random variables (X, Y ), can be described
by µ and η. Let µ1 denote the distribution of points having label 1, that
is, µ1(A) = P(X ∈ A, Y = 1) for measurable A ⊆ Ω. Then, there exists a
measurable set M1 ⊆ Ω, µ(M1) > 0 such that η(x) ≥ 0.6 for all x ∈ M1.
Suppose there is no such set M1, which means that the value of η is strictly
less than 0.6 on every set of positive measure. This is a contradiction to
the fact that µ1(Ω) = 0.6, due to the above relation between η and µ1. Let
M be a measurable subset of Ω such that M1 ⊆ M and for every x ∈ M ,
η(x) ≥ 0.5. The Bayes rule g∗ assigns label 1 to a data point x if η(x) ≥ 0.5,
otherwise assigns label 0. So, g∗(x) is equal to 1 if x ∈ M and equal to 0 if
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x /∈M . The Bayes error is given by,

`∗µ = P(g∗(X) = 1, Y = 0) + P(g∗(X) = 0, Y = 1)

= P(X ∈M,Y = 0) + P(X ∈M c, Y = 1)

= µ0(M) + µ1(M c).

For x ∈M c, we have η(x) < 0.5. By the equation (3.14), we have µ1(M c) =∫
Mc η(x)µ(dx) ≤ 0.5µ(M c) = 0.5(µ0(M c) + µ0(M c)). So, µ1(M c) ≤ µ0(M c),
this implies that `∗µ ≤ 0.4. We will show that the expected error of the k-
nearest neighbor rule is at least 0.6 in the limit, and therefore, strictly greater
than the Bayes error.

Let Dn = ((X1, Y1), . . . , (Xn, Yn)) be a random labeled sample of inde-
pendently and identically distributed random pairs. Let x ∈ X, r < 1 and
let k′, k′′ be two natural numbers such that k′ ≤ k ≤ k′′. Let T denote the
following event,

T =

{
εkNN(X) = r < 1, ]{B̄(x, r)} = k′′, ]{B(x, r)} = k′

}
,

where εkNN(X) is de�ned in the equation (4.1). Let Y1, . . . , Yk denote the
labels of the the k-nearest neighbors of x, denoted by X1, . . . , Xk. We claim
that, the expectation of average of labels of k-nearest neighbors of x, given the
event T , is equal to 3/7. This can be observed by considering the following
two cases:

(I) If µ(S(x, r)) = 0, then there is only one data point Xk on the sphere
S(x, r). In this case, k′′ = k and k′ = k − 1. For i = 1, . . . , k, given
the event T , we know that Xi are coming from the closed ball B̄(x, r),
thus we have

E{Yi|T} = P(Yi = 1|T )

=
P(Xi ∈ B̄(x, r), Yi = 1)

P(Xi ∈ B̄(x, r))

=
µ1(B̄(x, r))

µ0(B̄(x, r)) + µ1(B̄(x, r))

=
µ1(B̄(x, r))

4
3
µ1(B̄(x, r)) + µ1(B̄(x, r))

=
3

7
,
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where we used the equality, µ0(B̄(x, r)) = (4/3)µ0(B̄(x, r)). The ex-
pectation of average of labels of the k-nearest neighbors of x is,

E
{
Y1 + . . .+ Yk

k

∣∣∣∣T} =
1

k

k∑
i=1

E{Yi|T}

=
3

7
.

(II) If µ(S(x, r)) > 0, then there may be more than one data point on the
sphere. Given the event T , out of k nearest neighbors of x, the k′-
nearest neighbors of x which are X1, . . . , Xk′ belongs to the open ball
B(x, r) and the remaining (k-k′)-nearest neighbors, Xk′+1, . . . , Xk are
coming from the sphere with the distance ties being broken uniformly
on the sphere.

Therefore, for i = 1, . . . , k′

E{Yi|T} = P(Yi = 1|T )

=
P(Xi ∈ B(x, r), Yi = 1)

P(Xi ∈ B(x, r))

=
µ1(B(x, r))

µ0(B(x, r)) + µ1(B(x, r))

=
3

7
.

Since the distance ties are broken uniformly on the sphere, so for i =
(k′ + 1), . . . , k,

E{Yi|T} = P(Yi = 1|T )

=
P(Xi ∈ S(x, r), Yi = 1)

P(Xi ∈ S(x, r))

=
µ1(S(x, r))

µ0(S(x, r)) + µ1(S(x, r))

=
3

7
.

We can write the expectation of the average of k-nearest neighbor
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labels as,

E
{
Y1 + . . .+ Yk

k

∣∣∣∣T} =
k′

k
E
{
Y1 + . . .+ Yk′

k′

∣∣∣∣T}+

k − k′

k
E
{
Yk′+1 + . . .+ Yk

k − k′

∣∣∣∣T}
=
k′

k

k′∑
i=1

E
{
Yi
k′

∣∣∣∣T}+
k − k′

k

k∑
i=k′+1

E
{

Yi
k − k′

∣∣∣∣T}

=
k′

k

3

7
+

(k − k′)
k

3

7

=
3

7
.

Therefore, in any case, given the event T the conditional expectation of the
average of the labels of the k-nearest neighbors of x is 3

7
.

According to the Cover-Hart lemma, εkNN → 0 almost surely, whenever
n, k →∞ and k/n→ 0. As a result, we have

E
{
Y1 + . . .+ Yk

k

}
= E

{
E
{
Y1 + . . .+ Yk

k

∣∣∣∣T}}+ E
{
E
{
Y1 + . . .+ Yk

k

∣∣∣∣T c}}
=

3

7
+ E

{
E
{
Y1 + . . .+ Yk

k

∣∣∣∣T c}}
≤ 3

7
+ P(T c),

where T c is the event {εkNN = 1} and so P(T c) converges to 0 in the limit.
This implies that less than half of the k-nearest neighbors have label 1 in
the limit. Thus, the k-nearest neighbor rule will predict label 0 in the limit
n, k →∞ and k/n → 0. The error would be the set of all points with label
1, that is,

lim
n,k→∞,k/n→0

E{`µ(gn)} = P(X ∈ Ω, Y = 1)

= µ1(Ω)

= 0.6 > `∗µ.

Hence, the k-nearest neighbor rule is not consistent.
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Chapter 4

Consistency and Metric

Dimension

Here, we present our analysis on the consistency of the k-nearest neighbor
rule in various metric spaces with �nite Nagata dimension and �nite met-
ric dimension. In this chapter, we divide our work into two main sections,
consistency with zero distance ties and consistency with distance ties, to
illustrate how the solution di�er in the two cases. Starting with a no dis-
tance ties assumption, we prove a generalized version of geometric Stone's
lemma for spaces with �nite Nagata dimension. Further, we present some
counter-examples to understand the di�culty in generalizing Stone's lemma
in presence of distance ties. We then prove a di�erent lemma to handle
distance ties and �nally, we reprove the universal weak consistency of the
k-nearest neighbor rule in a metrically sigma-�nite dimensional space. We
also establish the strong consistency in metrically �nite dimensional spaces
under the assumption of no distance ties.

4.1 Consistency without distance ties

The simplest case is to work in distance ties-free settings. Assuming that
there are no distance ties means the probability of a data point xj belonging
to a sphere S(x, ρ(x, xi)), i 6= j is zero. Therefore, the ν-measure of sphere
S(x, ρ(x, xi)) is zero. As, xi can be any data point in the space, so in principle,
we assume that the measure of every sphere is zero. We also sometimes say
that ν has zero probability of ties.
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Given a sample of n data points Σn = {x1, . . . , xn}, de�ne a function
εkNN : Ω→ R such that,

εkNN(x) = inf{r > 0 : ]{B̄(x, r)} ≥ k + 1}, (4.1)

where the ball B̄(x, r) is a treated as a ball in the �nite set {x, x1, . . . , xn}.
The value εkNN(x) is the minimum radius such that B̄(x, εkNN(x)) contain
at least k + 1 sample points including the center x.

Note that, the open ball B(x, εkNN(x)) contain at most k points and
B(x, εkNN(x)) ⊆ Nk(x) ∪ {x}. The problematic case of distance ties occurs
on the sphere S(x, εkNN(x)). We defer the case of tie-breaking until the next
section. The assumption of zero distance ties implies that B̄(x, εkNN(x)) =
Nk(x) ∩ {x}, containing x and the k-nearest neighbors of x from Σn.

We prove a generalized version of Stone's lemma for metric spaces with
�nite Nagata dimension in the following lemma.

Lemma 4.1.1 (Generalized Stone's lemma). Let (Q, ρ) be a separable metric
space with Nagata dimension β−1 in Ω. Let Σn = {x1, x2, . . . , xn} be a �nite
sample in Ω and assume there are no distance ties. For x ∈ Ω, we have∑

xi∈Σn∩Q

I{x∈Nk(xi)} ≤ (k + 1)β.

Proof. De�ne a function F : Ω→ R as,

F (x) =
∑

xi∈Σn∩Q

I{x∈Nk(xi)}.

Let x0 ∈ Ω and suppose there arem points from the sample Σn∩Q which have
x0 as one of their k-nearest neighbors. Let this set be Σ̃ = {x1, x2, . . . , xm}.
So, F (x0) = m and it is su�cient to show that m ≤ (k + 1)β.

Consider a family of closed balls F = {B̄(xi, εkNN(xi)) : xi ∈ Σ̃}, then
every closed ball contains x0. Note that, the ball B̄(xi, εkNN(xi)) in F is
considered as a ball in Σ̃. By the Lemma 1.2.4, Q has ball-covering dimension
β. There exists a subset F ′ of F such that the center of every ball in F
belongs to some ball in F ′ and every x in Ω belong to at most β number of
balls in F ′, ∑

B̄∈F ′
I{x∈B̄} ≤ β.
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We know that every closed ball in F has at most k+ 1 data points out of m
sample points in Σ̃. Extracting F ′ means dividing m points in p number of
boxes such that every box has at most k+1 points. The minimum number of
such boxes would be m/(k+1), so the cardinality of F ′ is at least m/(k+1).
As, x0 belongs to every ball in F ′, we have

m/(k + 1) ≤
∑
B̄∈F ′

I{x0∈B̄} = ]F ′ ≤ β.

Therefore, m ≤ (k + 1)β.

As a consequence of the Lemma 4.1.1, the k-nearest neighbor rule is
weakly consistent for probability measures with zero probability of distance
ties.

Theorem 4.1.2. Let (Q, ρ) be a separable metric space having Nagata di-
mension β − 1 in Ω. Let ν be a probability measure on Q and assume that
ν has zero probability of distance ties. Then, the expected error probability of
the k-nearest neighbor rule converges to Bayes error with respect to ν.

Proof. The proof of this theorem is similar to the proof of the Theorem 3.2.8,
except that we use the Lemma 4.1.1 instead of the classical Stone's lemma.

Let ε > 0 be any real number, by Luzin's theorem there is a set K ⊆ Q
such that ν(U = Q \ K) < ε. By the Theorem 2.3.1, Lemma 3.2.3 and
Lemma 3.2.4, everything boils down to showing that

E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(Xi)− η(Xi))

2

∣∣∣∣X ∈ K,Xi ∈ U
}
,

is bounded above by some constant (which is independent of n and k) times
ε.

We �rst exchange X and Xi such that

E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η
∗(Xi)− η(Xi))

2

∣∣∣∣X ∈ K,Xi ∈ U
}

= E
{

1

k

n∑
i=1

I{X∈Nk(Xi)}(η
∗(X)− η(X))2

∣∣∣∣Xi ∈ K,X ∈ U
}
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Then, we apply the generalized Stone's lemma 4.1.1 to bound the number of
points having X as their k-nearest neighbor. So, we have

E
{

1

k

n∑
i=1

I{X∈Nk(Xi)}(η
∗(X)− η(X))2

∣∣∣∣Xi ∈ K,X ∈ U
}

≤ k + 1

k
βE{(η∗(X)− η(X))2|X ∈ U}

≤ 2βν(U) < 2βε,

where we use the fact that (η∗(X)− η(X))2 is bounded above by one.

In the above theorem, we proved the weak consistency for spaces with
�nite Nagata dimension. Indeed, the result is true for metric spaces having
sigma-�nite Nagata dimension.

Corollary 4.1.3. Let (Ω, ρ) be a separable metric space which has sigma-
�nite Nagata dimension. Let ν be a probability measure on Ω and assume
that ν has zero probability of distance ties. Then, the k-nearest neighbor rule
is weakly consistent with respect to ν.

Proof. If Ω has sigma-�nite Nagata dimension, then Ω can be written as
union of increasing chain of Qi which have �nite Nagata dimension βi − 1.
For given ε, we choose Ql such that ν(Ql) > 1− ε/2 (this is possible because
Qi is an increasing chain and ν is σ-additive). By the Luzin's theorem, there
is a set K ⊆ Ql such that ν(Ql \K) < ε/2. Let U = Ω \K and so ν(U) < ε.

As, the samplesXi take values inK ⊆ Ql, so we can apply the generalized
Stone's lemma 4.1.1. The rest of the argument is exactly same as in the proof
of the Theorem 4.1.2.

Although we have shown the consistency in metric spaces with sigma-
�nite Nagata dimension but the assumption of zero distance ties is not an
ideal assumption. To obtain the k-nearest neighbors set and prove the univer-
sal consistency using the Stone's lemma, we need an appropriate tie-breaking
method. The index-based tie-breaking method is a popular and simplest
method to obtain the set Nk(x) for a data point x.

4.2 Consistency with distance ties

In the previous section, we established the consistency under the assumption
of no distance ties but proving the consistency becomes much more compli-
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cated when the distance ties are considered. This is why in the literature,
the consistency is �rst proved under the assumption of no ties and then the
solutions are extended in the presence of distance ties. It is worth to examine
the cases of distance ties and no distance ties separately. In this section, we
start by showing that Stone's lemma fails in the presence of distance ties
and so we prove a di�erent geometric lemma to handle distance ties which
will help in establishing the universal weak consistency in metrically �nite
dimensional spaces.

4.2.1 Stone's lemma fails with distance ties!

Now, we will present few examples in order to conclude two important things
that the Stone's lemma fails in the presence of distance ties and that the dis-
tance ties are unavoidable even in metric spaces with �nite Nagata dimension.

Example 4.2.1. Let (Ω, ρ) be a separable metric space, where ρ is the 0-1
metric. Suppose n > k + 1 and let Σn = {x1, x2, . . . , xn} be a sample of n
data points in Ω. Then,

(i) Σn has Nagata dimension 0. For x1, x2 ∈ Σn and a ∈ Ω, if x1 = x2 then
ρ(x1, x2) is 0 and max{ρ(a, x1), ρ(a, x2)} is either 0 or 1. In the case
x1 6= x2, the distance ρ(x1, x2) is equal to 1 and max{ρ(a, x1), ρ(a, x2)}
is 1. This is true for an two points from Σn. So, Σn has Nagata
dimension 0 in Ω.

(ii) Stone's lemma fails. Let x ∈ Ω such x 6= xi for all xi ∈ Σn. Then
d(x, xi) = 1 for every xi ∈ Σn, which means x is the 1-nearest neighbor
of every xi in Σn.

n∑
i=1

I{x∈B̄(xi,ε1NN (xi))} = n � k + 1.

4

The above example depicts the need for a tie-breaking method. Suppose
Σn is an ordered set of n data points in the above example. The 1-nearest
neighbor of xi is chosen from the ordered set {x1, . . . , xi−1, x, xi+1, . . . , xn}.
By the index-based tie-breaker, x1 is the only data point having x as its 1-
nearest neighbor after breaking distance ties. So, the Stone's lemma holds in
this particular case. In Euclidean spaces, breaking distance ties by comparing
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indices is su�cient but this is not true for general metric spaces. In the
following example, we show that the tie-breaking by comparing indices is
not the right method to obtain a version of Stone's lemma. Indeed, the
generalized Stone's lemma fails even if the distance ties are broken randomly
and uniformly, which is more stable than index based tie-breaking method.

Lemma 4.2.2. Let α > 0 be any real number and x1 be a data point. Then,
there is a �nite sample Σn = {x1, . . . , xn} of size n (depends on α) with Na-
gata dimension 0, such that under the random uniform tie-breaking method,

E
{ n∑

i=2

I{x1∈N1(xi)}

}
> α.

Proof. Choose a positive integer n large enough that
∑n−1

i=1 1/i > α. We will
construct the sample Σn recursively. Let Σ1 = {x1} and add x2 to Σ1 to form
Σ2 = Σ1 ∪ {x2} such that ρ(x2, x1) = 1. Add x3 to Σ2 at a distance equal
to 2 from x1, x2 and set Σ3 = Σ2 ∪ {x3}. At n− 1-th step, the set Σn−1 has
already been de�ned, we add xn to Σn−1 to obtain Σn = {x1, . . . , xn} such
that ρ(xi, xn) = 2n−1 for 1 ≤ i ≤ n − 1. The construction is shown in the
following �gure.

x1 x21

x3

2 2x4

4

4

4

x5

8 8

8

8

Figure 4.1: Illustration of construction of Σ5 = {x1, . . . , x5}

We now show that Σn has Nagata dimension 0, for every n ∈ N, by using
the induction argument. For n = 1, we have Σ1 = {x1}, a singleton and
hence Nagata dimension is 0. Suppose Σn−1 has Nagata dimension 0. Let F
be a family of closed balls whose centers are in Σn. Now we have two cases:
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(i) Suppose the point xn belongs to some ball B̄ in F . If xn is the center
of B̄(xn, rn) and the radius rn ≥ 2n−1, then the ball B̄(xn, rn) contain
every point xi from Σn. Therefore, the subfamily F ′ ⊆ F contains
exactly one balls and covers the center of every ball in F . This is
equivalent to saying that the set Σn has Nagata dimension 0. In the
other case, when the radius of B̄(xn, rn) is < 2n−1, the ball B̄(xn, rn)
contains only {xn}. If there is an data point xi such that xn is in
B̄(xi, ri), then ri must be greater than or equals to 2n−1 and so the
Nagata dimension is 0. Let G = {B̄ : B̄ ∈ F , xn /∈ B̄} which is a family
of balls in Σn−1. From the induction hypothesis, there is a subfamily G ′
of G with multiplicity one. So, the family F ′ = G ′∪B̄(xn, rn), rn < 2n−1

contains every point of Σn and has multiplicity one. So, Σn+1 has
Nagata dimension 0. The above argument covers the case when xn
belongs to B̄ but is not the center.

(ii) Let xn+1 does not belong to any ball in F . This means that the radius
of every ball in F is strictly less than 2n−1 and F is a family of balls in
Σn−1. By the induction hypothesis, the Nagata dimension of Σn is 0.

We are interested in �nding the expected numbers of data points from Σn \
{x1} having x1 as their nearest neighbor. We break distance ties uniformly
as following. The data point x1 is the only nearest neighbor of x2, so x1 is
chosen as the nearest neighbor of x2 with probability 1. For x3, there are two
data points x1 and x2 closest to x3 but at the same distance to x3. So, the
probability of x1 being chosen as the nearest neighbor of x3 is 1/2. Similarly
for xn, there are n−1 equidistant points {x1, . . . , xn−1} which are candidates
for nearest neighbor of xn. The probability of x1 being chosen as the nearest
neighbor of xn is 1/(n− 1).

E
{ n∑

i=2

I{x1∈N1(xi)}

}
=

n∑
i=2

E
{
I{x1∈N1(xi)}

}

=
n−1∑
i=1

1

i

> α.

The Lemma 4.2.2 shows that the Stone's lemma fails for spaces with
�nite Nagata dimension even if the distance ties are broken uniformly and

84



randomly. So, there seems no hope for generalization of Stone's lemma in
the presence of distance ties. Indeed, it is impossible to avoid distance ties.
The following example demonstrates that a metric space with �nite Nagata
dimension can have many essential ties with high probability. A distance tie
become an essential tie if it occurs at non-zero distance.

Example 4.2.3. Let 0 < δ < 1 be any real number. There is a compact metric
space with Nagata dimension zero (a Cantor set with a suitable metric) and
a sequence (nk), nk →∞, k/nk → 0 such that for each k, the probability that
a randomly chosen nk+1-sample X1, X2, . . . , Xnk+1 has the property that X1

has essential ties for k-nearest neighbors amongX2, X3, . . . , Xnk is ≥ 1−δ. In
simpler words, X1 is at the same distance to all its (nk−1)-nearest neighbors
{X2, . . . , Xnk}, with probability at least 1− δ.

Construction: Let a sequence of positive reals (δi)
∞
i=1, δi > 0 such that

2
∑∞

i=1 δi < δ. We construct two sequences (Nk) and (nk),where Nk, nk ∈ N,
recursively. Let µk be the uniform measure on [Nk] where [Nk] denotes the
set {1, 2, . . . , Nk}.

Step 1: Let n1 > 1 be any natural number. Choose N1 so large that
if we take a random n1-sequence, whose elements are chosen independently
and uniformly from [N1] then with probability > 1 − δ1 all elements of the
n1-sequence are pairwise di�erent.

Step 2: Choose n2 so large that if we take a random n2-sequence with
elements independent and uniform in [N1], then the probability of every
element of [N1] being chosen at least n1 times is > 1− δ1.

Step 3: Next, we choose N2 so large that if we take a random n2-sequence
having its elements chosen independently and uniformly in [N2], then with
probability > 1− δ2 all the elements of n2-sequence are pairwise di�erent.

Continuing the above steps gives us (Nk) and (nk) such that nk, Nk ↑ ∞.
Lets calculate the probability of having both the desired properties for every
k. Let Ak denote the property of having pairwise di�erent elements in a
random nk-sequence with elements coming independently and uniformly from
[Nk]. Let Bk denote the property that in a random nk+1-sequence whose
elements comes uniformly from [Nk], every element of [Nk] repeats at least
nk times. From the construction, P(Ak) > 1 − δk and P(Bk) > 1 − δk Let
Dk = Ak∩Bk be the event of both the properties being true for k-th recursive
step. So, P(Dk) > 1 − 2δk and we �nd P(∪∞k=1Dk), which is the probability
of both the properties holding simultaneously for every k. Using the union
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bound,

P(∪∞k=1Dk) = 1− P(∩∞k=1D
c
k)

≥ 1−
∞∑
k=1

P(Dc
k)

≥ 1− 2
∞∑
k=1

δk

> 1− δ

Set Ω =
∏∞

k=1[Nk] and de�ne a metric ρ on Ω, for any σ, τ ∈ Ω,

ρ(σ, τ) =

{
0 if σ = τ

2−min{i: σi 6=τi} otherwise

By the Lemma A.1.10, ρ is a non-Archimedean metric and hence the metric
space (Ω, ρ) has Nagata dimension zero (from the Proposition 1.2.2). Note
that, the topology on Ω is the product topology and so Ω is a Cantor space.
Let µ be the product measure of uniform measures µk on [Nk] such that for
any measurable set S ⊆ Ω, S =

∏∞
i=1 Si, the measure µ(S) =

∏∞
i=1 µi(Si).

The measure µ is non-atomic and hence every distance tie will be essential.
Let k be any natural number. We take a random nk+1-sampleX1, . . . , Xnk

, . . . , Xnk+1
using the distribution µ on Ω. The number nk+1 is chosen so large

that if we choose a word or a sample of length nk+1 whose letter comes from
[Nk] then every element of [Nk] should occur at least nk times. Suppose
Xi = (xi1, xi2, . . .) for 1 ≤ i ≤ nk+1, rearranging the terms we see that at
least nk elements in the k-th coordinate, {x1k, . . . , xnkk} are all equal with
probability > 1− δk. By the construction, [N1] ⊆ [N2] . . . ⊆ [Nk]. Therefore,
at least nk elements in each i-th coordinate, {x1i, . . . , xnki, for 1 ≤ i ≤ k
} are same. But we choose Nk+1 so large that if we choose randomly and
uniformly letters from [Nk+1] to make a word of length nk+1 then all nk+1

letters are di�erent. The probability that, the k-th coordinate of nk elements
X1, . . . , Xnk for 1 ≤ i ≤ k are same but the k + 1-th coordinate are all
di�erent, is > (1 − δk)

2 > 1 − δ. The distance of X1 to all other nk − 1
points is ρ(X1, Xi) = 2−(k+1), so there are nk − 1 distance ties with positive
probability. 4
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4.2.2 Consistency in metrically sigma-�nite dimensional

spaces

We can infer from the Lemma 4.2.2 and Example 4.2.3 that the existing
tie-breaking method for Euclidean spaces may not yield similar results for
general metric spaces with �nite Nagata dimension and that it is impossible
to �nd an analogue of Stone's lemma in such spaces in the presence of distance
ties. Here, we present a key lemma that provides a way to deal with distance
ties. Note that, we prove the results in this subsection for metrically �nite
dimensional spaces but the results also hold for metric spaces with �nite
Nagata dimension.

Lemma 4.2.4. Let (Ω, ρ) be a metric space and let Q ⊆ Ω has metric di-
mension β on scale s in Ω. Let Σn = {x1, . . . , xn} be a �nite sample in Ω
and let Σ̃ be any sub-sample of Σn with cardinality m. For α ∈ (0, 1), let
T be the set of all xi in Σn belonging to Q whose k-nearest neighbor radius
εkNN(xi) is strictly less than s and the fraction of points in B̄(xi, εkNN(xi))
from Σ̃ is strictly greater than α,

T =

{
xi ∈ Σn ∩Q : εkNN(xi) < s,

]{B̄(xi, εkNN(xi)) ∩ Σ̃}
]B̄(xi, εkNN(xi))

> α

}
. (4.2)

Then, the cardinality of T is at most βm/α.

Proof. Let F be a family of closed balls with centers in T ,

F = {B̄i = B̄(xi, εkNN(xi)) : xi ∈ T}.

As, Q has �nite metric dimension, there exists a subfamily F ′ such that every
xi in T belongs to some ball in F ′ and any x ∈ Ω has multiplicity β in F ′.
By the de�nition of T , for every xi in T we have,

]B̄(xi, εkNN(xi)) ≤
1

α
]{B̄(xi, εkNN(xi)) ∩ Σ̃}

Every point of Σ̃ can belong to at most β balls in F ′ and so the total number
of points from Σ̃ in F ′ can not be more than β times the cardinality of Σ̃.
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Therefore, we have

]T ≤
∑
B̄i∈F ′

]B̄(xi, εkNN(xi))

≤ 1

α

∑
B̄i∈F ′

]{B̄(xi, εkNN(xi)) ∩ Σ̃}

≤ 1

α
βm.

Remark 4.2.5. As is seen from the proof, the Lemma 4.2.4 holds under more
general assumptions:

(i) The result holds for closed balls of any radius strictly less than s, not
necessarily only εkNN .

(ii) The proof does not use the property of the balls being closed, so the
result do hold for families of open balls with radius < s. 4

We will need the following result to derive a stronger result from the
Lemma 4.2.4 for the k-nearest neighbors sets.

Lemma 4.2.6. Let α1, α2, α be non-negative real numbers. Let t1, t2, t3 ≥ 0
be such that t3 ≤ t2, t1 + t2 = 1 and α1t1 + α2t2 ≤ α. Assume that α1 ≤ α,
then

α1t1 + α2t3
t1 + t3

≤ α.

Proof. If α2 ≤ α, then it is trivial. If α2 > α,

α1t1 + α2t3 ≤ α− α2t2 + α2t3

= α− (1− t1)α2 + α2t3

≤ (t1 + t3)α.

The following lemma shows that, if the fraction of points coming from a
sub-sample in a closed as well as open ball at x of radius εkNN(x) is bounded
above by some constant then, the fraction of k-nearest neighbors chosen from
the sub-sample is also bounded by the same constant.
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Lemma 4.2.7. Let Σn = {x1, . . . , xn} be a sample of n points in any metric
space (Ω, ρ). Let Σ̃ be a subset of Σn. Let α > 0 and let x ∈ Ω. Suppose
that the fraction of points from Σ̃, both in the closed ball B̄(x, εkNN(x)) and
in the open ball B(x, εkNN(x)) is at most α,

]{B̄(x, εkNN(x)) ∩ Σ̃}
]B̄(x, εkNN(x))

,
]{B(x, εkNN(x)) ∩ Σ̃}

]B(x, εkNN(x))
≤ α.

The distance ties between the k-nearest neighbors of x are broken randomly
and uniformly. Then, the fraction of points from Σ̃ in the k-nearest neighbors
set of x is at most α, that is,

]{Nk(x) ∩ Σ̃}
Nk(x)

≤ α.

Proof. In Lemma 4.2.6, let α1, α2 be equal to the fraction of points from Σ̃
in the open ball and the sphere at x, respectively. Let t1 be the fraction of
points from the open ball at x in the closed ball at x, that is,

α1 =
]{B(x, εkNN(x)) ∩ Σ̃}

]B(x, εkNN(x))
, α2 =

]{S(x, εkNN(x)) ∩ Σ̃}
]S(x, εkNN(x))

,

t1 =
]{B(x, εkNN(x))}
]B̄(x, εkNN(x))

.

So, t2 is the fraction of points from the sphere at x in the closed ball B̄(x,
εkNN(x)). By our assumption, α1 ≤ α and α1t1 +α2t2 (which is equal to the
fraction of points from Σ̃ in the closed ball at x) is less than or equal to α.

Since, B(x, εkNN(x)) contains at most k points including x, so we chose
the remaining k-nearest neighbors of x uniformly from the sphere S(x, εkNN(x)).
Let νSx be a uniform measure on Sx = S(x, εkNN(x)), then for any A ⊆ Σn,

νSx(A) =
]{S(x, εkNN(x)) ∩ A}
]{S(x, εkNN(x))}

.

As, the event of choosing k-nearest neighbors of x is independent of Σ̃, so we
have

νSx(Nk(x) ∩ Σ̃) = νSx(Nk(x))νSx(Σ̃).
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Note that, α2 is the measure νSx(Σ̃) which is equal to,

νSx(Σ̃) =
νSx(Nk(x) ∩ Σ̃)

νSx(Nk(x))

=
]{S(x, εkNN(x)) ∩Nk(x) ∩ Σ̃}
]{S(x, εkNN(x)) ∩Nk(x)}

.

Let t3 be the fraction of k-nearest neighbors of x chosen from the sphere at
s in the closed ball,

t3 =
]{S(x, εkNN(x)) ∩Nk(x)}

]{B̄(x, εkNN(x))}
.

Now substituting all the values and using the above value for α2, we have

t1α1 + t3α2

t1 + t2
=
]{Nk(x) ∩ Σ̃}
]{Nk(x)}

≤ α (from the Lemma 4.2.6).

Now, we present our main result on the universal weak consistency of
k-nearest neighbor rule in a metrically sigma-�nite dimensional space where
the distance ties are broken randomly and uniformly.

Theorem 4.2.8. Under the random and uniform tie-breaking method, the k-
nearest neighbor rule is universally weakly consistent on a separable metrically
sigma-�nite dimensional space.

Proof. Let (Ω, ρ) be a separable metrically sigma-�nite dimensional space.
It follows from the Remark 1.1.9 that, Ω is an increasing union of closed and
metrically �nite dimensional sets {Qi}∞i=1. Each Qi is measurable because it
is closed. Let ν and η be a probability measure and a regression function
on Ω, respectively. The σ-additivity of ν implies that ν(Qi) approaches 1 as
i→∞. Let ε > 0, then there exists l ∈ N su�ciently large such that

ν(Ql) > 1− ε/2.

Given ε > 0, the Luzin's theorem implies that there exists a compact subset
K ⊆ Ql such that ν(K) > 1 − ε/2 and η|K is uniformly continuous. As, K
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is a subset of Ql so K has metric dimension βl on the scale sl in Ω (by the
Remark 1.1.6). Let U = Ω \K and hence ν(U) < ε.

From the Theorem 2.3.1, we know that the universal weak consistency
follows if E{(ηn(X) − η(X))2} → 0 whenever n, k → ∞ and k/n → 0. We
use the inequality (a+ b)2 ≤ 2a2 +2b2, where a, b are real numbers, to obtain
the following

E{(ηn(X)− η(X))2} = E{(ηn(X)− η̃(X) + η̃(X)− η(X))2}
≤ 2E{(ηn(X)− η̃(X))2}+ 2E{(η̃(X)− η(X))2}

The �rst term in the above equation goes to zero as k increases to ∞ (by
the Lemma 3.2.3). Now, we would show that the second term in the above
equation also decreases to zero in the limit of n and k. We see that from the
Lemma 3.2.4, we have the following bound on the second term,

E{(η̃(X)− η(X))2}

≤ E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η∗(Xi))
2

∣∣∣∣X ∈ K,Xi ∈ U
}

+ 12ε. (4.3)

Our aim is to bound from above the �rst term of right-hand side of the
equation (4.3) by some constant (which is independent of n and k) times ε.

Given a random sample (X0, X1, . . . , Xn), let Rn+1 be the set of Xj, 0 ≤
j ≤ n which belongs to Ql and have strictly greater than k

√
ε of their k-

nearest neighbors from U . That is, Rn+1 is the set of Xj ∈ Ql for which
]{i : Xi ∈ Nk(Xj) ∩ U} > k

√
ε. We �rst symmetrize the below expression

using the normalized counting measure ν], de�ned on {0, 1, . . . , n} and then
divide into two cases: Xj having > k

√
ε of its k-nearest neighbors from U

and Xj containing at most k
√
ε of its k-nearest neighbors from U . Note that,

Xj take values in K (which is a subset of Ql) in the following expressions.
So, we have

E
{

1

k

n∑
i=1

I{Xi∈Nk(X)}(η(Xi)− η∗(Xi))
2|X ∈ K,Xi ∈ U

}
= E

{
Ej∼ν]

{
1

k

n∑
i=0,i 6=j

I{Xi∈Nk(Xj)}(η(Xi)− η∗(Xi))
2|Xj ∈ K,Xi ∈ U

}}
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= E
{
Ej∼ν]

{
1

k

n∑
i=0
i 6=j

I{Xi∈Nk(Xj)}(η(Xi)− η∗(Xi))
2|Xj ∈ K ∩Rn+1, Xi ∈ U

}}
(4.4)

+ E
{
Ej∼ν]

{
1

k

n∑
i=0
i 6=j

I{Xi∈Nk(Xj)}(η(Xi)− η∗(Xi))
2|Xj ∈ K \Rn+1, Xi ∈ U

}}
(4.5)

Equation (4.4): Let Tn+1 denote the set of Xj ∈ Ql which contain >
√
ε

fraction of points from U in its open ball B(Xj, εkNN(Xj)), and let
T̃n+1 denote the set of Xj ∈ Ql which contains >

√
ε fraction of points

from U in its closed ball B̄(Xj, εkNN(Xj)).

If there is a distance tie, then the k-nearest neighbors of Xj is cho-
sen randomly and uniformly from the sphere S(Xj, εkNN(Xj)), so
]{Nk(Xj)} = k. It follows from the Lemma 4.2.7 that for Xj, if
the fraction of k-nearest neighbors of Xj from U is strictly greater
than

√
ε, then either, the fraction of points from U in the closed ball

B̄(Xj, εkNN(Xj)) is strictly greater than
√
ε or, the fraction of points

from U in the open ball B(Xj, εkNN(Xj)) is strictly greater than
√
ε.

Numerically, if Nk(Xj) ∩ U > k
√
ε = Nk(Xj)

√
ε, then either

]{B̄(Xj, εkNN(Xj)) ∩ U}
]{B̄(Xj, εkNN(Xj))}

>
√
ε or,

]{B(Xj, εkNN(Xj)) ∩ U}
]{B(Xj, εkNN(Xj))}

>
√
ε.

So, the equation (4.4) can be bounded as,

E
{
Ej∼ν]

{
1

k

n∑
i=0,i 6=j

I{Xi∈Nk(Xj)∩U}(η(Xi)− η∗(Xi))
2|Xj ∈ K ∩Rn+1

}}

≤ E
{
Ej∼ν]

{
1

k

n∑
i=0,i 6=j

I{Xi∈Nk(Xj)}(η(Xi)− η∗(Xi))
2|Xj ∈ K ∩ Tn+1

}}

+ E
{
Ej∼ν]

{
1

k

n∑
i=0,i 6=j

I{Xi∈Nk(Xj)}(η(Xi)− η∗(Xi))
2|Xj ∈ K ∩ T̃n+1

}}
≤ E

{
Ej∼ν]{I{Xj∈Tn+1}|Xj ∈ K}

}
+ E

{
Ej∼ν]{I{Xj∈T̃n+1}|Xj ∈ K}

}
= E

{
]Tn+1

n+ 1

}
+ E

{
]T̃n+1

n+ 1

}
.
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The Lemma 4.2.4 together with Remark 4.2.5 implies that,

E
{
]Tn+1

n+ 1

}
+ E

{
]T̃n+1

n+ 1

}
≤ 2

βl√
ε(n+ 1)

E
{ n∑

i=0

I{Xi∈U}
}

=
2βl√
ε
ν(U)

< 2βl
√
ε,

where we used the law of large numbers.

Equation (4.5): If Xj is not in Rn+1, this means the there can be at most
k
√
ε of k-nearest neighbors of Xj that belongs to U after breaking

distance ties. So, we have

Equation (4.5) ≤ E
{

1

k

n∑
i=0,i 6=j

I{Xi∈Nk(X)}I{Xi∈U}
∣∣∣∣Xj ∈ K \Rn+1

}
≤ 1

k
k
√
ε =
√
ε.

Now that we have established the universal weak consistency of the k-
nearest neighbor rule, we aim for the strong consistency in such metric spaces.
This is an obvious direction because as shown in [15], the weak consistency
and strong consistency are equivalent in Euclidean spaces. The next section
discusses the strong consistency in metrically �nite dimensional spaces.

4.3 Strong consistency

A learning rule is strongly consistent if for almost every in�nite sample path,
the conditional error probability given a �nite set of �rst n sample points
from the in�nite sample path, converges to Bayes error as the sample size n
increases. The strong consistency in Euclidean spaces was proved by Devroye
et al. [13, 46] under the assumption of no distance ties. The argument
was based on cones in Euclidean spaces and hence the proof is limited to
Euclidean spaces. The strong consistency in the presence of distance ties was
proved [14] ten years later, as distance ties is a di�cult hurdle to overcome.
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Therefore, in this thesis we will only examine the strong consistency under
the assumption of zero probability of distance ties. In particular, we establish
the strong consistency of the k-nearest neighbor rule in metric spaces with
�nite metric dimension under the assumption that the distance ties occur
with zero probability. Our proof is based on a similar argument as given in
Theorem 11.1 on pp. 170-174 of [15], but is based on a di�erent geometry.

Let 0 < α ≤ 1 be a real number, de�ne

rα(x) = inf{r > 0 : ν(B(x, r)) ≥ α}. (4.6)

A tie occurs with zero probability means the probability of a sphere is zero.
We prove in the following lemma that the open ball at x of radius rα(x) has
measure exactly equal to α, if the measure of every sphere is zero.

Lemma 4.3.1. Let ν be a probability measure with zero probability of ties.
Then, ν(B(x, rα(x))) = α for every x.

Proof. If t < rα(x), then ν(B̄(x, t)) < α. We can �nd a chain of subsets
B̄(x, t) that increases to B(x, rα(x)). So, ν(B(x, rα(x))) ≤ α. Similarly if
t > rα(x), then ν(B(x, t)) ≥ α. We can �nd a chain of open subsets B(x, t)
that decreases to B̄(x, rα(x)). So, ν(B̄(x, rα(x))) ≥ α. The zero probability
of distance ties means ν(S(x, rα(x))) = 0, therefore ν(B(x, rα(x))) = α.

Turns out, the function rα is 1-Lipschitz continuous and has a point-wise
limit.

Lemma 4.3.2. Let rα be a real-valued function de�ned as in (4.6), then rα
is a 1-Lipschitz continuous function. Also, rα converges to 0 as α → 0 at
each point of the support of the measure.

Proof. Let δ > 0 be any real number. This means ν(B(x, rα(x) + δ)) ≥ α.
This implies that ν(B(y, ρ(x, y) + rα(x) + δ)) ≥ α and so, rα(y) ≤ ρ(x, y) +
rα(x) + δ. As δ is arbitrary, we have rα(y) ≤ ρ(x, y) + rα(x). Therefore, rα
is a 1-Lipschitz continuous function.

We will use the (ε, δ)-de�nition to show that rα → 0 as α → 0 for every
element in support of ν, that is, for every ε > 0, we will �nd a δ > 0 such
that rα(x) ≤ ε whenever α ≤ δ, x ∈ Sν .

Let ε > 0. We observe that rα(x) ≤ ε if and only if α ≤ ν(B(x, ε)). If
x ∈ Sν , then ν(B(x, ε)) > 0, which is the our δ corresponding to ε. So, for
every x in the support of ν, the sequence rα(x) → 0 as α → 0. If x /∈ Sν ,
then there exists a ε > 0 such that ν(B(x, ε)) = 0. As, α > ν(B(x, ε)) = 0,
then rα(x) > ε. Thus, for x /∈ Sν , rα does not converge to 0 as α→ 0.
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Based on the properties of rα, we show in the following lemma that the
measure of all elements from a metrically �nite dimensional space containing
a �xed point in its rα-ball is bounded above by the metric dimension times
α.

Lemma 4.3.3. Let Q be a separable metric space which has metric dimen-
sion β on scale s. Assume that ν is a probability measure on Q with zero
probability of ties. For y ∈ Q, de�ne

A = {x ∈ Q : y ∈ B(x, rα(x))}.

Then, we have ν(A) ≤ βα for α small enough.

Proof. Let ε > 0 be any real number. By Luzin's theorem, there is a compact
set K ⊆ A such that ν(A \K) < ε. So, we need to estimate only the value
of ν(K).

It follows from the Lemma 4.3.2 that rα is 1-Lipschitz continuous and rα
converges to 0 as α goes to 0, ν-almost everywhere. Therefore, rα converges
to 0 uniformly on K, whenever α goes to 0. This means that there exists a
α0 > 0 such that for 0 < α ≤ α0, we have rα(x) < s for all x ∈ K.

Every open ball B(x, rα(x)) centered at x ∈ K contains y, then we have
for every x ∈ K

B̄(x, ρ(x, y)) ⊆ B(x, rα(x)). (4.7)

Let D = {an : n ∈ N} be a countable dense subset ofK. For each n, we select
a family of closed balls B̄(ai, ρ(ai, y)), 1 ≤ i ≤ n. Since, Q has metric dimen-
sion β on scale s, there exists a set of β centers {xn1 , . . . , xnβ} ⊆ {a1, . . . , an}
such that ∪βi=1B̄(xni , ρ(xni , y)) covers {a1, . . . , an}. As, K is compact so ev-
ery sequence has a sub-sequence which converges in K. For i = 1, there
is a sub-sequence (n1) of (n) such that (xn1

1 ) converges to x1. Similarly for
i = 2, there is a sub-sequence (n2) of (n1) such that (xn2

2 ) converges to x2.
Doing recursively until i = β, we have a sequence of indices (nβ) such that
(x

nβ
1 , . . . , x

nβ
β ) converges to (x1, . . . , xβ) as nβ →∞.

We claim that the union of B̄(xi, ρ(xi, y)), 1 ≤ i ≤ β covers K. As clo-
sure of �nite union is the union of closures and since the balls are closed, it is
enough to show thatD = {am}m∈N is contained in the union of B̄(xi, ρ(xi, y)),
1 ≤ i ≤ β. For nβ ≥ m, am belongs to at least one of the β balls
B̄(x

nβ
i , ρ(x

nβ
i , y)). Then there is an i0 such that am ∈ B̄(x

nβ
i0
, ρ(x

nβ
i0
, y)) for
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in�nitely many values of nβ ≥ m. This means there is a sub-sequence (n′)
such that am ∈ B̄(xn

′
i0
, ρ(xn

′
i0
, y)), where xn

′
i0
→ xi0 . Now, we will show that

am is closer to xi0 than y.
We have,

ρ(am, xi0) = ρ(am, lim
n→∞

xn
′

i0
)

= lim
n′→∞

ρ(am, x
n′

i0
)

≤ lim
n′→∞

ρ(xn
′

i0
, y)

= ρ(xi0 , y).

Therefore, am is an element of B̄(xi0 , ρ(xi0 , y)). It follows from the equation
(4.7) that the family {B(xi0 , rα(xi0)) : 1 ≤ i0 ≤ β} covers K.

By our assumption of zero probability of ties, we have ν(B(x, rα(x))) =
α (from the Lemma 4.3.1). Further, the sub-additivity of ν implies that
ν(K) ≤ βα, and so

ν(A) = ν(K) + ν(A \K)

≤ βα + ε,

where α ≤ α0. As, ε is arbitrary we have ν(A) ≤ βα.

As a consequence of Lemma 4.3.3, we have exponential concentration on
the probability of di�erence between conditional error probabilities of the k-
nearest neighbor rule and the Bayes rule. The following theorem was proved
in Euclidean spaces (Theorem 11.1 of [15]). However, the proof remains more
or less same for metrically �nite dimensional spaces except that we use the
Lemma 4.3.3 instead of lemma based on Stone's idea with the cones.

Theorem 4.3.4. Let (Q, ρ) be a separable metric space such that Q has
metric dimension β on scale s. Let µ be a probability measure on Q× {0, 1}
and assume that ν on Q obtained using µ, has zero probability of ties. Let gn
be the k-nearest neighbor rule. For ε > 0, there is a n0 such that for n > n0,

P
(
`µ(gn)− `∗µ > ε

)
≤ 2e

− nε2

18β2 ,

whenever k, n→∞ and k/n→ 0.

96



Proof. Let Dn be a random labeled sample, then `µ(gn) = P(gn(X) 6= Y |Dn)
is a function of Dn and hence a random variable. From the Theorem 2.3.1,
we have that

`µ(gn)− `∗µ ≤ 2Eν
{
|η(X)− ηn(X)|

∣∣∣∣Dn

}
.

Therefore, it is su�cient to show that

P
(
Eν
{
|η(X)− ηn(X)|

∣∣∣∣Dn

}
>
ε

2

)
≤ 2e

− nε2

18β2 ,

We shall omit writing the expectation conditional onDn to avoid unnecessary
complicated notations with an understanding that the expectation of |η(X)−
ηn(X)| is still a random variable. Therefore, it is su�cient to show that

P
(
Eν{|η(X)− ηn(X)|} > ε

2

)
≤ 2e

− nε2

18β2 ,

where ηn(X) = 1
k

∑n
i=1 I{Xi∈Nk(X)}Yi. Let η

∗
n be another approximation of η,

η∗n(X) =
1

k

n∑
i=1

I{ρ(Xi,X)<rα(X)}Yi. (4.8)

By the triangle's inequality, we have

|η(X)− ηn(X)| ≤ |η(X)− η∗n(X)|+ |η∗n(X)− ηn(X)|.

For the second term on the right-hand side of above equation,

|η∗n(X)− ηn(X)| = 1

k

∣∣∣∣ n∑
i=1

I{ρ(Xi,X)<rα(X)}Yi −
n∑
i=1

I{Xi∈Nk(X)}Yi

∣∣∣∣
=

1

k

n∑
i=1

∣∣∣∣I{ρ(Xi,X)<rα(X)} − I{Xi∈Nk(X)}

∣∣∣∣
≤
∣∣∣∣1k

n∑
i=1

I{ρ(Xi,X)<rα(X)} − 1

∣∣∣∣, (4.9)

where the last inequality is because Nk(X) contains at most k points. Let
η̂n(X) be equal to 1

k

∑n
i=1 I{ρ(Xi,X)<rα(X)} and let η̂(X) be equal to 1 always.

Therefore, we have

|η(X)− ηn(X)| ≤ |η(X)− η∗n(X)|+ |η̂n(X)− η̂(X)|.
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The idea is to obtain the exponential concentration for the two terms of
above equation, separately, using the McDiarmid's inequality (see Theorem
A.1.12). So, we �rst show that the expected values of the integrals of the
terms on the right-hand side of the above equation goes to zero.

(i) From the equation (4.9) and using Cauchy-Schwarz inequality, we have

Eµn{Eν{|η∗n(X)− ηn(X)|}} ≤ Eµn{Eν{|η̂n(X)− η̂(X)|}}

≤ Eν
{√

Eµn{|η̂n(X)− η̂(X)|}
}

≤ Eν
{√

n

k2
V ar{I{ρ(Xi,X)<rα(X)}}

}
≤ Eν

{√
n

k2
ν(B(X, rα(X)))

}
= Eν

{√
n

k2
α

}
.

As α is small, we can take α ≤ k/n for large enough values of n, k.
Substituting α ≤ k/n in the above equation we have,

Eµn{Eν{|η∗n(X)− ηn(X)|}} ≤ Eν
{√

n

k2

k

n

}
=

1√
k
,

which goes to zero as k →∞.

(ii) We proved the following result while establishing the universal weak
consistency in the Theorem 4.2.8,

Eµn{|η(X)− ηn(X)|} → 0 as n, k →∞, k/n→ 0.

Using Fubini's theorem followed by the aforementioned result and case
(i) implies that,

Eµn{Eν{|η(X)− η∗n(X)|}}
≤ Eµn{Eν{|η(X)− ηn(X)|}}+ Eµn{Eν{|ηn(X)− η∗n(X)|}}
≤ Eν{Eµn{|η(X)− ηn(X)|}}+ Eµn{Eν{|ηn(X)− η∗n(X)|}}
→ 0 as n, k →∞, k/n→ 0.
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So, we can choose n, k so large that for a given ε > 0,

Eµn{Eν{|η(X)− η∗n(X)|}}+ Eµn{Eν{|η̂n(X)− η̂(X)|}} < ε

6
. (4.10)

Therefore, we have

P
(
Eν{|η(X)− ηn(X)|} > ε

2

)
≤ P

(
Eν{|η(X)− η∗n(X)|}+ Eν{|η̂n(X)− η̂(X)|} > ε

2

)
= P

(
Eν{|η(X)− η∗n(X)|} − Eµn{Eν{|η(X)− η∗n(X)|}}+

Eν{|η̂n(X)− η̂(X)|} − Eµn{Eν{|η̂n(X)− η̂(X)|}} > ε

3

)
≤ P

(
Eν{|η(X)− η∗n(X)|} − Eµn{Eν{|η(X)− η∗n(X)|}} > ε

6

)
+

P
(
Eν{|η̂n(X)− η̂(X)|} − Eµn{Eν{|η̂n(X)− η̂(X)|}} > ε

6

)
, (4.11)

where the second equation in the above set of equations is obtained using
the inequality (4.10).

Let θ be a function de�ned on labeled samples, θ : (Q×{0, 1})n → [0,∞)
as,

θ(σn) = Eν{|η(X)− η∗n(X)|}

Let a new sample σ
′
n is formed by replacing (xi, yi) by (x̂i, ŷi). Let η∗ni(X)

denote the changed value of η∗n as de�ned in (4.8), with respect to the new
sample σ

′
n. Then, we have

|θ(σn)− θ(σ′n)| =
∣∣∣∣Eν{|η(X)− η∗n(X)|} − Eν{|η(X)− η∗ni(X)|}

∣∣∣∣
≤ Eν{|η∗n(X)− η∗ni(X)|}.

Now, we calculate the value of

|η∗n(X)− η∗ni(X)| = 1

k

∣∣∣∣I{ρ(Xi,X)<rα(X)}Yi − I{ρ(X̂i,X)<rα(X)}Ŷi

∣∣∣∣
≤ 1

k
I{ρ(Xi,X)<rα(X)}
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So, we have

|θ(σn)− θ(σ′n)| ≤ 1

k
Eν{I{ρ(Xi,X)<rα(X)}}

=
1

k
ν(B(x, rα(x))).

It follows from the Lemma 4.3.3,

sup
x1,y1,...,xn,yn,x̂i,ŷi

|θ(σn)− θ(σ′n)| ≤ 1

k
βα

≤ β

n
.

The above expression is true for all 1 ≤ i ≤ n and for every sample σn
and σ′n in (Q×{0, 1})n. By the McDiarmid's inequality (Theorem A.1.12 in
appendix), we get the following inequality

P
(
Eν{|η(X)− η∗n(X)| − Eµn{Eν{|η(X)− η∗n(X)|}} > ε

6

)
≤ e

− nε2

18β2 . (4.12)

As, η̂n is de�ned like η∗n, we can de�ne a new function θ̃(σn) = Eν{|η̂n(X)−
η̂(X)|} and in a similar manner as presented above, we obtain that |θ̃(σn)−
θ̃(σ

′
n)| ≤ β/n. Therefore, we have the following the exponential concentration

(by the McDiarmid's inequality),

P
(
Eν{|η̂n(X)− η̂(X)|} − Eµn{Eν{|η̂n(X)− η̂(X)|}} > ε

6

)
≤ e

− nε2

18β2 .

(4.13)

Substituting the equations (4.12) and (4.13) in the equation (4.11), we obtain

P
(
Eν{|η(X)− ηn(X)|} > ε

2

)
≤ 2e

− nε2

18β2 .

From the Theorem 4.3.4, it follows that the k-nearest neighbor rule is
strongly consistent in any separable metrically �nite dimensional space.

Corollary 4.3.5. Under the assumption of zero probability of ties, the k-
nearest neighbor rule is strongly consistent on a metrically �nite dimensional
separable space.
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Proof. Let (Q, ρ) be a separable metric space and suppose Q has �nite metric
dimension β on scale s. Let ε > 0 be any real number. Let Fn denote the
event {`(gn)− `∗ > ε}. From the Theorem 4.3.4, we have

P(Fn) ≤ 2e
− nε2

18β2 ,

Taking sum on the both sides, we get

∞∑
n=1

P(Fn) ≤ 2
∞∑
n=1

e
− nε2

18β2

< +∞.

By Borel-Cantelli lemma, we have

P
(

lim sup
n→∞

Fn

)
= 0. (4.14)

This means almost surely for any in�nite sample path, the di�erence of error
probabilities of the k-nearest neighbor rule and the Bayes rule converges to
zero. That is,

µ∞
{
σ∞ ∈ (Q× {0, 1})∞ : lim sup

n→∞
`µ(gn|σn)− `∗µ = 0

}
= 1.
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Chapter 5

Future Prospects

We examine the following diagram.

2. sigma-
�nite metric
dimension

1. �nite metric
dimension

3. strong LB-
di�erentiation

property

5. univer-
sal strong
consistency

4. weak LB-
di�erentiation

property

6. univer-
sal weak

consistency

n
o
ties

Prei
ss

Asso
uad

& Grom
ard

?

?

??

C
é
r
o
u
&
G
u
y
a
d
e
r

Our main aim is to prove as many as implications as possible in the above
�ow diagram. The double lines in the above diagram represent our results.

In this dissertation, we have accomplished the following implications:
2 ⇒ 6, 3 ⇒ 2 and partially 1 ⇒ 5 under the assumption of no ties. The
implications 2 ⇒ 6 can also be obtained by 2 ⇒ 3 ⇒ 4 ⇒ 6, but we gave a
direct proof without using any other implications. Apart from these, we have
some other interesting results such as Lemma 4.2.2 and Example 4.2.3 which
show that the solution for distance ties in Euclidean spaces does not extend
to metric spaces with �nite Nagata dimension. We also showed the incon-
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sistency of the k-nearest neighbor rule on Davies's example in Subsection
3.3.2.

We outline a possible number of research directions (some are represented
by question mark in the �ow diagram) based on this thesis:

(I) 1 ⇒ 5, 2 ⇒ 5: We proved 1 ⇒ 5 under the additional assumption of
zero probability of ties. We would like to extend this result to a met-
rically sigma-�nite dimensional space, under the assumption of zero
probability of ties. The next step would be to forgo this assumption
on distance ties and prove the universal strong consistency in metri-
cally �nite and sigma-�nite dimensional spaces.

(II) 5 ⇒ 3, 6 ⇒ 4: We would like to prove these two implications which
seem parallel to each other. The proof of 6 ⇒ 4 would be a con-
verse of Cérou and Guyader's result on universal weak consistency
and hence proves the equivalence between weak Lebesgue-Besicovitch
di�erentiation property and universal weak consistency in a metrically
sigma-�nite dimensional space. In [6], a partial argument has been
done for 6⇒ 3. We would like to give a complete proof of this impli-
cation 6⇒ 3, which will prove the implication 5⇒ 6⇒ 3⇒ 4. There
could be a possibility of proving 3 ⇒ 5 directly, which is similar to
4 ⇒ 6 (a result of Cérou and Guyader [6]) but with stronger form of
convergence.

(III) 6 ⇒ 5: In Euclidean spaces, the strong and weak consistency of the
k-nearest neighbor rule are equivalent. It would be interesting to �nd
an example of a metric space such that the k-nearest neighbor rule
is weakly consistent but not strongly consistent. The equivalence of
universal weak and strong consistency in a metrically sigma-�nite (or
even �nite) dimensional space is an advance question because most of
the mathematical tools available now are limited to Euclidean spaces.
We state 6⇒ 5 as an open question. If 6⇒ 5 and 5⇒ 3 are true then,
it answers the open question by Preiss (4⇒ 2) in a�rmative, that is,
the two notions of strong and weak Lebesgue-Besicovitch di�erentia-
tion property are equivalent in a metrically sigma-�nite dimensional
metric space. In general metric spaces, these are not equivalent [34].

(IV) Davies [11] constructed an interesting example of an in�nite dimen-
sional compact metric space (homeomorphic to a Cantor space) and
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two Borel measures which are equal on every closed balls, that fails the
strong Lebesgue-Besicovitch di�erentiation property. Later in 1981,
Preiss [38] constructed an example of a Gaussian measure in a Banach
space which fails the strong Lebesgue-Besicovitch density property. In
our knowledge, these are the only known explicit examples of in�nite
dimensional spaces where the di�erentiation property fails. The intu-
ition fail drastically in in�nite dimensional spaces. So, we would like
to construct a much simpler example of an in�nite dimensional metric
space which fails the Lebesgue-Besicovitch density property and thus
the k-nearest neighbor rule fails to be consistent.

In particular, we believe that Hilbert cube may be a candidate for
such an example. A Hilbert cube W is the set of sequences {x =
(x1, x2, . . .) : 0 ≤ xi ≤ 1/i, i ∈ N}. As W is subspace of `2 and so it
inherits the metric,

ρ(x, y) =

√√√√ ∞∑
i=1

|xi − yi|2 for all x, y ∈ W.

Let λ be the Lebesgue measure on R and let {([0, 1/i],Bi, iλ)}i∈N be a
family of measure spaces such that iλ is a probability measure and Bi is
a Borel σ-algebra on [0, 1/i]. Then consider the product of measurable
spaces (W,B) = (

∏
i∈N[0, 1/i],

∏
i∈N Bi) equipped with the product

measure µ :

µ(E) =
∏
i∈N

µi(Ei),

where E =
∏

i∈NEi with Ei ∈ Bi.
We would like to �nd a subset M of W such that µ(M) < 1 and

lim
r→0

µ(M ∩B(x, r))

µ(B(x, r))
= 1,

for µ-almost every x ∈ W .
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Appendix A

A.1 Auxiliary notions and results

Lemma A.1.1 ([19]). Let (Ω, ρ) be a metric space and Q ⊆ Ω. Let f :
Q→ [0, 1] be a uniformly continuous function. Then there exists a uniformly
equivalent metric ρ′ de�ned on Ω such that f is a 1-Lipschitz continuous
function on Q with respect to ρ′.

Proof. We want to de�ne ρ′ such that for any ε > 0 and for every x, y ∈ Q,
if ρ′(x, y) < ε then |f(x) − f(y)| < ε. As, f is uniformly continuous, for
any ε > 0, there exists δε such that for any x, y ∈ Q if ρ(x, y) < δε then
|f(x)− f(y)| < ε. De�ne a function E : [0,∞)→ [0, 1] such that for δ ≤ 1,

E(δ) := sup
x,y∈Q

{
|f(x)− f(y)| : ρ(x, y) ≤ δ

}
,

and E(δ) = 1 for δ > 1. The function E is the maximum oscillation of f
on any subsets of Q of diameter at most δ < 1, otherwise 1. The function
E is well de�ned and a monotonically non-decreasing function. From the
de�nition, we have E(0) = 0. Suppose we de�ne ρ′(x, y) = E(d(x, y)), then
in order to prove the triangle inequality for ρ′ we need the following inequality

E(a+ b) ≤ E(a) + E(b) for any a, b ∈ Ω.

But the above inequality is not true: let Ω = {0, 1/2, 1} and de�ne the
distance ρ(0, 1/2) = 1/2, ρ(1/2, 1) = 3/2 and ρ(0, 1) = 1. Let f(x) = x2/2
be the function on Ω. Then f is a uniformly continuous function. Take
a = b = 1/2. Then E(1/2) = sup{|f(x) − f(y)| : ρ(x, y) ≤ 1/2} = 1/8 but
E(1) = 1/2 ≥ E(1/2) + E(1/2). So, we try to construct a function E ′ such
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that E ′ ≥ E and E ′(a+ b) ≤ E ′(a) + E ′(b). We take the concave majorant of
E ,

E ′(δ) = sup

{
tE(a) + (1− t)E(b) : a, b, t ∈ [0, 1], δ = ta+ (1− t)b

}
.

So, we have the following properties:

(i) E ′(0) = 0.
We can write 0 = ta + (1 − t)b which is true whenever a = 0 = b or
t = 0 = b or t = 1, a = 0. In all these cases, tE(a) + (1 − t)E(b) = 0
because E(0) = 0 and hence E ′(0) = 0.

(ii) E ′ ≥ E .
For any δ ∈ [0,∞), E ′(δ) = sup{tE(a) + (1− t)E(b) : a, b, t ∈ [0, 1], δ =
ta+ (1− t)b}. Take a = δ, t = 1, then E ′(δ) ≥ E(δ).

(iii) E ′(δ) ↓ 0 whenever δ ↓ 0.
Suppose δ ↓ 0 but E ′(δ) does not decrease to 0. Then there exist
sequences an, tn, bn such that tnan + (1 − tn)bn ↓ 0 but tnE(an) + (1 −
tn)E(bn) ≥ C for some constant C > 0. This means that either tn, bn ↓
0 or an, bn ↓ 0 or an ↓ 0, t ↑ 1. If an ↓ 0, then tnE(an) ↓ 0 but
(1−tn)E(bn) ≥ C which contradicts bn ↓ 0. We get similar contradiction
for other cases also. Hence, E ′(δ) ↓ 0.

(iv) Claim: Let δ =
∑n

i=1 tiai such that
∑n

i=1 ti = 1, then there exist
c ≤ d and t from [0, 1] such that δ =

∑n
i=1 tiai = tc + (1 − t)d and∑n

i=1 tiE(ai) ≤ tE(c) + (1− t)E(d).

Let c1, . . . , cn ≤ δ and d1, . . . , dn ≥ δ. For every pair (ci, dj) set

t =
δ − ci
dj − ci

,

then δ = tci + (1− t)dj. Choose (l, k) such that tE(cl) + (1− t)E(dk) is
the maximum.

The point (δ,
∑n

i=1 tiE(ai)) belongs to the convex combination of the
points (ai, E(ai)). This is a convex polygon. The point (δ,

∑n
i=1 tiE(ai))

is on the edge joining (ci, E(ci)) and (dj, E(dj)), then

δ = tci + (1− t)dj,
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and

n∑
i=1

E(ai) = tE(ci) + (1− t)E(dj)

≤ tE(cl) + (1− t)E(dk).

(v) E ′ is a concave function, that is, for any δ1, δ2 ∈ [0,∞) and α ∈ [0, 1]

E ′(αδ1 + (1− α)δ2) ≥ αE ′(δ1) + (1− α)E ′(δ2).

Let γ > 0. For δ1, there exist a1, b1, t1 ∈ [0, 1] such that δ1 = t1a1 +
(1 − t1)b1 and t1E(a1) + (1 − t1)E(b1) > E ′(δ1) − γ. Similarly for δ2 >
0 there exist a2, b2, t2 ∈ [0, 1] such that δ2 = t2a2 + (1 − t2)b2 and
t2E(a2) + (1− t2)E(b2) > E ′(δ2)− γ. We have,

αE ′(δ1) + (1− α)E ′(δ2) ≤ α(t1E(a1) + (1− t1)E(b1)) + (1− α)(t2E(a2)

+ (1− t2)E(b2)) + γ

< αt1E(a1) + α(1− t1)E ′(b2) + (1− α)t2E(a2)

+ (1− α)(1− t2)E(b2) + γ.

From property (iv), there exist c, d and t such that αδ1 + (1 − α)δ2 =
tc+ (1− t)d and

αE ′(δ1) + (1− α)E ′(δ2) ≤ αt1E(a1) + α(1− t1)E(b2) + (1− α)t2E(a2)

+ (1− α)(1− t2)E(b2) + γ

≤ tE(c) + (1− t)E(d) + γ

≤ E ′(tc+ (1− t)d) + γ

= E ′(αδ1 + (1− α)δ2) + γ.

As γ is arbitrary, we have E ′(αδ1 + (1−α)δ2) ≥ αE ′(δ1) + (1−α)E ′(δ2).

(vi) E ′(δ1 + δ2) ≤ E ′(δ1) + E ′(δ2).
Let α ∈ [0, 1]. As E ′ is a concave function,

E ′(αδ) = E ′(αδ + (1− α)0)

≥ αE ′(δ) + (1− α)E ′(0)

= αE ′(δ).
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Then,

E ′(δ1) + E ′(δ2) = E ′
(

(δ1 + δ2)
δ1

δ1 + δ2

)
+ E ′

(
(δ1 + δ2)

δ2

δ1 + δ2

)
≥ δ1

δ1 + δ2

E ′(δ1 + δ2) +
δ2

δ1 + δ2

E ′(δ1 + δ2)

= E ′(δ1 + δ2).

(vii) E ′ is a monotonically non-decreasing function.
Let γ > 0 and assume δ1 < δ2. So, there exists a ≤ b such that
δ1 = ta+ (1− t)b < δ2 and tE(a) + (1− t)E(b) > E ′(δ1)−γ. Then, there
is a b2 ≥ b such that δ2 = ta+ (1− t)b2. We have,

E ′(δ2) ≥ tE(a) + (1− t)E(b2)

≥ tE(a) + (1− t)E(b)

> E(′δ1)− γ.

As γ is arbitrary, E ′(δ2) ≥ E ′(δ1).

Now, we de�ne the function ρ′(x, y) = E ′(ρ(x, y))+ρ(x, y) for any x 6= y ∈ Ω.
From the property (vi) of E ′, it follows that ρ′ is a metric.

Let α > 0 and γ1 = α, γ2 = α/2. For all x, y ∈ Ω, if ρ′(x, y) < γ1 = α,
then ρ(x, y) < α. And if ρ(x, y) < γ2, then by the property (iii) of E ′ we have
E ′(ρ(x, y)) < α/2. This gives ρ′(x, y) = E ′(ρ(x, y)) + ρ(x, y) < γ2 + α/2 = α.
Therefore, ρ and ρ′ are uniformly equivalent metrics.

Let x, y ∈ Q and suppose ρ′(x, y) < ε, then E ′(ρ(x, y)) < ε. This implies
E(ρ(x, y)) < ε and so, |f(x) − f(y)| < ε which means f is a 1-Lipschitz
continuous function.

Lemma A.1.2 ([19]). Every 1-Lipschitz continuous function f : Q → [0, 1]
can be extended to a 1-Lipschitz continuous function f̄ : Ω → [0, 1] in the
following way,

f̄(x) := min

{
1, inf

y∈Q
{f(y) + ρ(x, y)}

}
.

Proof. Let γ > 0 and x1, x2 ∈ Ω. There are mainly three cases:

(i) If f̄(x1) = 1 = f̄(x2), then it is trivial.
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(ii) If f̄(x1) = 1 and f̄(x2) = infy∈Q{f(y) + ρ(x2, y)}, then there exists
y2 ∈ Q such that 1 ≥ f̄(x2) > f(y2) + ρ(x2, y2)− γ. So,

|f̄(x1)− f̄(x2)| = 1− f(y2)− ρ(x2, y2) + γ

≤ f(y2) + ρ(x1, y2)− f(y2)− ρ(x2, y2) + γ

= ρ(x1, y2)− ρ(x2, y2) + γ

≤ ρ(x1, x2) + γ.

(iii) If f̄(x1) = infy∈Q{f(y) + ρ(x1, y)} and f̄(x2) = infy∈Q{f(y) + ρ(x2, y)},
then there exist y1, y2 ∈ Q such that f̄(x1) ≤ f(y1) + ρ(x1, y1) and
f̄(x2) > f(y2) + ρ(x2, y2)} − γ. Therefore,

|f̄(x1)− f̄(x2)| = |f(y1) + ρ(x1, y1)− f(y2)− ρ(x2, y2) + γ|
≤ |f(y2) + ρ(x1, y2)− f(y2)− ρ(x2, y2) + γ|
= ρ(x1, y2)− ρ(x2, y2) + γ

≤ ρ(x1, x2) + γ.

As γ is arbitrary, f̄ is a 1-Lipschitz continuous function.

We state the important Luzin's theorem in our settings for better under-
standing.

Theorem A.1.3 (Luzin's theorem [21]). Let η : Q → [0, 1] be measurable
function and let ν be a probability measure on Ω, where (Ω, ρ) is a separable
metric space and Q ⊆ Ω. Given ε > 0, there exists a compact set K ⊆ Q
such that ν(Q \K) < ε and η|K is a uniformly continuous function.

De�nition A.1.4 (Paracompact space [18]). A topological space Ω is said to
be paracompact if every open cover of Ω has a locally �nite open re�nement.
That is, if Ω ⊆ ∪i∈IOi, where each Oi is an open set, then there is a collection
of open sets {Vj : Vj is open , j ∈ J} such that

(i) ∪j∈JVj is an open cover for Ω,

(ii) each Vj is a subset of Oi for some i in I and,

(iii) every element x of Ω has a neighborhood around x which intersects
�nitely many Vj, j ∈ J .

A cover of Ω is locally �nite if it satis�es the above stated property (iii).
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Lemma A.1.5 ( [18]). Every metric space is paracompact.

Lemma A.1.6 (Dieudonné's theorem [18]). Let {Vj : Vj is open, j ∈ N} be
a locally �nite countable family. Then, closure of union of Vj is the union of
V̄j.

De�nition A.1.7 ([18]). A topological space Ω is called a Lindelöf space if
any open cover of a subset of Ω has a countable subcover.

Lemma A.1.8 (Lindelöf theorem [18]). A metric space is a Lindelöf space
if and only if it is separable.

Theorem A.1.9 (Baire Category Theorem [18]). Let (Ω, ρ) be a complete
metric space and {Dn}n∈N be a sequence of dense open sets. Then ∩n∈NDn

is dense.

Lemma A.1.10. Let Ω = {σ : σ = (σ1, σ2, . . .)} and let ρ be de�ned as, for
any σ, τ ∈ Ω,

ρ(σ, τ) =

{
0 if σ = τ

2−min{i: σi 6=τi} otherwise

Then, ρ is a non-Archimedean metric and (Ω, ρ) is called a non-Archimedean
metric space.

Proof. By the de�nition, the function ρ is symmetric and non-negative. Also,
ρ(σ, τ) = 0 i� σ = τ . We will show that for any σ, τ, γ ∈ Ω,

ρ(σ, τ) ≤ max{ρ(σ, γ), ρ(γ, τ)}.

If γ = σ or γ = τ , then the above inequality follows easily. Suppose γ 6= σ 6= τ
and max{ρ(σ, γ), ρ(γ, τ)} = ρ(σ, γ). Let ρ(σ, γ) = 2−i. Then, σj = γj for
j < i and σi 6= γi. Since ρ(σ, γ) ≥ ρ(τ, γ), this means τj = γj for j < i. So,
σj = τj for j < i. So, ρ(σ, τ) ≤ 2−i = max{ρ(σ, γ), ρ(γ, τ)}. Similarly, the
strong triangle inequality holds when max{ρ(σ, γ), ρ(γ, τ)} = ρ(τ, γ). Hence,
(Ω, ρ) is a non-Archimedean metric space.

De�nition A.1.11. Let ρ on Ω be de�ned as: for x, y ∈ Ω, ρ(x, y) = 1 if
and only if x 6= y. Then ρ is called a 0-1 metric.
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Theorem A.1.12 (McDiarmid's inequality [35]). Let (X1, Y1), . . . , (Xn, Yn)
be independent pair of random variables taking values in Ω×{0, 1}. Let f be
a real-valued function de�ned on (Ω×{0, 1})n such that for every 1 ≤ i ≤ n,
and for all (x1, y1), . . . , (xn, yn), (x̂i, ŷi) ∈ Ω× {0, 1},∣∣∣∣f((x1, y1), . . . , (xi, yi), . . . , (xn, yn)

)
− f

(
(x1, y1), . . . , (x̂i, ŷi), . . . , (xn, yn)

)∣∣∣∣
≤ αi,

Then, for ε > 0

P
(
f((x1, y1), . . . , (xn, yn))− E{f((x1, y1), . . . , (xn, yn))} ≥ ε

)
≤ e

−2ε2∑n
i=1

α2
i .
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