ロジウムナイトレノイドを活性種とする 触媒的位置選択的 C-H アミノ化反応

2018

新井 健太

目次

略語表

理論の部

第一章	諸言	7

第二章 アルコキシアレーン類のパラ位選択的 C(sp²)-H アミノ化	11
第一節 過去の関連研究と著者の研究方針	11
第二節 C(sp ²)-H アミノ化に活性な電子豊富アレーン類の検討	14
第三節 反応条件の最適化	15
第四節 基質一般性の検討	19
第五節 機能性分子の直線的窒素官能基化	21
第六節 反応機構についての考察	22
第一項 化学選択性発現の考察	22
第二項 速度論的同位体効果	24
第三項 ラジカルクロック実験	25
第四項 推定反応機構	26

第三章 シリル基β位の第一級 C(sp³)-H アミノ化 27

第四章 結論

28

実験の部

実験及び測定に関する一般事項	31
第二章に関する実験及び物性値	33
引用文献	75

謝辞

79

略語表

Ac	acetyl
<i>t</i> -Bu	<i>tert</i> -butyl
Bz	benzoyl
CDI	carbonyldiimidazole
DFT	density functional theory
DG	directing group
DMF	N,N-dimethylformamide
EI	electron ionization
ESI	electrospray ionization
IR	infrared
KIE	kinetic isotope effect
HRMS	high-resolution mass spectrometry
Me	methyl
m.p.	melting point
NMR	nuclear magnetic resonance
Ns	2-nitrobenzenesulfonyl
Ph	phenyl
Rh ₂ (esp) ₄	$bis[rhodium(\alpha, \alpha, \alpha', \alpha'-tetramethyl-1, 3-benzenedipropionic \ acid)]$
Rh ₂ (oct) ₄	rhodium(II) octanoate dimer
Rh ₂ (piv) ₄	rhodium(II) pivalate dimer
Rh ₂ (tpa) ₄	rhodium(II) triphenylacetate dimer
rt	room temperature
TBS	tert-butyldimethylsilyl
THF	tetrahydrofuran
Troc	2,2,2-trichloroethoxycarbonyl
TS	transition state
Ts	<i>p</i> -toluenesulfonyl

理論の部

窒素官能基は医薬品や生理活性天然物、機能性材料等の機能発現に関わる重要な官能基 でその合成法の開発は極めて重要である。¹ 炭素-窒素結合形成にはこれまで求核置換反応 や還元的アミノ化反応、Buchwald-Hartwig カップリングが用いられてきたが、これらの合成 法は窒素官能基へ変換し得る官能基をあらかじめ導入しておく必要があるため、基質適用 範囲に制限があった。² このような背景のもと、近年、炭素-水素結合に対する C-H アミノ 化反応は、炭化水素への最も直接的な窒素官能基導入法として、現在の有機合成化学分野 での一大潮流となっている(Figure 1.1)。^{2,3}

Figure 1.1 炭素-窒素結合形成反応

有機化合物は多数の C-H 結合を有しているため、C-H アミノ化反応の開発には必然的に 位置選択性の制御が問題となる。この問題については、分子内 C-H アミノ化反応 (Figure 1.2 (a))^{4,5} や配位性配向基を有する基質における分子間 C-H アミノ化反応 (Figure 1.2 (b))⁶ に より、活性種に近接する C-H 結合を限定することで解決されてきた。一方、配位性配向基 を持たない基質への分子間 C-H アミノ化反応は、反応性の似通った C-H 結合を識別して位 置選択性を制御する必要があるため、報告例が少なく未発達分野である (Figure 1.2 (c))。 このような背景のもと、著者は不活性 C-H 結合に対する位置及び化学選択性を示す反応系 の開発を研究課題とした。

(a) Intramolecular C-H Amination

(b) Directing Group Assisted C-H Amination

Figure 1.2 触媒的位置選択的 C-H アミノ化反応

ロジウム二核錯体はナイトレノイドを形成することで、C-H アミノ化反応を効率的に進行させることが古くから知られており、^{4,5,7} 天然物合成にも広く利用されてきた。⁸ ロジウムナイトレノイドを活性種とする触媒的 C-H アミノ化反応については、1983 年に Breslow らによって報告された分子内 C(sp³)-H アミノ化反応を皮切りに活発に研究が行われている(Scheme 1.1)。^{4a}

Scheme 1.1 ロジウムナイトレノイドを活性種とする C-H アミノ化反応の最初の例 (Breslow ら、1983 年)

Scheme 1.2 ロジウムナイトレノイドを活性種とする分子内 C(sp²)-H アミノ化反応 (Driver ら、2007 年)

ロジウムナイトレノイドを活性種とする分子内 C(sp²)-H アミノ化反応については、Driver らによって報告されたインドール環合成が最初の例であるが、C(sp³)-H 結合への分子内反応 に比べて報告例が少ない(Scheme 1.2)。^{5a}

一方、分子間反応は分子内反応に比べて位置選択性の制御が困難で未発達分野である。 Müller らによって報告されたイミノヨージナンをアミノ化剤とするベンジル位への C-H ア ミノ化反応が分子間反応の最初の例であり、その後のロジウムナイトレノイドを活性種と する分子間 C-H アミノ化反応の開発に大きな影響を与えた(Scheme 1.3)。^{7a}

Scheme 1.3 ロジウムナイトレノイドを活性種とする分子間 C-H アミノ化反応の最初の例 (Müller ら、1997 年)

Du Bois らは、ロジウム二核錯体である Rh₂(esp)₂ を独自に開発し、ベンジル位や第三級 C(sp³)-H 結合に対してアミノ化反応が進行することを報告している (Scheme 1.4)。^{7d} 分子 間 C-H 活性化反応は、大過剰量の炭化水素源を必要とする例が多いが、本反応系は、化学 量論量の基質とアミノ化剤を用いて反応が効率的に進行することに成功した。詳細な反応 機構解析により、本反応はロジウムナイトレノイドを活性種とする C-H 挿入型の反応が進行することが提唱されている。

Scheme 1.4 Rh₂(esp)₂を用いた分子間 C(sp³)-H アミノ化反応(Du Bois ら、2007 年)

Lebel らは、ロジウム二核錯体存在下、TrocNH-OTs をアミノ化剤として用いる C(sp³)-H アミノ化反応を見出した (Scheme 1.5)。^{7e, 7f}本系では、生じるロジウムナイトレノイド種 が十分な安定性と反応性を併せ持つため、ベンジル位やシクロアルカンなどの C(sp³)-H 結 合へのアミノ化反応が高収率で進行することが報告されている。

Scheme 1.5 Rh₂(tpa)₂を用いた分子間 C(sp³)-H アミノ化反応(Lebel ら、2008 年)

今回、著者はこのロジウムナイトレノイド種に注目し、未解決課題であった反応不活性な C-H 結合への直截的窒素官能基導入を実現すべく、以下の研究を行った。

第二章では、アルコキシアレーン類の C(sp²)-H アミノ化反応について取り組んだ(Scheme 1.6)。Rh₂(tpa)₄を触媒として用いた際に、C(sp²)-H アミノ化反応が芳香族アルコキシ基のパラ位選択的に進行することを見出した。⁹本系では、ロジウムナイトレノイドに通常は反応活性なベンジル位 C(sp³)-H 結合を有する基質においても、位置及び化学選択的に C(sp²)-H アミノ化反応が進行した。

Scheme 1.6 アルコキシアレーン類のパラ位選択的 C(sp²)-H アミノ化

第三章では、シリル基 β 位の第一級 C(sp³)-H 結合への C-H アミノ化反応について取り組 んだ (Scheme 1.7)。著者は、第二章の C(sp²)-H アミノ化反応の検討を行う過程で、分子間 C(sp³)-H アミノ化がシリル基 β 位選択的に進行することを見出した。本反応の位置選択性 発現機構は、炭素-ケイ素結合の強い σ 供与性によって β 位第一級 C(sp³)-H 結合が活性化 されるためと想定される。

以下、詳細について記述する。

第二章 アルコキシアレーン類のパラ位選択的 C(sp²)-H アミノ化

第一節 過去の関連研究と著者の研究方針

アリールアミン誘導体の合成法として、ニトロ基やアジド基を導入後、還元によってア ミノ基へ変換する方法や、ハロゲン化アリールの Buchwald-Hartwig カップリング反応が用 いられてきたが、¹⁰ 近年ではアレーン類の直接的 C-H アミノ化反応が活発に研究されてい る。¹¹ しかし、配位性配向基を持たない基質においては、位置選択性の制御が困難な点や 過剰の基質を用いる点など、課題が残されている。このような状況下、過剰量の基質を必 要とせず、反応性の似通った C(sp²)-H を有する基質に対して位置選択的に窒素官能基を導 入する手法が最近数例報告されている。¹²

その先駆的な研究として、Ritter らは、パラジウム触媒 11 と N-フルオロベンゼンスルホ ンイミド 13 によりイミジルラジカルが発生し、効率的且つ位置選択的に C(sp²)-H イミド化 反応が進行することを報告している (Scheme 2.1)。^{12a} これまでのアレーン類の C-H アミノ 化反応は過剰量の基質を要していたが、本反応系では基質 12 を limiting reagent として、小 過剰のアミノ化剤 13 を用いる条件下でも効率的に反応が進行し、電子的及び立体的に有利 な C-H 結合に対して位置選択的にアミノ化体 14 を得た。

Scheme 2.1 パラジウム触媒を用いた C(sp²)-H イミド化反応(Ritter らの報告、2013 年)

アレーン類の直接的 C-H アミノ化反応は遷移金属触媒を用いる例が主であったが、 Nicewicz らは、光酸化還元特性を有する有機分子触媒 15 を用い、アレーン類の直接的 C-H アミノ化法を報告している(Scheme 2.2)。^{12d, 12h} 有機分子触媒と TEMPO 存在下、酸素雰囲 気中、可視光を照射するだけで目的とするアリールアミン 18 を効率よく得ている。基質汎 用性が非常に高く、医薬品類似化合物の位置選択的 C(sp²)-H アミノ化にも成功しており、 本反応系の高い官能基受容性を示している。

このように、これまでのアレーン類の C-H アミノ化はラジカル経由での反応例のみであった。これらの例では、より電子豊富な C-H 結合に対して位置選択的にアミノ化反応が反応する傾向が見られる。

Scheme 2.2 光レドックス触媒を用いた C(sp²)-H アミノ化反応(Nicewicz らの報告; 2015 年)

ー方、ロジウムナイトレノイドを活性種とする分子間 C-H アミノ化反応については、 C(sp³)-H 結合への反応性の差が次第に研究され、ベンジル位やアリル位、酸素原子の α 位 といった電子豊富な C(sp³)-H 結合が立体電子効果によって高活性であることが明らかとさ れてきた (Figure 2.1 (a))。⁷

ロジウムナイトレノイドに限らずナイトレンや金属ナイトレノイドを活性種とするアレ ーン類の C-H アミノ化反応が開発されなかった原因として、これらは C(sp³)-H 結合への反 応性が高く、位置及び化学選択性の制御が困難なことが挙げられる。一方著者は、求核力 の高い芳香環であれば、ロジウムナイトレノイドを求電子剤とする、芳香族求電子置換型 のアミノ化反応が進行しうると考えた(Figure 2.1 (b))。この未解決課題を達成すべく、適 切な求核力を有する基質及びロジウム二核錯体触媒、反応条件の検討を行い、最適条件の 探索に着手した。

(a) Previous Report; C(sp³)-H Amination via Rhodium Nitrenoids

(b) This Work; C(sp²)-H Amination via Rhodium Nitrenoids

Figure 2.1 ロジウムナイトレノイドを活性種とする C-H アミノ化反応

本研究の開発段階で、ロジウム二核錯体による C(sp²)-H アミノ化反応が Falck らによっ て報告された (Scheme 2.3)。¹³本反応系では、トリフルオロエタノール中(基質によって は添加剤として酢酸やトリフルオロ酢酸などを用いた酸性条件)で反応を行うことにより、 プロトン化されたロジウムナイトレノイドが生成すると考えられている。この活性中間体 により求電子性が向上し、電子豊富なアレーン類に対して求電子芳香族置換反応が効率よ く進行していると推定され、中性のロジウムナイトレノイド自体が活性中間体ではないと されている。

Scheme 2.3 ロジウム二核錯体触媒を用いた C(sp²)-H アミノ化反応 (Falck らの報告; 2016 年)

また、橋本らは不斉ロジウム二核錯体によるケテンシリルアセタールへのアミノ化反応 において、基質 21 を用いた際に目的物であるベンジル位へのアミノ化体ではなく、C(sp²)-H 結合へのアミノ化体 22 が得られることを報告している(Scheme 2.4)。¹⁴ しかしながら、詳 細な反応検討は行われておらず、中性のロジウムナイトレノイドを活性種とするアレーン 類の C(sp²)-H アミノ化反応についてはこれまで報告例がない。

Scheme 2.4 ロジウム二核錯体触媒による C(sp²)-H アミノ化反応が進行した例 (橋本らの報告; 2007 年) 第二節 C(sp²)-Hアミノ化に活性な電子豊富アレーン類の検討

20 ℃条件下、アミノ化剤に N-トシルオキシカーバメート、塩基に炭酸カリウム、溶媒に クロロベンゼンを用い、Rh₂(tpa)₄ を触媒とするアレーン類の C(sp²)-H アミノ化の検討を行 った (Table 2.1)。種々電子豊富なアレーン類を検討した結果、アニソール (23a)を基質と した際に 50%収率、パラ:オルトの比が 6.6:1 で目的物を得た (24a)。しかしながら、その他 の基質では反応が全く進行しなかった。メシチレンを基質とした際は C(sp²)-H 結合へのア ミノ化体は観測されず、ベンジル位 C(sp³)-H 結合へのアミノ化が進行した。また、*t*-ブチル ベンゼンを基質として検討も行ったが反応が全く進行しなかったことから、アルキルベン ゼン程度の反応性では、本系でのロジウムナイトレノイドを活性種とする C(sp²)-H アミノ 化が進行しないことが明らかになった。一方、ジメチルアミノベンゼンやチオアニソール、 フェノールについては、基質のヘテロ原子とロジウム触媒が強く配位してしまい、触媒が 不活性化したため、反応が全く進行しなかったと推定している。

Table 2.1 電子豊富なアレーン類の検討

20 ℃条件下、アミノ化剤に*N*-トシルオキシカーバメート、塩基に炭酸カリウム、溶媒に クロロベンゼンを用いて、1.5 当量のアニソールをモデル基質とした、ロジウム触媒の検討 を行った(Table 2.2)。

	OMe TrocNH-O Rh cat K ₂ CO ₃ PhCl (0	Ts (1.0 equiv.) . (5 mol%) (1.5 equiv.) .2 M), 20 h	OMe + OMe	NHTroc
	23a (1.5 equiv)		24a 25a	
entry	Rh catalyst	temp. (°C)	yield of $(24a+25a)^a$	ratio (24a : 25a) ^{<i>a</i>}
1	Rh ₂ (oct) ₄	20	trace	_
2	Rh ₂ (piv) ₄	20	trace	_
3	$Rh_2(n-C_3F_7CO_2)_4$	20	0%	_
4	Rh ₂ (esp) ₄	20	12%	7.8:1
5	Rh ₂ (tpa) ₄	20	50%	6.6:1
6	Rh ₂ (tpa) ₄	0	60%	11:1
7	Rh ₂ (tpa) ₄	-20	26%	13:1
8^b	Rh ₂ (tpa) ₄	0	37%	9.9:1
9 ^c	Rh ₂ (tpa) ₄	0	42%	12:1
10^d	Rh ₂ (tpa) ₄	0	60%	13:1

Table 2.2 反応条件の検討-1

^{*a*} Determined by ¹H NMR using 1,3-dinitrobenzene as an internal standard. ^{*b*} **23a** (1.0 equiv) and TrocNH-OTs (1.5 equiv) were employed. ^{*c*} **23a** (1.0 equiv) was employed. ^{*d*} **23a** (5.0 equiv) was employed.

その結果、Rh₂(oct)₄や Rh₂(piv)₄、Rh₂($n-C_3F_7CO_2$)₄では反応は全く進行しなかったが (entries 1–3)、Rh₂(esp)₂を触媒として用いた際、12%収率で C(sp²)-H アミノ化体を得た (entry 4)。 Rh₂(tpa)₄を用いたところ、50%収率、パラ:オルトの比が 6.6:1 で目的物を得た (entry 5)。反 応温度を 0 ℃まで下げると、収率、位置選択性ともに向上し、60%収率、パラ:オルトの比 が 11:1 と高い位置選択性で目的物を得ることに成功した (entry 6)。更に-20 ℃まで反応温 度を下げると、パラ選択性がわずかに向上したが、収率は大きく低下した (entry 7)。アニ ソールと TrocNH-OTs の当量についても検討したところ、アミノ化剤である TrocNH-OTs を 1.5 当量或いは 1.0 当量用いる条件下では収率が低下した (entries 8, 9)。また、アニソール を 5.0 当量まで増やした条件下でも収率の向上が見られなかったので、1.5 当量のアニソー ルを用いる条件を最適条件とした (entry 6)。パラ位への高い位置選択性の発現については、 Rh₂(tpa)₄ の立体的な嵩高さによってオルト位への反応が進行しにくくなったことが要因と して考えられる。

次に、塩基と反応溶媒の検討を行った(Table 2.3)。反応溶媒については、塩化メチレン や酢酸エチル、アセトニトリルといった非ベンゼン系溶媒では反応がほとんど進行しない ことが明らかになった(entries 2-4)。一方、ベンゼン系の溶媒であるトリフルオロメチルベ ンゼンやフルオロベンゼン、o-ジクロロベンゼンを用いた際には中程度反応は進行したが、 クロロベンゼンには及ばなかった(entries 5-7 vs. 1)。塩基については、炭酸塩のカウンタ ーカチオンにより収率は大きく変化することが明らかになり、炭酸セシウムを用いた際、 炭酸カリウムと同等の結果を与えた(entries 8, 9, 11, 12)。カリウム塩についても酢酸カリウ ムやリン酸カリウムを検討したが、炭酸カリウムよりも高い収率は得られなかった(entries 13, 14 vs. 1)。

続いて、アミノ化剤のカルバモイル基の置換基効果について検討した(Table 2.4)。トリ クロロエチル基をトリフルオロエチル基やヘキサフルオロイソプロピル基へ変換したとこ ろ、収率、位置選択性ともに低下した(entries 2, 3 vs. 1)。また、トリクロロエチル基をエ チル基や t-ブチル基へ変換すると、反応は全く進行しなかった(entries 4, 5 vs. 1)。以上の結 果より、トリクロロエチル基が置換した TrocNH-OTs を本反応系における最適なアミノ化剤 として設定した。また、C-H アミノ化反応で頻繁に用いられるイミドヨージナン体をアミ ノ化剤として検討したが、反応は全く進行しなかった(entries 6, 7)。

16

	OMe 23a (1.5 equiv)	TrocNH-OTs (1.0 equiv.) Rh ₂ (tpa) ₄ (5 mol%) base (1.5 equiv.) solvent (0.2 M) 0 °C, 20 h	OMe + NHTroc 24a 24	DMe NHTroc 5a
entry	base	solvent	yield of $(24a+25a)^a$	ratio (24a : 25a) ^{<i>a</i>}
1	K_2CO_3	PhCl	60%	11:1
2	K_2CO_3	CH_2Cl_2	9%	8.0:1
3	K_2CO_3	AcOEt	trace	_
4	K_2CO_3	CH ₃ CN	trace	_
5	K_2CO_3	PhCF ₃	30%	10:1
6	K_2CO_3	PhF	39%	10:1
7	K_2CO_3	o-Cl ₂ C ₆ H ₄	44%	14:1
8	Li ₂ CO ₃	PhCl	trace	_
9	Na ₂ CO ₃	PhCl	9%	7.8:1
10	MgO	PhCl	28%	14:1
11	CaCO ₃	PhCl	trace	_
12	Cs_2CO_3	PhCl	55%	11:1
13	KOAc	PhCl	51%	13:1
14	K_3PO_4	PhCl	42%	11:1

^{*a*} Determined by ¹H NMR using 1,3-dinitrobenzene as an internal standard.

Table 2.4	アミノ化剤のカルバ	、モイル基の置換基効果
-----------	-----------	-------------

	220 (OMe (1.0 equiv (1.0 equiv Rh ₂ (tpa) ₄ (5 m K ₂ CO ₃ (1.5 ec PhCI (0.2 m 0 °C, 20 m	gent y.) nol%) quiv.) vl) n	OMe P NHR		
	238 ((1.5 equiv)		24a, 27a, 29a		
entry	aminating agents	results	entry	aminating agents	results	
1	O Cl ₃ C (TrocNH-OTs)	60% yield $(p:o = 11:1)^a$ 24a : R = Troc	5		0% yield ^{<i>a</i>} R = CO ₂ t-Bu	
2	G F ₃ C ⊂ O H 26 H CTs H	41% yield $(p:o = 6.5:1)^a$ 27a: R = CO ₂ CH ₂ CF ₃	6 ^{<i>b</i>}	Ph—I=N ^{,Ts} 32	0% yield ^a R = Ts	
3	CF ₃ O F ₃ C O N 28	25% yield $(p:o = 1.9:1)^{a}$ 29a : R = CO ₂ CH(CF ₃) ₂	7 ^b	Ph—I=N ^{´Ns} 33	0% yield ^a R = Ns	
4	0 0 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0% yield ^{<i>a</i>} R = CO ₂ Et				
^{<i>a</i>} Determined by ¹ H NMR using 1,3-dinitrobenzene as an internal standard. ^{<i>b</i>} Run without K ₂ CO ₃ .						

得られた最適条件下、基質一般性の検討を行ったところ、様々なアルコキシアレーン類 に対して、パラ位選択的に C-H アミノ化反応が進行した(Table 2.5)。TBS 保護されたフェ ノール(23b)やジフェニルエーテル(23c)といったメトキシ基以外のアルコキシベンゼ ンについても反応はパラ位選択的に進行した(24b, 24c)。オルト位にフェニル基やハロゲ ンが置換したアニソール(23d-23f)やベンゾイル保護された o-メトキシフェノール(23g) もメトキシ基のパラ位選択的にアミノ化反応が進行した(24d-24g)。m-アセトキシアニソ ール(23h)を基質として用いた際は、メトキシ基のパラ位ではなく、アセトキシ基のパラ 位選択的に C(sp²)-H アミノ化反応が進行した(24h)。これは、アセトキシ基の立体障害と 誘起効果によるオルト位の反応性の低下により、アセトキシ基のパラ位選択的に反応が進 行したものと考えられる。反応点が立体的に混み合ったメタ置換のアニソール(23i-23i) についても、メトキシ基のパラ位選択的に反応は進行し(24i-24i)、1,2,4-トリメトキシベン ゼン(23i)を基質として用いた際、81%という非常に高い収率で単一の生成物を与えた(24i)。 また、ピリジンやピリミジンといったヘテロ環化合物(23m, 23n)においても、メトキシ基 のパラ位選択的にアミノ化反応が進行した(24m, 24n)。

続いて、ロジウムナイトレノイドに通常は反応活性な C(sp³)-H 結合を有する基質につい て、検討を行った(Table 2.6)。酸素原子の α位やベンジル位へのアミノ化体は観測されず、 アルコキシ基のパラ位選択的に C(sp²)-H アミノ化反応が進行した。ベンジル位の第一級、 第二級及び第三級 C(sp³)-H 結合を有する基質において、化学選択的に C(sp²)-H アミノ化反 応が進行した (24t-24w)。更に、非常に反応活性な C(sp³)-H 結合を有するベンジル保護さ れたフェノール (23s) や 2-メトキシジフェニルメタン (23x) についても問題なく C(sp²)-H アミノ化反応が化学及び位置選択的に進行し、本反応系の高い化学選択性を示すことに成 功した (24s, 24x)。

Table 2.6 化学及び位置選択的な C(sp²)-H アミノ化

高い位置選択性と化学選択性を示す本反応系による、カリックスアレーン誘導体の直接 的窒素官能基化を検討した (Figure 2.2)。カリックスアレーンは、そのサイズや置換基によ って様々な機能を示す代表的なホスト分子として知られている。¹⁵反応活性なベンジル位 C-H 結合や酸素原子 α 位 C-H 結合を多数有しているのにも関わらず、カリックス[6]アレ ーン誘導体の C-H アミノ化は期待通りアルコキシ基のパラ位へ進行し、モノアミノ化体を 得た (24y)。また、カリックス[4]アレーンのトリイソプロピルエーテル体を基質とした際、 ヒドロキシ基のパラ位へ位置選択的に C-H アミノ化反応が進行した (24z)。この実験結果 より、本反応が芳香族求電子置換型の機構で進行している可能性が示唆された。¹⁶生成物 の構造については NMR での帰属が困難であったため、X 線構造解析によって決定した。本 反応系は、カリックスアレーンがホスト分子として機能する際に、ゲスト認識を担う upper limb に直接的にアミノ基を導入する唯一の方法であり、¹⁷合成化学的に非常に有用な反応 である。

Figure 2.2 カリックスアレーン誘導体の直線的窒素官能基化及び 24zの X 線結晶構造

第一項 化学選択性発現の考察

Lebel らは、4-メトキシジフェニルメタンを基質とした際、C-H アミノ化反応がベンジル 位 C(sp³)-H 選択的に進行することを報告している(Figure 2.3 (a))。^{7f} また、速度論的同位 体効果(KIE)の測定及びラジカルクロック実験の結果より、ロジウムナイトレノイドを活 性種とする C-H 挿入型の反応機構を提唱している。

一方、著者は本研究で2-メトキシジフェニルメタンを基質とした際、ベンジル位 C(sp³)-H へのアミノ化体は観測されず、アルコキシ基のパラ位選択的に C(sp²)-H アミノ化反応が進 行することを見出した(Figure 2.3 (b))。

Figure 2.3 ロジウムナイトレノイドを活性種とする分子間 C-H アミノ化

そこで、本反応系における化学選択性の発現についての検証実験を行った(Table 2.7)。 その結果、2-メトキシジフェニルメタン(23x)を基質とした際のC(sp²)-Hアミノ化反応に おいて、溶媒によって反応性が大きく変わることが明らかになった。ロジウムナイトレノ イドを活性種とするC(sp³)-Hアミノ化反応において使用されるジクロロメタン溶媒中では、 反応がほとんど進行しなかったのに対して(entries 1, 2)、クロロベンゼン中ではC(sp³)-H アミノ化反応が進行した(entries 3, 4)。よって、クロロベンゼン中で生成したロジウムナイ トレノイドがアレーン類のC(sp²)-Hアミノ化反応において反応活性種であることが示唆さ れた。23xを基質した際に、ベンジル位へのアミノ化体が観測されなかった理由は明確にな っていないが、メトキシ基による立体障害や誘起効果が影響しているものと考えられる。 また、メトキシ基のパラ位に置換基を有する基質である4-メトキシジフェニルメタン(9) に対して、本反応の最適条件に付したところ、0 ℃及び 20 ℃条件共に、ベンジル位へのア ミノ化体が得られた (entries 6, 7, 8, 9)。本結果より、これまで報告されてきた反応例と同様 にロジウムナイトレノイドが活性種であることが示唆された。また、塩化メチレン及びク ロロベンゼン両溶媒中においてベンジル位への C(sp³)-H アミノ化反応が進行し、溶媒の影 響が小さいことが明らかになった (entries 6, 7)。また、反応温度を上昇させることにより、 収率の向上が見られた (entries 6, 8)。

	OMe	OMe			
			\rightarrow		
	н 23х	TrocNH-OTs (1.0 Rh ₂ (tpa) ₄ (5 m K ₂ CO ₃ (1.5 e) equiv) Nol%) nol%) quiv)	IHTroc 24x	
	ų	solvent, tempe	rature	NHTro	с
	MeO		► MeO´		
	9			10	
entry	substrate (equiv.)	solvent (M)	temp. (°C)	product	yield
1	23x (5.0)	$CH_2Cl_2(0.5)$	20	24x	trace
2	23x (5.0)	$CH_2Cl_2(0.5)$	0	24x	0%
3	23x (1.5)	PhCl (0.2)	20	24x	30%
4^a	23x (1.5)	PhCl (0.2)	0	24x	47%
5^b	9 (5.0)	neat ^c	25	10	66%
6	9 (5.0)	$CH_2Cl_2(0.5)$	20	10	22%
7	9 (5.0)	$CH_2Cl_2(0.5)$	0	10	8%
8	9 (1.5)	PhCl (0.2)	20	10	27%
9	9 (1.5)	PhCl (0.2)	0	10	17%

Table 2.7 本反応系の化学選択性発現についての考察

^{*a*} Data from Table 2.6. ^{*b*} Data quoted from ref 7f. ^{*c*}A solution of K_2CO_3 (2.0 equiv., 13 M in H_2O) was employed instead of solid K_2CO_3 in the absence of organic solvent. $Rh_2(tpa)_4$ (6 mol%) was employed.

反応機構について考察するために、23q 及び 23q-D₅の競争実験における速度論的同位体 効果(KIE)の測定を行った。その結果、 k_{H}/k_{D} の値は 1.16 となり、一次の速度論的同位体 効果は観測されなかった(Figure 2.4)。本結果より、C-H 結合の切断が本反応系における律 速段階ではないことが明らかになった。

Figure 2.4 速度論的同位体効果

本機構について更なる知見を得るために、3-シクロプロピルアニソール(34)を用いて、 ラジカルクロック実験を行った(Figure 2.5)。¹⁸ その結果、シクロプロピル基の開環体は 観測されず、芳香環上へのアミノ化体のみが得られ、本反応系に少なくとも長寿命のラジ カル中間体が関与していないことが示唆された。^{19 20} 即ち、三重項ではなく一重項のロジ ウムナイトレノイドが活性種である可能性が高まった。

Figure 2.5 ラジカルクロック実験

現在推定している反応機構を示す(Figure 2.6)。Rh₂(tpa)₄並びに窒素源である N-トシル オキシカーバメート、炭酸カリウムによりロジウムナイトレノイドが生成する。^{7f} その後、 電子不足なロジウムナイトレノイド種に対して、電子豊富なアルコキシアレーン類の芳香 族求電子置換反応が進行する。この段階において、ロジウムナイトレノイドの嵩高さによ って立体的に空いているアルコキシ基のパラ位選択的に C-H アミノ化反応が進行する。最 後に、プロトン移動による再芳香族化を経て、触媒サイクルが成立すると考えている(Figure 2.6 (a))。

また、ラジカルクロック実験及び DFT 計算の結果より、一重項状態のロジウムナイトレ ノイドが活性種であると考えられる。アルコキシアレーン類が一重項状態のロジウムナイ トレノイドに付加する段階の遷移状態を求めたところ(Figure 2.6 (b))、炭素-窒素結合形成 段階において、アニソールのパラ位の C-H 結合がとロジウムカルボキシラートの酸素原子 と C-H…O 相互作用することが示唆された。この多点相互作用によってエントロピー項の 寄与が大きく、エンタルピー項の寄与が小さいと理解できる。なお、DFT 計算においては 計算コスト削減のため、触媒として Rh₂(OAc)₄をモデルとして行った。

Figure 2.6 (a) 推定反応機構、(b) DFT 計算の結果

第三章 シリル基β位の第一級 C(sp³)-H アミノ化

ロジウムナイトレノイドを活性種とする分子間 C(sp³)-H アミノ化は、ベンジル位やヘテ ロ原子 α 位選択的に進行する例がほとんどである。著者は前章の C(sp²)-H アミノ化反応の 検討を行う過程で、分子間 C(sp³)-H アミノ化がシリル基 β 位選択的に進行することを見出 した。通常反応活性とされるベンジル位 C(sp³)-H 結合を有する基質のアミノ化はシリル基 β 位の第一級 C(sp³)-H 結合選択的に進行した。本反応の位置選択性発現機構は、C-Si 結合 の強い σ 供与性によって β 位第一級 C(sp³)-H 結合が活性化されるためと想定される。これ は、ケイ素を炭素に置き換えた関連基質では C-H アミノ化反応が全く進行しなかったこと からも支持される。

第四章 結論

著者は、ロジウム二核錯体存在下、アミノ化剤に TrocNH-OTs を用いることで生成するロジウムナイトレノイド種により、未解決課題であった反応不活性な C-H 結合における窒素 官能基変換を実現した。以下に成果を要約する。

第二章 アルコキシアレーン類のパラ位選択的 C(sp²)-H アミノ化

アルコキシアレーン類に対して直接的に C(sp²)-H アミノ化反応が進行することを見出し た。系中で発生するロジウムナイトレノイドに通常は反応活性なベンジル位や酸素原子 α 位へのアミノ化体は観測されず、アルコキシ基のパラ位選択的に C(sp²)-H アミノ化反応が 進行することを見出した。本反応系を機能性分子のカリックスアレーン類に適用させるこ とにより、同化合物の直線的な窒素官能基化にも成功した。また、実験及び DFT 計算によ る反応機構解析に基づき、一重項状態のロジウムナイトレノイドによる芳香族求電子的ア ミノ化の機構を提唱した。

第三章 <u>シリル基 β 位の第一級 C(sp³)-H アミノ化</u>

シリル基 β 位の第一級 $C(sp^3)$ -H 結合に対して、位置選択的にアミノ化反応が進行することを見出した。シリル基 β 位の第二級 $C(sp^3)$ -H 結合やベンジル位へのアミノ化体はほとんど観測されず、高い位置及び化学選択性で $C(sp^3)$ -H アミノ化反応が進行した。本反応の位置選択性発現機構は、炭素-ケイ素結合の強い σ 供与性によって β 位第一級 $C(sp^3)$ -H 結合が活性化されるためと想定した。

実験の部

実験及び測定に関する一般事項

¹H NMR spectra were recorded on BRUKER Ultrasield Plus (400 MHz), and are reported in ppm using solvent resonance as the internal standard (acetone- d_6 at 2.05 ppm, CDCl₃ at 7.26 ppm, CD₃CN at 1.94 ppm). Chemical shifts are reported in ppm. When peak multiplicities are reported, the following abbreviations are used: s, singlet; d, doublet; t, triplet; quint, quintet; sept, septet; m, multiplet; br, broadened. ¹³C NMR spectra were recorded on Ultrasield Plus (100 MHz), BRUKER Ascend (125 MHz) and are reported in ppm using solvent resonance as the internal standard (acetone- d_6 at 29.84 ppm, CDCl₃ at 77.16 ppm, CD₃CN at 118.26 ppm). Infrared (IR) spectra were recorded using HORIBA FT-720. High-resolution mass spectra (HRMS) were obtained using WATERS H-class/Xevo G2-XS for ESI and JEOL JMS-700V mass spectrometer for EI. Melting points were measured using METTLER TOLEDO MP70. Column chromatography was performed on silica gel 60N (spherical, neutral, KANTO). Preparative TLC was performed on precoated plates (0.50 mm, Merck). TrocNHOTs^{7e}, Rh₂(tpa)₄²¹ and Rh₂(piv)₄²² were prepared according to literature procedure. Rh₂(oct)₄ was purchased from TCI. Rh₂(*n*-C₃F₇CO₂)₄ and Rh₂(esp)₂ were purchased from Sigma-Aldrich. K₂CO₃, Na₂CO₃, Cs₂CO₃, CaCO₃, and MgO were purchased from Wako Chemical. Li₂CO₃ was purchased from TCI. Anhydrous chlorobenzene, trifluoromethylbenzene and o-dichlorobenzene were purchased from Sigma-Aldrich. Anhydrous dichloromethane, THF, Et₂O and AcOEt were purchased from Kanto Kagaku. Fluorobenzene was purchased from TCI and dried over activated molecular sieves. Anhydrous DMF and acetonitrile were purchased from Nacalai tesque.

General Procedure for Intermolecular C(sp²)-H Amination of Alkoxyarenes

To a suspension of alkoxyarenes 23 (0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.) and K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.) in PhCl (1.0 mL) were added $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) at 0 °C. After being stirred for 20 h at 0 °C, the reaction was quenched by addition of water and extracted with CHCl₃. The organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated. The residue was purified by preparative thin-layer chromatography purification to afford the aminated product(s) 24 (and 25).

Specific Procedures and Characterization Data

Following the general procedure for intermolecular amination, anisole (**23a**) (32.6 μ L, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K₂CO₃ (41.6 mg, 0.30 mmol, 1.5 equiv.), and Rh₂(tpa)₄ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a mixture of **24a** and **25a** (32.0 mg, 60%, **24a**/**25a**=12/1) as a white solid. **24a** and **25a** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-N-4-methoxyphenylcarbamate (24a)

White solid: **m.p.** 92 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.00 (br s, 1H), 7.50 (br d, J = 8.6 Hz, 2H), 6.93–6.89 (m, J = 9.1 Hz, 2H), 4.89 (s, 2H), 3.77 (s, 3H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 156.9, 152.9 132.4, 121.2, 114.9, 96.9, 74.7, 55.7; **IR** (neat, cm⁻¹): 3297, 1729, 1538, 1508, 1413, 1209, 1180, 1106, 1054, 1022, 833, 738; **HRMS-ESI**⁺ (*m/z*): Calcd. for C₁₀H₁₀ Cl₃NO₃ [M+Na]⁺ 319.9624; found, 319.9623.

2,2,2-trichloroethyl-N-2-methoxyphenylcarbamate (25a)

Colorless oil: ¹**H** NMR (400 MHz, acetone- d_6) δ : 8.19 (br s, 1H), 7.98 (br d, J = 7.6 Hz, 1H), 7.10–7.03 (m, 2H), 6.95 (td, J = 7.9 Hz, 1.9 Hz, 1H), 4.92 (s, 2H), 3.89 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ : 152.5, 149.8, 127.9, 124.8, 121.4, 120.1, 111.6, 96.7, 74.8, 56.2; **IR** (neat, cm⁻¹): 3359, 2948, 1754, 1598, 1540, 1461, 1251, 1199, 1095, 1025, 954, 806; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₀H₁₀Cl₃NO₃ [M+Na]⁺ 319.9624; found, 319.9627.

2,2,2-trichloroethyl-N-4-(tert-butyldimethylsilyloxy)phenylcarbamate (24b)

Following the general procedure for intermolecular amination, *tert*-butyldimethyl(phenoxy)

silane (23b) (42.6 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (27.2 mg, 0.020 mmol, 0.10 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 48 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford **24b** (31.7 mg, 40%) as a white solid.

Analytical data: **m.p.** 120 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.03 (br s, 1H), 7.47 (br d, J = 8.6 Hz, 2H), 6.87–6.83 (m, 2H), 4.89 (s, 2H), 0.99 (s, 9H), 0.21 (s, 6H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 152.8, 152.5, 133.2, 121.0, 96.9, 74.7, 26.1, 18.8, -4.3; **IR** (neat, cm⁻¹): 3282, 2958, 2360, 1706, 1544, 1508, 1261, 1218, 1116, 833, 738, 682; **HRMS-ESI**⁺ (*m/z*): Calcd. for C₁₅H₂₂Cl₃NO₃Si [M+Na]⁺ 420.0332; found, 420.0327

2,2,2-trichloroethyl-N-4-phenoxyphenylcarbamate (24c)

Following the general procedure for intermolecular amination, diphenylether (**23c**) (47.4 μ L, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K₂CO₃ (21.6 mg, 0.30 mmol, 1.5 equiv.), and Rh₂(tpa)₄ (27.2 mg, 0.020 mmol, 0.1 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 48 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford **24c** (28.4 mg, 39%) as a white solid.

Analytical data: **m.p.** 118 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.22 (br s, 1H), 7.62 (br d, J = 8.8 Hz, 2H), 7.39–7.34 (m, 2H), 7.12–7.08 (m, 1H), 7.04–6.96 (m, 4H), 4.91 (s, 2H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 158.8, 153.6, 152.9, 135.2, 130.7, 123.8, 121.2, 120.6, 118.9, 96.8, 74.8; **IR** (neat, cm⁻¹): 3291, 2360, 1708, 1540, 1488, 1409, 1218, 1101, 1049, 852, 809; **HRMS-ESI**⁺ (*m/z*): Calcd. for C₁₅H₁₂Cl₃NO₃ [M+Na]⁺ 381.9780; found, 382.9776.

Following the general procedure for intermolecular amination, 2-methoxybiphenyl (**23d**) (55.3 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a mixture of **24d** and **25d** (37.9 mg, 51%, **24d/25d** =11/1) as a white solid. **24d** and **25d** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-N-(4-methoxy-3-phenyl)phenylcarbamate (24d)

White solid: **m.p.** 108 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.07 (br s, 1H), 7.59–7.51 (m, 4H), 7.42– 7.38 (m, 2H), 7.34–7.30 (m, 1H), 7.09 (d, J = 9.2 Hz, 1H), 4.90 (s, 2H), 3.79 (s, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 153.7, 152.9, 139.3, 132.7, 131.7, 130.3, 128.8, 127.8, 122.4, 120.0, 113.0, 96.8, 74.7, 56.2; **IR** (neat, cm⁻¹): 3386, 2362, 1738, 1571, 1506, 1434, 1207, 1145, 1110, 1045, 871, 825; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₆H₁₄Cl₃NO₃ [M+Na]⁺ 395.9937; found, 395.9931.

2,2,2-trichloroethyl-N-(2-methoxy-3-phenyl)phenylcarbamate (25d)

Colorless oil: ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.61 (br s, 1H), 8.04 (br d, J = 8.0 Hz, 1H), 7.60–7.57 (m, 2H), 7.49–7.45 (m, 2H), 7.37-7.41 (m, 1H), 7.21 (t, J = 7.9 Hz, 1H), 7.11 (dd, J = 7.7, 1.6 Hz, 1H), 4.95 (s, 2H), 3.38 (s, 3H); ¹³**C NMR** (125 MHz, acetone- d_6) δ : 153.0, 148.2, 139.0, 135.5, 132.6, 129.7, 129.3, 128.3, 126.6, 125.2, 120.4, 96.7, 74.9, 60.9; **IR** (neat, cm⁻¹): 3388, 1731, 1540, 1506, 1434, 1263, 1207, 1110, 1045, 871, 823; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₆H₁₄Cl₃NO₃ [M+Na]⁺ 395.9937; found, 395.9938.

2,2,2-trichloroethyl-*N*-(3-fluoro-4-methoxy)phenylcarbamate (24e)

Following the general procedure for intermolecular amination, 2-fluoroanisole (**23e**) (37.8 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24e** (18.7 mg, 30%) as a white amorphous.

Analytical data: ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.19 (br s, 1H), 7.50 (br d, J = 12.8 Hz, 1H), 7.29 (br d, J = 8.7 Hz, 1H), 7.10 (t, J = 9.2 Hz, 1H), 4.90 (s, 2H), 3.86 (s, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 152.84 (d, J = 241.5 Hz), 152.77, 144.6 (d, J = 10.2 Hz), 132.9 (d, J = 10.9 Hz), 115.3, 115.1 (d, J = 2.4 Hz), 108.2 (d, J = 23.4 Hz), 96.7, 74.7, 56.8; **IR** (neat, cm⁻¹): 3303, 2360, 1706, 1604, 1521, 1419, 1272, 1222, 1101, 1018, 948, 862, 821; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₀H₉Cl₃FNO₃ [M+Na]⁺ 337.9530; found, 337.9528.

2,2,2-trichloroethyl-N-(3-chloro-4-methoxy)phenylcarbamate (24f)

Following the general procedure for intermolecular amination, 2-chloroanisole (**23f**) (42.8 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford **24f** (20.9 mg, 31%) as a white amorphous.

Analytical data: ¹**H** NMR (400 MHz, acetone- d_6) δ : 9.16 (br s, 1H), 7.72 (br s, 1H), 7.47 (br d, J = 8.8 Hz, 1H), 7.10 (d, J = 8.9 Hz, 1H), 4.90 (s, 2H), 3.88 (s, 3H); ¹³**C** NMR (100 MHz, acetone- d_6) δ : 152.8, 152.2, 133.1, 122.8, 121.5, 119.3, 113.7, 96.7, 74.8, 56.7; **IR** (neat, cm⁻¹): 3320, 2360, 1702, 1589, 1525, 1284, 1228, 1105, 1056, 1016, 865, 804; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₀H₉Cl₄NO₃ [M+Na]⁺ 353.9234; found, 353.9231.

2,2,2-trichloroethyl-N-(3-benzoyloxy-4-methoxy)phenylcarbamate (24g)

Following the general procedure for intermolecular amination, 2-methoxyphenyl benzoate (**23g**) (68.5 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 4/1) to afford **24g** (35.0 mg, 42%) as a white amorphous.

Analytical data: ¹H NMR (400 MHz, acetone-*d*₆) δ: 9.19 (br s, 1H), 8.20–8.17 (m, 2H), 7.76–7.71 (m, 1H),

7.63–7.59 (m, 2H), 7.56 (br s, 1H), 7.45 (dd, J = 8.8, 2.2 Hz, 1H), 7.14 (d, J = 8.9 Hz, 1H), 4.90 (s, 2H), 3.80 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ : 163.9, 151.8, 147.6, 140.0, 133.6, 131.8, 129.8, 129.4, 128.7, 116.9, 114.2, 112.9, 95.8, 73.8, 55.6; **IR** (neat, cm⁻¹): 3357, 2360, 1739, 1533, 1438, 1365, 1263, 1207, 1024, 889, 815; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₇H₁₄Cl₃NO₅ [M+Na]⁺ 439.9835; found, 439.9833.

2,2,2-trichloroethyl-N-(4-acetoxy-2-methoxy)phenylcarbamate (24h)

Following the general procedure for intermolecular amination, 2-methoxyphenyl acetate (**23h**) (49.9 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24h** (27.8 mg, 39%) as a white solid.

Analytical data: **m.p.** 120 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.25 (br s, 1H), 7.93 (br d, J = 7.8 Hz, 1H), 6.85 (d, J = 2.4 Hz, 1H), 6.72 (dd, J = 8.8, 2.5 Hz, 1H), 4.92 (s, 2H), 3.88 (s, 3H), 2.24 (s, 3H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 169.7, 152.8, 150.6, 148.3, 125.5, 120.6, 114.3, 106.3, 96.7, 74.9, 56.5, 20.9; **IR** (neat, cm⁻¹): 3380, 2360, 1747, 1540, 1463, 1413, 1367, 1205, 1033, 964, 896, 808; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₂H₁₂Cl₃NO₅ [M+Na]⁺ 377.9679; found, 377.9675.

2,2,2-trichloroethyl-N-2,4-dimethoxyphenylcarbamate (24i)

Following the general procedure for intermolecular amination, 1,3-dimethoxybenzene (**23i**) (41.4 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24i** (40.4 mg, 61%) as a white amorphous.

Analytical data: ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.02 (br s, 1H), 7.77 (br d, J = 6.3 Hz, 1H), 6.62 (d, J = 2.6 Hz, 1H), 6.52 (dd, J = 9.8, 2.7 Hz, 1H), 4.89 (s, 2H), 3.86 (s, 3H) , 3.79 (s, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 158.1, 152.9, 151.7, 122.0, 121.0, 105.0, 99.6, 96.8, 74.9, 56.2, 55.8; **IR** (neat, cm⁻¹): 3349, 2360, 1739, 1602, 1547, 1533, 1365, 1207, 1031, 811; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₂Cl₃NO₄ [M+Na]⁺ 349.9730; found, 349.9724.

2,2,2-trichloroethyl-N-2,4,6-trimethoxyphenylcarbamate (24j)

Following the general procedure for intermolecular amination, 1,3,5-trimethoxybenzene (**23j**) (50.5 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (AcOEt/hexane = 1/4) to afford **24j** (35.8 mg, 50%) as a white solid.

Analytical data: **m.p.** 151 °C; ¹**H NMR** (400 MHz, CD₃CN, 333 K) δ: 6.59 (br s, 1H), 6.25 (s, 2H), 4.78 (s, 2H), 3.82 (s, 3H), 3.80 (s, 6H); ¹³C **NMR** (100 MHz, CD₃CN) δ: 161.4, 158.2, 154.5, 107.6, 96.9, 91.9, 75.2, 56.7, 56.2; **IR** (neat, cm⁻¹): 3357, 2942, 2360, 1725, 1592, 1521, 1469, 1365, 1226, 1106, 1043, 813; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₂H₁₄Cl₃NO₅ [M+Na]⁺ 379.9835; found, 379.9832.

2,2,2-trichloroethyl-N-5-bromo-2,4-dimethoxyphenylcarbamate (24k)

Following the general procedure for intermolecular amination, 1-bromo-2,4-dimethoxybenzene (**23k**) (54.7 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24k** (55.2 mg, 68%) as a white solid.

Analytical data: **m.p.** 125 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.24 (brs, 1H), 8.09 (brs, 1H), 6.86 (s, 1H), 4.90 (s, 2H), 3.93 (s, 3H), 3.90 (s, 3H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 153.8, 152.9, 151.1, 125.0, 121.8, 101.4, 98.4, 96.7, 74.9, 57.0, 56.7; **IR** (neat, cm⁻¹): 3417, 2946, 2360, 1739, 1525, 1455, 1392, 1201, 1101, 1025, 966, 809; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₁BrCl₃NO₄ [M+Na]⁺ 427.8835; found, 427.8830.

2,2,2-trichloroethyl-N-2,4,5-trimethoxyphenylcarbamate (241)

Following the general procedure for intermolecular amination, 1,2,4-trimethoxybenzene (**23I**) (50.5 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (AcOEt/hexane = 1/4) to afford **24I** (58.0 mg, 81%) as a white solid.

Analytical data: **m.p.** 78 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.08 (br s, 1H), 7.63 (br s, 1H), 6.78 (s,

1H), 4.90 (s, 2H), 3.85 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H); ¹³C NMR (100 MHz, acetone-*d*₆) δ: 152.8, 147.2, 144.7, 144.0, 120.5, 107.8, 99.9, 96.8, 74.9, 57.1, 57.0, 56.8; **IR** (neat, cm⁻¹): 3243, 2950, 2360, 1735, 1536, 1444, 1351, 1205, 1147, 1029, 854; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₂H₁₄Cl₃NO₅ [M+Na]⁺ 379.9835; found, 379.9829.

2,2,2-trichloroethyl-N-2,6-dimethoxypyridin-3-ylcarbamate (24m)

Following the general procedure for intermolecular amination, 2,6-dimethoxypyridine (**23m**) (41.7 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford **24m** (35.0 mg, 53%) as colorless oil.

Analytical data: ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.22 (br s, 1H), 8.03 (br d, J = 6.8 Hz, 1H), 6.35 (d, J = 8.4 Hz, 1H), 4.89 (s, 2H), 3.96 (s, 3H), 3.88 (s, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 159.1, 153.6, 152.4, 133.1, 114.0, 100.4, 95.8, 74.1, 53.0, 52.9; **IR** (neat, cm⁻¹): 3421, 2948, 2360, 1743, 1547, 1517, 1390, 1205, 1114, 1018, 813; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₀H₁₁Cl₃N₂O₄ [M+Na]⁺ 350.9682; found, 350.9681.

2,2,2-trichloroethyl-N-2,4,6-trimethoxypyrimidin-5-ylcarbamate (24n)

Following the general procedure for intermolecular amination, 2,4,6-trimethoxypyrimidine (**23n**) (51.0 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 4/1) to afford **24n** (43.6 mg, 60%) as a white amorphous.

Analytical data: ¹H NMR (400 MHz, CD₃CN, 333 K) δ : 6.65 (br s, 1H), 4.79 (s, 2H), 3.96 (s, 3H), 3.95 (s, 6H); ¹³C NMR (100 MHz, CD₃CN) δ : 168.6, 163.5, 154.2, 97.0, 96.6, 75.3, 55.6, 55.2; IR (neat, cm⁻¹): 3321, 2969, 2360, 1757, 1739, 1521, 1455, 1365, 1228, 1135, 1016; HRMS-ESI⁺ (m/z): Calcd. for C₁₀H₁₂Cl₃N₃O₅ [M+Na]⁺ 381.9740; found, 381.9748.

Following the general procedure for intermolecular amination, phenetol (**23o**) (36.7 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a mixture of **24o** and **25o** (28.7 mg, 46%, **24o**/**25o**=17/1) as a white solid. **24o** and **25o** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-N-4-ethoxyphenylcarbamate (240)

White solid: **m.p.** 111 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.99 (br s, 1H), 7.49 (br d, J = 8.6 Hz, 2H), 6.91–6.87 (m, 2H), 4.89 (s, 2H), 4.02 (q, J = 7.0 Hz, 2H), 1.35 (t, J = 7.0 Hz, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 156.2, 152.9, 132.4, 121.2, 115.5, 96.9, 74.7, 64.2, 15.1; **IR** (neat, cm⁻¹): 3343, 2969, 2362, 1716, 1529, 1419, 1365, 1216, 1105, 1043, 919, 827; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₂Cl₃NO₃ [M+Na]⁺ 333.9780; found, 333.9778.

2,2,2-trichloroethyl-N-2-ethoxyphenylcarbamate (250)

Colorless oil: ¹H NMR (400 MHz, acetone- d_6) δ : 8.18 (br s, 1H), 7.99 (br d, J = 7.6 Hz, 1H), 7.09–7.01 (m,

2H), 6.96–6.92 (m, 1H), 4.93 (s, 2H), 4.15 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ : 152.5, 149.1, 128.0, 124.8, 121.3, 120.2, 112.4, 96.7, 74.8, 64.9, 15.0; **IR** (neat, cm⁻¹): 3423, 2983, 2364, 1743, 1602, 1525, 1454, 1365, 1160, 1095, 1043, 817; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₂Cl₃NO₃ [M+Na]⁺ 333.9780; found, 333.9790.

2,2,2-trichloroethyl-N-4-isopropoxyphenylcarbamate (24p)

Following the general procedure for intermolecular amination, isopropoxybenzene (**23p**) (40.9 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24p** (36.2 mg, 55%) as white solid.

Analytical data: **m.p.** 109 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.99 (br s, 1H), 7.48 (br d, J = 8.6 Hz, 2H), 6.91–6.87 (m, 2H), 4.89 (s, 2H), 4.56 (sep, J = 6.0 Hz, 1H), 1.28 (d, J = 6.0 Hz, 6H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 155.1, 152.9, 132.3, 121.2, 117.1, 96.9, 74.7, 70.6, 22.3; **IR** (neat, cm⁻¹): 3286, 2969, 2360, 1739, 1540, 1435, 1373, 1226, 1099, 1052, 946, 821; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₂H₁₄Cl₃NO₃ [M+Na]⁺ 347.9937; found, 347.9936.

2,2,2-trichloroethyl-N-4-octyloxyphenylcarbamate (24q)

Following the general procedure for intermolecular amination, *n*-octyloxybenzene (**23q**) (61.9 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24q** (44.5 mg, 56%) as a white amorphous.

Analytical data: ¹**H** NMR (400 MHz, acetone- d_6) δ : 8.99 (br s, 1H), 7.49 (br d, J = 8.6 Hz, 2H), 6.92–6.88 (m, 2H), 4.88 (s, 2H), 3.96 (t, J = 6.5 Hz, 2H), 1.79–1.72 (m, 2H), 1.50–1.43 (m, 2H), 1.41–1.25 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ : 156.4, 152.9, 132.3, 121.1, 115.5, 96.9, 74.7, 68.8, 32.6, 30.09, 30.06, 30.01, 26.8, 23.3, 14.4; **IR** (neat, cm⁻¹): 3357, 2921, 2362, 1716, 1525, 1473, 1417, 1363, 1216, 1106, 1043, 995, 833; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₇H₂₄Cl₃NO₃ [M+Na]⁺ 418.0719; found, 418.0714.

2,2,2-trichloroethyl-N-4-ethoxycarbonylmethoxyphenylcarbamate (24r)

Following the general procedure for intermolecular amination, ethyl 2-phenoxyacetate (**23r**) (54.1 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (AcOEt/hexane = 1/2) to afford **24r** (29.3 mg, 40%) as a white solid.

Analytical data: **m.p.** 95 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.05 (br s, 1H), 7.51 (br d, J = 8.7 Hz, 2H), 6.95–6.91 (m, 2H), 4.89 (s, 2H), 4.69 (s, 2H), 4.20 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 169.4, 155.3, 152.9, 133.2, 121.0, 115.9, 96.8, 74.7, 66.1, 61.4, 14.5; **IR** (neat, cm⁻¹): 3297, 2989, 2360, 1718, 1540, 1448, 1378, 1201, 1106, 1054, 815; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₃H₁₄Cl₃NO₅ [M+Na]⁺ 391.9835; found, 391.9836.

2,2,2-trichloroethyl-N-4-benzyloxyphenylcarbamate (24s)

Following the general procedure for intermolecular amination, benzyloxybenzene (**23s**) (55.3 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24s** (33.4 mg, 45%) as a white solid.

Analytical data: **m.p.** 108 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.03 (br s, 1H), 7.51 (br d, J = 8.6 Hz, 2H), 7.49–7.46 (m, 2H), 7.41–7.36 (m, 2H), 7.34–7.30 (m, 1H), 7.02–6.98 (m, 2H), 5.10 (s, 2H), 4.89 (s, 2H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 156.0, 152.9, 138.5, 132.7, 129.3, 128.6, 128.4, 121.1, 116.0, 96.9, 74.7, 70.7; IR (neat, cm⁻¹): 3342, 2360, 1716, 1598, 1527, 1378, 1295, 1216, 1105, 1039, 821; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₆H₁₄Cl₃NO₃ [M+Na]⁺ 395.9937; found, 395.9932.

Following the general procedure for intermolecular amination, 2-methylanisole (**23s**) (36.7 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a mixture of **24t** and **25t** (31.4 mg, 50%, **24t/25t=**14/1) as a white solid. **24t** and **25t** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-*N*-(4-methoxy-3-methyl)phenylcarbamate (24t)

White solid: **m.p.** 92 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.91 (br s, 1H), 7.38–7.36 (m, 2H), 6.88 (d, J = 8.5 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H), 2.16 (s, 3H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 155.0, 152.9, 132.0, 127.3, 122.5, 118.3, 111.1, 96.9, 74.7, 55.8, 16.4; **IR** (neat, cm⁻¹): 3278, 2360, 1704, 1544, 1508, 1440, 1228, 1132, 1105, 1035, 890, 806; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₂Cl₃NO₃ [M+Na]⁺ 333.9780; found, 333.9780.

2,2,2-trichloroethyl-N-(2-methoxy-3-methyl)phenylcarbamate (25t)

Colorless oil: ¹**H** NMR (400 MHz, acetone- d_6) δ : 8.43 (br s, 1H), 7.82 (br d, J = 7.8 Hz, 1H), 7.02 (t, J = 7.8 Hz, 1H), 6.95 (dd, J = 7.6, 0.8 Hz, 1H), 4.93 (s, 2H), 3.76 (s, 3H), 2.28 (s, 3H); ¹³**C** NMR (125 MHz, acetone- d_6) δ : 152.9, 149.4, 132.0, 131.7, 127.0, 124.8, 119.2, 96.7, 74.9, 60.7, 16.0; **IR** (neat, cm⁻¹): 3280, 2952, 1704, 1546, 1508, 1440, 1365, 1226, 1105, 1035, 890, 806; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₂Cl₃NO₃ [M+Na]⁺ 333.9780; found, 333.9773.

Following the general procedure for intermolecular amination, 2-ethylanisole (**23u**) (40.9 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a mixture of **24u** and **25u** (32.3 mg, 49%, **24u/25u=**16/1) as a white amorphous. **24u** and **25u** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-N-(3-ethyl-4-methoxy)phenylcarbamate (24u)

White amorphous: ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.92 (br s, 1H), 7.40–7.37 (m, 2H), 6.90 (d, J = 8.6 Hz, 1H), 4.89 (s, 2H), 3.81 (s, 3H), 2.60 (q, J = 7.5 Hz, 2H), 1.15 (t, J = 7.5 Hz, 1H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 154.6, 152.8, 133.4, 132.3, 121.0, 111.5, 96.9, 74.7, 55.9, 23.9, 14.5; **IR** (neat, cm⁻¹): 3284, 2954, 1706, 1550, 1498, 1365, 1226, 1105, 1027, 970, 896, 819; **HRMS-ESI**⁺ (m/z): Calcd. for

2,2,2-trichloroethyl-N-(3-ethyl-2-methoxy)phenylcarbamate (25u)

Colorless oil: ¹H NMR (400 MHz, acetone- d_6) δ : 8.41 (br s, 1H), 7.81 (br d, J = 8.0 Hz, 1H), 7.07 (t, J = 7.8 Hz, 1H), 7.00 (dd, J = 7.7, 1.6 Hz, 1H), 4.93 (s, 2H), 3.77 (s, 3H), 2.68 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 1H); ¹³C NMR (125 MHz, acetone- d_6) δ : 153.0, 149.1, 137.9, 132.0, 125.4, 125.1, 119.5, 96.8, 74.9, 61.4, 23.2, 15.2; **IR** (neat, cm⁻¹): 3284, 2954, 1706, 1550, 1511, 1365, 1228, 1105, 1060, 1027, 970, 896, 819; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₂H₁₄Cl₃NO₃ [M+Na]⁺ 347.9937; found, 347.9926.

Following the general procedure for intermolecular amination, 2-isopropylanisole (**23v**) (45.1 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a miture of **24v** and **25v** (29.0 mg, 43%, **24v/25v=**15/1) as colorless oil. **24v** and **25v** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-N-(4-methoxy-3-isopropyl)phenylcarbamate (24v)

Colorless oil: ¹H NMR (400 MHz, acetone- d_6) δ : 8.93 (br s, 1H), 7.43–7.40 (m, 2H), 6.91 (d, J = 8.7 Hz, 1H), 4.89 (s, 2H), 3.82 (s, 3H), 3.29 (sep, J = 6.9 Hz, 1H), 1.18 (d, J = 7.0 Hz, 6H); ¹³C NMR (100 MHz, acetone- d_6) δ : 154.0, 152.8, 137.8, 132.5, 118.1, 118.0, 111.7, 96.9, 74.7, 56.0, 27.5, 22.9; IR (neat, cm⁻¹): 3290, 2969, 2360, 1739, 1540, 1363, 1216, 1108, 1031, 811; HRMS-ESI⁺ (m/z): Calcd. for C₁₃H₁₆Cl₃NO₃ [M+Na]⁺ 362.0093; found, 362.0090.

2,2,2-trichloroethyl-N-(2-methoxy-3-isopropyl)phenylcarbamate (25v)

Colorless oil: ¹**H** NMR (400 MHz, acetone- d_6) δ : 8.41 (br s, 1H), 7.79 (br d, J = 7.5 Hz, 1H), 7.11 (t, J = 7.9 Hz, 1H), 7.07 (dd, J = 7.8, 1.9 Hz, 1H), 4.94 (s, 2H), 3.76 (s, 3H), 3.33 (sep, J = 6.9 Hz, 1H), 1.22 (d, J

= 7.0 Hz, 6H); ¹³C NMR (125 MHz, acetone- d_6) δ : 153.0, 148.4, 142.6, 131.9, 125.3, 122.6, 119.4, 96.8, 74.9, 61.9, 27.1, 24.0; IR (neat, cm⁻¹): 3290, 2969, 2362, 1785, 1540, 1506, 1365, 1216, 1108, 1033, 815; HRMS-ESI⁺ (m/z): Calcd. for C₁₃H₁₆Cl₃NO₃ [M+Na]⁺ 362.0093; found, 362.0084.

Following the general procedure for intermolecular amination, 3-methylanisole (**23w**) (36.7 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (21.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a mixture of **24w** and **25w** (29.3 mg, 47%, **24w**/**25w**=4.0/1) as a white solid. **24w** and **25w** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-N-(4-methoxy-2-methyl)phenylcarbamate (24w)

White solid: **m.p.** 83 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.37 (br s, 1H), 7.31 (br d, J = 8.4 Hz, 1H), 6.81 (d, J = 2.9 Hz, 1H), 6.76 (dd, J = 8.6, 2.9 Hz, 1H), 4.88 (s, 2H), 3.77 (s, 3H), 2.28 (s, 3H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 158.6, 154.0, 135.2, 129.5, 127.4, 116.4, 112.3, 97.1, 74.8, 55.6, 18.3; **IR** (neat, cm⁻¹): 3264, 3008, 2360, 1735, 1525, 1434, 1365, 1226, 1112, 1035, 846, 802; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₂Cl₃NO₃ [M+Na]⁺ 333.9780; found, 333.9778.

2,2,2-trichloroethyl-*N*-(2-methoxy-4-methyl)phenylcarbamate (25w)

Colorless oil: ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.07 (br s, 1H), 7.81 (br d, J = 7.2 Hz, 1H), 6.88 (d, J = 1.2 Hz, 1H), 6.77 (d, J = 8.0 Hz, 1H), 4.90 (s, 2H), 3.87 (s, 3H), 2.30 (s, 3H); ¹³**C NMR** (125 MHz, acetone- d_6) δ : 152.6, 149.9, 134.7, 125.3, 121.7, 120.2, 112.5, 96.7, 74.8, 56.1, 21.2; **IR** (neat, cm⁻¹): 3272, 3006, 2360, 1739, 1525, 1455, 1365, 1226, 1112, 1035, 802; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₁₂Cl₃NO₃ [M+Na]⁺ 333.9780; found, 333.9775.

Following the general procedure for intermolecular amination, 2-methoxydiphenylmethane (**23x**) (59.5 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.), K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.), and $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford a mixture of **24x** and **25x** (38.6 mg, 50%, **24x/25x=**13/1) as colorless oil. **24x** and **25x** were isolated by further preparative thin-layer chromatography purification (AcOEt/hexane = 1/9).

2,2,2-trichloroethyl-*N*-(3-benzyl-4-methoxy)phenylcarbamate (24x)

Colorless oil: ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.95 (br s, 1H), 7.45 (br d, J = 8.1 Hz, 1H), 7.31 (br d, J = 1.7 Hz, 1H), 7.27–7.21 (m, 4H), 7.18–7.13 (m, 1H), 6.95 (d, J = 8.8 Hz, 1H), 4.86 (s, 2H), 3.94 (s, 2H), 3.81 (s, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 154.5, 152.8, 141.8, 132.3, 130.9, 129.7, 129.1, 126.6, 122.3, 118.9, 111.8, 96.9, 74.7, 56.0, 36.4; **IR** (neat, cm⁻¹): 3315, 2969, 2360, 1739, 1540, 1506, 1436, 1365, 1216, 1118, 1029, 823; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₇H₁₆Cl₃NO₃ [M+Na]⁺ 410.0093; found, 410.0092.

2,2,2-trichloroethyl-*N*-(3-benzyl-2-methoxy)phenylcarbamate (25x)

Colorless oil: ¹**H** NMR (400 MHz, acetone- d_6) δ : 8.48 (br s, 1H), 7.84 (br d, J = 8.0 Hz, 1H), 7.30–7.16 (m, 5H), 7.07 (t, J = 7.9 Hz, 1H), 6.92 (dd, J = 7.7, 1.4 Hz, 1H), 4.94 (s, 2H), 4.03 (s, 2H), 3.73 (s, 3H); ¹³C NMR (125 MHz, acetone- d_6) δ : 153.1, 149.5, 141.8, 135.4, 132.3, 129.7, 129.2, 127.0, 126.9, 125.0, 120.3, 111.6, 96.7, 74.9, 61.3, 36.2; **IR** (neat, cm⁻¹): 3315, 3025, 2358, 1735, 1535, 1504, 1454, 1365, 1216, 1118, 1029, 823; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₇H₁₆Cl₃NO₃ [M+Na]⁺ 410.0093; found, 410.0096.

2,2,2-trichloroethyl-*N*-(1²,3²,5²,7²,9²,11²-hexaisopropoxy-1,3,5,7,9,11(1,3)-hexabenzenacyclododecaph ane-1⁵-yl)carbamate (24y)

Following the general procedure for intermolecular amination, **23y** (88.9 mg, 0.10 mmol, 1.0 equiv.), TrocNHOTs (36.2 mg, 0.10 mmol, 1.0 equiv.), K₂CO₃ (21.6 mg, 0.15 mmol, 1.5 equiv.), and Rh₂(tpa)₄ (6.8 mg, 5.0 μ mol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 2/1) to afford **24y** (42.9 mg, 40%) as a white solid.

Analytical data: **m.p.** 113 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.59 (br s, 1H), 7.12 (br s, 2H), 6.91– 6.88 (m, 10H), 6.75–6.70 (m, 5H), 4.81 (s, 2H), 4.14–4.05 (m, 6H), 3.97 (br s, 12H), 1.09–1.05 (m, 36H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 154.4, 154.2, 152.4, 150.4, 136.0, 135.7, 135.6, 135.5, 135.3, 133.9, 129.7, 129.6, 129.5, 123.6, 120.4, 96.9, 75.4, 74.6, 32.5, 32.4, 22.71, 22.67; **IR** (neat, cm⁻¹): 2969, 2360, 1739, 1540, 1448, 1365, 1205, 1105, 939; **HRMS-ESI**⁺ (m/z): Calcd. for C₆₃H₇₄Cl₃NO₈ [M+Na]⁺ 1100.4378; found, 1100.4351.

2,2,2-trichloroethyl-*N*-(1²-hydroxy-3²,5²,7²-triisopropoxy-1,3,5,7(1,3)-tetrabenzenacycloocataphane-1 ⁵-yl)carbamate (24z)

Following the general procedure for intermolecular amination, 23z (55.1 mg, 0.10 mmol, 1.0 equiv.), TrocNHOTs (36.2 mg, 0.10 mmol, 1.0 equiv.), K₂CO₃ (21.6 mg, 0.15 mmol, 1.5 equiv.), and Rh₂(tpa)₄ (6.8 mg, 5.0 µmol, 0.05 equiv.) were stirred at 0 °C in PhCl (1.0 mL) for 20 h. The crude material was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford **24z** (31.0 mg, 42%) as a white solid.

Analytical data: **m.p.** 177 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.92 (br s, 1H), 7.37 (br s, 2H), 7.21 (d, J = 7.5 Hz, 2H), 6.96 (t, J = 7.4 Hz, 1H), 6.40–6.33 (m, 6H), 4.91 (s, 2H), 4.57 (d, J = 13.0 Hz, 2H), 4.54–4.47 (m, 2H), 4.31 (d, J = 13.6 Hz, 2H), 3.97-4.06 (m, 2H), 3.27 (d, J = 13.7 Hz, 2H), 3.20 (d, J = 13.1 Hz, 2H), 1.48 (d, J = 6.1 Hz, 6H), 1.42 (d, J = 6.1 Hz, 6H), 1.30 (d, J = 6.1 Hz, 6H); ¹³C NMR (100 MHz, acetone- d_6) δ : 155.4, 153.7, 152.9, 150.5, 138.8, 135.0, 133.8, 132.3, 131.0, 128.6, 128.4, 123.5, 123.4, 120.1, 97.0, 78.1, 75.7, 74.7, 32.4, 32.0, 22.8, 22.2; IR (neat, cm⁻¹): 2969, 2360, 1739, 1540, 1455, 1365, 1205, 1153, 1106, 1052, 939; HRMS-ESI⁺ (m/z): Calcd. for C₄₀H₄₄Cl₃NO₆ [M+Na]⁺ 762.2132; found, 762.2128.

2,2,2-trifluoroethyl-N-4-methoxyphenylcarbamate (27a)

White solid: **m.p.** 85 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 8.91 (br s, 1H), 7.47 (br d, J = 8.6 Hz, 2H), 6.92–6.88 (m, 2H), 4.70 (q, J = 8.9 Hz, 2H), 3.77 (s, 3H); ¹³C **NMR** (100 MHz, acetone- d_6) δ : 157.0, 152.8, 132.3, 124.7 (J = 275.2 Hz), 121.2, 114.9, 61.0 (J = 35.6 Hz), 55.7; **IR** (neat, cm⁻¹): 3315, 2969, 2360, 1716, 1533, 1417, 1365, 1292, 1228, 1162, 1097, 1029, 993, 956, 827; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₀H₁₀F₃NO₃ [M+Na]⁺ 272.0510; found, 272.0506.

1,1,1,3,3,3-hexafluoropropan-2-yl-N-4-methoxyphenylcarbamate (29a)

White solid: **m.p.** 108 °C; ¹**H NMR** (400 MHz, acetone- d_6) δ : 9.39 (br s, 1H), 7.49 (d, J = 9.0 Hz, 2H), 6.96–6.92 (m, 2H), 6.26 (sep, J = 6.4 Hz, 1H), 3.79 (s, 3H); ¹³**C NMR** (100 MHz, acetone- d_6) δ : 157.5, 151.0, 131.4, 122.1 (q, J = 281.0 Hz), 121.6, 115.1, 67.9 (sep, J = 34.0 Hz), 55.7; **IR** (neat, cm⁻¹): 3303, 2969, 2358, 1727, 1540, 1457, 1380, 1216, 1103, 1033, 998, 887, 825; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₉F₆NO₃ [M+Na]⁺ 340.0384; found, 340.0380.

To a suspension of 3-cyclopropylanisole (**34**; 44.5 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.) and K_2CO_3 (41.6 mg, 0.30 mmol, 1.5 equiv.) in PhCl (1.0 mL) were added $Rh_2(tpa)_4$ (13.6 mg, 0.010 mmol, 0.05 equiv.) at 0 °C. After being stirred for 20 h at 0 °C, the reaction was quenched by addition of water and extracted with CHCl₃. The organic layer was washed with brine, and dried over Na_2SO_4 , filtered, and concentrated. The residue was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford **35** (colorless oil; 20.9 mg, 31%) and **36** (colorless oil; 12.0 mg, 18%).

2,2,2-trichloroethyl-N-(4-methoxy-2-cyclopropyl)phenylcarbamate (35)

Analytical data: ¹**H NMR** (400 MHz, CDCl₃) δ : 7.71 (br d, J = 7.8 Hz, 1H), 7.04 (br s, 1H), 6.77 (dd, J = 8.8, 2.7 Hz, 1H), 6.66 (s, 1H), 4.84 (s, 2H), 3.79 (s, 3H), 1.86–1.80 (m, 1H), 1.06–0.94 (m, 2H), 0.72–0.61 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ : 156.7, 152.3, 134.5, 129.8, 122.4, 114.0, 111.7, 95.6, 74.7, 55.6, 11.6, 6.3; **IR** (neat, cm⁻¹): 3423, 3004, 2358, 1739, 1521, 1365, 1203, 1099, 1033, 804; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₃H₁₄Cl₃NO₃ [M+Na]⁺ 359.9937; found, 359.9938.

2,2,2-trichloroethyl-*N*-(2-methoxy-4-cyclopropyl)phenylcarbamate (36)

Analytical data: ¹**H** NMR (400 MHz, CDCl₃) δ : 7.93 (br d, J = 7.9 Hz, 1H), 7.37 (br s, 1H), 6.68 (dd, J = 8.3, 1.8 Hz, 1H), 6.64 (d, J = 1.8 Hz, 1H), 4.82 (s, 2H), 3.88 (s, 3H), 1.91–1.84 (m, 1H), 1.00–0.88 (m, 2H), 0.72–0.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 151.5, 148.0, 139.8, 124.4, 118.5, 118.1, 108.3, 95.5,

74.4, 55.8, 15.5, 9.0; **IR** (neat, cm⁻¹): 3421, 3004, 2360, 1739, 1531, 1373, 1203, 1097, 1035, 808; **HRMS-ESI**⁺ (m/z): Calcd. for $C_{13}H_{14}Cl_3NO_3 [M+Na]^+$ 359.9937; found, 359.9936.

1²,3²,5²,7²,9²,11²-hexaisopropoxy-1,3,5,7,9,11(1,3)-hexabenzenacyclododecaphane (23y)

To a solusion of calix[6]arene (200 mg, 0.31 mmol, 1.0 equiv.) in DMF (5.0 mL) were added NaH (150 mg, 3.8 mmol, 12 equiv.) and 2-iodopropane (0.38 ml, 3.8 mmol, 12 equiv.). After being stirred for 24 h at rt, the reaction was quenched by addition of water and extracted with AcOEt. The organic layer was washed with water, and brine, and dried over Na₂SO₄, filtered, and concentrated. The residue was chromatographed on silica gel (AcOEt/hexane = 1/19) to afford **23**y (216 mg, 64% yield) as a white solid.

Analytical data: **m.p.** 246 °C; ¹**H NMR** (400 MHz, CDCl₃) δ : 6.88 (d, J = 7.4 Hz, 12H), 6.70 (t, J = 7.5 Hz, 6H), 4.07–4.01 (m, 6H), 3.93 (br s, 12H), 1.02 (br d, J = 5.2 Hz, 36H); ¹³**C NMR** (100 MHz, CDCl₃) δ : 153.5, 134.9, 128.9, 122.9, 74.8, 31.8, 22.4; IR (neat, cm⁻¹): 2969, 2358, 1739, 1540, 1448, 1367, 1216, 1106, 941; **HRMS-ESI**⁺ (m/z): Calcd. for C₆₀H₇₂O₆ [M+Na]⁺ 911.5227; found, 911.5214.

3²,5²,7²-triisopropoxy-1,3,5,7(1,3)-tetrabenzenacycloocataphane-1²-ol (23z)

To a solusion of calix[4]arene (200 mg, 0.47 mmol, 1.0 equiv.) in DMF (5.0 mL) were added NaH (56 mg, 1.4 mmol, 3.0 equiv.) and 2-iodopropane (0.14 ml, 1.4 mmol, 3.0 equiv.) at 0 °C. After being stirred for 48 h at rt, the reaction was quenched by addition of water and extracted with AcOEt. The organic layer was washed with water, and brine, and dried over Na₂SO₄, filtered, and concentrated. The residue was chromatographed on silica gel (AcOEt/hexane = 1/19) to afford **23z** (110 mg, 46% yield) as a white solid. Analytical data: **m.p.** 197 °C; ¹**H NMR** (400 MHz, CDCl₃) δ : 7.15 (d, *J* = 7.4 Hz, 2H), 7.09 (d, *J* = 7.4 Hz, 2H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.77 (d, *J* = 7.4 Hz, 1H), 6.35–6.31 (m, 4H), 6.30–6.26 (m, 2H), 4.54 (d, *J* = 13.2 Hz, 2H), 4.44 (sep, *J* = 6.1 Hz, 1H), 4.38 (s, 1H), 4.33 (d, *J* = 13.8 Hz, 2H), 3.98 (sep, *J* = 6.1 Hz, 2H), 3.28 (d, *J* = 13.9 Hz, 2H), 3.15 (d, *J* = 13.3 Hz, 2H), 1.47 (d, *J* = 6.1 Hz, 6H), 1.40 (d, *J* = 6.1 Hz, 6H), 1.29 (d, *J* = 6.1 Hz, 6H); ¹³C **NMR** (100 MHz, CDCl₃) δ : 154.9, 153.4, 153.0, 138.3, 134.2, 133.4, 131.5, 129.3, 128.4, 127.8, 127.7, 122.7, 122.6, 119.3, 77.3, 75.3, 32.0, 31.5, 22.7, 22.4, 22.1; **IR** (neat, cm⁻¹): 2969,

2360, 1739, 1540, 1455, 1365, 1205, 1106, 939; **HRMS-ESI**⁺ (m/z): Calcd. for $C_{37}H_{42}O_4$ [M+Na]⁺ 573.2981; found, 573.2986.

2,2,2-trifluoroethyl-N-tosyloxycarbamate (26)

To a solusion of 2,2,2-trifluoroethanol (0.72 mL, 10 mmol, 1.0 equiv.) in THF (20 mL) was added CDI (1.95 g, 12 mmol, 1.5 equiv.) at 0 °C. After being stirred for 2 h at rt, the solution was cooled to 0 °C. Imidazole (0.82 g, 12 mol, 1.5 equiv.) and hydroxylamine hydrochloride (3.47 g, 50 mol, 5.0 equiv.) were added to the reaction mixture. The reaction mixture was stirred at rt for 1 h and acidified with 1 N HCl. The resulting mixture was extracted with diethylether, the organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated *in vacuo*. To a solution of the residue in diethylether (20 mL) at 0 °C were added *p*-toluenesulfonyl chloride (1.90 g, 10 mmol, 1.0 equiv.) and triethylamine (1.39 mL, 10 mmol, 1.0 equiv.). The resulting white suspension was stirred at rt for 2 h. The reaction was quenched by addition of water and extracted with diethylether. The organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The resulting white suspension was stirred at rt for 2 h. The reaction was quenched by addition of water and extracted with diethylether. The organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated *in vacuo*. The residue was chromatographed on silica gel (CHCl₃) to afford **26** (0.80 g, 26% yield in 2 steps) as a white solid.

Analytical data: **m.p.** 115 °C; ¹**H NMR** (400 MHz, CDCl₃) δ : 8.17 (br s, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.1 Hz, 2H), 4.38 (q, J = 8.2 Hz, 2H), 2.47 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ : 153.9, 146.8, 130.0, 129.8, 129.7, 122.3 (J = 275.7 Hz), 62.0 (J = 37.2 Hz), 21.9; **IR** (neat, cm⁻¹): 3297, 2969, 2360, 1751, 1540, 1457, 1375, 1295, 1230, 1166, 1089, 997, 958, 844, 813; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₀H₁₀F₃NO₅S [M+Na]⁺ 336.0129; found, 336.0129.

1,1,1,3,3,3-hexafluoropropan-2-yl-*N*-tosyloxycarbamate (28)

To a solution of 1,1,1,3,3,3-hexafluoro-2-propanol (1.04 mL, 10 mmol, 1.0 equiv.) and disopropylethylamine (8.71 mL, 50 mmol, 5.0 equiv.) in THF (20 mL) was added triphosgene (1.04 g, 3.5 mmol, 0.35 equiv) at 0 °C. After being stirred for 1 h at rt, the solution was cooled to 0 °C and hydroxylamine hydrochloride (3.47 g, 50 mmol, 5.0 equiv.) was added to the solution. The reaction

mixture was stirred at rt for 1 h and acidified with 1 N HCl. The resulting mixture was extracted with diethylether, the organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated *in vacuo*. To a solution of the residue in diethylether (20 mL) at 0 °C were added *p*-toluenesulfonyl chloride (1.90 g, 10 mmol, 1.0 equiv.) and triethylamine (1.39 mL, 10 mmol, 1.0 equiv.). The resulting white suspension was stirred at rt for 15 h. The reaction was quenched by addition of water and extracted with diethylether. The organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated *in vauo*. The residue was chromatographed on silica gel (CHCl₃) to afford **28** (0.14 g, 4% yield in 2 steps) as a white solid.

Analytical data: **m.p.** 108 °C; ¹**H NMR** (400 MHz, CDCl₃) δ : 8.57 (br s, 1H), 7.89–7.86 (m, 2H), 7.38 (d, J = 8.0 Hz, 2H), 5.45 (sep, J = 5.9 Hz, 1H), 2.47 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ : 151.9, 147.2, 130.2, 129.7, 129.5, 120.0 (J = 280.3 Hz), 68.5 (J = 35.2 Hz), 21.9; **IR** (neat, cm⁻¹): 3291, 2969, 2360, 1739, 1540, 1455, 1363, 1216, 1106, 1039, 998, 887, 813; **HRMS-ESI**⁺ (m/z): Calcd. for C₁₁H₉F₆NO₅S [M+Na]⁺ 404.0003; found, 404.0002.

KIE Measurements

To a suspension of *n*-octyloxybenzene (**23q**; 61.9 mg, 0.30 mmol, 1.5 equiv.), *n*-octyloxybenzene- d_5 (**23q-D**₅; 63.4 mg, 0.30 mmol, 1.5 equiv.), TrocNHOTs (72.5 mg, 0.20 mmol, 1.0 equiv.) and K₂CO₃ (41.6 mg, 0.30 mmol, 1.5 equiv.) in PhCl (1.0 mL) was added Rh₂(tpa)₄ (13.6 mg, 0.010 mmol, 0.05 equiv.) at 0 °C. After being stirred for 10 min at 0 °C, the reaction was quenched by addition of water and extracted with CHCl₃. The organic layer was washed with brine, and dried over Na₂SO₄, filtered, and concentrated *in vauo*. ¹H NMR of the crude material (acetone- d_6) was measured using 1,1,2,2-tetrachloroethane as internal standard to confirm no decomposition of the starting materials (**23q**, **23q-D**₅) and the products (**24q**, **24q-D**₄). The residue was purified by preparative thin-layer chromatography purification (CHCl₃/hexane = 1/1) to afford a mixture of **24q** and **24q-D**₄. KIE was calculated from the comparison of the integrals between an aromatic signal (δ 6.92-6.88 ppm, 2H of **24q** and **24q-D**₄ (acetone- d_6). The experiments were performed three times and the determined KIE was the average of three runs.

X-Ray crystallographic analysis

Single crystal of $[24z \cdot 1/2(C_2H_5OH)]$ was obtained from recrystallization in C₂H₅OH at room temperature. Intensity data were collected on a RIGAKU Saturn70 CCD (system) with VariMax Mo Optic Using MoK α radiation ($\lambda = 0.71070$ Å). Crystal data are summarized in Table 4.1. The structure was solved by a direct method (SHELXT-2014⁴) and refined by a full-matrix least square method on F^2 for all reflections (SHELXL-2014²³). All hydrogen atoms were placed using AFIX instructions, while all other atoms were refined anisotropically. Supplementary crystallographic data was deposited at the Cambridge Crystallographic Data Centre (CCDC) under the numbers CCDC-1581717 (24z) and can be obtained free of charge from via www.ccdc.cam.ac.uk/data_request.cif.

Figure 4.1 Molecular structure of **24z** (ORTEP drawing; thermal ellipsoids set at 50% probability). Hydrogen atoms were omitted for clarity.

Table 4.1 Crystal data and structure refinement for $[24z \cdot 1/2(C_2H_5OH)]$.

CCDC No.	1581717	
Identification code	CD	
Empirical formula	$C_{82}H_{94}Cl_6N_2O_{13}$	
Formula weight	1528.29	
Temperature	103(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1 (#2)	
Unit cell dimensions	a = 10.6018(2) Å	α= 82.0000(10)°.
	b = 17.0612(3) Å	β= 82.577(2)°.
	c = 21.6709(3) Å	$\gamma = 87.1720(10)^{\circ}.$
Volume	3847.18(11) Å ³	
Z	2	
Density (calculated)	1.319 Mg/m ³	
Absorption coefficient	0.288 mm ⁻¹	
F(000)	1612	
Crystal size	0.230 x 0.150 x 0.070 mm ³	3
Theta range for data collection	1.636 to 31.268°	
Index ranges	-14<=h<=15, -24<=k<=24	, - 31<=l<=31
Reflections collected	71592	
Independent reflections	22696 [R(int) = 0.0485]	
Completeness to theta = 25.242°	99.6 %	
Refinement method	Full-matrix least-squares o	n F ²
Data / restraints / parameters	22696 / 0 / 990	
Goodness-of-fit on F2	1.010	
Final R indices [I>2sigma(I)]	R1 = 0.0505, WR2 = 0.113	2
R indices (all data)	R1 = 0.0801, $wR2 = 0.126$	7
Extinction coefficient	n/a	
Largest diff. peak and hole	$0.455 \text{ and } -0.478 \text{ e.}\text{Å}^{-3}$	

Computational details

All calculation reported in the present study were carried out using density functional theory (DFT) with (U)M06²⁴ functional, as implemented in the Gaussian 09 (Revision E.01)²⁵. For geometry optimizations, the 6-31G(d,p) basis set was used for the H, C, N, O, Cl elements, and the LANL2DZ²⁶ basis set and pseudopotential for Rh. Based on these optimized geometries, single-point energy calculations were performed using the 6-311++G(2d,2p) basis set for the H, C, N, O, Cl elements, and the SDD²⁷ basis set and pseudopotential for Rh with solvents effects simulated by SMD²⁸ solvent model (chlorobenzene). The stationary points were confirmed as minima (no imaginary frequencies) or transition state (only one imaginary frequency) by analytical frequency calculations as the same theory level as the geometry optimizations. Computational time was generously provided by the Supercomputer Laboratory in the Institute for Chemical Research of Kyoto University.

Figure 4.2 Energy diagram of addition reaction of anisole (23a) to rhodium nitrenoid 53. (a) singlet path.(b) triplet path. The relative Gibbs free energy differences are shown in kcal/mol.

XYZ coordinates and thermochemical data (energies in Hartree)

Temperature = 273.00 K, Pressure = 1.00 atm

anisole (23a)

OMe

Electronic Energy = -346.5299769Enthalpy = -346.39075396-311++G(2d,2p)[SDD]

Electronic and Zero-Point Energy = -346.3976109Free Energy = -346.4257079

Electronic Energy = -346.6276983

С	-0.000007467	0.00000033	0.000000019
С	-0.000009314	-0.000011134	-0.000000002
С	-0.000001643	-0.000018861	-0.00000002
С	0.000008880	-0.000014949	0.000000005
С	0.000011652	-0.000004516	-0.000000007
С	0.000003033	0.000002679	-0.000000054
Н	-0.000013678	0.000005392	0.000000001
Н	-0.000017838	-0.000013612	0.000000007
Н	-0.000003353	-0.000026981	-0.000000002
Н	0.000015430	-0.000021016	-0.000000007
Н	0.000019490	-0.000001646	-0.000000004
Н	-0.000001259	0.000021308	0.000000006
Н	0.000002661	0.000028759	-0.00000018
Н	-0.000006506	0.000020711	-0.000000001
Н	-0.000006507	0.000020697	-0.000000001
0	0.000006417	0.000013135	0.000000059

Rhodium nitrenoid 53⁸

6-31G(d,p)[LANL2DZ]

Electronic Energy = -2833.52349 Electronic and Zero-Point Energy = -2833.255374 Enthalpy = -2833.227067Free Energy = -2833.3141066-311++G(2d,2p)[SDD]Electronic Energy = -2836.132154

Rh	0.000002686	0.000002787	0.000005616
Rh	-0.000001629	0.00000304	0.000001338
0	0.000001324	-0.000000116	-0.000000784
0	0.000005401	0.000002126	0.000003282
0	-0.000000428	0.000003479	0.000008449
0	-0.000004407	0.000001220	0.000004412
0	0.000001738	-0.000000297	-0.000001301
0	0.000005779	0.000001948	0.000002760
0	-0.00000341	0.000003156	0.000007694
0	-0.000004469	0.00000874	0.000003605
С	0.000004147	0.000000892	0.000000698
С	0.000006266	0.000000462	-0.000000990
Н	0.000004421	-0.000000186	-0.000001969
Н	0.000007927	-0.000000157	-0.000003078
Н	0.000008007	0.000001468	0.000000809
С	-0.000003264	0.000002601	0.000007289
С	-0.000005475	0.000003139	0.000009315
Н	-0.000008350	0.000002680	0.000009209
Н	-0.000005056	0.000002739	0.000008242
Н	-0.000004686	0.000004334	0.000011921
С	-0.000003042	0.000002157	0.000006168
С	-0.000005316	0.000002474	0.000007742
Н	-0.000007994	0.000002430	0.000008478
Н	-0.000004000	0.000003583	0.000009908
Н	-0.000005577	0.000001670	0.000005852
С	0.000004549	0.000000632	-0.000000115
С	0.000006690	0.000000010	-0.000002255
Н	0.000005167	-0.000000316	-0.000002454
Н	0.000007128	-0.000001001	-0.000004780
Н	0.000009294	0.000000826	-0.000001186
Ν	-0.000004742	-0.000001694	-0.000002345
С	-0.000004070	-0.000002687	-0.000005006
0	-0.000006185	-0.000003063	-0.000005307

0	-0.000001199	-0.000003101	-0.000007007
С	-0.000000222	-0.000004070	-0.000009554
Н	-0.000002192	-0.000004304	-0.000009535
Н	0.000002459	-0.000003476	-0.000009132
С	-0.000000156	-0.000005420	-0.000012972
Cl	-0.000004464	-0.000006440	-0.000013848
Cl	0.000003061	-0.000005120	-0.000013180
Cl	0.000001220	-0.000006543	-0.000015988

Transition state for addition TSa^{S}

6-31G(d,p)[LANL2DZ]

Electronic Energy = -3180.059837

Enthalpy = -3179.622549

<u>6-311++G(2d,2p)[SDD]</u>

Electronic Energy = -3182.76573

Electronic and Zero-Point Energy = -3179.657275 Free Energy = -3179.722223

Rh	-0.000000781	-0.000000533	-0.000009624
Rh	0.000000249	0.000001029	-0.000003455
0	0.000003302	0.000009034	-0.000003651
0	0.000002370	0.000007606	-0.000009285
0	-0.00000839	-0.000001932	-0.000002197
0	0.00000088	-0.00000344	0.000003564
0	0.000000177	0.000002131	-0.000010788
0	-0.000000629	0.000001061	-0.000016617
0	-0.000003854	-0.000008603	-0.000009777
0	-0.000002949	-0.000007167	-0.000003749
С	0.000003532	0.000010523	-0.000006475
С	0.000005895	0.000016456	-0.000006344

Н	0.000006630	0.000017649	-0.000001876	
Н	0.000006678	0.000018730	-0.000008039	
Н	0.000006121	0.000017401	-0.000008870	
С	-0.000000419	-0.000001469	0.000002656	
С	-0.000000399	-0.000002252	0.000007875	
Н	0.000001212	0.000001708	0.000009541	
Н	-0.000001267	-0.000004369	0.000006774	
Н	-0.000001040	-0.000004452	0.000011244	
С	-0.000004284	-0.000010138	-0.000006795	
С	-0.000006488	-0.000016016	-0.000006906	
Н	-0.000007520	-0.000018233	-0.000009441	
Н	-0.000006771	-0.000016441	-0.000008724	
Н	-0.000006873	-0.000017629	-0.000002493	
С	-0.000000148	0.000001876	-0.000015698	
С	-0.000000206	0.000002652	-0.000020839	
Н	0.000000940	0.000005541	-0.000019906	
Н	0.00000089	0.000004008	-0.000024568	
Н	-0.000001741	-0.000001205	-0.000021813	
Ν	0.000001058	0.000002571	0.000001948	
С	0.000001310	0.000003680	-0.000001014	
0	0.000003036	0.000008288	-0.000002402	
0	-0.00000387	-0.000000664	-0.000002576	
С	-0.000000155	0.000000546	-0.000006299	
Н	0.000001417	0.000004861	-0.000007421	
Н	-0.000001265	-0.000001791	-0.000010197	
С	-0.000000580	-0.000000992	-0.000003518	
Cl	0.000001213	0.000002773	0.000002820	
Cl	-0.000003174	-0.000008050	-0.000001751	
Cl	-0.000000332	0.000000486	-0.000008702	
С	0.000001189	0.000000611	0.000016171	
С	0.000000311	-0.000001038	0.000012728	
С	-0.000002195	-0.000006834	0.000007508	
С	-0.000001348	-0.000005234	0.000010923	
С	0.000000341	-0.000001451	0.000015224	

Н	0.000002479	0.000003516	0.000019517
Н	0.000001026	0.000000618	0.000013230
Н	-0.000003467	-0.000009719	0.000004094
Н	-0.000001956	-0.000006730	0.000010349
С	-0.000001272	-0.000004589	0.000008228
Н	-0.000002038	-0.000006268	0.000005862
0	0.000001095	0.000000019	0.000018201
С	0.000002807	0.000003915	0.000022494
Н	0.000003159	0.000004559	0.000024253
Н	0.000004174	0.000007749	0.000020650
Н	0.000002481	0.000002543	0.000025957

Adduct 54^{8}

6-31G(d,p)[LANL2DZ]

Electronic Energy = -3180.108683

Enthalpy = -3179.669879

6-311++G(2d,2p)[SDD]

Electronic Energy = -3182.824452

Electronic and Zero-Point Energy = -3179.705076 Free Energy = -3179.77216

Rh	-0.000001709	0.000012123	-0.000005816
Rh	-0.000001261	0.000004762	-0.000002013
0	-0.000000878	0.000003668	-0.000001569
0	-0.000001337	0.000010595	-0.000005174
0	0.000005052	0.000011012	-0.000008217
0	0.000005597	0.000004020	-0.000004665
0	-0.000007940	0.000005857	0.000000417
0	-0.000008453	0.000012676	-0.000003159
0	-0.000002329	0.000013045	-0.000006192

0	-0.000001716	0.000006211	-0.000002620
С	-0.000001290	0.000006797	-0.000003180
С	-0.000001025	0.000005816	-0.000002699
Н	0.000001254	0.000002880	-0.000002132
Н	-0.000004258	0.000005423	-0.000001058
Н	-0.000000103	0.000008379	-0.000004509
С	0.000006760	0.000007353	-0.000007098
С	0.000011963	0.000006764	-0.000009037
Н	0.000013393	0.000004174	-0.000008234
Н	0.000013190	0.000006037	-0.000009173
Н	0.000012935	0.000009662	-0.000011035
С	-0.000001912	0.000010033	-0.000004499
С	-0.000002590	0.000010985	-0.000004855
Н	-0.000001391	0.000013843	-0.000006925
Н	-0.000006045	0.000011481	-0.000003573
Н	-0.00000848	0.000008351	-0.000004171
С	-0.000010257	0.000009443	-0.000000633
С	-0.000014972	0.000009943	0.000001252
Н	-0.000016115	0.000008251	0.000002704
Н	-0.000015780	0.000008492	0.000002399
Н	-0.000016524	0.000013246	0.000000156
Ν	-0.000000413	-0.000001834	0.000001187
С	-0.000002309	-0.000004313	0.000003631
0	-0.000005710	-0.000004127	0.000004623
0	-0.000001478	-0.000008639	0.000005299
С	-0.000004055	-0.000011351	0.000008019
Н	-0.000002039	-0.000014381	0.000008729
Н	-0.000006560	-0.000010160	0.000008439
С	-0.000006090	-0.000012547	0.000009595
Cl	-0.000001998	-0.000015073	0.000009109
Cl	-0.000009202	-0.000007984	0.000008436
Cl	-0.000009551	-0.000016164	0.000013071
С	0.000007831	-0.000009763	0.000001873
С	0.000006194	-0.000006833	0.000000973

С	0.000000916	-0.000003155	0.000001385
С	0.000002400	-0.000006175	0.000002253
С	0.000005917	-0.000009536	0.000002655
Н	0.000010385	-0.000012420	0.000002121
Н	0.000007408	-0.000006989	0.000000439
Н	-0.000001846	-0.000000610	0.000001136
Н	0.000001028	-0.000006249	0.000002922
С	0.000002772	-0.000003189	0.000000515
Н	0.000004689	-0.000000624	-0.000001767
0	0.000006954	-0.000012373	0.000003563
С	0.000010228	-0.000016009	0.000004178
Н	0.000010553	-0.000017816	0.000004996
Н	0.000009181	-0.000017834	0.000005629
Н	0.000013381	-0.000015173	0.000002300

Rhodium nitrenoid 53^T

<u>6-31G(d,p)[LANL2DZ]</u>

Electronic Energy = -2833.530333

Enthalpy = -2833.235075

6-311++G(2d,2p)[SDD]

Electronic Energy = -2836.137797

Electronic and Zero-Point Energy = -2833.262826 Free Energy = -2833.321382

Rh	-0.000000573	0.000000686	-0.000002045
Rh	0.000000673	0.000001570	-0.000000674
0	-0.000002057	-0.000001884	-0.000001686
0	-0.000003253	-0.000002421	-0.000003412
0	-0.000000934	0.000003107	-0.000005858
0	-0.000000070	0.000003567	-0.000004708

0	0.000001339	-0.000000473	0.000003290
0	-0.000000164	-0.000001712	0.000001854
0	0.000002152	0.000003819	-0.000000625
0	0.000003217	0.000004891	0.000000201
С	-0.000003416	-0.000003032	-0.000002902
С	-0.000005340	-0.000005346	-0.000003813
Н	-0.000005726	-0.000004685	-0.000005413
Н	-0.000005329	-0.000006680	-0.000002077
Н	-0.000006378	-0.000006336	-0.000004619
С	-0.000000697	0.000003951	-0.000006359
С	-0.000001079	0.000005552	-0.000009226
Н	0.000000110	0.000007316	-0.000009109
Н	-0.000002308	0.000004434	-0.000010256
Н	-0.000001381	0.000006003	-0.000010417
С	0.000003434	0.000005267	0.000000136
С	0.000005385	0.000007620	0.000000991
Н	0.000005832	0.000009360	-0.000000326
Н	0.000005417	0.000007787	0.000000842
Н	0.000006378	0.000007518	0.000003106
С	0.000000740	-0.000001709	0.000003653
С	0.000001184	-0.000003283	0.000006529
Н	0.000002698	-0.000001942	0.000007854
Н	0.000000897	-0.000004372	0.000007353
Н	0.000000371	-0.000004574	0.000006581
Ν	0.000001276	0.000001674	0.000000442
С	0.000000195	-0.000000320	0.00000786
0	-0.000000650	-0.000000403	-0.000000813
0	0.000000193	-0.000002155	0.000003141
С	-0.000000958	-0.000004370	0.000003693
Н	-0.000001818	-0.000004358	0.000001929
Н	-0.000001833	-0.000006102	0.000004129
С	0.000000298	-0.000004414	0.000006236
Cl	0.000001741	-0.000001691	0.000005620
Cl	0.000001727	-0.000004497	0.000009159

Transition state for addition TSa^T

6-31G(d,p)[LANL2DZ]

Electronic Energy = -3180.060809

Enthalpy = -3179.624076

<u>6-311++G(2d,2p)[SDD]</u>

Electronic Energy = -3182.76591

Rh	-0.000000966	-0.000002429	0.000000313
Rh	-0.000000055	-0.000001339	-0.000000077
0	-0.000001455	-0.000001406	0.000000800
0	-0.000002320	-0.000002640	0.000001116
0	-0.000001489	-0.000000774	0.00000847
0	-0.000000431	0.000000287	0.000000271
0	0.000000231	-0.000003047	-0.000000485
0	-0.000000467	-0.000004047	-0.000000193
0	0.000000413	-0.000002148	-0.000000513
0	0.000001254	-0.000001366	-0.000001050
С	-0.000002297	-0.000002028	0.000001239
С	-0.000003272	-0.000002086	0.000001809
Н	-0.000003445	-0.000001143	0.000002011
Н	-0.000003090	-0.000002730	0.000001730
Н	-0.000003881	-0.000002593	0.000002192
С	-0.000000954	0.000000135	0.000000686
С	-0.000001405	0.000001380	0.000000912
Н	-0.000000629	0.000001771	0.000000665
Н	-0.000001335	0.000002098	0.000001145

Electronic and Zero-Point Energy = -3179.658762 Free Energy = -3179.723915

Н	-0.000002057	0.000001315	0.000001419
С	0.000001351	-0.000001842	-0.000000928
С	0.000002262	-0.000001671	-0.000001607
Н	0.000002547	-0.000000691	-0.000001691
Н	0.000002134	-0.000002020	-0.000001572
Н	0.000002855	-0.000002176	-0.000002058
С	0.000000054	-0.000004071	-0.00000374
С	0.000000298	-0.000005192	-0.00000788
Н	0.000001162	-0.000005203	-0.000001357
Н	0.000000092	-0.000005290	-0.000000639
Н	0.000000027	-0.000005967	-0.000000650
N	0.000000676	-0.00000385	-0.00000358
С	-0.000000113	0.000000256	-0.000000164
0	0.000000095	0.000000049	0.00000028
0	-0.000000673	0.000000998	0.000000591
С	-0.000001426	0.000001522	0.000001026
Н	-0.000001877	0.000000771	0.000001291
Н	-0.000000983	0.000002086	0.00000880
С	-0.000002113	0.000002287	0.000001568
Cl	-0.000002813	0.000001340	0.000001941
Cl	-0.000001379	0.000003505	0.000001262
Cl	-0.000003037	0.000002911	0.000002247
С	0.000001490	0.000002880	-0.000000689
С	0.000001457	0.000001839	-0.000000817
С	0.000002401	0.000000704	-0.000001467
С	0.000002269	0.000001665	-0.000001279
С	0.000001895	0.000002813	-0.000000928
Н	0.000001163	0.000003703	-0.000000333
Н	0.000001211	0.000001877	-0.000000537
Н	0.000002829	-0.000000098	-0.000001804
Н	0.000002754	0.000001708	-0.000001525
С	0.000001820	0.000000785	-0.000001018
Н	0.000002198	0.00000033	-0.000001346
0	0.000002010	0.000003690	-0.000000753
С	0.000001353	0.000004778	-0.00000338
---	-------------	-------------	--------------
Н	0.000001404	0.000005360	-0.000000279
Н	0.000000518	0.000004566	0.000000162
Н	0.000001740	0.000005270	-0.000000534

Adduct 55^T

6-31G(d,p)[LANL2DZ]

Electronic Energy = -3180.073154

Enthalpy = -3179.635022

6-311++G(2d,2p)[SDD]

Electronic Energy = -3182.778225

Rh	0.000004910	0.000018536	-0.000000237
Rh	0.000001919	0.000007490	-0.000000123
0	0.000009850	0.000003170	0.000002729
0	0.000012624	0.000013490	0.000002631
0	0.000011045	0.000020756	0.000001430
0	0.000008448	0.000010316	0.000001621
0	-0.000004241	0.000005488	-0.000001809
0	-0.000001520	0.000015809	-0.000001958
0	-0.000003140	0.000022748	-0.000003145
0	-0.000005789	0.000012398	-0.000002933
С	0.000013338	0.000007091	0.000003451
С	0.000019101	0.000003652	0.000005542
Н	0.000023055	0.000002689	0.000006852
Н	0.000017423	-0.000001429	0.000005505
Н	0.000021128	0.000006974	0.000005857
С	0.000011472	0.000016281	0.000002036

Electronic and Zero-Point Energy = -3179.669694 Free Energy = -3179.735237

С	0.000016310	0.000017848	0.000003355
Н	0.000013973	0.000016480	0.000002750
Н	0.000020715	0.000014591	0.000005018
Н	0.000017911	0.000023335	0.000003325
С	-0.000006717	0.000018907	-0.000003801
С	-0.000012187	0.000022181	-0.000005850
Н	-0.000010676	0.000022887	-0.000005432
Н	-0.000013328	0.000027281	-0.000006660
Н	-0.000016677	0.000018754	-0.000006908
С	-0.000004627	0.000009985	-0.000002348
С	-0.000009306	0.000008119	-0.000003609
Н	-0.000014465	0.000008211	-0.000005238
Н	-0.000008397	0.000002770	-0.000002845
Н	-0.000008636	0.000011779	-0.000003772
Н	-0.000000904	-0.000001940	-0.000000090
С	0.000002236	-0.000007782	0.000001440
0	-0.00000034	-0.000011376	0.000001090
0	0.000008312	-0.000008503	0.000003334
С	0.000012560	-0.000013412	0.000005114
Н	0.000017479	-0.000010897	0.000006411
Н	0.000010511	-0.000015289	0.000004676
С	0.000013328	-0.000019681	0.000005960
Cl	0.000016650	-0.000016939	0.000006710
Cl	0.000005493	-0.000024195	0.000003960
Cl	0.000019121	-0.000025367	0.000008269
С	-0.000009765	-0.000015219	-0.000001584
С	-0.000006098	-0.000009068	-0.000001017
С	-0.000012831	-0.000004390	-0.000003541
С	-0.000016405	-0.000010515	-0.000004063
С	-0.000014937	-0.000016078	-0.000003085
Н	-0.000008724	-0.000019343	-0.00000878
Н	-0.000002050	-0.000008439	0.000000148
Н	-0.000013893	-0.000000203	-0.000004247
Н	-0.000020584	-0.000011354	-0.000005277

С	-0.000006980	-0.000003213	-0.000001870
Н	-0.000007603	0.000001833	-0.000002522
0	-0.000018898	-0.000021870	-0.000003746
С	-0.000017576	-0.000027666	-0.000002852
Н	-0.000021148	-0.000031812	-0.000003537
Н	-0.000012443	-0.000029479	-0.000001076
Н	-0.000018333	-0.000026392	-0.000003160

引用文献

- (a) Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Angew. Chem. Int. Ed. 1999, 38, 643.
 (b) Dugger, R. W.; Ragan, J. A.; Ripin, D. H. B. Org. Process Res. Dev. 2005, 9, 253.
 (b) Hill, R.; Yudin, A.K. Nat. Chem. Biol. 2006, 6, 284.
- 2. (a) Collet, F.; Dodd, R. H.; Dauban, P. *Chem. Commun.* 2009, 5061.
 (b) Park, Y.; Kim, Y.; Chang, S. *Chem. Rev.* 2017, *117*, 9247.
- 3. For reviews, see:
 - (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
 - (b) Zalatan, D. N.; Du Bois, J. Top. Curr. Chem. 2010, 292, 347.
 - (c) Roizen, J. L.; Harvey, M. E.; Du Bois, J. Acc. Chem. Res., 2012, 45, 911.
 - (d) Darses, B.; Rodrigues, R.; Neuville, L. Mazurais, M.; Douban, P. Chem. Commun. 2017, 53, 493.
- 4. For selected pioneering examples of intramolecular C(sp³)-H amination via rhodium nitrenoids, see:
 (a) Breslow, R.; Gellman, S. H. *J. Am. Chem. Soc.* 1983, *105*, 6728.
 - (b) Espino, C. G.; Du Bois, J. Angew. Chem. Int. Ed. 2001, 40, 598.
 - (c) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378.
 - (d) Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem. Soc. 2005, 127, 14198.
- 5. For selected examples of intramolecular C(sp²)-H amination via rhodium nitrenoids, see:
 (a) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007, 129, 7500.
 - (b) Kong, C.; Jana, N.; Jones, C.; Driver, T. G. J. Am. Chem. Soc. 2016, 138, 13271.
 - (c) Singh, R.; Nagesh, K.; Parameshwar, M. ACS Catal. 2016, 6, 6520.
- 6. For recent examples of directing group assisted C-H amination via rhodium nitrenoids, see:
 (a) Wang, H.-W.; Lu, Y.; Zhang, B.; He, J.; Xu, H.-J.; Kang, Y.-S.; Sun, W.-Y.; Yu, J.-Q. Angew. Chem. Int. Ed. 2017, 56, 7449.
 (b) Conghui, T.; Miancheng, Z.; Jianzhong, L.; Xiajin, W.; Xiang, S. Yiqun, Z.; Ning, J. Chem. Eur. J., 2016, 22, 11165.
 (c) Ali, M. A.; Yao, X.; Li, G.; Lu, H. Org. Lett. 2016, 18, 1386.
- For selected pioneering examples of intermolecular C(sp³)-H amination via rhodium nitrenoids, see:
 (a) Nägeli, I.; Baud, C.; Bernardinelli, G.; Jacquire, Y.; Moran, M.; Müller, P. *Helv. Chim. Acta.* 1997, *80*, 1087.
 - (b) Yamawaki, M.; Tsutsui, H.; Kitagaki, S.; Anada, M.; Hashimoto, S. *Tetrahedron Lett.* **2002**, *43*, 9561.
 - (c) Reddy, R. P.; Davies, H. M. L. Org. Lett. 2006, 8, 5013.

- (d) Fiori, K. W.; Du Bois, J. J. Am. Chem. Soc. 2007, 129, 562.
- (e) Lebel, H.; Huard, K. Org. Lett. 2007, 9, 639.
- (f) Huard, K.; Lebel, H. Chem. Eur. J. 2008, 14, 6222.
- (g) Roizen, J. L.; Zalatan, D. N.; Du Bois, J. Angew. Chem. Int. Ed. 2013, 52, 11343.
- For selected examples of natural product synthesis utilizing dirhodium-catalyzed C-H amination, see:
 (a) When, P. M.; Du Bois, J. J. Am. Chem. Soc. 2002, 124, 12950.
 - (b) Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510.
 - (c) Fleming, J. J.; Du Bois, J. J. Am. Chem. Soc. 2006, 128, 3926;
 - (d) Takahashi, K.; Yamaguchi, D.; Ishihara, J.; Hatakeyama, S. Org. Lett. 2012, 14, 1644.
- Arai, K.; Ueda, Y.; Morisaki, K.; Furuta, T.; Sasamori, T.; Tokitoh, N.; Kawabata, T. Chem. Commun. 2018, 54, 2264.
- 10. (a) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534.
 (b) Surry, D. S. Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338.
- 11. (a) Jiao, J.; Murakami, K.; Itami, K. *ACS Catal.* 2016, *6*, 610.
 (b) Murakami, K.; Perry, G. J. P. Itami, K. *Org. Biomol. Chem.* 2017, *15*, 6071.
- 12. For recent examples of $C(sp^2)$ -H amination of arenes as the limiting reagents, see:
 - (a) Boursalian, G. B.; Nagai, M.-Y.; Hojczyk, K. N.; Ritter, T. J. Am. Chem. Soc. 2013, 135, 13278.
 - (b) Foo, K.; Sella, E.; Thomé, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279.
 - (c) Kawakami, T.; Murakami, K.; Itami, K. J. Am. Chem. Soc. 2015, 137, 2460.
 - (d) Romero, N. A.; Margrey, K. A.; Tay, N. E. Nicewicz, D. A. Science 2015, 349, 1326.
 - (e) Boursalian, G. B.; Ham, W. S.; Mazzotti, A. R.; Ritter, T. Nat. Chem. 2016, 8, 810.
 - (f) Legnani, J.; Cerai, G. P.; Morandi, B. ACS Catal. 2016, 6, 8162.
 - (g) Ito, E.; Fukushima, T.; Kawakami, T.; Murakami, K.; Itami, K. Chem, 2017, 2, 383.
 - (h) Margrey, K. A.; Levens, A.; Nicewicz, D. A. Angew. Chem. Int. Ed. 2017, 56, 15644.
- Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L. Falck, J. R. Science 2016, 353, 6304.
- 14. Tanaka, M.; Kurosaki, Y.; Washio, T.; Anada, M.; Hashimoto, S. Tetrahedron Lett. 2007, 48, 8799.
- 15. For selected pioneering examples, see:
 - (a) Shinkai, S.; Koreishi, H.; Ueda, K.; Arimura, T.; Manabe, O. J. Am. Chem. Soc. 1987, 109, 6371.
 - (b) Atwood, J. L.; Koutsantonis, G. K.; Raston, C. L. Nature 1994, 368, 229.
 - (c) McGovern, R. E.; Fernandes, H.; Khan, A. R.; Power, N. P.; Crowley, P. B. *Nat. Chem.* **2016**, *8*, 810.
- 16. The similar selectivity was observed in electrophilic aromatic substitution reaction of calixarene derivatives. For example, see:

Notestein, J. M.; Solovyov, S.; Andrini, L. R.; Requejo, F. G.; Katz, A.; Iglesia, E. J. Am. Chem. Soc. 2007, 129, 15585.

- 17. Diamond, D.; McKervey, M. A. Chem. Soc. Rev. 1996, 25, 15.
- (a) Salamone, M.; Bietti, M.; Calcagni, A.; Gente, G. Org. Lett. 2009, 11, 2453 and references cited therein.

(b) Miura, T.; Zhao, Q.; Murakami, M. Angew. Chem. Int. Ed. 2017, 56, 16645.

- The similar situation have been reported in rhodium-catalyzed C(sp³)-H amination. For example, see:
 (a) Fiori, K. W.; Espino, C. G.; Brodsky, B. H.; Du Bois, J. *Tetrahedron* 2009, 65, 3042.
 (b) Lebel, H.; Laparra, L. M.; Khalifa, M.; Trudel, C.; Audubert, C.; Szponarski, M.; Leduc, C. D.; Azek, E.; Ernzefhof, M. *Org. Biomol. Chem.* 2017, *15*, 4144.
 (c) Kono, M.; Harada, S.; Nemoto, T. *Chem. Eur. J.* 2017, *23*, 7428.
- 20. A possibility including short-lived radical intermediates cannot be excluded.
 (a) Nörder, A.; Warren, S. A.; Herdtweck, E.; Huber, S. M.; Bach, T. J. Am. Chem. Soc. 2012, 134, 13524.
 - (b) Roizen, J. L.; Zalatan, D. N.; Du Bois, J. Angew. Chem. Int. Ed. 2013, 52, 11343.
 - (c) Jat, J. L.; Paudyal, M. P.; Gao, H.; Xu, Q.-L.; Yousufuddin, M.; Devarajan, D.; Ess, D. H.; Kürti, L.; Falck, J. R. Science 2014, 343, 61.
- 21. Hashimoto, S.; Watanabe, N.; Ikegami, S. Tetrahedron Lett. 1992, 33, 2709.
- 22. Kwok, S. W.; Zhang, L.; Grimster, N. P.; Fokin, V. V. Angew. Chem. Int. Ed. 2014, 53, 3452.
- 23. Sheldrick, G. M. Acta Cryst. 2015, A71, 3.
- 24. (a) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* 2008, *120*, 215.
 (b) Zhao, Y.; Truhlar, D. G. *Acc. Chem. Res.* 2008, *41*, 157.
 (c) Zhao, Y.; Truhlar, D. G. *J. Chem. Theory Comput.* 2009, *5*, 324.
 (d) Kulkarni, A. D.; Truhlar, D. G. *J. Chem. Theory Comput.* 2011, *7*, 2325.
- 25. Gaussian 09, Revision E.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Jr., J. A. M.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,

G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz,J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2013.

- 26. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
- 27. (a) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* 1990, 77, 123.
 (b) Roy, L. E.; Hay, P. J.; Martin, R. L. *J. Chem. Theory Comput.* 2008, *4*, 1029.
- 28. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys, Chem. B 2009, 113, 6378.

謝辞

本研究を行うに際し、終始御懇篤なる御指導、御鞭撻を賜りました京都大学化学研究所 川端 猛 夫 教授に深甚なる感謝の意を表します。川端先生の独創的な研究哲学に基づいて挑戦し続けるこ とができた経験は私の今後の研究人生においてかけがえのない財産となりました。心より感謝申 し上げます。

本研究を行うに際し、有益な御助言を賜りました京都薬科大学 古田 巧 教授に感謝の意を表します。古田先生の豊富な経験に基づく御指導に心より感謝申し上げます。

本研究の大部分において、直接御指導を賜りました京都大学化学研究所 上田 善弘 助教に感謝 の意を表します。著者の至らない部分を丁寧に御指摘頂き、上田先生と研究について議論させて 頂いた毎日が何物にも替え難い経験となりました。心より感謝申し上げます。

京都大学化学研究所 森崎 一宏 助教におかれましては、本研究に関して貴重な御助言を頂き、 心より感謝申し上げます。

金沢大学 吉村 智之 准教授におかれましては、私が研究室に入る際に丁寧に御指導頂き、温か く迎え入れて下さいました。心より感謝申し上げます。

名城大学 吉田 圭佑 助教におかれましては、日々の研究において貴重な御助言、御指導頂き、 心より感謝申し上げます。

また、本論文を御精読賜りました京都大学大学院薬学研究科 高須 清誠 教授、並びに京都大学 大学院薬学研究科 大野 浩章 教授に深謝致します。

本研究を行うに際して深いご理解を賜り、大変貴重な機会を与えて頂きました大塚製薬株式会 社 周藤 俊樹 取締役、菊地 哲朗 フェロー、創薬化学研究所 近藤 一見 所長、小川 英則 博士、 並びに創薬化学研究所の皆様に心より御礼申し上げます。

X線結晶構造の取得にご協力を賜りました京都大学化学研究所 時任 宣博 教授、名古屋市立大学 笹森 貴裕 教授に厚く御礼申し上げます。

DFT 計算において、貴重な御助言を賜りました京都大学化学研究所 中村 正治 教授に厚く御礼 申し上げます。

本研究において、質量分析測定を行って頂きました京都大学化学研究所 藤橋 明子 氏、並びに 大塚製薬株式会社創薬化学研究所 辻見 祥子 研究員に厚く御礼申し上げます。

研究生活を事務方として支援頂きました京都大学化学研究所 橋本 香織 氏に心より感謝申し 上げます。

日々の研究生活において、活発な議論をさせて頂きました京都大学化学研究所精密有機合成化 学分野の卒業生並びに在学生の皆様に心より感謝申し上げます。

最後に、著者の博士課程の挑戦に終始応援し続けてくれた妻、子供たち、両親に心より感謝し ます。

79