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1Introduction

1.1 Motivation and Objectives

Mathematical (analytical or numerical) modeling of continuum mechanics problems
is an integral part of engineering design, scientific research, and technological inven-
tions. For example, in the field of geotechnical engineering, numerical methods are
indispensable tool for designing and health monitoring of ground and soil-structures,
such as embankments, bridges and pile foundations, and tunnels subjected to static
and dynamic loading conditions. In recent years, techniques have been developed
for handling the issues related to the erosion of soil structures, piping flows within
natural slopes, and the stability of embankments subjected to tidal waves. Further,
environmental impact and safety assessments of the ground vibrations generated by
high-speed trains (Ditzel et al., 2001; Krylov, 1996; Takemiya, 2003) and road traffic
(Chua et al., 1992; Clemente and Rinaldis, 1998; Clouteau et al., 2001; Maeda
et al., 1998) close to the residential areas, hospitals, and high-tech industries are of
paramount importance.

The finite element method is one of the most popular numerical methods for com-
puting accurate solutions to partial differential equations (PDEs) that describe many
engineering problems. The FEM originated from the structural mechanics discipline
and has since been extended to other areas of solid mechanics as well as heat
transfer, fluid dynamics, and electromagnetism. In dealing with PDEs, it is useful
to differentiate between several types; elliptic, hyperbolic, and parabolic PDEs. For
example, elliptic PDEs generally represent static problems in which only boundary
conditions (viz., Dirichlet boundary condition and/or Neumann boundary condition)
need to be prescribed. Hyperbolic and parabolic PDEs, on the other hand, represent
a transient problem and require specification of both intial and boundary conditions.
Clearly, both the theoretical and numerical treatment differ considerably for these
three types of PDEs.

The most extending approach for solving a transient problem is based on a classical
semi-discretized FEM formulation. In this approach, usually a generalized Galekin
methods are first employed to construct the weak-form of governing PDEs. Such
weak-forms are constructed in the spatial domain while assuming that the shape
functions are independent of time. Furthermore, spatial nodal values of the trial
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functions only depend upon the time while nodal values of the test functions remain
independent of the time. The time-independece of the shape functions and time-
dependence of nodal values of the solution create an uncoupled space-time domain.
Consequently, one obtains a system of ordinary differential equations in time. Time-
marching schemes based on the finite difference methods are then used to solve the
resultant system of ODEs. In this way, the semi-discrete FEM treats the problem
differently in the space and time domain; variation principles are used for the former
domain, and finite difference techniques are used for latter domain. Further, it is
well established that the finite differnce methods produce less accurate solutions
than FEM. Therefore,careful selection of a finite difference scheme is required to
achieve the desired level of accuracy. Here, let us mentioned that a poor selection of
FDM may limit the overall accuracy of the semi-discrete FEM, or in some cases may
even produce inconsistent results. Lastly, selection of the appropriate FDM mainly
depend upon the type of problem, for example, the algorithms which works well for
the heat-diffusion problem may not be suitable for the problem of elastodynamics.

In transient problems, one wishes to use a high-order accurate time integration
scheme with a large time-step size in an attempt to reduce the computation cost.
However, the use of large time-step size is only possible if the time-marching scheme
is unconditionally stable; the stability of the time integration algorithm does not de-
pend upon the time-step size. Unconditionally stable methods, such as the Newmark-
beta method (Newmark, 1959), the HHT–α method (Hilber et al., 1977), the
Houbolt method (Houbolt, 1950), and the Wilson–θ method (Bathe and Wilson,
1976), are the most often used dynamic solvers in semi-discrete FEM. However,
these methods are only second-order accurate. Furthermore, Dahlquist’s theorem
says that a single-step unconditionally stable time-integration algorithm can be at
most second-order accurate (Dahlquist, 1963). High-order accurate time-integration
schemes based on the finite difference schemes can be employed. However, these
schemes are generally conditionally stable and require very small time steps for
stability (Hughes, 1983). The requirement of small time steps increases the overall
computational cost of large-scale simulations. Therefore, there is still a need for
dynamic solvers which are high-order accurate and unconditionally stable, such that
large time steps can be used to reduce the computational cost while maintaining the
accuracy of the solutions.

At present, time-discontinuous Galerkin approach have been well studied for the
problems involving first order time derivatives. In the field of computational fluid
dynamics, this approach have been used for problems involving the moving and
free boundaries (Bazilevs2013). In TDG/ST/FEM, shape-functions are usually
defined on the space-time domain. The weak form of the govering equations are
formulated in a space-time slab, therefore, no additional time-marching schemes
are required. Therefore, such method may provide a unified framework for using
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the Lagrangian mesh, Eulerian mesh, and arbitrary moving mesh. In addition,
for problems involving the second-order time derivatives TDG/ST/FEM facilitates
the weak-enforcement of initial conditions through jump-discontinuity in time. In
this way, TDG/ST/FEM provides a general framework for arbitrary high order
accurate, unconditionally stable time integration algorithms. We believe that these
characteristics of TDG/ST/FEM may have great potential for solving the problems of
large-deformation dynamic problems.

The objective of this thesis is to develope an efficient space-time finite element
method within time-discontinuous Galerkin framework. In this context, a velocity-
based single-field ST/FEM is developed. Hereafter, the term v-ST/FEM will be used to
denote the proposed method. In v-ST/FEM, velocity is the primary unknowns which
is discontinuous in time and continuous in space. The displacement field is obtained
by time integration of the velocity field in a post-processing step. The main advantage
of v-ST/FEM is that it involves less number of unknowns–unlike other ST/FEM–which
makes v-ST/FEM applicable to the large-scale practical problems at relatively low
computation cost. In addition, the proposed scheme naturally allows the coupling
of space-time domain, consequently, it can be used with Lagrangian mesh, Eulerian
mesh, or arbitrary moving mesh framework. We believe that the proposed method
can be developed further as an effective tool for simulating problems with moving
and free boundaries.

This thesis includes the following chapters:

In Chapter 2, the working principles of the time-discontinuous Galerkin finite
element method (TDG/FEM) are described by using a first order ordinary differential
equation (ODE) and a second order ODE. Subsequently, a velocity-based time-
discontinuous space-time finite element method (v-ST/FEM) for a multidimensional
elastodynamics problem is developed. Several numerical tests are performed to
demonstrate the efficiency and the applicability of the v-ST/FEM.

In Chapter 3, a concise presentation regarding the theory of wave propagation
in an elastic solid is given. After briefly discussing the reflection and refraction
of a plane harmonic waves it is shown that the problem of dynamic soil-structure
interaction (SSI) can be viewed as a wave-scattering phenomenon, in which the
free-field response of an elastic half-space is perturbed by the existing structure. The
chapter presents some of the most popular boundary conditions for solving wave
propagation problems in the unbounded domain. In addition, the viscous boundary
conditions and modified viscous boundary conditions are derived.

In Chapter 4, v-ST/FEM method is used to solve the problem of dynamic soil-
structure interaction. In this context, finite element modeling of the unbounded

1.1 Motivation and Objectives 3



soil domain is performed by placing modified viscous boundaries at some distance
from the existing structure. A dynamic dam-soil interaction problem is considered to
validate the formulation and computer implementation of v-ST/FEM. The results
obtained by proposed scheme are validated by solving the same problem using
the semi-discrete FEM with classical Newmark-β method. Results obtained by two
methods are compared and found to be nearly identical.

In Chapter 5, v-ST/FEM is used to compute the seismic response of the dam-reservoir
(DR) and dam-reservoir-soil (DRS) system while considering all types of dynamic
interaction. Both dam and the underlying soil domain is assumed to be linearly
elastic, and material damping is modeled by Rayleigh damping. The water in the
reservoir is assumed to be inviscid, linearly compressible with a small amplitudes for
the displacements and velocity. Thus, the hydrodynamic pressure in the reservoir
is given by the pressure wave equation. In the finite element modeling, viscous
boundary conditions are used to truncate the semi-infinite domain of reservoir and
underlying soil-domain.

In Chapter 6, v-ST/FEM is employed for the problems involving dynamic response
of solids and structures with nonlinear stress-strain relationships. The problem of
dynamic interaction between the concrete gravity dam and reservoir is taken as a
model problem, in which a generalized nonlinear stress-strain relationship is used to
describe the material behavior of concrete in the dam. The foundation underneath
the dam-reservoir (DR) system is assumed to be perfectly rigid. The governing
equations describing the dynamic interaction between dam and reservoir constitute
a system of linear-nonlinear coupled equations, in which linear equations govern the
reservoir domain and nonlinear equations govern the solid domain. A block-iterative
scheme is used to enforce the coupling between the solid and fluid domain. In each
iteration of v-ST/FEM with the block-iterative scheme, the linearized equations of
the solid domain are first solved to compute the increments in the velocity field.
Subsequently, the total velocities are corrected and then used for computing the trial
values of hydrodynamic pressures in the reservoir by solving the linear equation for
the reservoir domain. In each iteration of the proposed scheme, therefore, linear
equations for the solid and fluid domain are solved, separately, which significantly
decreases the computation cost.
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2Time-Discontinuous Galerkin
Methods for Elastodynamics
Problem

2.1 Introduction

Numerical methods for computing the dynamic response of the ground and soil-
structures, such as embankments, bridges and pile foundations, and tunnels, are
an indispensable tool for designing and monitoring ground structures. The Finite
Element Method (FEM) has been undoubtedly accepted as the most popular, reliable,
and successful numerical tool for simulating soil dynamics problems (Anandarajah,
1993; Khoshnoudian and Shahrour, 2002; Kimura and Zhang, 2000; Kuwano et al.,
1991; Li and Ugai, 1998; Murakami et al., 2010). Further, environmental impact
and safety assessments of the ground vibrations generated by high-speed trains
(Ditzel et al., 2001; Krylov, 1996; Takemiya, 2003) and road traffic (Chua et al.,
1992; Clemente and Rinaldis, 1998; Clouteau et al., 2001; Maeda et al., 1998)
close to the residential areas, hospitals, and high-tech industries are of paramount
importance. FEM has also been extensively used for investigating the level of
vibrations and schemes to reduce them (Hung et al., 2001; Ju, 2007; Ju, 2009; Ju
et al., 2006; Ju and Lin, 2004). Moreover, in the field of transportation engineering,
nondestructive deflection testing, with the Falling Weight Deflectometer (FWD),
has become increasingly popular for monitoring the structural health of flexible
pavement systems over time Chai et al., 2014; Elbagalati et al., 2018; Maina et al.,
2000. In FWD testing, the recorded time histories of surface deflections are used to
back-calculate the moduli of pavement layers by employing parameter-identification
techniques (Goktepe et al., 2006). Recently, FEM has been employed extensively
to simulate FWD testing under realistic conditions and to predict the response of
pavement systems brought about by impulsive loading (Loizos and Scarpas, 2005;
Nazarian and Boddapati, 1995; Picoux et al., 2009).

In the preceding discussion, the most extended approach for solving elastodynamics
problems was based on a semi-discretized FEM formulation. In this approach, FEM
is first applied to the spatial domain leading to a system of ordinary differential
equations (ODE) in the time domain. Subsequently, direct time integration schemes,
based on the finite difference method, are employed to solve the resulting system
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of ODEs. In general, the errors in the finite element simulations of soil-dynamics
problems are partially due to the space-time discretization and to the uncertainties
involved in the material constitutive relationship and the material parameters.
Numerical errors can be reduced by adopting high-order accurate time solvers within
FEM framework. Unconditionally stable methods, such as the Newmark-beta method
(Newmark, 1959), the HHT-α method (Hilber et al., 1977), the Houbolt method
(Houbolt, 1950), and the Wilson-θ method (Bathe and Wilson, 1976), are the most
often used dynamic solvers. However, these methods are only second-order accurate.
Furthermore, Dahlquist’s theorem says that a single-step unconditionally stable
time-integration algorithm can be at most second-order accurate (Dahlquist, 1963).
High-order accurate time-integration schemes based on finite difference schemes
can be employed. However, these schemes are generally conditionally stable and
require very small time steps for stability (Hughes, 1983). The requirement of
small time steps increases the overall computational cost of large-scale simulations.
Therefore, there is still a need for dynamic solvers which are high-order accurate
and unconditionally stable, such that large time steps can be used to reduce the
computational cost while maintaining the accuracy of the solutions. The aim of this
thesis is to devise such a scheme.

To achieve high-order accuracy combined with stability, an alternative strategy called
the Space-Time Finite Element Method (ST/FEM) was proposed in the past; it is
still being actively researched. The concept of finite elements in the time domain
was first exploited independently in Argyris and Scharpf, 1969 and Fried, 1969
using Hamilton’s principle. Unfortunately, these formulations were found to be
inconsistent, and even inaccurate in some cases, due to the vanishing variation in
the displacement at the end points of the time interval. Soon after, Bailey, 1975;
Bailey, 1980; Bailey, 1982 and Simkins, 1981 established that instead of Hamilton’s
principle, Hamilton’s law of varying action, HLVA, should be used as the starting
point for the time-finite element formulations, as it includes the initial conditions
implicitly. However, for quite some time, researchers misinterpreted the so-called
trailing terms of HLVA, and believed that both the displacement field and the velocity
field should be continuous in time (M. Borri and Mantegazzat, 1985). Due to
this misconception, many studies adopted Hermite cubic polynomials as the lowest
order of interpolation functions for the displacement field (Baruch and Riff, 1982;
Baruch and Riff, 1984; Gellert, 1978; Geradin, 1974; Howard and Penny, 1978;
Riff and Baruch, 1984; Simkins, 1981; Sorek and Blech, 1982). Later, Borri and
his colleagues (Borri, 1986; Borri et al., 1985; M. Borri and Mantegazzat, 1985)
showed that the need to use Hermite polynomials can be avoided by employing
Hamilton’s weak principle (HWP) in which approximating functions should ensure
the continuity of only the displacement field (i.e., C0 continuity in time), and not
that of any of its time-derivatives. More recently, unconditionally stable time-finite
element formulations have been derived using the two-field form of HWP instead of
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the primal form (Aharoni and Bar-Yoseph, 1992; Borri et al., 1990; Borri et al., 1991;
Borri and Bottasso, 1993; Mello et al., 1990; Ruge, 1996). For a comprehensive
overview and recent advances in the time-finite element formulations based on
Hamilton’s law, readers are referred to Tamma et al., 2011.

Another approach towards development of the ST/FEM is by weighted residual
techniques, such as the continuous Galerkin method (Bajer and Bohatier, 1995;
Bajer, 1987), the discontinuous Galerkin method (Hughes and Hulbert, 1988), and
the Petrov-Galerkin method (Fung and Leung, 1996; Fung, 1999), while working
directly with the differential equations rather than a variational principle. Moreover,
ST/FEM derived from the time-discontinuous Galerkin (TDG) method led to the
unconditionally stable and high-order accurate ODE solvers (Delfour et al., 1981;
Johnson and Pitkäranta, 1986; Lasaint and Raviart, 1974). The discontinuous
Galerkin (DG) method was first developed for the neutron-transport equation Lasaint
and Raviart, 1974; Reed and Hill, 1973. Soon after, the TDG method was introduced
by Jamet (Bonnerot and Jamet, 1979; Jamet, 1978) for solving the parabolic
differential equation with the time- dependent spatial domain. Almost a decade
afterwards, Hughes and Hulbert presented the time-discontinuous Galerkin space-
time FEM (TDG/ST/FEM) for the fields of elastodynamics and structural dynamics
(Hughes and Hulbert, 1988). In this paper, two general formulations of TDG/ST/FEM
were provided: (i) the single-field formulation, in which the displacement field
is the primary unknown, and (ii) the two-field formulation, in which both the
displacement field and the velocity field are treated as the primary unknowns. In
a latter approach, the trial functions for both fields were continuous in space and
discontinuous in time, whereas the test functions were continuous in both space
and time. In the two-field formulation, the displacement-velocity compatibility
condition and the continuity of both unknown fields in time were satisfied in a
weak sense by using some inner products. This is the key element allowing for the
generalization of TDG/ST/FEM developed for first order hyperbolic equations to the
second order hyperbolic equations (Hughes and Hulbert, 1988). However, the main
disadvantage of the two-field formulation is that it leads to larger systems of coupled
equations than formulations derived from direct integration schemes. To overcome
this difficulty, various efficient iterative predictor-multi-corrector algorithms have
been suggested by Li and Wiberg, 1998; Mancuso and Ubertini, 2003; Chien and
Wu, 2000; Mancuso and Ubertini, 2006, among others. Details on the numerical
characteristics of two-field formulations, such as stability, the order of accuracy, and
algorithmic damping, have been discussed elsewhere (Fan et al., 1997; Fung and
Leung, 1996; Hulbert, 1992).

At present, time-discontinuous Galerkin approach have been well studied for the
problems involving first order time derivatives. In the field of computational fluid
dynamics, this approach have been used for problems involving the moving and free
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boundaries (Bazilevs2013). In TDG/ST/FEM, shape-functions are usually defined
on the space-time domain. Therefore, such method may provide a unified framework
for using the Lagrangian mesh, Eulerian mesh, and Arbitrary moving mesh. In
addition, for problems involving the second-order time derivatives TDG/ST/FEM
facilitates the weak-enforcement of initial conditions through jump-discontinuity
in time. In this way, TDG/ST/FEM provides a general framework for arbitrary
high order accurate, unconditionally stable time integration algorithms. We believe
that these characteristics of TDG/ST/FEM may have great potential for solving the
problems of large-deformation dynamic problems.

Accordingly, in this chapter, a velocity-based single-field ST/FEM is developed within
a TDG framework. Hereafter, the term v-ST/FEM will be used to denote the proposed
method. In v-ST/FEM, velocity is the primary unknowns which is discontinuous in
time and continuous in space. The displacement field is obtained by time integration
of the velocity field in a post-processing step. The advantage of v-ST/FEM is that it
involves less number of unknowns–unlike other ST/FEM–which makes v-ST/FEM
applicable to the large-scale practical problems at relatively low computation cost.

The remainder of the paper is organized as follows. First, in Section 2.2, the concept
of time-discontinuous Galerkin finite element method (TDG/FEM) is explained for
the first order ordinary differential equation (ODE) in time. Subsequently, the nu-
merical properties of the resultant algorithm are discussed. Section 2.3 extends these
concepts to a second order ODE in time. In this section, three types of TDG/FEM
formulations are presented; uv-TDG/FEM, u-TDG/FEM, and v-TDG/FEM. In uv-
TDG/FEM, both displacement and velocity are approximated by using the time
discontinuous trial functions, in addition, displacement-velocity compatibility condi-
tion is weakly enforced. In u-TDG/FEM, displacement is the primary unknown, and
velocity is obtained by taking the time derivative of the displacement. Accordingly,
the displacement-velocity relationship is strongly enforced. Lastly, in v-TDG/FEM
velocity is the primary unknown, and displacement is obtained in a post-processing
step by consistent time integration of the velocity field. Further, in Section 2.4
numerical properties of the TDG/FEM schemes for second order ODE are discussed.
The continuum theory of elastodynamics and the initial-boundary value problem
(IBVP) are summarized in Section 2.5. Section 2.6 describes the general theoretical
development and formulation aspects of the v-ST/FEM approach. In this section
the implementation details of the current methodology are also discussed. The
applicability and the validity of v-ST/FEM are then demonstrated in Section 2.7
through different numerical examples.
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2.2 TDG/FEM for the first order ODE

To understand the working principle of the time-discontinuous Galerkin finite ele-
ment method (TDG/FEM) consider the following initial value problem 1 described
by a first order ordinary differential equation equation (ODE).

du

dt
+ λu− f (t) = 0 t ∈ [0, T ] ,

u(0) = u0

(2.1)

where T is the total time, u := u(t) is the primary unknown, f(t) represents the
excitation function, and u0 is the initial condition. The analytical solution to this
problems takes the form of

u (t) = u0e
−λt +

∫ t

0
e−λ(t−τ)f (τ) dτ (2.2)

Let us now consider a non-uniform subdivision for the time domain [0, T ],

0 = t0 < t1 < · · · < tN = T,

with

In = (tn, tn + 1), ∆tn = tn+1 − tn, ∆t = max
(06n6N−1)

(∆tn) .

t0=0 t1 t2 tn-1 tn tn+1 tNtN-1

I0 I1 I2 In INIn-1

Fig. 2.1.: Discretization of time domain [0, T ] by using the time-finite elements.

In the finite element method (FEM), the time interval, In, denotes the interior of the
one-dimensional time finite element, and ∂In = {tn, tn+1} denotes the boundary of
In

2. Accordingly, the finite element discretization of the continuous time domain
can be written as (see also Fig. 2.1),

Ih :=
N−1⋃
n=0

(In ∪ ∂In)

1 Eq. (2.1) characterizes the modal equations of a linear parabolic partial differential equation (e.g.,
heat diffusion equation)

2 The boundary of a one-dimensional finite element comprises end-points only.
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In TDG/FEM, the solutions to the problem, uh(t), are considered to be discontinuous
at the boundary of the time-domain. The solutions, however, remain continuous
inside the time-finite element In, and approximated by piecewise polynomials (e.g.,
Lagrange polynomials). Therefore, the discontinuity in uh(t) occurs at times that
belong to the finite set {t0, t1, · · · , tN}. The jump discontinuity in time for uh is
given by [[

uh
]]
n

= u+
n − u−n (2.3)

where

u+
n = lim

ε→0
uh (t+ ε) , u−n = lim

ε→0
uh (t− ε) (2.4)

are the discontinuous values of uh at time t = tn. Fig. 2.2 illustrates the concept of
time discontinuity.

tn+1tntn-1

u+n u-n+1
u-n-1

u+n+1

u-n

u+n-1

uh

t

[[u]]n-1

[[u]]n

[[u]]n+1

tn+1tntn-1

u+n u-n+1
u-n-1

u+n+1

u-n

u+n-1

uh

t

[[u]]n-1

[[u]]n

[[u]]n+1

(a) (b)

Fig. 2.2.: Schematic diagram of time discontinuous approximation: (a) piecewise linear
interpolation, and (b) piecewise quadratic interpolation.

Let C0(?) denote the space of piecewise continuous functions defined on domain
(?). In addition, consider ℘l (In), the collection of all polynomials defined on In with
a total degree of no more than l. Accordingly, the functional space required for the
TDG/FEM is given by,

=hl :=
{
uh
∣∣∣uh ∈ C0

(
N−1⋃
n=0

In

)
, uh

∣∣∣
In
∈ ℘l (In)

}
(2.5)

where, uh, denotes the global solutions which can be discontinuous at time steps
given by the end points of the interval In, and uh

∣∣∣
In

denotes the restriction of uh to
In.
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2.2.1 Weak forms for the TDG/FEM

For any δuh, uh ∈ =hl consider the following variational form corresponding to
Eq. (2.1),

δΠn :=
∫
In
δuh

(
duh

dt
+ λuh − f (t)

)
dt (2.6)

or

δΠn =
∫
In
δuh

duh

dt
dt+

∫
In
δuh

[
λuh − f (t)

]
dt (2.7)

Here, once again note that the domain of integration is In, and uh is discontinuous
at times tn and tn+1.

Use of the integration by parts for the first term in Eq. (2.7) will result in the
following variation form for the TDG/FEM,

δΠn = −
∫
In
uh
dδuh

dt
dt+

[
δuh · u∗

]tn+1

tn
+
∫
In
δuh

[
λuh − f (t)

]
dt (2.8)

where, u∗ denotes the unique value of uh to be used at the end-points of the interval
In and obtained by computing the information from the neighboring time intervals.
A detailed definition concerning its concrete value will be soon introduced in the
following text.

Subsequent use of the integration by parts for the first term in Eq. (2.8) will yield
another variation form for the TDG/FEM. This variation form is described below.

δΠn =
∫
In
δuh

duh

dt
dt+

[
δuh

(
u∗ − uh

)]tn+1

tn
+
∫
In
δuh

[
λuh − f (t)

]
dt (2.9)

Mathematically, the formulations given in Eq. (2.8) and Eq. (2.9) are the TDG/FEM
schemes for Eq. (2.1) in weak and strong form, respectively. In Eq. (2.8) due to
the presence of first order time derivative of the test function δuh, the test function
should be continuous in time. In Eq. (2.9), however, the continuity of the test
functions is not required since this form does not include the time derivative of
δuh.

In Eq. (2.8) and Eq. (2.9), recall that the solution (uh) is not well defined at the
∂In = {tn, tn+1} as it takes two values at each end-points of In. Hence, a unique
representative value u∗ has been adopted in the TDG formulation which should be
specified only at time ∂In. The value of u∗ at time tn can be computed by using u+

n

2.2 TDG/FEM for the first order ODE 11



and u−n (see the footnote). 3 The most widely used definition for u∗ is based on the
upwind flux treatment in time (Eriksson et al., 1985; Chen et al., 2006; Cockburn,
2003; Hesthaven and Warburton, 2007) and given by,

u∗ :=
{
u0 if n = 0
u−n otherwise

(2.10)

The choice of such a definition is inspired by the fact that in a transient problem
the solutions at time tn should be equal to the value of its immediate past tn − ε.
Therefore, it is natural to start the numerical procedure at t = t0 with the prescribed
initial condition u∗ = u0, and transport this idea to the subsequent time-slabs.

Incorporating the definition of u∗ in Eq. (2.9),

δΠn =
∫
In
δuh

duh

dt
dt+ δuh (tn)

[[
uh
]]
n

+
∫
In
δuh

[
λuh − f (t)

]
dt (2.11)

Let us now focus on the TDG/FEM weak form for the initial value problem (see Eq. 2.1).
By multiplying the residual of Eq. (2.1) with the test function δuh and then integrat-
ing in the time domain [0, T ] following weak form can be obtained.

δΠ :=
∫
I
δu

[
du

dt
+ λu− f (t)

]
dt =

N−1∑
n=0

δΠn = 0 (2.12)

Due to the weakly prescribed initial condition, the weak form given above transforms
into a local weak form defined on each time slab In.

δΠn =
∫
In
δuh

duh

dt
dt+ δuh (tn)

[[
uh
]]
n

+
∫
In
δuhλuhdt−

∫
In
δuhf (t) dt = 0 (2.13)

Rearranging the terms in Eq. (2.13) and using the expression for the jump disconti-
nuity in time (see Eq. 2.3),

∫
In
δuh

duh

dt
dt+ δunu

+
n +

∫
In
δuhλuhdt = δunu

−
n +

∫
In
δuhf (t) dt (2.14)

in which the first term on right hand side depicts the initial condition for each
time-slabs In. Here note that the information about u−n is already obtained from the
computation in the previous time slab In−1. Further, in the beginning of the process
(i.e., n = 0) the initial condition is incorporated in the computation according to the

3 Informally speaking, the purpose of introducing the representative value u∗ in TDG/FEM is to
facilitate the weak enforcement of the initial condition in the time domain. Further, u∗ connects the
adjacent time-slabs by transferring the information about the solution from one time-slab to another
time-slab. In TDG/FEM, this so-called connection between the time-slabs is weakly enforced which
in turn allows the computation to be performed locally in an individual time-slab.
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definition in Eq. (2.10). In this way, initial boundary condition becomes the part of
the solution and need not to be specified in explicit terms.

2.2.2 Implementation of the TDG/FEM

One dimensional time-finite elements can be employed to discretize the TDG/FEM
weak form presented in Eq. (2.11). In this process, the solutions are locally approxi-
mated by using the shape functions. These shape functions are generally given by
the Lagrange polynomials, and determine the degree of accuracy. To construct a
p-order Lagrange polynomial in time-domain, p+ 1 nodes should be selected inside
the time slab In; two nodes are always located at the end-points tn and tn+1, and
remaining p− 1 nodes are distributed inside In (see Fig. 2.3). The internal nodes
are generally located at equidistant points in In. 4

Consider the parent time-domain Iθ := [−1, 1] on which the Lagrange polynomials
T

(p)
i (θ) are defined. Here, p denotes the degree of polynomial, and i = 1, · · · , p+ 1

corresponds to the p+ 1 locations

{θ1, θ2, · · · , θp+1}

in Iθ with θ1 = −1 and θ2 = +1. Let{
t
(n)
1 , t

(n)
2 , · · · , t(n)

p , t
(n)
p+1

}
be the set of p+ 1 time-nodes in In with t(n)

1 = tn, t(n)
2 = tn + 1. The internal nodes

are represented by t(n)
i = tn for i = 3, · · · , p+ 1 (see Fig. 2.3).

Further, the relationship between t ∈ In and θ ∈ Iθ is given by a linear mapping,

t(θ) = (1− θ)
2 tn + (1 + θ)

2 tn+1. (2.15)

The expression for the Lagrange polynomial of degree p is described as follows:

T
(p)
i =

p+1∏
j=1
j 6=i

θ − θj
θi − θj

(2.16)

Here, note that

T
(p)
i (θj) =

{
1 if i = j

0 if i 6= j

4 The internal nodes may be located at specific locations in In which are determined from the zeros of
the orthonormal polynomials like the Jacobi polynomials. This approach can be used for developing
the high-order time accurate spectral finite element schemes Hesthaven and Warburton, 2007, see.

2.2 TDG/FEM for the first order ODE 13



tn tn+1

Int1
(n) t3

(n) tp+1
(n) t2

(n)

Iθ
θ3θ1 θp+1 θ2

-1 +1

tn tn+1

Int1
(n) t2

(n)

Iθ
θ1 θ2

-1 +1

End points Internal points

(a) (b)

Fig. 2.3.: Conceptual diagram of (a) p-order time-finite element with p+ 1 local time nodes,
(b) two node linear time-finite element.

Accordingly, the p-order local approximation for the trial function uh reads,

uh = T
(p)
1 u+

n + T
(p)
2 u−n+1 +

p+1∑
a=3

T (p)
a u(n)

a (2.17)

In Eq. (2.17) u+
n and u−n+1 represent the discontinuous nodal values at times

t = (tn + ε) ∈ In and t = (tn+1 − ε) ∈ In (see also Eq. 2.4), respectively. Further,
the values of uh at the internal nodes of In are given by u(n)

a , for a = 3, · · · , p + 1,
which are well defined in the time-slab In. For the sake of clarity, let us denote,

u
(n)
1 = u+

n ,

u
(n)
2 = u−n+1.

With such convention Eq. (2.17) becomes

uh =
p+1∑
a=1

T (p)
a u(n)

a (2.18)

Similarly, the p-order local approximation for the test function δuh can be given by,

δuh =
p+1∑
a=1

T (p)
a δu(n)

a (2.19)
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Subsequently, using the above interpolations for uh and δuh in the weak-form given
by Eq. (2.14) one can get the following discretized form. Henceforth, the use of
summation symbol is avoided and Einstein summation convention is implied.

δu(n)
a

{[∫
In
T (p)
a

dT
(p)
b

dt
dt

]
u

(n)
b +

[∫
In
T (p)
a λT

(p)
b dt

]
u

(n)
b −

∫
In
T (p)
a f (t) dt

}
+ δu

(n)
1

(
u

(n)
1 − u−n

)
= 0

(2.20)

Further, using the Kronecker delta function δab in the last term of the above equa-
tion,

δu
(n)
1

(
u

(n)
1 − u−n

)
= δu(n)

a δa1δb1
(
u

(n)
b − u

−
n

)
,

Accordingly, Eq. (2.20) becomes,

δu(n)
a

{[∫
In
T (p)
a

dT
(p)
b

dt
dt+ δa1δb1 +

∫
In
T (p)
a λT

(p)
b dt

]
u

(n)
b − δa1u

−
n −

∫
In
T (p)
a f (t) dt

}
= 0

(2.21)

Since Eq. (2.20) is true for all δ(n)
a , one can get the following system of p+1 algebraic

equations.
[m]ab u(n)

b + λ[c]abu(n)
b = δa1u

−
n + {Jext}a (2.22)

where [m]ab and [c]ab are the (p+ 1)× (p+ 1) finite element matrices, and {f}a is a
vector of length p+ 1. The matrix-vector form of above equation is depicted by

[m] {ũ}+ λ [c] {ũ} = {ep1}u−n + {Jext} (2.23)

The details about the terms present in Eq. (2.21) and Eq. (2.22) are given below.

[m] := [m]ab =
∫
In
T (p)
a

dT
(p)
b

dt
dt+ δa1δb1 (2.24)

[c] := [c]ab =
∫
In
T (p)
a T

(p)
b dt (2.25)

{ep1} := δa1 = {1, 0, · · · , 0} (2.26)

{Jext} := {Jext}a =
∫
In
T (p)
a f (t) dt (2.27)

In this way, at the beginning of the computation (i.e., n=0) the initial condition u0

is used to compute the right hand side of Eq. (2.23), and then the system of linear
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equations is solved to obtain u−1 . This information is then used for constructing the
right hand side for the next time slab.

In the subsequent sections, the numerical analysis of the TDG/FEM for the first
order ODE is discussed. Henceforth, for the sake of simplicity, only the case of linear
interpolation in time (i.e., p = 1) is discussed.

In case of the linear interpolation in time the shape functions are given by

T1(θ) := T
(1)
1 = 1− θ

2 T2(θ) := T
(1)
2 = 1 + θ

2 . (2.28)

In this case, two linear equations in two unknowns u+
n and u−n+1 can be obtained.

These equations are described below in the matrix-vector form.

1
2

[
1 1
−1 1

]{
u+
n

u−n+1

}
+λ∆tn

6

[
2 1
1 2

]{
u+
n

u−n+1

}
=
{
u−n
0

}
+
{
J1
ext

J2
ext

}
(2.29)

where J1
ext and J2

ext are given by

J1
ext =

∫
In
T1f (t) dt

J2
ext =

∫
In
T2f (t) dt

2.2.3 Stability analysis of the TDG/FEM

Let us denote the exact value of the solution at any instant tn by u(tn) and the
corresponding numerical value obtained by TDG/FEM by u−n . Let the error in u−n be
denoted by:

e(tn) := u−n − u(tn) (2.30)

To motivate the appropriate notion of stability for the ease under consideration,
let us investigate the behavior of the homogeneous form of Eq. (2.1).5 The exact
solutions of the homogeneous ODE is given by (Hughes, 2012, Chapter 8)

u (tn) = u0e−λtn (2.31)

5 Homogeneous form of Eq. (2.1) is obtained by setting f = 0, i.e.,

du

dt
+ λu = 0 t ∈ [0, T ] , u(0) = u0
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At time t = tn+1 the exact solutions can be described as,

u (tn+1) = u (tn) e−λ∆tn (2.32)

In Eq. (2.32) one should note that the exact solutions decay in time for λ > 0, and
mathematically the solutions can be characterized by:

|u (tn+1)| < |u (tn)| , λ > 0
u (tn+1) = u (tn) , λ = 0

}
(2.33)

In homogeneous case Eq. (2.29) becomes

1
2

[
1 1
−1 1

]{
u+
n

u−n+1

}
+ λ

∆tn
6

[
2 1
1 2

]{
u+
n

u−n+1

}
=
{
u−n
0

}
(2.34)

By eliminating u+
n from above equations we can get

u−n+1 = Au−n (2.35)

where,

A = 6− 2Ω
Ω2 + 4Ω + 6 (2.36)

is called the amplification factor, and Ω = λ∆tn.

For the stability of the TDG/FEM it is necessary that∣∣∣u−n+1

∣∣∣ < |u−n | , λ > 0
u−n+1 = u−n , λ = 0

 (2.37)

From the definition of A (see Eq. 2.36), second condition of Eq. (2.37) is satisfied.
The first condition is always satisfied if amplification factor satisfies the following,

|A| < 1 (2.38)

Fig. 2.4 plots the variation of amplification factor with the dimensionless time
Ω = λ∆tn, where it is evident that the TDG/FEM algorithm always satisfies the
above-mentioned condition (cf. Eq. 2.38). Thus, it is proved that the TDG/FEM is
an unconditionally stable algorithm.

2.2.4 Convergence analysis of the TDG/FEM

TDG/FEM algorithm will be called convergent if for tn fixed, u−n → u(tn) as ∆t→
0. To establish the convergence of an algorithm, two additional notion must be
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Fig. 2.4.: Amplification factor for the time-discontinuous Galerkin method for the first order
ODE with linear interpolation in time.

considered: stability and consistency. In the previous section it has been shown that
the TDG/FEM algorithm is unconditionally stable. Therefore, in this section, the
consistency of the algorithm will be proven.

Rewriting the temporally discrete model problem described by Eq. (2.35) in the
form,

u−n+1 −Au
−
n = 0 (2.39)

Replacing u−n and u−n+1 with the exact values u(tn) and u(tn+1), respectively, follow-
ing expression is obtained

u(tn+1)−Au(tn) = ∆tn · τ(tn) (2.40)

where τ(tn) is called the local truncation error.

Definition. The algorithm defined by Eq. (2.39) is called consistent if |τ(t)| 6 c∆tk,
for all t ∈ [0, T ], where c is a constant independent of ∆t, and k > 0. Moreover, k is
called the order of accuracy or rate of convergence.

To show that TDG/FEM algorithm is consistent use Taylor expansion for u(tn+1)
about tn,

u (tn+1) = u (tn) + ∆tn
dun
dt

+ ∆t2n
2

d2un
dt2

+ ∆t3n
6

d3un
dt3

+O
(
∆t2

)
(2.41)

using the homogeneous form of model equation to eliminate the time derivatives in
above equation one can get,

u (tn+1) =
(

1− Ω + Ω2

2 −
Ω3

6

)
u (tn) +O

(
∆t2

)
(2.42)
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From Eq. (2.36, 2.40, and 2.42) it follows that,

|τ(t)| 6 1
36∆t3n ∀t ∈ [0, T ] (2.43)

This completes the proof that TDG/FEM algorithm is consistent.

Remark 2.2.1. Therefore, the TDG/FEM algorithm is consistent and unconditionally
stable which also proves the convergence of the algorithm according to the Lax
equivalence theorem. 6

Remark 2.2.2. The TDG/FEM is a third order accurate algorithm for the linear
interpolation in time. Moreover, the scheme can be classified as a single-step
algorithm.

2.3 TDG/FEM for the second order ODE

Consider a mass-spring-dashpot system as depicted in Fig. 2.5. The governing
equation of motion is described by the following second order initial value problem
in time.

d2u

dt2
+ 2ζωn

du

dt
+ ω2

nu = f (t) ∀t ∈ [0, T ]

u(0) = u0

du(0)
dt

= v0

(2.44)

where u := u(t) is the unknown displacement, f(t) is the external force acting on
the system. Further, u0 and v0 are the prescribed initial values of the displacement
and velocity, respectively. Damping ratio ζ and the natural frequency of vibration
ωn of the system are related to the mass m, stiffness of the spring k, and damping
coefficient c by:

ωn =
√
k/m, ζ = c

2mωn
= c

2
√
mk

(2.45)

Further, the TDG/FEM for solving the second order ODE can be arranged into two
categories; the displacement-velocity based two-field TDG/FEM, and the single-field
TDG/FEM. These strategies are discussed in the following sections.

6 Lax equivalence theorem may be stated as consistency and stability of an algorithm are the necessary
and sufficient conditions for the convergence of an algorithm.
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Fig. 2.5.: Schematic diagram of the mass-spring-dashpot system

2.3.1 Two-field TDG/FEM

In the two-field TDG/FEM, both the displacement (u) and the velocity (v) are
independently interpolated using the piecewise polynomials. 7 The interpolation
is performed such that within a time-slab In the solutions remain continuous, and
at the end-points (i.e., tn and tn+1) the solutions are discontinuous. Accordingly,
the set {t1, t2, · · · , tN} denotes the locations in time where discontinuity in solutions
occur. Thus, the displacement and velocity are the primary unknowns in the uv-
TDG/FEM.

Therefore, the critical step in solving the second order initial value problem using
the uv-TDG/FEM involves recasting of Eq. (2.44) into a system of two first-order
ODEs. The new system is then described by

dv

dt
+ 2ζωnv + ω2

nu = f (t) ∀t ∈ [0, T ] (2.46)

du

dt
− v = 0 ∀t ∈ [0, T ] (2.47)

u(0) = u0, v(0) = v0 (2.48)

Eq. (2.46) and Eq. (2.47) represent the first order ODE, and the TDG/FEM described
in the previous section can be employed directly. However, note that these two
equations cannot be solved independently due to the coupling between displacement
and velocity.

Following the same procedure as described in the previous section (see Eq. 2.6–2.14),
the weak-form of the uv-TDG/FEM can be stated as:

7Henceforth uv-TDG/FEM will be used to denote the two-field TDG/FEM
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Weak-form. Find uh ∈ =hl and vh ∈ =hl , such that for all δuh ∈ =hl and δvh ∈ =hl ,
and for all n = 0, · · · , N − 1 Eq. (2.49) holds.

∫
In
δvh

(
dvh

dt
+ 2ζωnvh + ω2

nu
h − f (t)

)
dt+ δvh (tn)

[[
vh
]]
n

+
∫
In
δuh

(
duh

dt
− vh

)
dt+ δuh (tn)

[[
uh
]]
n

= 0
(2.49)

A careful examination of uv-TDG/FEM weak-form leads to the following remarks.

Remark 2.3.1. In the above weak-form, the presence of jump discontinuity in time
for the displacement,

[[
uh
]]
n
, and for the velocity,

[[
vh
]]
n
, correspond to the weakly

enforced initial condition for the displacement and velocity, respectively.

Remark 2.3.2. Since the selection of the test functions, δuh and δvh, are independent
from each other Eq. (2.49) can be depicted by the combination of following two
variational forms.∫

In
δvh

(
dvh

dt
+ 2ζωnvh + ω2

nu
h − f (t)

)
dt+ δvh (tn)

[[
vh
]]
n

= 0 (2.50)

∫
In
δuh

(
duh

dt
− vh

)
dt+ δuh (tn)

[[
uh
]]
n

= 0 (2.51)

From Eq. (2.51) it follows that in two-field TDG/FEM, the displacement-velocity
compatibility relationship is satisfied in weak form.

Remark 2.3.3. It is of course possible to use the different order interpolation for the
displacement and velocity in the above weak-form. Only equal order interpolations,
however, yield useful and efficient algorithms (Hulbert, 1992).

Let us now focus on the discretization of the two-field TDG weak-form. The dis-
cretization will be performed by using the locally defined p-order test and trial
functions of the form,

uh =
p+1∑
a=1

T (p)
a u(n)

a , δuh =
p+1∑
a=1

T (p)
a δu(n)

a , ∀t ∈ In (2.52)

vh =
p+1∑
a=1

T (p)
a v(n)

a , δvh =
p+1∑
a=1

T (p)
a δv(n)

a , ∀t ∈ In (2.53)
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where T (p)
a are the p-order Lagrange polynomials, and given by Eq. (2.16). Besides,

in above equation, following conventions have been used.

u
(n)
1 = u+

n , u
(n)
2 = u−n+1, v

(n)
1 = v+

n , v
(n)
2 = v−n+1

where (u+
n , u

−
n+1) and (v+

n , v
−
n+1) denote the discontinuous values of the displacement

and velocity, respectively (cf. Eq. 2.4).

Subsequently, using the test functions and trial function in the weak-form (Eq. 2.49)
to obtain the following discretized form.

δv(n)
a

[∫
In
T (p)
a

(
dT

(p)
b

dt

)
dt+ δ1aδ1b

]
v

(n)
b + δv(n)

a

[
2ζωn

∫
In
T (p)
a T

(p)
b dt

]
v

(n)
b

+ δv(n)
a

[
ω2
n

∫
In
T (p)
a T

(p)
b dt

]
u

(n)
b − δv

(n)
a

{∫
In
T (p)
a f(t)dt

}
− δv(n)

a

{
δ1av

−
n

}
δu(n)

a

[∫
In
T (p)
a

dT
(p)
b

dt
dt+ δ1aδ1b

]
u

(n)
b

− δu(n)
a

[∫
In
T (p)
a T

(p)
b dt

]
v

(n)
b − δu(n)

a

{
δ1au

−
n

}
= 0

(2.54)

Since Eq. (2.54) is true for all δu(n)
a and δv(n)

a , one can get the following system of
2p+ 2 number of algebraic equations.

[m]abv(n)
b + 2ζωn[c]abv(n)

b + ω2
n[c]abu(n)

b = {Jext}a + {Jv0 }
a (2.55)

[m]abu(n)
b − [c]abv(n)

b = {Ju0 }
a (2.56)

The matrix-vector form of Eq. (2.55) and Eq. (2.56) is given by Eq. (2.57) and Eq.
(2.58), respectively.

[m] {ṽ}+ 2ζωn [c] {ṽ}+ ω2
n [c] {ũ} = {Jext}+ {Jv0} (2.57)

[m] {ũ} − [c] {ṽ} = {Ju0} (2.58)

In Eqs. (2.55–2.58), the matrices [m], [c], and the vector {Jext} are given by Eq.
(2.24), Eq. (2.25), and Eq. (2.27), respectively. The vectors, {Jv0} (see Eq. 2.59)
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and {Ju0} (see Eq. 2.60) correspond to the initial value of the velocity (v−n ) and
displacement (u−n ), respectively.

{Jv0} := {Jv0 }
a = δ1av

−
n (2.59)

{Ju0} := {Ju0 }
a = δ1au

−
n (2.60)

Remark 2.3.4. In any time-slab In, there are p+1 unknowns for the velocity and p+1
unknowns for the displacement. Consequently, there are total 2p+ 2 unknowns to be
determined in each time-slab. These unknowns are computed by solving the system
of 2p+2 equations formed by Eq. (2.57) and Eq. (2.58). Besides, in Eq. (2.57–2.58),
the shape of all matrices and all vectors are (p+ 1)× (p+ 1) and (p+ 1)× (1).

If the displacement and the velocity are linearly interpolated in time (i.e., p = 1)
using the shape function described by Eq. (2.28) then Eq. (2.57) and Eq. (2.58)
becomes

1
2

[
1 1
−1 1

]{
v+
n

v−n+1

}
+ ζωn

∆t
3

[
2 1
1 2

]{
v+
n

v−n+1

}

+ω2
n

∆t
6

[
2 1
1 2

]{
u+
n

u−n+1

}
=
{
v−n
0

}
+
{
J1
ext

J2
ext

} (2.61)

1
2

[
1 1
−1 1

]{
u+
n

u−n+1

}
− ∆tn

6

[
2 1
1 2

]{
v+
n

v−n+1

}
=
{
u−n
0

}
(2.62)

In Eq. (2.61), the expressions for J1
ext and J2

ext are identical to those given in Eq.
(2.29).

2.3.2 Displacement based single-field TDG/FEM

In the displacement based single-field TDG/FEM (u-TDG/FEM) only displacement is
interpolated using the piecewise polynomials. The displacement remains continuous
within a time-slab In. However, at the end-points (i.e., tn and tn+1) displacement
takes two different values, for example, u+

n and u−n at tn. In addition, the velocity
is obtained by taking the time derivative of the displacement. Thus, the velocity-
displacement compatibility relationship is naturally satisfied, and Eq. (2.47) is no
longer required to be solved. However, note that both displacement and velocity still
remain discontinuous in time.
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The weak form of the displacement based single-field TDG/FEM, which is described
below (see Eq. 2.63), is obtained by considering the second order ODE (cf. Eq.
2.44).

Weak-form. u-TDG/FEM: Find uh ∈ =hl such that for all δuh ∈ =hl , and for all
n = 0, · · · , N − 1 Eq. (2.63) holds.

∫
In

dδuh

dt

(
d2uh

dt2
+ 2ζωn

duh

dt
+ ω2

nu
h − f(t)

)
dt

+dδuh(tn)
dt

[[
duh

dt

]]
n

+ δuh(tn)ω2
n

[[
uh
]]
n

= 0
(2.63)

The above weak form is obtained by using the following intermediate results

∫
In

dδuh

dt

d2uh

dt2
dt =

∫
In

dδuh

dt

d2uh

dt2
dt+

[
dδuh

dt

((
du

dt

)∗
− duh

dt

)]tn+1

tn

(2.64)

∫
In

dδuh

dt
ω2
nu

hdt =
∫
In

dδuh

dt
ω2
nu

hdt+
[
δuhω2

n

(
u∗ − uh

)]tn+1

tn
(2.65)

These intermediate results are obtained by following the procedure described in
Eq. (2.7–2.9). Further, in above equations, u∗ and

(
du
dt

)∗
denote the unique repre-

sentative value of displacement and its first time derivative at the end points of In
(here, recall that at tn and tn+1 both displacement and its first time derivative are
discontinuous). Furthermore, by adopting the definition of representative values,
which is provided in Eq. (2.10), Eq. (2.64) and Eq. (2.65) transform into

∫
In

dδuh

dt

d2uh

dt2
dt =

∫
In

dδuh

dt

d2uh

dt2
dt+ dδuh (tn)

dt

[[
duh

dt

]]
n

(2.66)

∫
In

dδuh

dt
ω2
nu

hdt =
∫
In

dδuh

dt
ω2
nu

hdt+ δuh(tn)ω2
n

[[
uh
]]
n

(2.67)

Let us now focus on the discretization of the u-TDG/FEM weak-form given in Eq.
(2.63). Here, for the sake of clarity, the discretization will be performed by using the
locally defined quadratic test and trial functions of the form

uh = u
(n)
1 T1 + u

(n)
2 T2 + u

(n)
3 T3, δuh = δu

(n)
1 T1 + δu

(n)
2 T2 + δu

(n)
3 T3 (2.68)

where, T1, T2, and T3 are the quadratic shape functions described as follows.

T1 = 1
2
(
θ2 − θ

)
, T2 = 1

2
(
θ2 + θ

)
, T3 = 1− θ2 (2.69)
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In this case, the time derivatives of the test function and trial functions are given by
following expressions.

duh

dt
= 2

∆tn

{1
2 (2θ − 1)u(n)

1 + 1
2 (2θ + 1)u(n)

2 − 2θu(n)
3

}
(2.70)

d2uh

dt2
= 4

∆t2n

{
u

(n)
1 + u

(n)
2 − 2u(n)

3

}
(2.71)

dδuh

dt
= 2

∆tn

{1
2 (2θ − 1) δu(n)

1 + 1
2 (2θ + 1) δu(n)

2 − 2θδu(n)
3

}
(2.72)

duh (tn)
dt

= 2
∆tn

{
−3

2u
(n)
1 − 1

2u
(n)
2 + 2u(n)

3

}
(2.73)

dδuh (tn)
dt

= 2
∆tn

{
−3

2δu
(n)
1 − 1

2δu
(n)
2 + 2δu(n)

3

}
(2.74)

Subsequently, using the above expressions in the u-TDG/FEM weak-form following
system of linear equation can be obtained.

1
∆t2n


5 −1 −4
7 5 −12
−12 −4 16



u

(n)
1
u

(n)
2
u

(n)
3

+ 2ζωn
3∆tn


7 1 −8
1 7 −8
−8 −8 16



u

(n)
1
u

(n)
2
u

(n)
3


+ω2

n

6


3 1 −4
−1 3 4
4 −4 0



u

(n)
1
u

(n)
2
u

(n)
3

 = 1
∆tn


−3v−n
−v−n
4v−n

+


ω2
nu
−
n

0
0

+


J1
ext

J2
ext

J3
ext


(2.75)

where u(n)
1 := u+

n , u(n)
2 := u−n+1, and

J1
ext =

∫ +1

−1

(2θ − 1
2

)
f(t)dθ

J2
ext =

∫ +1

−1

(2θ + 1
2

)
f(t)dθ

J3
ext =

∫ +1

−1
(−2θ) f(t)dθ

(2.76)
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Remark 2.3.5. In the case of u-TDG/FEM, the order of interpolation for the displace-
ment should be at-least two (i.e., p = 2). This requirement is due to the presence of
second order time derivative in the weak-form (see Eq. 2.63).

Remark 2.3.6. In case of quadratic interpolation, there are total three unknowns,
u

(n)
a for a = 1, 2, 3, to be determined in each time-slab In. Besides, the number of

unknowns in case of the u-TDG/FEM is less than that of uv-TDG/FEM.

2.3.3 Velocity based single-field TDG/FEM

From the displacement based single-field TDG/FEM it follows that the number
of unknowns may be decreased by explicitly satisfying the displacement-velocity
compatibility condition (cf. Eq. 2.47). In the u-TDG/FEM, however, the requirement
of at-least quadratic time interpolation of the displacement implies that minimum
three unknowns should be determined for each time-slab In. One of the objectives
of this thesis is to further decrease the number of unknowns in a given time-slab. To
achieve this goal a velocity based single-field TDG/FEM (henceforth, v-TDG/FEM) is
developed.

The key idea behind the v-TDG/FEM is to treat the velocity as the only primary
unknown. In In, the velocity is interpolated using the Lagrange polynomials of
degree p; the velocity remains continuous in In, but discontinuity occurs at the end-
points tn, tn+1. Further, a consistent time-integration of the velocity is performed
as post-processing step to compute the displacement. Thus, the displacement-
velocity compatibility relationship is naturally satisfied, and Eq. (2.47) is no longer
required to be solved. Regarding the v-TDG/FEM, it is worth mentioning that the
displacement remains continuous throughout the time domain [0, T ], whereas in the
uv-TDG/FEM and u-TDG/FEM displacement is discontinuous at the discrete times
{t0, t1, · · · , tN}.

The weak form of the v-TDG/FEM, which is described below (see Eq. 2.77), is
obtained by considering the first order ODE given by Eq. (2.46).

Weak-form. Find vh ∈ =hl such that for all δvh ∈ =hl , and for all n = 0, · · · , N − 1
Eq. (2.77) holds.

∫
In
δvh

(
dvh

dt
+ 2ζωnvh + ω2

nu
h − f(t)

)
dt+ δvh(tn)

[[
vh
]]
n

= 0 (2.77)

In the above weak-form displacement is computed by using the following relationship.

uh(t) = u(tn) +
∫ t

tn
vh(τ)dτ (2.78)
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Similar to the previous sections, discretization of the v-TDG/FEM weak-form can be
performed by employing the locally defined p-order test and trial functions for the
velocity.

vh =
p+1∑
a=1

T (p)
a v(n)

a δvh =
p+1∑
a=1

T (p)
a δv(n)

a (2.79)

where T (p)
a are the p-order Lagrange polynomials (see Eq. 2.16), and v

(n)
1 = v+

n ,
v

(n)
2 = v−n+1.

Consequently, the discrete form of the displacement-velocity compatibility relation-
ship, which is described below, can be obtained by using the above-mentioned trial
functions for the velocity in the Eq. (2.78).

uh(t) = uh(tn) +
p+1∑
a=1

T̃ (p)
a v(n)

a (2.80)

where
T̃ (p)
a = ∆tn

2

∫ +1

−1
T (p)
a dθ (2.81)

are p+ 1 order locally defined polynomials.

Remark 2.3.7. In Eq. (2.80), by the virtue of time integration of the p-order Lagrange
polynomials, the displacement are described by the p + 1-order local piecewise
polynomials. In addition, Eq. (2.80) is equivalent to the following form.

uh(t) =
p+2∑
a=1

T (p+1)
a u(n)

a (2.82)

where T (p+1)
a are the p+ 1 order Lagrange polynomials given by Eq. (2.16). Besides,

u
(n)
1 = un and u(n)

2 = un+1 are the continuous value of the displacement at time tn
and tn+1, respectively.

After using Eq. (2.79) and Eq. (2.80) in the v-TDG/FEM weak-form described by Eq.
(2.77) one can obtain the following discrete form.

δv(n)
a

[∫
In
T (p)
a

dT
(p)
b

dt
dt+ δ1aδ1b

]
v

(n)
b + δv(n)

a

[
2ζωn

∫
In
T (p)
a T

(p)
b dt

]
v

(n)
b

+δv(n)
a

[
ω2
n

∫
In
T (p)
a T̃

(p)
b dt

]
v

(n)
b + δv(n)

a

{∫
In
T (p)
a dt

}
ω2
nun

−δv(n)
a

{∫
In
T (p)
a f(t)dt

}
− δv(n)

a

{
δ1av

−
n

}
= 0

(2.83)
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Subsequently, using the fact that Eq. (2.83) is true for all δv(n)
a following system

p+ 1 algebraic equations in p+ 1 unknowns can be obtained.

[m]abv(n)
b + 2ζωn[c]abv(n)

b + ω2
n[k]abv(n)

b = {Jext}a − {Ju0 }
a + {Jv0 }

a (2.84)

The matrix-vector form of above equation is described by

[m] {ṽ}+ 2ζωn [c] {ṽ}+ ω2
n [k] {ṽ} = {Jext} − {Ju0}+ {Jv0} (2.85)

where the matrices [m], [c], and the vector {Jext} are given by Eq. (2.24), Eq. (2.25),
and Eq. (2.27), respectively. The expression for the [k] matrix is given below.

[k] := [k]ab =
∫
In
T (p)
a T̃

(p)
b dt (2.86)

Furthermore, in Eq. (2.85), the element vectors, {Jv0} and {Ju0} correspond to the
initial value of velocity (v−n ) and displacement (un), respectively. The expressions
for these vectors are presented as follows.

{Jv0} := {Jv0 }
a = δ1av

−
n (2.87)

{Ju0} := {Ju0 }
a = ω2

nun

∫
In
T (p)
a dt (2.88)

Let us now consider the special case when velocity is linearly interpolated in time by
using the trial functions of the form

vh(t) = T1v
+
n + T2v

−
n+1 (2.89)

where T1 and T2 are linear shape functions which are given in Eq. (2.28). Accord-
ingly, Eq. (2.80) transforms into

uh(t) = un + v+
n T̃1 + v−n+1T̃2 (2.90)

in which,

T̃1 = ∆tn
2 (1− T 2

1 ), T̃2 = ∆tn
2 T 2

2 (2.91)
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are the quadratic polynomials. Accordingly, Eq. (2.85) now reads,

1
2

[
1 1
−1 1

]{
v−n
v+
n+1

}
+ 2ζωn∆tn

6

[
2 1
1 2

]{
v−n
v+
n+1

}

+ω2
n∆t2n
24

[
3 1
5 3

]{
v−n
v+
n+1

}
=
{
J1
ext

J2
ext

}
− ω2

n∆tnun
2

{
1
1

}
+
{
v−n
0

} (2.92)

2.4 Numerical analysis of the TDG/FEM for the
second order ODE

In this section, numerical analysis of the TDG/FEM schemes, viz. uv-TDG/FEM, u-
TDG/FEM, and v-TDG/FEM, for the second order ODE in time will be performed. To
assess the stability characteristics and temporal accuracy of the TDG/FEM schemes
classical finite difference techniques will be used Hughes, 2012, Chapter 9. In this
context, it is sufficient to consider the following homogeneous and undamped form
of Eq. (2.44):

d2u

dt2
+ ω2

nu = 0, u(0) = u(0), du(0)
dt

= v0, t ∈ [0, T ] (2.93)

2.4.1 Total energy decay characteristics of TDG/FEM

TDG/FEM schemes can be classified as the true energy-decaying scheme. The
purpose of this section is to elucidate this concept. Let us return to Eq. (2.93)
which represent the governing equation of a spring-mass system. Since the damping
and external forces are absent in such system, the total energy (kinetic energy plus
potential energy) of the system remains constant. 8

TE (u, v) := 1
2v

2 + 1
2ω

2
nu

2 = constant (2.94)

8 To prove that total energy of the spring-mass system is constant, multiply Eq. (2.93) with velocity
v = du

dt
,

v
dv

dt
+ ω2

nu
du

dt
= 0

then
d

dt

(1
2v

2
)

+ d

dt

(1
2ω

2
nu

2
)

= 0

or
d

dt

(1
2v

2 + 1
2ω

2
nu

2
)

= 0

therefore,
1
2v

2 + 1
2ω

2
nu

2 = constant
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where the first term denotes the kinetic energy per unit mass, and second term
denotes the potential energy per unit mass. In addition ω2

n = k/m (see also Eq.
2.45).

Consider the time domain [0, T ] and corresponding N time-slabs; In := (tn, tn+1) for
n = 0, 1 · · · , N − 1. Let the displacement and velocity at time t0 = 0 be given by

u+
0 = u−0 = u0,

and
v+

0 = v−0 = v0,

respectively. Furthermore, the displacement and velocity at time tN = T be denoted
by u−N and u−N , respectively.

Proposition 2.4.1. The uv-TDG/FEM is an energy decaying time integration algorithm,
in which the total energy at the end of time interval, TE(u−N , v

−
N ), is always bounded

from above by the total energy at the beginning of the time interval (i.e., TE(u0, v0)).

TE(u−N , v
−
N ) ≤ TE(u0, v0) (2.95)

Proof. To prove the above proposition (Eq. 2.95) use δvh = vh and δuh = ω2
nu

h in
the uv-TDG/FEM weak-form, which is given by Eq. (2.49), with ζ = 0 and f = 0.

∫
In
vh
dvh

dt
dt+

∫
In
vhω2

nu
hdt+ v+

n

(
v+
n − v−n

)
+
∫
In
ω2
nu

hdu
h

dt
dt

−
∫
In
ω2
nu

hvhdt+ ω2
nu

+
n

(
u+
n − u−n

)
= 0

⇒
∫
In

d

dt

[1
2
(
vh
)2

+ 1
2ω

2
n

(
uh
)2
]
dt+

(
v+
n

)2
− v+

n v
−
n + ω2

n

(
u+
n

)2
− ω2

nu
+
n u
−
n = 0

⇒ 1
2
(
v−n+1

)2
+ 1

2ω
2
n

(
u−n+1

)2
+ 1

2
(
v+
n

)2
+ 1

2ω
2
n

(
u+
n

)2
− v+

n v
−
n − ω2

nu
+
n u
−
n = 0

⇒ 1
2

N−1∑
n=0

[(
v−n+1

)2
+
(
v+
n

)2
− 2v+

n v
−
n

]
+ 1

2ω
2
n

N−1∑
n=0

[(
u−n+1

)2
+
(
u+
n

)2
− 2u+

n u
−
n

]
= 0

⇒ 1
2

N−1∑
n=0

[(
v−n
)2 +

(
v+
n

)2
− 2v+

n v
−
n

]
+ 1

2ω
2
n

N−1∑
n=0

[(
u−n
)2 +

(
u+
n

)2
− 2u+

n u
−
n

]
+ 1

2ω
2
n

(
u−N

)2
+ 1

2
(
v−N

)2
− 1

2ω
2
n(u0)2 − 1

2(v0)2 = 0

⇒ 1
2

N−1∑
n=0

[[
vh
]]2
n

+ 1
2ω

2
n

N−1∑
n=0

[[
uh
]]2
n

+ TE
(
u−N , v

−
N

)
− TE (u0, v0) = 0

⇒ TE
(
u−N , v

−
N

)
= TE (u0, v0)− 1

2

N−1∑
n=0

[[
vh
]]2
n
− 1

2ω
2
n

N−1∑
n=0

[[
uh
]]2
n

⇒ TE
(
u−N , v

−
N

)
6 TE (u0, v0)
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The last step in above proof follows from the fact that

1
2

N−1∑
n=0

[[
vh
]]2
n

+ 1
2ω

2
n

N−1∑
n=0

[[
uh
]]2
n
> 0 (2.96)

where the first term on the left hand side represents the kinetic energy per unit mass
due to the discontinuity jump in the velocity, and the second term on the left hand
side denotes the potential energy per unit mass due to the discontinuity jump in the
displacement.

Proposition 2.4.2. The u-TDG/FEM is an energy decaying time integration algorithm
with

TE(u−N , v
−
N ) ≤ TE(u0, v0)

Proof. To prove the above proposition take δuh = uh and

vh = duh

dt

in the u-TDG/FEM weak-form, which is give by Eq. (2.63), with ζ = 0, and f = 0.

∫
In
vh
dvh

dt
dt+

∫
In
ω2
nu

hdu
h

dt
dt+ v+

n

(
v+
n − v−n

)
+ ω2

nu
+
n

(
u+
n − u−n

)
= 0

Noting that the above equation is identical to Eq. (2.96) completes the proof.

Proposition 2.4.3. The v-TDG/FEM is an energy decaying time integration algorithm
with

TE(uN , v−N ) ≤ TE(u0, v0)

Proof. To prove the above proposition consider δvh = vh and

vh = duh

dt

in the v-TDG/FEM weak-form, which is given by Eq. (2.77), with ζ = 0 and f = 0.

∫
In
vh
dvh

dt
dt+ +

∫
In
ω2
nu

hdu
h

dt
dt+

(
v+
n

)2
− v+

n v
−
n = 0
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⇒
∫
In

d

dt

[1
2
(
vh
)2

+ 1
2ω

2
n

(
uh
)2
]
dt+

(
v+
n

)2
− v+

n v
−
n = 0

⇒ 1
2
(
v−n+1

)2
− 1

2
(
v+
n

)2
+ 1

2ω
2
n(un+1)2 − 1

2ω
2
n(un)2 +

(
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)2
− v+

n v
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n = 0
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[(
v−n+1

)2
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(
v+
n

)2
− 2v+

n v
−
n

]
+ 1

2ω
2
n

∑[
(un+1)2 − (un)2

]
= 0

⇒ 1
2

N−1∑
n=0

[[
vh
]]2
n

+ 1
2
(
v−N

)2
− 1

2(v0)2 + 1
2ω

2
n(uN )2 − 1

2ω
2
n(u0)2 = 0

⇒ TE
(
uN , v

−
N

)
= TE (u0, v0)− 1

2

N−1∑
n=0

[[
vh
]]2
n

⇒ TE
(
uN , v

−
N

)
6 TE (u0, v0)

To assess the energy dissipation characteristics of the time-discontinuous Galerkin
schemes, the spring-mass problem (see Eq. (2.93)) is solved by using the TDG/FEMs
with ωn = 2π, u0 = 0, and v0 = 1.0m/s. The undamped time period T0 of the
sinusoidal motion is 1.0 second, and the total time duration is taken as T = 50
seconds. Fig. 2.7 plots the time history graphs of the normalized total energy 9

computed by using the TDG schemes with different time-step sizes. As anticipated,
the energy dissipation in the case of uv-TDG/FEM is relatively higher than the other
two schemes. In addition, the energy decay characteristics of the u-TDG/FEM and
v-TDG/FEM are identical to each other. Furthermore, the dissipation of energy
decreases as the time-step size decreases (see also Fig. 2.6) which indicates that the
jump discontinuity in time decreases with time-step size. In fact, the subsequent
sections will demonstrate that the jump discontinuity in time decreases with time-
step size.

The effect of energy-dissipation can be visualized from the displacement-velocity
phase diagram. For the present problem, the displacement-velocity relationship can
be obtained by using the fact that the total energy of the spring-mass sysmstem is
conserved.

1
2v

2 + 1
2ω

2
nu

2 = TE0

In the u− v coordinate plane this equation represents an ellipse. The presence of
energy dissipation in the numerical algorithm, however, decreases the total energy
which in the turn decreases the radii of the ellipse. The phase diagrams for uv-

9 Normalized total energy at any time t is defined by total energy at time t divided by initial total
energy, i.e.,

Normalized total energy = TE(u, v)
TE(u0, v0)
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Fig. 2.6.: Spring-mass system – Time history of the normalized total energy obtained by
using the v-TDG/FEM.

TDG/FEM, u-TDG/FEM, and v-TDG/FEM are given in Fig. 2.8, Fig. 2.9, and Fig.
2.10, respectively.
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Fig. 2.7.: Spring-mass system – Time history graphs of the normalized total energy obtained
by using different TDG schemes.
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Fig. 2.8.: Spring-mass system – Phase diagram obtained by using the uv-TDG/FEM with
different time-step size.
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Fig. 2.9.: Spring-mass system – Phase diagram obtained by using the u-TDG/FEM with
different time-step size.
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Fig. 2.10.: Spring-mass system – Phase diagram obtained by using the v-TDG/FEM with
different time-step size.
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2.4.2 Stability of TDG/FEM

To solve Eq. (2.93) by using the uv-TDG/FEM first order test and trial functions
for both displacement and velocity have been used. In this way, the matrix-vector
form, which is described below, can be obtained by setting ζ = 0 and f(t) = 0 in Eq.
(2.61).

1
2

[
1 1
−1 1

]{
v+
n ∆tn

v−n+1∆tn

}
+ Ω2

6

[
2 1
1 2

]{
u+
n

u−n+1

}
=
{
v−n ∆tn

0

}
(2.97)

1
2

[
1 1
−1 1

]{
u+
n

u−n+1

}
− 1

6

[
2 1
1 2

]{
v+
n ∆tn

v−n+1∆tn

}
=
{
u−n
0

}
(2.98)

By eliminating v+
n and u+

n from Eq. (2.97) and Eq. (2.98), two linear equations
in v−n+1 and u−n+1 can be obtained. These equations are described by the following
compact form. {

u−n+1
v−n+1∆tn

}
= A (Ω)

{
u−n

v−n ∆tn

}
(2.99)

In above equation, A (Ω) ∈ R2×2 is called the amplification matrix, and it depends
upon Ω = ωn∆tn (see Eq. 2.100).

A (Ω) =
[ −14Ω2+36

Ω4+4Ω2+36
−2Ω2+36

Ω4+4Ω2+36
2Ω4−36Ω2

Ω4+4Ω2+36
−14Ω2+36

Ω4+4Ω2+36

]
(2.100)

Further, to solve Eq. (2.93) by using the u-TDG/FEM quadratic test and trial functions
for the displacement have been used. In this way, the matrix-vector form, which is
described below, can be obtained by setting ζ = 0 and f(t) = 0 in Eq. (2.75).

5 −1 −4
7 5 −12
−12 −4 16



u

(n)
1
u

(n)
2
u

(n)
3

+ Ω2

6


3 1 −4
−1 3 4
4 −4 0



u

(n)
1
u

(n)
2
u

(n)
3


=


−3v−n ∆tn
−v−n ∆tn
4v−n ∆tn

+


Ω2u−n

0
0


(2.101)

Once again, it will be advantageous to recast the above system in the form given
by Eq. (2.99). In the case of v-TDG/FEM the amplification matrix is given by Eq.
(2.102)

A (Ω) =
[ Ω4−30Ω2+72

Ω4+6Ω2+72
−6Ω2+72

Ω4+6Ω2+72
6Ω4−72x2

Ω4+6Ω2+72
−30Ω2+72

Ω4+6Ω2+72

]
(2.102)
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Finally, to solve Eq. (2.93) by using the v-TDG/FEM linear test and trial functions for
the velocity have been used. In this way, the matrix-vector form, which is described
below, can be obtained by setting ζ = 0 and f(t) = 0 in Eq. (2.92).

1
2

[
1 1
−1 1

]{
v−n ∆tn
v+
n+1∆tn

}
+ Ω2

24

[
3 1
5 3

]{
v−n ∆tn
v+
n+1∆tn

}

=
{
v−n ∆tn

0

}
−
{ Ω2un

2
Ω2un

2

} (2.103)

By eliminating v+
n from Eq. (2.103) following system of two linear equations in v−n+1

and un+1 can be obtained.{
un+1

v−n+1∆tn

}
= A (Ω)

{
un

v−n ∆tn

}
(2.104)

In above equation the amplification matrix is given by following expression.

A (Ω) =
[ Ω4−30Ω2+72

Ω4+6Ω2+72
−6Ω2+72

Ω4+6Ω2+72
6Ω4−72Ω2

Ω4+6Ω2+72
−30Ω2+72

Ω4+6Ω2+72

]
(2.105)

Remark 2.4.1. It is worthwhile to mention that the amplification matrix for the
u-TDG/FEM and the v-TDG/FEM are identical (cf. Eq. 2.102 and Eq. 2.105).
Therefore, the stability and accuracy characteristics of these two methods will be
identical, and henceforth only the case of the v-TDG/FEM and uv-TDG/FEM will be
discussed.

The stability of the TDG schemes is determined by the spectral properties of the
amplification matrix. Let λ1(A) and λ2(A) be the eigenvalues of the amplification
matrix. Accordingly, it can be shown that

λ1,2(A) = a1 ±
√
a2

1 − a2 (2.106)

where

a1 = 1
2 (A11 +A22) , a2 = A11A22 −A12A21 (2.107)

The modulus of λi(A) is given by

|λi| =
√
λiλi

∗ no sum for index i,

where λi∗ denotes the complex conjugate of λi. Then the spectral radius of amplifi-
cation matrix is defined as

ρ (A) = max
i=1,2

|λi (A)| (2.108)
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uv-TDG/FEM v-TDG/FEM

a1
−14Ω2+36

Ω4+4Ω2+36
Ω4−60Ω2+144
2Ω4+12Ω2+144

a2
4Ω2+36

Ω4+4Ω2+36
6Ω2+72

Ω4+6Ω2+72

lim
Ω→0

ρ (A) 1 1

lim
Ω→∞

ρ (A) 0 1

Tab. 2.1.: Amplification matrix parameters; a1 and a2 for the uv-TDG/FEM and v-TDG/FEM.

Accordingly, for the spectral stability of the TDG/FEM following conditions will be
required Hughes, 2012, Chapter 9

(i) ρ(A) ≤ 1

(ii) Eigenvalues of A of multiplicity greater than one are strictly less than one in
modulus.

From Eq. (2.106), Eq. (2.107), and Table 2.1 it is easy to demonstrate that both uv-
TDG/FEM and v-TDG/FEM satisfy the above-mentioned spectral stability conditions.
Therefore, TDG/FEM schemes are unconditionally stable time-marching schemes.

Alternatively, for a 2× 2 amplification matrix, the spectral stability can be examined
by using the technique originally developed by the Hilber Hughes, 1983, for deriva-
tion. Hilber technique for the stability of the algorithm is specified in terms of the
invariants of amplification matrix; a1 and a2. The stability region in a1 − a2 space
satisfies (see also Fig. 2.11)

−(a2 + 1)
2 6 a1 6

(a2 + 1)
2 , −1 6 a2 < 1 (2.109)

−1 < a1 < 1, a2 = 1 (2.110)

Fig. 2.11a and Fig. 2.11b depict the stability region corresponding to Eq. 2.109 and
Eq. (2.110), respectively.

Lastly, the a1, a2 trajectories for the uv-TDG/FEM and v-TDG/FEM are plotted in
Fig. 2.12. It can be observed that the a1 and a2 for the TDG/FEM are located
inside the Hilber stability region, therefore, proving the unconditional stability of
the uv-TDG/FEM and v-TDG/FEM.
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Fig. 2.11.: Spectral stability region for a 2× 2 amplification matrix.
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Fig. 2.12.: a1,a2 trajectories for the uv-TDG/FEM and v-TDG/FEM.
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2.4.3 High-frequency response of TDG/FEM

Spectral radius plots are useful to observe the dissipative properties of an algo-
rithm over the entire frequency domain (Hulbert, 1992). Moreover, High-frequency
response of the spectral radius ρ(A) provides the informations regarding the numer-
ical stability and numerical dissipation of the spurious high-frequency components
Hughes, 1983; Hughes, 2012. Fig. 2.13a depicts the frequency responses of the spec-
tral radius for the uv-TDG/FEM and v-TDG/FEM. Furthermore, in Fig. 2.13b spectral
radius of TDG schemes are plotted along with the semi-discrete algorithms. 10 Once
again it can be observed that v-TDG/FEM and uv-TDG/FEM are unconditionally
stable algorithms as ρ ≤ 1.

For uv-TDG/FEM, spectral radius in the high-frequency regime (i.e., ρ∞ := lim
Ω→∞

ρ),
reaches to zero, consequently, the algorithm can dissipate the spurious high-frequency
response. The v-TDG/FEM, however, cannot attenuate such spurious high-frequency
contents since ρ∞ = 1 (see Fig. 2.13). The spectral radius for the v-TDG/FEM is
lower than that of uv-TDG/FEM, therefore, the former has lower numerical dissi-
pation than the latter. Furthermore, in lower frequency regime the spectral radius
for both TDG schemes is close to one implying negligible attenuation of the small
frequency content. Lastly, the points Ω ≈ π and Ω ≈ 3.4π, at which spectral radius
for the v-TDG/FEM attains its minimum value, mark the bifurcation of complex
conjugate eigenvalues into distinct real eigenvalues (see Fig. 2.13a).
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Fig. 2.13.: Frequency response of spectral radius ρ: (a) uv-TDG/FEM and v-TDG/FEM, and
(b) comparison of spectral radii for TDG schemes with the semi-discrete algorithms.

10 The term semi-discrete algorithms is used for collectively referencing the second order accurate
implicit time-stepping algorithms viz., the trapezoidal rule (Newmark method with γ = 0.5 and
β = 0.25), the Wilson-θ method with θ = 1.4 Bathe and Wilson, 1976, the HHT-α method with
α = −0.3 Hilber et al., 1977, and Houbolt’s method Houbolt, 1950. For details about these
semi-discrete algorithms see Hughes, 1983; Hughes, 2012.
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2.4.4 Accuracy of TDG/FEM

It can be shown that Eq. (2.99) and Eq. (2.104) satisfy the finite difference stencile
described by Eq. (2.111) and Eq. (2.112), respectively.

u−n+1 − 2a1u
−
n + a2u

−
n−1 = 0, v−n+1 − 2a1v

−
n + a2v

−
n−1 = 0 (2.111)

un+1 − 2a1un + a2un−1 = 0, v−n+1 − 2a1v
−
n + a2v

−
n−1 = 0 (2.112)

Let u(t) and v(t) be the exact solutions for the displacement and velocity, respectively.
Then the local truncation error τ(t) corresponding to Eq. (2.111a) and Eq. (2.112a)
at any time t becomes (Hulbert, 1992)

u(t+ ∆t)− 2a1u(t) + a2u(t−∆t) = ∆t2τ (t) (2.113)

Subsequently, by expanding u(t+ ∆t) and u(t−∆t) about t using the Taylor series,
and then using Eq. (2.93) 11, it can be shown that both uv-TDG/FEM and v-TDG/FEM
schemes are consistent, i.e.,

|τ (t)| 6 c∆t3 (2.114)

with error coefficients c = 1/36 and c = 1/72 for the uv-TDG/FEM and the v-
TDG/FEM, respectively. Furthermore, Eq. (2.114) proves that both TDG schemes
are third order accurate in time.

Since uv-TDG/FEM and v-TDG/FEM are both consistent and stable one can use
the Lax equivalence theorem to prove the convergence of the algorithms. A direct
consequence of the convergence is that there exists an Ωc > 0 such that if 0 < Ω < Ωc,
then the eigenvalues of amplification matrix are complex, i.e., a2

1 − a2 < 0 in Eq.
(2.106), and the solution of Eq. (2.93) can be written as follows (Hughes, 1983):

un = exp
(
− ζ̄ Ω̄tn

∆t

)[
k1 cos

(
Ω̄tn
∆t

)
+ k2 sin

(
Ω̄tn
∆t

)]
(2.115)

with

Ω̄ = arctan


√
a2 − a2

1

a1

 (2.116)

ζ̄ = − 1
2Ω̄

ln (a2) (2.117)

11 Eq. (2.93) is given by following
d2u

dt2
+ ω2

n = 0
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here, ζ̄ denotes the algorithmic damping ratio, Ω̄ is the frequency of the discrete
solutions, and the coefficients k1 and k2 are determined by the displacement and
velocity initial conditions. The relationship between the discrete frequency Ω̄ and
discrete time period T̄ is given by

Ω̄
2π = ∆t

T̄
(2.118)

u

+1

-1

T/2

2πζ ≅ ADAD = Amplitude Decay

T T

Fig. 2.14.: Illustration of the accuracy measures

Further, the numerical accuracy of a time-integration algorithm is usually measured
in the lower frequency regime. Therefore, it is appropriate to use the algorithmic
damping ratio ζ̄ and the relative frequency error (Ω − Ω̄)/Ω̄ as the measures of
numerical dissipation and dispersion, respectively.

Numerical dissipation is the measure of amplitude decay in each cycle, while numer-
ical dispersion measures the relative change in the time period of the wave (see Fig.
2.14). Thus, the numerical algorithms designed for long-term dynamic simulations
should have little numerical dissipation and dispersion. Moreover, it is important
to note that both numerical dissipation and dispersion are computed from complex
eigenvalues λ1,2((A)), thus, they are meaningful for the small frequency range of
0 < Ω < Ωc.

The behavior of relative frequency error for the uv-TDG/FEM, v-TDG/FEM and
semi-discrete algorithms in low frequency domain is presented in Fig. 2.15. It is
remarkable that the TDG schemes have very less relative frequency error compare
to the semi-discrete algorithms which can be attributed to the third order accuracy
of these schemes. Furthermore, relative frequency error for the v-TDG/FEM is
significantly smaller than the error in uv-TDG/FEM.

Fig. 2.16 depicts the behavior of algorithm damping ratio for the uv-TDG/FEM,
v-TDG/FEM and semi-discrete algorithms. The algorithmic damping for v-TDG/FEM
is comparable with the HHT-α scheme, however, it is significantly smaller than the
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Fig. 2.15.: Relative frequency error in the low frequency domain: (a) uv-TDG/FEM and
v-TDG/FEM, and (b) comparison of the relative frequency error for the TDG schemes with
the semi-discrete algorithms.

uv-TDG/FEM. It is evident that the Houbolt and Wilson-θ methods are too dissipative
in the low-frequency range, therefore, these algorithms are not suitable for the
long-duration numerical simulations.

(a) (b)
0.0 0.1 0.2 0.3 0.4

0.00

0.02

0.04

0.06

0.08

0.10

v-TDG/FEM

Ω /2π

uv-TDG/FEM

A
lg
or
ith
m
ic
da
m
pi
ng

ra
tio

0.0 0.1 0.2 0.3 0.4
0.00

0.02

0.04

0.06

0.08

0.10

v-TDG/FEM

Ω /2π

Houbolt

Wilson(θ = 1.4)

uv-TDG/FEM

Trapezoidal Rule

A
lg
or
ith
m
ic
da
m
pi
ng

ra
tio

HHT(α = −0.3)

Fig. 2.16.: Algorithmic damping ratio in the low frequency domain: (a) uv-TDG/FEM and
v-TDG/FEM, and (b) comparison of the algorithmic damping ratio for the TDG schemes with
the semi-discrete algorithms.

Remark 2.4.2. The characteristics of the proposed v-TDG/FEM, such as very low nu-
merical dispersion and dissipation, third-order accuracy, and unconditional stability,
make v-TDG/FEM scheme suitable for long-time simulations. However, at present
the only possible drawback to the v-TDG/FEM is its incapability to attenuate the
spurious high-frequency components.

2.5 Continuum theory of elastodynamics

Let Ω ⊂ Rnsd be an open and bounded region occupied by an elastic body at time t,
where nsd is the number of spatial dimensions. The boundary of Ω is denoted by Γ.
Let Ω̄ = Ω ∪ Γ denote the closure of Ω. Further, let indices i, j, k and l take values
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from 1, · · · , nsd, and the Einstein summation convention applies to the repeated
indices i, j, k, and l only. Furthermore, consider the nonoverlapping partitions, Γgi
and Γhi , of the boundary Γ such that

Γ = Γgi ∪ Γhi , Γgi ∩ Γhi = φ, i = 1, · · · , nsd

The displacement, velocity, and stress field are denoted by u, mathbfv, and σ,
respectively. The infinitesimal strain tensor, ε, and stretching tensor, d, are given
by

ε := e (u) = 1
2 (u⊗∇x) + 1

2 (∇x ⊗ u) , εij = eij (u) = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(2.119)

d := e (v) = 1
2 (v⊗∇x) + 1

2 (∇x ⊗ v) , dij = eij (v) = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
(2.120)

in which εij , dij , ui and vi denote the Cartesian components of ε, d, u, and v,
respectively.

In the small strain framework, the linear elastic constitutive relationship is described
as,

σ̇ij = Cijkldkl, σij = Cijklεkl (2.121)

where σ̇ij denotes the first-order time derivative of the stress field, and Cijkl is the
fourth-order elasticity tensor. In the case of an isotropic material, the elasticity tensor
is expressed using the Lame parameters, λ, µ:

Cijkl := λδijδkl + 2µ
(
δikδjl + δilδjk

2

)
(2.122)

in which δij represents the Kronecker-delta function. If i = j then δij = 1, otherwise
δij = 0.

The strong form of the initial-boundary value problem of elastodynamics can be
stated as: given the functions

bi : Ω× [0, T ]→ R,

gi : Γgi × [0, T ]→ R,

fsi : Γhi × [0, T ]→ R,

u0i : Ω→ R,
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v0i : Ω→ R,

ρ : Ω→ R,

find ui : Ω̄× [0, T ]→ R, such that

ρ
∂2ui
∂t2
− ∂σij
∂xj

− ρbi = 0, ∀(x, t) ∈ Ω× (0, T ) (2.123)

ui = gi, ∀(x, t) ∈ Γgi × (0, T ) (2.124)

σijnj = fsi , ∀(x, t) ∈ Γhi × (0, T ) (2.125)

ui (x, 0) = u0i, ∀x ∈ Ω (2.126)

∂ui (x, 0)
∂t

= v0i, ∀x ∈ Ω (2.127)

where ρ is the mass density of the elastic body, bi is the body force density, gi is the
prescribed displacement on the Dirichlet-boundary Γgi , fsi is the prescribed traction
on the Neumann-boundary Γhi , u0i is the initial value of the displacement field, and
v0i is the initial value of the velocity field.

2.6 Time-discontinuous space-time FEM
(TDG/ST/FEM) for Elastodynamics

Let Ωh, the set of finite spatial elements Ωe, e = 1, · · · , nel, be the discretization of
spatial domain Ω, where nel is the total number of spatial elements in Ωh. Further-
more, consider a non-uniform subdivision for the time domain [0, T ],

0 = t0 < t1 < · · · < tN = T

with
In = (tn, tn + 1), ∆tn = tn+1 − tn, ∆t = max

06n6N−1
∆tn.

The space-time slab Qn and the space-time finite element Qn,e are given by following
expressions,

Qn := Ωh × In, Qn,e := Ωe, e = 1, · · · , nel
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Accordingly,

Qh :=
N−1⋃
n=0

Qn

denotes the discretization of the entire space-time domain.

In TDG/ST/FEM, the unknown fields remains continuous in the spatial domain Ωh,
and discontinuity in time occurs at times that belong to the finite set,

Dt := {t0, t1, . . . , tN} .

Therefore, at the discrete times t ∈ Dt the solution have two values, and the jump
discontinuity in time for some unknown scalar field q(x, t) at time tn ∈ Dt is given
by Eq. (2.128)

[[q (x)]]n = q+
n (x)− q−n (x) (2.128)

where

q+
n (x) = lim

ε→0
q (x, tn + ε) , q−n (x) = lim

ε→0
q (x, tn − ε) (2.129)

denote the right and left limits of the unknown field q(x, t) at time t = tn, respec-
tively.

Let us now consider ℘l
(
Qn,e

)
, the collection of all polynomials defined on Qn,e

with a total degree of no more than l, and C0(?), the space of piecewise continuous
functions defined on domain (?). Consider also the following collection of functions:

=hl :=

uh
∣∣∣uh ∈ C0

(
N−1⋃
n=0

Qn

)nsd
, uh

∣∣∣Qn,e ∈ (℘l (Qn,e))nsd
 (2.130)

where uh
∣∣∣Qn,e is the restriction of uh to Qn,e. Lastly, the space of the test functions

for the TDG/ST/FEM is given as

V h :=
{

uh
∣∣∣uh ∈ =hl , uhi = 0,∀ (x, t) ∈ Γgi × In, for i = 1, · · · , nsd

}
(2.131)

In what follows, a general introduction to the two-field TDG/ST/FEM is provided,
then the weak-form for the v-ST/FEM is derived by using the two-field formulation.

2.6.1 Two-field TDG/ST/FEM

In the two-field formulation, both the displacement field and velocity field are taken
as primary unknowns. Accordingly, the weak form should satisfy the following
conditions in the weak sense:
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(i) Balance of the linear momentum, Eq. (2.123)

(ii) Essential and natural boundary conditions, Eq. (2.124) and Eq. (2.125)

(iii) Traction continuity in space;

(iv) Continuity of the velocity field in time;[[
vh (x)

]]
n

= 0

(v) Continuity of the displacement field in time;[[
uh (x)

]]
n

= 0

(vi) Displacement-velocity compatibility condition;

∂uh

∂t
− vh = 0

Here, Conditions (i)–(iii) are always satisfied as the weak form is derived by employ-
ing the Galerkin method (Hughes, 2012). Conditions (iv) and (v) necessary due to
the time-discontinuous approximation of the displacement and velocity field, respec-
tively. Condition (vi) is due to the independent approximation of the displacement
field and velocity field.

The displacement-velocity two-field weak-form for TDG/ST/FEM in its original form
as presented by Hughes and Hulbert, 1988 is described as follows.

Weak-form. Find u ∈ Shu and v ∈ Shv such that for all δu ∈ V h and δv ∈ V h, and for
all n = 1, · · · , N − 1 Eq. (2.132) holds.

∫
In

∫
Ωh
δviρ

∂vi
∂t
dΩdt+

∫
Ωn
δvi
(
x, t+n

)
ρ[[vi (x)]]ndΩ

+
∫
In

∫
Ωh

∂δvi
∂xj

σij (x, t) dΩdt−
∫
In

∫
Γhi
δvif

s
i dsdt

−
∫
In

∫
Ωh
δviρbidΩdt+

∫
In

∫
Ωh

∂δui
∂xj

Cijkl
∂

∂xl

(
∂uk
∂t
− vk

)
dΩdt

+
∫

Ωh

∂δui (x, tn)
∂xj

Cijkl
∂[[uk (x)]]n

∂xl
dΩ = 0

(2.132)
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where Shu and Shv denote the collections of trial functions for the displacement field and
velocity field, respectively, and given by

Shu :=
{

u|u ∈ =hl , ui = gi, ∀ (x, t) ∈ Γgi × In, i = 1, · · · , nsd
}

(2.133)

Shv :=
{

v|v ∈ =hl , vi = ∂gi
∂t
, ∀ (x, t) ∈ Γgi × In, i = 1, · · · , nsd

}
(2.134)

It is noteworthy that in the above-mentioned weak-form, Conditions (v) and (vi)
are satisfied by using a strain-energy norm and Condition (iv) is satisfied by using a
kinetic energy norm.

2.6.2 Velocity based TDG/ST/FEM: v-ST/FEM

In the velocity based time-discontinuous space-time finite element method (v-
ST/FEM) displacement-velocity compatibility condition is strongly enforced by com-
puting the displacement field from the consistent time-integration of the velocity
field. Accordingly, displacement field remains continuous in time while velocity field
still remains discontinuous at the discrete times.

The weak-form for the v-ST/FEM can be stated as:

Weak-form. Find v ∈ Shv such that for all δv ∈ V h, and for all n = 1, · · · , N − 1, Eq.
(2.135) holds.∫

In

∫
Ωh
δviρ

∂vi
∂t
dΩdt+

∫
Ωn
δvi
(
x, t+n

)
ρvi

(
x, t+n

)
dΩ

+
∫
In

∫
Ωh

∂δvi
∂xj

σij (x, t) dΩdt−
∫
In

∫
Γhi
δvif

s
i dsdt

−
∫
In

∫
Ωh
δviρbidΩdt−

∫
Ωn
δvi
(
x, t+n

)
ρvi

(
x, t−n

)
dΩ = 0

(2.135)

The displacement field is computed by

u (x, t) = u (x, tn) +
∫ t

tn
v (x, τ)dτ, ∀ (x, t) ∈ Qn, ∀v ∈ Shv (2.136)

In the case of hyperelastic material law, the stress is computed by first computing the
displacement field (see Eq. 2.119 and Eq. 2.121b). Alternatively, if the constitutive
relationship is given in the rate form (e.g., hypoelastic form) then stress field can
be obtained by time integration of the rate form. In latter case, computation of
displacement field can be avoided. In the realm of small strain theory, however, these
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two techniques of stress recovery are equivalent, and the stress field in a space-time
slab takes the form

σij (x, t) = σij (x, tn) + Cijklψkl (v, t) , ∀ (x, t) ∈ Qn, ∀v ∈ Shv (2.137)

where
ψij (v, t) =

∫ t

tn

∂vi
∂xj

dτ, ∀t ∈ In,∀v ∈ Shv (2.138)

Subsequently, by substituting the expression for the stress given in Eq. (2.137) into
the weak-form, Eq. (2.135), the following weak-form for v-ST/FEM is obtained;

Weak-form. Find v ∈ Shv such that for all δv ∈ V h, and for all n = 1, · · · , N − 1, Eq.
(2.139) holds.∫

In

∫
Ωh
δviρ

∂vi
∂t
dΩdt+

∫
Ωn
δvi
(
x, t+n

)
ρvi

(
x, t+n

)
dΩ

+
∫
In

∫
Ωh

∂δvi
∂xj

σij (x, tn) dΩdt+
∫
In

∫
Ωh

∂δvi
∂xj

CijklψkldΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt−

∫
In

∫
Ωh
δviρbidΩdt

−
∫

Ωn
δvi
(
x, t+n

)
ρvi

(
x, t−n

)
dΩ = 0

(2.139)

Remark 2.6.1. In the two-field TDG/ST/FEM, both displacement and velocity are the
primary unknown. This approach usually yields a large system of linear equations
which in turn increases the computation cost. In this case, special procedures are
required to reduce the size of the problem. Such procedures are mainly based on
the predictor-multicorrector schemes (Bonelli et al., 2002; Bonelli and Bursi, 2003;
Mancuso and Ubertini, 2003; Kunthong and Thompson, 2005).

Remark 2.6.2. In v-ST/FEM, velocity field is the primary unknown, therefore, the
resultant system of linear equations will be significantly smaller than the one in case
of two-field TDG/ST/FEM. Accordingly, the computation cost of v-ST/FEM is lower
than the two-field TDG/ST/FEM, however, the cost is still higher than the classical
semi-discrete schemes.

2.6.3 Implementation of v-ST/FEM

Consider Qn,e = Ωe × In denoting the space-time finite element. Let ne be the total
number of spatial nodes in the spatial finite element Ωe. Let vi(x, t+n ) and vi(x, t−n+1)
be the spatial nodal velocities on the bottom and top faces of space-time slab Qn,
respectively (see Fig.2.17). Furthermore, time t ∈ In is given by

t = T1(θ)tn + T2(θ)tn+1, ∀θ ∈ [−1, 1] (2.140)
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where

T1(θ) = 1− θ
2 T2(θ) = 1 + θ

2 (2.141)
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Fig. 2.17.: Schematic diagram of the space-time slabs Qn and Qn+1
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Fig. 2.18.: Schematic diagram of the space-time finite element Qn,e

The linear trial functions for the velocity defined on Qn,e are give by

vi (x, t) = aviITa (θ)N I (ξ, η) , a = 1, 2; I = 1, · · · , ne (2.142)
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where aviI denotes the space-time nodal values of velocity; a = 1 and a = 2
correspond to the bottom and top face (i.e., temporal nodes) of the space-time
element, and I = 1, · · · , ne denotes the spatial node of the space-time element (see
Fig. 2.18). N I(ξ, η) are the spatial shape functions defined on the local domain.
Accordingly, vi(x, t+n ) and vi(x, t−n+1) are given by Eq. (2.143) and Eq. (2.144),
respectively.

vi
(
x, t+n

)
= 1viIN

I (ξ, η) (2.143)

vi
(
x, t−n+1

)
= 2viIN

I (ξ, η) (2.144)

The displacement field corresponding to the above-mentioned local interpolation for
the velocity field (cf. Eq. 2.142) is obtained by using Eq. (2.136).

ui (x, t) = ui (x, tn) + T̃1 (θ) vi (x, tn) + T̃2 (θ) vi (x, tn+1) (2.145)

where

T̃1 (θ) = ∆tn
2
[
1− T 2

1 (θ)
]
, T̃2 (θ) = ∆tn

2 T 2
2 (θ) (2.146)

are the quadratic shape function defined on [−1, 1]. Subsequently, ψij in Eq. (2.138)
becomes,

ψij (x, t) = aviI T̃a
∂N I

∂xj
(2.147)

By using the expression for psiij in Eq. (2.137) the stress σij inside the space-time
element is described as,

σij (x, t) = σij (x, tn) + T̃aCijkl
∂N I

∂xl

avkI , ∀(x, t) ∈ Qn,e (2.148)

Lastly, the test functions for the velocity field are desribed as

δvi (x, t) = aδviITa (θ)N I (ξ, η) , a = 1, 2; I = 1, · · · , ne (2.149)
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Using Eq. (2.140 – 2.149) for the space-time finite element discretization of the
weak-form which is given in Eq. (2.139).

aδviI

[∫
In

∫
Ωh
N ITaρ

∂NJTb
∂t

dΩdt
]
bviJ+aδviI

[
δ1aδ1b

∫
Ωn
N IρNJdΩ

]
bviJ

+aδviI

{∫
In
Ta

∫
Ωh

∂N I

∂xj
σnijdΩdt

}
+aδviI

[∫
In
TaT̃b

∫
Ωh

∂N I

∂xj
Cijkl

∂NJ

∂xl
dΩdt

]
bvkJ

− aδviI

{∫
In

∫
Γhi
TaN

If si dsdt

}
− aδviI

{∫
In

∫
Ωh
TaN

IρbidΩdt
}

− aδviI

[
δ1a

∫
Ωn
N IρNJdΩ

]
v−iJ = 0

(2.150)

Let us now use the following notation for representing the global space-time nodal
vector,

{J} := {J}ai (I)

here a = 1, 2 corresponds to the temporal nodes, I = 1, · · · corresponds to the Ith

spatial node, and i = 1, 2 corresponds to spatial components. Accordingly, a = 1
corresponds to the spatial nodal values of the vector defined at the bottom space-time
slab (i.e., at time t+n ). Similarly, a = 2 corresponds to the spatial nodal values of the
vector at the top space-time slab (i.e., at time t−n+1).

A typical space-time finite element matrix will be denoted as:

[K] := [K]abij (I, J)

where a, b = 1, 2 corresponds to the temporal nodes, I = 1, · · · , ne corresponds to
the spatial node, and i, j = 1, 2 corresponds to the spatial components.

By using these notations Eq. (2.150) can be expressed as:

{δv}ai (I) ·

[M ]abij (I, J) · {v}bj (J) + [K]abij (I, J) · {v}bj (J)

+ {Jσn}ai (I)− {Jext}ai (I)− {J0}ai (I)

 = 0 (2.151)

Since above equation is true for all values of {δv}ai one can obtain the following the
system of linear equations:

[M ]abij (I, J) · {v}bj (J) + [K]abij (I, J) · {v}bj (J) = {Jext}ai (I) + {J0}ai (I)− {Jσn}ai (I)
(2.152)
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Matrix-vector form of above equation is given as,

[M] · {ṽ}+ [K] · {ṽ} = {Jext}+ {J0} − {Jσn} (2.153)

If Rayleigh damping is used to model the material damping then above equation
becomes:

[M] · {ṽ}+ [K] · {ṽ}+α [MR] · {ṽ}+β [KR] · {ṽ} = {Jext}+{J0}−{Jσn} (2.154)

where α and β are the Rayleigh damping coefficients.

In Eq. (2.153–2.154), [M] denotes the space-time mass matrix, [K] denotes the
space-time tangent stiffness matrix, [MR] is the mass proportional Rayleigh damping
matrix, and [KR] is the stiffness proportional Rayleigh damping matrix. Furthermore,
{Jext} denotes the space-time nodal vectors which contains the contribution of
external body force and external boundary traction, {J0} contains the contribution
of initial velocity, and {Jnσ} contains the contribution of initial stress σn. In what
follows the finite element expressions for these matrices and vectors are described.

[M] := [M ]abij (I, J) = δij

∫
In
Ta
∂Tb
∂t

∫
Ωh
N IρNJdΩdt+ δijδ1aδ1b

∫
Ωn
N IρNJdΩ

(2.155)

[K] := [K]abij (I, J) =
∫
In
TaT̃b

∫
Ωh

∂N I

∂xp
Cpijq

∂NJ

∂xq
dΩdt (2.156)

[MR] := [MR]abij (I, J) = δij

∫
In
TaTb

∫
Ωh
N INJdΩdt (2.157)

[KR] := [KR]abij (I, J) =
∫
In
TaTb

∫
Ωh

∂N I

∂xp
Cpijq

∂NJ

∂xq
dΩdt (2.158)

{Jext} := {Jext}ai (I) =
∫
In

∫
Ωh
N ITaρbidΩdt+

∫
In

∫
Γhi
N ITaρf

s
i dsdt (2.159)

{J0} := {J0}ai (I) = δ1aδij

[∫
Ωh
N IρNJdΩ

] {
0vjJ

}
(2.160)

2.6 Time-discontinuous space-time FEM (TDG/ST/FEM) for Elastodynamics 55



where,
{0vjJ

}
denotes the initial velocity for the space-time slab Qn, i.e., spatial

nodal velocity at time t−n . Note that this velocity vector is known from the computa-
tion in the previous space-time slab Qn−1.

{Jσn} := {Jσn}ai (I) =
∫
In
Ta

∫
Ωh

∂N I

∂xj
σnijdΩdt (2.161)

where σn := σ(x, tn) is the stress at time tn which is usually computed from the
displacement field at time tn.

This section briefly discusses the space-time matrices and vectors, however, a detailed
description about the derivation of the space-time matrices and space-time vectors
can be found in Appendix A.

2.7 Numerical examples

2.7.1 Primary wave propagation in homogeneous linear
elastic medium

A theoretical model of homogenous isotropic linear elastic media occupying a square
domain, Ω = [0, L]× [0, L], is considered in this section for a numerical analysis of
v-ST/FEM. The governing equations of the problem are given by Eqs. (2.123–2.127).
Further, it is assumed that the elastic media is subjected to the periodic boundary
conditions with no external body force (i.e., bi = 0 in Eq. 2.123). The initial
conditions for displacement and velocity field corresponding to the Eq. (2.126) and
Eq. (2.127) are given as:

u0 (x) = d0 cos (kx · r̂) , v0 (x) = ckd0 sin (kx · r̂) (2.162)

where k is the wave-number, r̂ is the direction vector of the wave propagation,
d0 ∈ R2 denotes the direction of the motion of particles of the medium, and c is
related to the speed of the wave in the medium.

The above-mentioned initial conditions create a plane P-wave if r̂ vector is parallel
to d0. The analytical solutions for displacement and velocity can be given by
(Achenbach, 2012):

u (x, t) = d0 cos [k (x · r̂− cpt)] v (x, t) = cpkd0 sin [k (x · r̂− cpt)] (2.163)
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where

cp =
√
λ+ 2µ
ρ

is the speed of the P-wave.

L λ µ ρ k d0 r̂ cp

10.0 2.0 1.0 1.0
√

2π/5 [1, 1]T [1, 1]T /
√

2 2.0

Tab. 2.2.: List of constants and parameter values used for the P-wave propagation problem.
All variables are dimensionless.

The values of constants and the parameters used for solving the problem are given in
Table 2.2, and Fig. 2.19 depicts the physical dimensions of the problem. All variables
have been made dimensionless. Letting uh(x, t) and vh(x, t) denote the numerical
solutions computed by employing the v-ST/FEM, the error in displacement field
Eu (tn) and the error in velocity field Ev (tn) are then defined as:

Eu (tn) :=
∥∥∥uh (x, tn)− u (x, tn)

∥∥∥
2
, Ev (tn) :=

∥∥∥vh (x, t−n )− v (x, tn)
∥∥∥

2
(2.164)

where ‖ · ‖2 denotes the L2 norm given by

‖u‖2 =
[∫

Ω
u (x, t) · u (x, t) dΩ

]1/2
(2.165)
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h
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(c)

Tria3

Fig. 2.19.: (a) Schematic diagram of the spatial domain for P-wave propagation problem,
(b) bilinear quadrilateral element (Quad4), (c) linear triangular element (Tria3)

The numerical experiments for determining the convergence rate of the solution
in the space domain are performed on two sequences of regular linear triangular
(Tria3) and bilinear quadrilateral (Quad4) meshes (see Fig. 2.19), while keeping
the time-step fixed ∆t = 0.1 sec. Each sequence consists of four meshes with a
decreasing mesh size. In Fig. 2.20, the L2 norm of the errors in the displacement and
velocity fields at time t = 1.0 sec are given in relation to mesh spacing parameter h.
Based on the convergence results, it can be stated that the v-ST/FEM formulation is
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Fig. 2.20.: Rate of convergence of the solutions in space computed at time t = 1.0 sec: (a)
displacement, and (b) velocity
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nearly second-order accurate in the space for both Quad4 and Tria3 elements. In Fig.
2.20, it is observed that the error for the triangular spatial mesh (Tria3) is less than
that of the quadrilateral spatial element (Quad4) for the same mesh spacing. This
can be attributed to the perfect alignment of the diagonal of the triangular elements
with the characteristic lines of the wave propagation.
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Fig. 2.22.: (a) Exact displacement (x-component) waveforms, (b) displacement (x-
component) waveforms obtained by using the v-ST/FEM, (c) exact velocity (x-component)
waveforms, (d) velocity (x-component) waveforms obtained by using the v-ST/FEM.

Furthermore, the convergence of the solutions (displacement and velocity) in the
time domain is illustrated in Fig. 2.21. It can be seen that both displacement and
velocity fields computed by the present method are third order accurate in time.
Note that the results presented in Fig. 2.21 are consistent with Eq. (2.114).

Fig. 2.22 illustrates the spatial variation of the displacement and velocity fields
obtained by v-ST/FEM. The results are obtained at time t = 35 seconds with linear
triangular mesh of size h = 0.25 and uniform time-step of size ∆t = 0.1 sec. The
results advocate the ability of v-ST/FEM to maintain the high-order accuracy of the
long-term solutions, especially the displacement and velocity waveforms. This can
be attributed to the very low numerical dissipation and dispersion characteristics
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of the present method (see also Fig. 2.15 and Fig. 2.16). To further emphasize the
accuracy of the long-term solutions, the time histories of the computed displacement
and velocity at the midpoint P1 (see Fig. 2.19) and the corresponding relative errors
are presented in Fig. 2.23.
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Fig. 2.23.: Temporal variation of the (a) displacement, (b) relative error in displacement, (c)
velocity, and (d) relative error in velocity, at the midpoint P1 computed by using v-ST/FEM.

2.7.2 Impulsive response of a fixed-free pile

In this section, we consider a pile of length L = 50 m with a unit cross-section
area having one fixed end and one end loaded by an axial impulsive force given
by a step function, as shown in Fig. 2.24. The mass density ρ is 2500.0 kg/m3 and
the Young’s modulus E is 1.0× 1010 N/m2. The magnitude of the implusive force
is 1.0 × 106 N . Under these circumstances, the analytical solutions for the stress
and velocity fields are discontinuous in the spatial domain and given by the step
functions. Furthermore, the displacements are given by the piecewise continuous
linear functions (Cormeau, 1991; Li and Wiberg, 1998; Verruijt, 2009).

To solve the problem by using v-ST/FEM, uniform linear spatial elements of size
h = 0.1m and a uniform time-step size ∆t = 10−4 sec have been adopted for
discretizing the space and time domain, respectively. To assess the performance of
the present method, the problem is also solved with semi-discretized FEM techniques
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Fig. 2.24.: Geometry, boundary conditions, and impulse loading for fixed-free pile problem.

using the same mesh parameters. In the latter case, the trapezoidal rule and the
HHT-α method (with α = −1/3) have been used as the time-stepping algorithms.
The results of the stress field, velocity field, and displacement field obtained by
different schemes are compared in Fig. 2.25, Fig. 2.26, and Fig. 2.27, respectively.

It is observed that the solutions for the stress and velocity fields obtained by the
semi-discrete algorithms contain severe oscillations. Even worse, no improvement
whatsoever is obtained when refining the mesh spacing or the time-step size. Fur-
ther, in the case of the Newmark-beta method, these oscillations are present in
the whole spatial domain; and thus, the accuracy of the stress and velocity fields
deteriorate over time (see Fig. 2.25 and Fig. 2.26). The poor performance with the
Newmark-beta method is due to the absence of algorithmic damping, as discussed in
previous sections. The HHT-α method improves the solutions by attenuating higher
frequencies; however, the results are not satisfactory for the selected time-step size as
the oscillations are still present. It is remarkable that v-ST/FEM completely localizes
the oscillations in the stress and velocity fields near the point of discontinuity and
yields very accurate solutions. The localization phenomenon can be attributed to
the presence of jump discontinuity in the velocity field. The jump in the velocity
field adds artificial viscous damping to the system, subsequently, increasing the
accuracy and stabilizing the solutions (Hulbert and Hughes, 1990; Johnson, 1993).
Furthermore, the presence of overshooting and undershooting around the point of
discontinuity is related to the famous Gibbs phenomenon in the Fourier analysis
(Olver, 2016).
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Fig. 2.25.: Stress field computed by employing the Newmark-beta method (First column),
HHT-α (Second column), and v-ST/FEM (Third column) at various timesteps with linear
spatial elements. Direction of wave propagation is denoted by the arrow, and dotted lines
represent the analytical solutions.
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Fig. 2.26.: Velocity field computed by employing the Newmark-beta method (First column),
HHT-α (Second column), and v-ST/FEM (Third column) at various time-steps with linear
spatial elements. Direction of wave propagation is denoted by the arrow, and dotted lines
represent the analytical solutions.
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Fig. 2.27.: Displacement field computed by employing the Newmark-beta method (First
column), HHT-α (Second column), and v-ST/FEM (Third column) at various timesteps with
linear spatial elements. Direction of wave propagation is denoted by the arrow.
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2.7.3 Dynamic plate load test (DPLT)

In this section, an attempt is made to validate v-ST/FEM by simulating the dynamic
plate loading test (DPLT) using a light falling weight deflectometer (LFWD). DPLT
using LFWD is a non-destructive technique for a quick assessment of the field
compaction quality. In DPLT, a rigid circular loading plate of radius 0.15 m is placed
on the soil surface and subjected to an impulse load generated by the falling weight
from a specified height onto the plate. Subsequently, the induced soil movements are
recorded and the dynamic resilience modulus of the tested material is computed by
some empirical relations. A complete description of the test can be found elsewhere
(Adam et al., 2009; Tawfik and El-Mossallamy, 2017).

x

y

(0,0) 5m

3m

0.15m
h(t) Loading Plate

t (ms)

-100 Kpa
h(t)

20 ms

Fig. 2.28.: Geometry, boundary conditions and spatial mesh adopted for simulating DPLT
using v-ST/FEM.

In the present study, DPLT is simulated by a two-dimensional axisymmetric v-ST/FEM
model, where the center of the loading plate is positioned along the axis of symmetry.
The geometry, boundary conditions, and spatial mesh of the finite element model
are depicted in Fig. 2.28. There are 5201 linear triangular elements (Tria3) and 2688
nodes present in the spatial mesh. The impulse load due to the falling weight is
modeled by using an equivalent uniform vertical stress pulse of amplitude 100 kPa

2.7 Numerical examples 65



and a time duration of 20 ms (Adam et al., 2009). The stress pulse h(t) acting on
the loading plate is defined by a half sine wave as:

h(t) = −105 sin(50πt) N/m2

The total simulation time T is set to 30 ms, and the linear time elements of size
∆t = 1 ms have been adopted for discretizing the time domain. Subsequently, the
results computed by the proposed method are compared with the two DPLT studies
available in the literature. The first study is denoted as S1 where the in-situ LFWD
test was conducted by Tawfik and El-Mossallamy, 2017, and the second study is
denoted by S2 in which the numerical investigation was conducted by Adam et al.,
2009 using the Boundary Element Method (BEM). In these studies (i.e., S1 and
S2), the soils have different values for Young’s modulus E and common values for
Poisson’s ratio ν and mass density ρ, as shown in Table 2.3.

Elastic parameters Method dmax pmax

E = 65 Mpa v-ST/FEM 0.33 mm 90.0 kPa
ν = 0.212 In-situ study (S1) 0.35 mm 100 kPa
ρ = 2000 kg/m3

E = 32 Mpa v-ST/FEM 0.67 mm 90.0 kPa
ν = 0.212 BEM study (S2) 0.65 mm 93.1 kPa
ρ = 2000 kg/m3

Tab. 2.3.: List of elastic material parameters, and the results of maximum plate deflection
and maximum soil-plate normal contact stress obtained by different schemes.

The results of the time histories of the vertical displacement and the velocity of
the loading plate, and the soil-plate contact stress are plotted in Fig. 2.29. The
maximum deflection of the plate dmax obtained by v-ST/FEM is about 0.33 mm and
0.67 mm corresponding to the material parameters used in the studies S1 and S2,
respectively. From Table 2.3, it is evident that these computed values for dmax are
in good agreement with those reported in studies S1 and S2. In the present study,
the maximum soil-plate normal contact stress pmax is about 90 kPa; which lower
than the values reported in studies S1 and S2 (see Table 2.3). This may be due
to the use of linear triangular elements and the absence of the soil-plate interface
elements in the present formulation. Furthermore, the maximum deflection of the
plate occurs at time td = 11 ms, and the maximum contact stress pmax occurs at time
tp = 10 ms. The displacement contours at these time steps are depicted in Fig. 2.30,
where displacements are normalized with respect to the maximum deflection of the
plate.
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Fig. 2.29.: Temporal variation of the vertical displacement of plate (top-left), the vertical
velocity of plate (top-right), and soil-plate contact stress (bottom-left), and variation of
normal contact stress with the plate displacement (bottom-right) obtained by v-ST/FEM.
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Fig. 2.30.: Normalized contours of the vertical displacements computed by v-ST/FEM at
various time-steps.
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2.8 Summary

In this chapter, the concept of time-discontinuous Galerkin (TDG) method is pre-
sented. The details of single-field and two-field TDG schemes, such as stability,
the order of accuracy, and algorithmic damping, are discussed. Subsequently, a
velocity-based single-field TDG space-time finite element method has been been
developed for elastodynamics problems. The main characteristics of this method is
summarized below.

(i) In v-ST/FEM velocity is the primary unknown which is discontinuous in time
and continuous in space. The time-continuity of the velocity field is satisfied in
a weak sense.

(ii) The displacement field is obtained by time-integration of the velocity field in
a post-processing step. These displacement field are then used to compute
stress-field. Both stress and displacement field remain continuous in time.

(iii) The advantage of v-ST/FEM is that it involves less number of unknowns–unlike
other ST/FEM– which makes v-ST/FEM applicable to the large-scale practical
problems at relatively low computational cost.

(iv) It is demonstrated that the present method is unconditionally stable and
third-order accurate in time for linear interpolation of velocity in time.

(v) The numerical dissipation (amplitude decay) and dispersion (phase-delay) of
v-ST/FEM is smaller than the two-field ST/FEM and semi-discrete algorithms.

(vi) In the case of a shock problem, the performance of v-ST/FEM was found to be
superior to HHT-α and Newmark-beta method. v-ST/FEM is able to remove
the spurious oscillations unlike HHT-α and Newmark-beta algorithms.

(vii) The numerical characteristics of the v-ST/FEM scheme, therefore, make it
highly suitable for computing the response of bodies subjected to dynamic
loading conditions, such as fast-moving loads, impulsive loading, long-duration
seismic loading, among others.

(viii) It is shown that the proposed scheme is non-dissipative in high-frequency
regime, and can attenuate only the middle band of frequencies. Therefore,
the only drawback to the present methodology is that it does not include a
parameter to control the numerical dissipation of the high-frequencies.
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3Elastic Wave Propagation in
Unbounded Domain and Artificial
Boundary Conditions

3.1 Introduction

In many fields of both engineering and physics the problems ranging from simulation
of earthquake ground motion (Bao et al., 1998; Bielak et al., 2003) and dynamic
soil-structure interaction (Wolf, 1985; Wolf and Hall, 1988), to electromagnetic
waves (Chew, 1995), and quantum mechanics (Alonso-Mallo and Reguera, 2003)
may be best represented or modeled by considering the linear wave propagation on
infinite or semi-infinite unbounded domain. Such modeling is especially of interest
in the design of earth-structures such as dam, tunnels, embankments, hospital and
residential buildings etc. against the transient loading and vibrations caused by
the high-speed trains, road-traffic, underground explosions, and more importantly
earthquake motion. In these problems the finite dimensional structure dynamically
interacts with the adjacent unbounded soil domain, and therefore the two domains
mutually influence the dynamic responses of each other (Wolf and Song, 1996;
Burman et al., 2012).

For the computation of the dynamic SSI problems, a surface called interaction horizon
(Wolf and Song, 1996) that encloses the structure and forms the boundary of the
computational domain has to be selected. The objective of these domain reduction
techniques is twofold; decreasing the computation burden by reducing the size of
the problem and enforcing the so called radiation condition thus prohibiting any
spurious reflections at the artificial truncated boundaries (ATB). In this way, ATB
simulate the effects of the far field on the dynamic response of both the structure
and the near field.

The structure of the chapter is as follows. In section 2 of this chapter basic theory of
wave propagation in elastic solids is given. Section 3 of this chapter reviews some
of the most popular boundary conditions for solving wave propagation problems in
unbounded domains. Section 4 of this chapter provides the derivation of viscous
boundary condition first proposed by Lysmer and Kuhlemeyer, 1969 and discusses
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its characteristics. Subsequently, in section 5 of this chapter, viscous boundary
conditions are modified to allow seismic excitation to enter the computational
domain.

3.2 Wave propagation in elastic solids

Linear and nonlinear dynamic response of the deformable media can be described
by a wave propagation phenomenon. A deformable media subjected to a transient
loading condition produces mechanical waves; as elements of the medium are de-
formed the disturbance is transmitted from one point in space to the next. The local
mechanical disturbances of a medium is not instantaneously detected at positions
that are at a distance from the region of excitation. It takes time for a disturbance
to propagate from its source to other positions. In this way as the disturbance
propagates through the medium it carries along amounts of energy due to motions
of particles of medium about their equilibrium position.

Further, the transmission of mechanical wave depends mainly upon the deformation
characteristics and inertia of the medium. As it will be seen later both stiffness and
inertia of a medium tend decrease the wave speed. A rigid medium, (e.g. rocks
with very high stiffness) deforms insignificantly and the mechanical disturbance
travels almost instantaneously in it. Similarly, a hypothetical massless medium
(i.e. no inertia) allows mechanical wave to travel without any delay. These concepts
have been used widely to model the interaction between the soil/rock foundation
and the earth structures such as concrete gravity dams. It is important to note that
the inertia of a system first offers resistance to motion, but once the medium is
in motion inertia with the resilience of the medium tends to sustain the motion
(Achenbach, 2012).

3.2.1 Governing equations of motion

Consider a body B occupying a regular domain Ω ⊂ Rnsd in the space which may
be bounded or unbounded. nsd is the number of spatial dimensions. Let Γ denotes
the boundary of the domain, and Ω̄ = Ω ∪ Γ be the closure of Ω. Let indices i, j, k, l
take values from 1, · · · , nsd. The system of equations describing the motion of a
homogeneous, isotropic, linearly elastic body consists of the Cauchy’s equation of the
motion, generalized Hooke’s law and linearized strain-displacement relationship:

∂σij
∂xj

+ ρbi = ρ
∂2ui
∂t2

(3.1)
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σij = λεkkδij + 2µεij (3.2)

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(3.3)

Here, λ and µ are the Lame’s parameters. Subsequently, the displacement equation
of motion Eq. (3.4) can be obtained by using Eq. (3.2) and (3.3) in Eq. (3.1)

µ
∂2ui
∂x2

j

+ (λ+ µ) ∂2uj
∂xj∂xi

+ ρbi = ρ
∂2ui
∂t2

(3.4)

To obtain a unique solution of the problem boundary conditions on the boundary
Γ and initial state of the body must be prescribed. Some of the commonly used
boundary conditions are mentioned below.

1. Displacement boundary conditions: Components of displacement field ui(x, t)
are prescribed on the boundary

ui(x, t) = gi(x, t) on Γ

2. Traction boundary conditions: This boundary condition relates the stress σij to
the externally applied surface force ti using the Cauchy’s formula

σijnj = ti on Γ

3. Mixed boundary conditions: On a part of the boundary Γgi ⊂ Γ displacement
ui is prescribed and on the remaining part of the boundary Γhi ⊂ Γ traction
boundary condition is imposed.

ui(x, t) = gi(x, t) on Γgi

σijnj = ti on Γhi

with
Γgi ∪ Γhi = Γ and Γgi ∩ Γhi = φ

The initial state of the body, the displacement and velocity field at time t = 0, must
be well defined to complete the problem.
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ui(x, 0) = u0
i (x) ∀x ∈ Ω̄

u̇i(x, 0) = v0
i (x) ∀x ∈ Ω̄

The ordered pair (u, σ) defines the elastodynamic state on
(
Ω̄× T

)
with the dis-

placement field u and the stress field σ, corresponding to given external body
force density b, the mass density ρ ∈ R+ and the Lame parameters λ, µ ∈ R+, if
u ∈ C2 (Ω× T ) ∩ C1

(
Ω̄× T

)
, σ ∈ C1

(
Ω̄× T

)
and b ∈ C1

(
Ω̄× T

)
,and Eq. (3.1 –

3.3 ) is satisfied for all (x, t) ∈ Ω × T along with prescribed initial and boundary
conditions.

3.2.2 Displacement potentials

The displacement equation of motion Eq. (3.4) couples all the displacement compo-
nents ui(x, t). This equation, however, can be decoupled by introducing the concept
of displacement potentials (Achenbach, 2012). For brevity, Eq. (3.4) is first written
in its vector form.

µ∇2u + (λ+ µ)∇⊗ (∇ · u) + ρb = ρ
∂2u
∂t2

(3.5)

Let u ∈ C2 (Ω× T ) and b ∈ C1 (Ω× T ) satisfies Eq. (3.5) for all (x, t) ∈ Ω× T . Let
the Helmholtz decomposition of the external body force density b1 is given by

b = c2
L∇F + c2

T∇×G (3.6)

Then there exists a scalar function φ : Ω × T → R and a vector-valued function
ψ : Ω× T → Rnsd such that the displacement field can be described by

u = ∇φ+∇×ψ (3.7)

Further, the displacement potential ψ usually satisfies the following constraint
equation.

∇ ·ψ = 0 (3.8)

1In Eq. (3.6) F and G are bounded and continuous, and are differentiable at interior points where b
is continuous.
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After substituting Eq. (3.6 – 3.7) into Eq. (3.5) one can obtain the following two
uncoupled wave equations.

∇2φ+ F = 1
c2
L

∂2φ

∂t2
(3.9)

and

∇2ψ + G = 1
c2
T

∂2ψ

∂t2
(3.10)

Eq. (3.9) is a scalar wave equation and Eq. (3.10) represents wave equation in nsd
components of ψ. The characteristic-speed cL and cT is given by Eq. (3.11) and
(3.12), respectively.

cL =
√
λ+ 2µ
ρ

(3.11)

cT =
√
µ

ρ
(3.12)

3.2.3 Longitudinal and transverse plane waves

Consider a plane displacement wave traveling with phase velocity c in the direction
p is given by

u = df (x · p− ct) (3.13)

where d is the direction of motion of the particles, x is the position vector of the
particle in the space and the argument of f(·) is called the phase of the wave and
given by

η = x · p− ct (3.14)

It is evident from Eq. (3.13) that at any given time t the plane of constant phase,
i.e. x · p = constant, are normal to the direction of wave propagation. Further, the
planes moves in the direction p with phase-velocity c.

Furthermore, the displacement given by Eq. (3.13) can satisfy the wave equation Eq.
(3.4) only in two cases:

1. Longitudinal wave2: In this case the motion of particles is in the direction of
the wave propagation (see Fig. 3.2) and phase-velocity is given by Eq. (3.11).
Mathematically speaking,

d = ±p; c = cL (3.15)

2In literature longitudinal waves are also known as the primary-wave, a P-wave, a pressure-wave, a
irrotational-wave, or a dilatation-wave
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and
u = ±pf (x · p− cLt) (3.16)

2. Transverse wave3: In this case the motion of particles of media is restricted in
the plane that is normal to the direction of wave propagation (see Fig. 3.2)
and the phase velocity c is given by Eq. (3.12).

p · d = 0; c = cT (3.17)

The transverse waves further categorized into SV-waves and SH-waves depending
upon the plane in which particle motion resides. Let’s say the wave is traveling
in (x1, x2) plane then in case of the SV-waves particle motion resides in the same
(x1, x2) plane but normal to the direction of wave propagation. Therefore, d can be
represented by

d = e3 × p (3.18)

However, in the case of SH-waves particles will move in the x3 direction, i.e.,

d = e3 (3.19)

where e3 = [0, 0, 1]T .

Finally, a complete classification of plane waves can be found in Fig .3.1. For clarity
the plane wave propagation in unbounded elastic domain and the corresponding
particle motions are depicted in Fig. 3.2.

Longitudinal wave Transverse wave

SV-wave SH-wave

Plane wave

Fig. 3.1.: Classification of plane waves in unbounded elastic media

A special case of plane waves is plane harmonic waves; material points on the
plane of constant phase performs harmonic motion. The studies on plane harmonic

3In literature transverse waves are also known as the secondary-wave, a shear-wave, a S-wave, or a
distortional-wave.
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Fig. 3.2.: Schematic diagram of longitudinal and transverse wave motion in unbounded
elastic media
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waves in a linearly elastic medium are of interest by the virtue of the applicability of
linear superimposition. By the use of Fourier series, harmonic waves can be used
to describe the propagation of periodic disturbances. For plane harmonic waves Eq.
(3.13) becomes

u = Ad exp [ik (x · p− ct)] (3.20)

where A ∈ R is the amplitude of the particle motion, i =
√
−1, k = ωc ∈ R is called

the wave number, c ∈ R is the phase velocity, ω ∈ R is the circular frequency of
the harmonic motion of the material points, d ∈ Rnsd is the direction of motion of
particle and p is direction of propagation of wavefront. Since the phase velocity does
not depend upon the wave number (or the wavelength), the plane harmonic waves
in unbounded homogeneous, isotropic, linearly elastic media are not dispersive.

Noting Eq. (3.15) and Eq. (3.20) the longitudinal plane harmonic wave traveling in
(x1, x2) plane in the direction p = [sin θ, cos θ, 0] can be described as follows

u = A


sin θ
cos θ

0

 exp [ik (x1 sin θ1 + x2 cos θ2 − cLt)] (3.21)

Similarly, using Eq. (3.18) in Eq. (3.20), the SV-wave traveling in (x1, x2) plane and
in the direction p = [sin θ, cos θ, 0] is given by

u = A


− cos θ
sin θ

0

 exp [ik (x1 sin θ + x2 cos θ − cT t)] (3.22)

The equation of SH-wave propagating in the direction p = [sin θ, cos θ, 0] can be
obtained by using Eq. (3.19)

u3 = A exp [ik (x1 sin θ + x2 cos θ − cT t)] (3.23)

For the displacement given by Eq. (3.20) the stresses generated in the elastic body
are computed using the Hooke’s law (see Eq. (3.2 – 3.3))

σ = ikA [λd · p + µ (d⊗ p + p⊗ d)] exp [ik (x · p− ct)] (3.24)

3.2.4 Reflection and refraction of plane waves

The presence of different materials significantly affects the systems of waves propa-
gating through that medium. When waves reach the interface between two medium
with different material properties, part of the wave is reflected and the part is
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transmitted through the interface (Achenbach, 2012). The ratio of the mechanical
impedances of two media completely determines the nature of the reflection and the
transmission at the interface.

In such system of material discontinuity, system of plane waves — reflected and
refracted waves at the interface — can be superposed to represent an incident wave.
For a given incident wave, the amplitude A, the unit propagation vectors p and the
wave numbers k of the reflected and refracted waves are computed by satisfying the
continuity conditions on the displacements and stress at the interface between two
media.

Consider two joined elastic half-spaces in (x1, x2) plane. Let x2 = 0 be the interface
plane between these two media. The material properties of the medium carrying
the incident and reflected waves (i.e. x2 < 0) are the Lame elastic constants λ and
µ, velocity of longitudinal wave cL, velocity of transverse wave cT and the mass
density ρ. Similarly, the material constants of the medium into which refraction takes
place are λB, µB, cBL , c

B
T , ρ

B. The superscript with a number n = 1, 2, 3, 4 enclosed
in parenthesis is used for denoting the reflected and refracted waves. The number 0
is used for denoting the incidental wave.

Reflection and refraction of SH-wave: Consider the following incidental SH-wave
traveling in the direction p = [sin θ, cos θ, 0] (see Fig. 3.3).

u
(0)
3 = A0 exp [ik0 (x1 sin θ0 + x2 cos θ0 − cT t)] (3.25)

θ2

θ4

θ0

p(0)

Incidental
SH-wave

p(2)

Reflected
SH-wave

x2

x1x2=0
p(4)

Refracted
SH-wave

(λ, μ, ρ)

(λB, μB, ρB)

Fig. 3.3.: Reflection of SH-wave at the boundary

The reflection and refraction4 of SH-wave at the interface generates the SH-wave.
The system of waves should satisfy the continuity of the displacement and stress at

4The numbers 2 and 4 have been used for denoting the reflected and refracted waves, respectively.
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the interface; displacement (stress) due to the incidental and reflected wave should
be equal to the displacement(stress) due to the refracted wave. Accordingly, the
equations of reflected and refracted wave are given by

u
(2)
3 = A2 exp [ik0 (x1 sin θ0 + x2 cos θ0 − cT t)] (3.26)

u
(4)
3 = A4 exp

[
ik4

(
x1 sin θ4 + x2 cos θ4 − cBT t

)]
(3.27)

where A2, A4, θ4, k4 are given by following relations

A2
A0

=
µ cos θ0 − µB

(
cT /c

B
T

)
cos θ4

µ cos θ0 + µB
(
cT /cBT

)
cos θ4

(3.28)

A4
A0

= 2µ cos θ0
µ cos θ0 + µB

(
cT /cBT

)
cos θ4

(3.29)

k4 = cT
cBT
k0 (3.30)

sin θ4 = cBT
cT

sin θ0 (3.31)

The inspection of Eq. (2.25–2.31) leads to several observations:

1. The reflected wave is in phase with the incident wave and the wave-number
and phase-velocity of incident and reflected wave are the same.

2. Refracted wave separates from the incident wave while moving away from the
normal if cBT > cT , and it moves towards the normal in case cBT < cT .

3. The wave is completely transmitted (i.e. A2 = 0) if

µ cos θ0 − µB
(
cT /c

B
T

)
cos θ4 = 0 (3.32)

which leads to

cos θ0 =

√√√√1−
(
cT /cBT

)2
1− (µ/µB)2 (3.33)

Therefore, a combination of angle of incidence and material properties is
possible for which no SH-wave is reflected.

4. If the half-space x2 > 0 is vacuum (i.e., the interface is boundary of elastic
half-space) then there will be no reflected waves. Further, if the boundary
condition condition at x2 = 0 is such that total displacement vanishes then
the reflected wave will have 180 ◦ phase difference with the incident wave.
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Furthermore, if the total stress at the boundary vanishes then the reflected
wave is in phase with the incident wave.

Reflection and refraction of longitudinal wave: As mentioned earlier, in case of
longitudinal wave (or P-wave) material points move in the direction of wave propa-
gation (see Eq. 3.16). The equation of incidental longitudinal wave traveling in the
direction p = [sin θ, cos θ, 0] is given by

u(0) =


sin θ0

cos θ0

0

A0 exp [ik0 (x1 sin θ0 + x2 cos θ0 − cLt)] (3.34)

(λB, μB, ρB)

θ0 θ2

θ1

θ4
θ3

Incidental
P-wave

x2

x1
x2=0

Refracted
SV-wave

Reflected
SV-wave

Reflected
P-wave

Refracted
P-wave

(λ, μ, ρ)

p(4)

p(3)

p(1)

p(2)p(0)

Fig. 3.4.: Reflection of longitudinal plane wave

When a P-wave encounters a material interface two reflected (a P-wave and a SV-
wave) and two refracted waves (a P-wave and a SV-wave) are possible. The motion
of system of waves is depicted in Fig. 3.4. The equation of reflected P-wave and
SV-wave is given by Eq. (3.35) and Eq. (3.36), respectively.

u(1) =


sin θ1

− cos θ1

0

A1 exp [ik1 (x1 sin θ1 − x2 cos θ1 − cLt)] (3.35)

u(2) =


cos θ2

sin θ2

0

A2 exp [ik2 (x1 sin θ2 − x2 cos θ2 − cT t)] (3.36)
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The equation of refracted P-wave and SV-wave is given by Eq. (3.37) and Eq. (3.38)
respectively.

u(3) =


sin θ3

cos θ3

0

A3 exp
[
ik3

(
x1 sin θ3 + x2 cos θ3 − cBL t

)]
(3.37)

u(4) =


− cos θ4

sin θ4

0

A4 exp
[
ik4

(
x1 sin θ4 + x2 cos θ4 − cBT t

)]
(3.38)

This system of waves should satisfy four continuity equations at the interface; one for
each u1, u2, σ12, σ22. In other words, total displacement (total stress) due to system
of incident and reflected waves must be equal to the total displacement (total stress)
due to the system of refracted waves. Accordingly, one can obtain following results
for the wave-numbers and direction of wave propagation.

k1 = k0; θ1 = θ0 (3.39)

k2 = k0
cL
cT

; sin θ2 = cT
cL

sin θ0 (3.40)

k3 = k0
cL
cBL

; sin θ3 = cBL
cL

sin θ0 (3.41)

k4 = k0
cL
cBT

; sin θ4 = cBT
cL

sin θ0 (3.42)

Subsequently, the aforementioned four continuity equations results in four linear
equations for the amplitudes A1, A2, A3 and A4. In matrix form the system can be
represented by

TA = A0 (3.43)

where

T =


− sin θ1 − cos θ2 sin θ3 − cos θ4

cos θ1 − sin θ2 cos θ3 sin θ4

sin 2θ1
cL
cT

cos 2θ2
µB

µ
cL
cBL

sin 2θ3 −µB

µ
cL
cBT

cos 2θ4

−
(
cL
cT

)2
cos 2θ2

cL
cT

sin 2θ2
µB

µ
cLc

B
L

(cBT )2 cos 2θ4
µB

µ
cL
cBT

sin 2θ4
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A =
[
A1 A2 A3 A4

]T

A0 = A0

[
sin θ0 cos θ0 sin 2θ0

(
cL
cT

)2
cos 2θ2

]T

In case of normal incident of P-wave (i.e., θ0 = 0) the reflected and refracted waves
contains only a P-wave, i.e.

A2 = A4 = 0

and
A1
A0

= ρBcBL − ρcL
ρBcBL + ρcL

(3.44)

A3
A0

= 2ρcL
ρBcBL + ρcL

(3.45)

From Eq. (3.44–3.45) it is clear that in case of normal incidence of P-wave the
amplitude of reflected and refracted P-wave depends entirely on the mechanical
impedance, the product of mass density and phase speed, of the two media. If both
media have the same mechanical impedance then there will be no reflected wave.
Further, if upper half-space has more impedance then lower half-space then the
reflected P-wave will be out of phase with the incident wave.

In case upper half-space is vacuum – the interface becomes the boundary of elastic
half-space – then there will be no refracted waves and system of reflected wave will
consist a P-wave and a SV-wave. The nature of reflected waves then depends upon
the boundary conditions. If the total displacement at the boundary vanishes then the
reflected P-wave and SV-wave are given by Eq. (3.35) and Eq. (3.36), respectively,
with amplitudes,

A1
A0

= cos (θ0 + θ2)
cos (θ0 − θ2) (3.46)

A2
A0

= sin 2θ0
cos (θ0 − θ2) (3.47)

If the total stress at the boundary vanishes (i.e., stress free surface) then the ampli-
tude ratio becomes

A1
A0

= sin 2θ0 sin 2θ2 − κ2cos2θ2
sin 2θ0 sin 2θ2 + κ2cos22θ2

(3.48)

A2
A0

= 2κ sin 2θ0 cos 2θ2
sin 2θ0 sin 2θ2 + κ2cos22θ2

(3.49)
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From Eq. (3.48–3.49) it is observed that normal incident, θ0 = 0, and grazing
incident, θ0 = π/2, of P-wave generates only a reflected P-wave as A2 = 0. In former
case the reflected P-wave is in the phase, and in later case reflected P-wave is out of
phase with incident wave.

3.2.5 Surface waves

So far we have discussed the homogeneous plane harmonic waves where the am-
plitude of wave motion remains constant in the plane of constant phase. There
exists another type of wave motion for which the amplitude changes in the plane
of constant phase. Consequently, one can define the plane of constant amplitude.
It turns out that the two planes are normal to each other. Moreover, the plane of
constant phase moves in the direction of wave propagation, therefore, the amplitude
remains constant in the wave propagation direction.

Surface waves are inhomogeneous plane waves for which amplitude of disturbance
exponentially decays as one moves away from the surface. However, the amplitude
of motion remains constant in the wave direction of wave propagation. From
an earthquake engineering viewpoint two type of surface waves are of primary
importance; Rayleigh wave and Love wave.

Consider the in-plane motion of plane waves traveling in x1-direction in a homoge-
neous elastic half-space (x2 ≤ 0) with free surface at x2 = 0. The Motion of particles
as the wave passes by can be described as,

u1 = [A1 exp (b1x2) +A2 exp (b2x2)] exp [ikR (x1 − cRt)] (3.50)

u2 =
[
−A1

b1
ikR

exp (b1x2) +A2
ikR
b2

exp (b2x2)
]

exp [ikR (x1 − cRt)] (3.51)

where A1, A2 are constants to be determined, kR and cR are the wave number and
phase-velocity of the Rayleigh wave, respectively. b1 and b2 are given by

b1 = kR

(
1− c2

R

c2
L

)1/2

(3.52)

b2 = kR

(
1− c2

R

c2
T

)1/2

(3.53)

Note that for b1, b2 are real valued if cR < cT < cL. The mathematical expressions for
A1, A2 and cR are obtained by satisfying the stress free conditions (i.e. σ22 = σ12 = 0)
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at x2 = 0. Subsequently, one can obtain the following relationship between the
constants A1 and A2

A2 = − 2b1b2(
k2
R + b22

)A1 (3.54)

The approximate value for cR can be given by (Achenbach, 2012)

cR = 0.862 + 1.14ν
1 + ν

cT (3.55)

where ν denotes the Poission’s ratio of the elastic half-space.

Using Eq. (3.54–3.55) in Eq. (3.50–3.51) following expression for displacement
components can be obtained.

u1 = A1

[
exp (b1x2)− 2b1b2

k2
R + b22

exp (b2x2)
]

exp [ikR (x1 − cRt)] (3.56)

u2 = iA1

[
b1
kR

exp (b1x2)− 2b1kR
k2
R + b22

exp (b2x2)
]

exp [ikR (x1 − cRt)] (3.57)

From Eq. (3.56–3.57) it can be observed that the horizontal and vertical displace-
ment components, u1, u2, have a 90 ◦ phase difference; when u1 is maximum then
u2 is zero, and vice versa. Due to 90 ◦ phase difference in u1, u2 the trajectories of
the particles are ellipses, and particles at the free surfaces moves counter-clockwise
when wave travels in positive x1 direction. At depth x2 ≈ 0.2Λ the direction of
rotation changes (Here Λ denotes the wavelength of Rayleigh wave). It can be shown
that at the free surface the normal displacement is about 1.5 times the tangential
displacement.

It should be noted that in a homogeneous elastic half-space only Rayleigh wave
and body waves can exist. However, Love waves can arise if soil layering is present.
Love waves typically develop in shallow surface soil layers overlying layers of stiffer
materials properties. They basically consists of SH-waves that are trapped by multiple
reflection within the surface layer. Exactly like SH-waves Love waves propagates in the
out-of-plane direction and they have no vertical components of particle motion.

3.3 Review of artificial boundary conditions

Dynamic soil-structure problems can be viewed as a wave propagation problem.
Consider a structure (finite dimension) embedded in the unbounded domain of semi-
infinite soil (see Fig. 3.5). The soil domain can further be divided into two regions;
(i) the irregular bounded region near to the structure, and (ii) the regular unbounded
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region extending to infinity. Both structure and irregular bounded region are allowed
to exhibit nonlinear behaviour. However, note that the regular unbounded region
must remain linear5. Henceforth the term structure will be used to denote system of
irregular bounded region and structure and the term unbounded domain will be used
for denoting the regular unbounded region. The dynamic soil-structure interaction
occurs through the interface between unbounded domain and structure.

∞

∞ ∞

Interaction-Horizon

Regular unbounded domain

Irregular bounded domain

Structure

Fig. 3.5.: Schematic diagram of dynamic soil-structure interaction problem

For finite element analysis of dynamic SSI problems, a superficial surface called
interaction-horizon that encloses the structure and forms the boundary of the com-
putational domain has to be selected (Wolf and Song, 1996). The key issue of this
approach is to impose the so called artificial boundary conditions (ABC) so that
the interaction-horizon can model the radiation damping accurately and spurious
reflections from the boundaries can be prohibited. In literature these boundary
conditions have been known as absorbing, non-reflecting, transparent, silent, and
one-way boundary conditions. Further, the use of ABC’s enables one to get rid of the
exterior unbounded domain from the computations.

To appreciate the radiation damping, consider a vertically propagating SV-wave in
a elastic half-space with two layers of soil (see Fig. 3.6). The normal incidence of
SV-wave at the interface of two layers produces reflected and refracted SV-waves.
As it was shown earlier the partition of the wave depends upon the mechanical
impedance of the two media. The wave reflected to lower half-space never returns to
the interface due to its infinite extension in x2-direction. This loss of energy is known
as radiation damping (Kramer, 2014). Further, refracted wave approaches the free
surface layered system and subsequently reflected back towards the interface. At
the interface when this wave reaches again a part of energy is reflected back and
a part of the energy is transmitted to the lower half-space and therefore it will be

5As the amplitudes of all body and surface waves decay due to geometric spreading, the nonlinearity
will be limited to the irregular bounded medium
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lost in the semi-infinite domain of bottom layer. This loss of energy represents again
the radiation damping. One of the big challenges of dynamic finite element analysis
is to model correctly this radiation damping. Further, difficulties arises due to the
presence of structures (such as dam, tunnel, buildings etc.) in or on the half-space
that causes multiple reflection and refraction of incoming waves.

Material-A

Material-B

(λA, μA, ρA)

(λB, μB, ρB)

Free Surface

Incident Wave

Reflected WaveRefracted Wave

Refracted Wave
x1

x2

Reflected Wave

Reflected Wave

Fig. 3.6.: Schematic diagram of reflections and refractions of vertically propagating SV-wave
in two layered elastic half-space

The minimal requirements of ABC’s presented by Givoli, 1991 are; (a) the problem
in truncated domain with ABC should be mathematically well posed, (b) ABC’s
should allow the waves that come from inside the computational domain to go out6

and produces little spurious reflections at the artificial boundaries, (c) the solutions
of truncated problem in some sense should be close enough to the original problem
in unbounded domain, (d) the combination of a numerical scheme and ABC’s should
yield a stable numerical method, (e) ABC should be easy to implement and the cost
of implementation should not be huge.

Kausel and Tassoulas in their review paper (Kausel and Tassoulas, 1981) grouped
ABC’s into following three categories;

1. Elementary boundaries: This type of boundary conditions are also known
as Dirichlet, Neumann and Mixed boundary conditions. Displacements and
stresses are prescribed in the case of Dirichlet and Neumann boundary condi-
tion, respectively. In case of mixed boundary conditions some components of
displacement and stress are prescribed (for example roller boundary condition).
Recalling that such boundary conditions act as the perfect reflector waves as
no energy is absorbed or transmitted. Therefore, adoption of such boundary

6In some physical situations where the source is located outside the computational domain the
artificial boundaries should allow the waves to come inside the computational domain.
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conditions to model the unbounded domain will cause spurious reflections and
spoil the accuracy of the solutions. Elementary boundaries will be adequate
only under certain circumstances: (i) when the problem can be regarded as
pseudo-static; frequency of excitation is below the natural frequency of a soil
stratum problem, (ii) when the internal damping of the soil is sufficient to
suppress the reflected wave before it return to the region of study, (iii) when
the time duration of numerical simulation is shorter than the time required for
a wave to return to the area of interest.

2. Local boundaries: The main characteristic of local boundaries is that the bound-
ary conditions involve only spatial and temporal points in the neighbourhood
of the boundary point under consideration at the time of evaluation. Further,
these boundaries are based upon the physical or mathematical approximations.

3. Consisting (nonlocal) transmitting boundaries: These boundaries are perfect
absorbers of any kind of waves impinging with arbitrary incidence. The
conditions imposed by such boundaries are essentially nonlocal in nature.
Most of these boundaries are frequency-dependent and thus in time domain
analysis they are restricted to steady state problems.

3.3.1 Local artificial boundary conditions

The first attempt to simulate radiation with simple local boundaries was presented
by Lysmer and Kuhlemeyer, 1969. These authors developed viscous boundary
conditions based on physical consideration. In essence, these conditions can be
interpreted as dashpots connected to the boundary points. The damping coefficient
was given by the mechanical impedance of the soil to which dashpots were attached
to. The derivation of this type of boundary condition is considered in the next
section.

Smith, 1974 used the principle of superposition to filter out the contribution of
spurious reflections from the solutions. Two solutions were obtained corresponding
to the two types of boundary conditions; one in which tangential displacement and
normal stresses vanishes, another in which normal displacement and tangential
stresses vanishes. The reflected P-wave and S-wave corresponding to these boundary
conditions have the same amplitude but they have phase difference of 180 ◦. However,
this approach is computationally not efficient, moreover this approach is limited to
the linear problem only.

Engquist and Majda, 1977 and Clayton and Egquist, 1977, developed a set of time-
dependent local-ABC of increasing order based on paraxial approximations of the
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scalar and elastic wave equation. In their technique they approximated the irrational
dispersion relation by a rational function to obtain the local differential operator
from the nonlocal pseudodifferential operators. In this way by using rational approx-
imations of increasing order, they obtain local boundary conditions of increasing
accuracy. Further, they mentioned that a higher order paraxial approximation based
on Taylor series expansions induces numerical instability. Although this difficulty
can be overcome by use of Pade approximations instead of Taylor series expansions,
the presence of higher order derivatives in boundary conditions greatly compli-
cates its implementation. Another set of local boundary conditions with adjustable
free parameters was proposed by Clayton and Engquist, 1980. Later, Cohen, 1980
showed that the paraxial boundary becomes unstable when Poisson’s ratio exceeds
0.33. A modified version of paraxial boundary called extended-paraxial boundary
and its finite element implementation was provided by Cohen and Jennings, 1983;
Cohen et al., 1981. It was also shown that the performance of extended-paraxial
boundary is only slightly superior to the standard-viscous boundary. Stacey, 1988
presented three new paraxial approximations superior to those presented by Clayton
and Engquist while avoiding the higher order derivatives. Better finite-difference
equations for internal boundaries and corners were also presented in this research.

Bayliss and Turkel, 1980 presented the sequence of local absorbing boundary condi-
tions in spherical coordinates by employing the asymptotic expansion of the solution
of scalar wave equation at large distances. The radiation conditions are given by
hierarchy of differential operators Bm which annihilate the first m terms in the
asymptotic expansion of the solution. The boundary conditions are given by

Bmu =
[
m∏
k=1

(1
c

∂

∂t
+ ∂

∂r
+ 2j − 1

R

)]
u = 0 (3.58)

where R is the radius of the artificial boundary. This higher order local boundary
condition, like previous schemes given by other researchers, contains the higher
order derivatives which makes their practical implementation near to impossible.

Higdon, 1986 considered the two-dimensional wave equation in a rectangular
truncated domain Ω. In his work scalar wave equation was first discretized in
space and time domain using finite difference scheme. Subsequently, some discrete
boundary conditions were derived for the artificial boundary. He then presented
the analytical boundary condition corresponding to the discrete one. The p-order
boundary condition, for a boundary vertical boundary located at some x > 0, is
described by the product type differential operators Hp

Hpu =

 p∏
j=1

(
cos θj

∂

∂t
+ c

∂

∂x

)u = 0 (3.59)
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where c is some reference wave-speed and θj is the angle of incident and |θj | <
π/2, ∀j = 1, · · · , p. In literature Hp is know as Higdon-boundary operator, and
Eq. (3.59) is called the Higdon absorbing boundary condition (Higdon ABC). The
alternatively form of this boundary condition is given by

Hpu =

 p∏
j=1

(
∂

∂t
+ Cj

∂

∂x

)u = 0 (3.60)

where Cj = c/cosθj ; Cj ≥ c signify the phase speed in the x-direction.

Higdon ABC is perfectly absorbing for a plane wave hitting the artificial boundary
at one the angles ±θj for j = 1, · · · , p with speed c. Therefore, Higdon-boundary
will appear absolutely transparent at the discrete angle of incidence ±θ1, · · · ,±θp.
The second order Higdon ABC (i.e. p = 2 in Eq. (3.59)) corresponds to the
linear space time interpolation of solution at the artificial boundary. Higdon also
demonstrated that p-order Engquist-Majda condition is special case of Eq. (3.59)
with θj = 0, ∀j = 1, · · · , p (for more general description see Higdon, 1986,
Propostition 9.1).

Through several numerical experiments it was demonstrated that the amount of
spurious reflection is not very sensitive to the choice of the θj (Higdon, 1987). There-
fore, the fact that θj are not known a priori is not a major restriction for the Higdon
ABC. Further, Higdon ABC is very general as they are applicable to variety of wave
problems including waves in dispersive media (Higdon, 1994) and stratified media
(Higdon, 1992). Moreover, the condition is exact in the sense that when the order p
in Eq. (3.59) increases to infinity, it gives a global formulation. Unfortunately, the
p-order Higdon ABC will contain p-order space and time derivatives. Therefore, high
order conditions are impractical beyond 2nd or 3rd order from the implementation
point of view. Finally, it is noteworthy that Higdon ABC is local in space and time.

Higdon, 1990; Higdon, 1991 extended the Higdon ABC for the case of elastic wave
propagating in two-dimensional space. In the case of elastic waves Higdon-boundary
operator is written by

Hpu =

 p∏
j=1

(
βj
∂

∂t
+ cL

∂

∂x

)u = 0 (3.61)

where cL is phase-velocity of longitudinal plane wave (cf. Eq. (3.11)) and βj > 0, ∀j
resemble to the cosine of angle of incident. The jth operator in Eq. (3.61) is perfectly
absorbing for P-waves traveling at angle of incidence ±cos−1βj and S-wave traveling
at angle of incidence ±cos−1 (βjcT /cL). If βj ≤ 1, ∀j, then Eq. (3.61) is oriented
mainly to absorb P-waves but also helps to absorb S-waves. If βj ’s are are all near
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the ratio cL/cT > 1 then Eq. (3.61) is oriented mainly to absorb S-waves but helps
absorb P-wave. In addition, Higdon showed that Higdon ABC is stable for all values
of the ratio cL/cT while the second order Engquist-Majda boundary conditions is
unstable for large value of cL/cT .

Underwood and Geers, 1981 presented a local transmitting boundary condition for
a structure embedded in the elastic medium problem. Their method was based on a
substructure approach in which to model the effect of infinite domain interaction-
horizon was placed at the soil-structure interface. The soil-structure interaction
was approximated by first order doubly asymptotic boundary element techniques.
The following relation was used for surface force vector {f s} associated with the
scattered waves

{f s} =
[
K0
b

]
{u}+ [C∞b ] {v} (3.62)

where {u} and {v} is the vector of nodal displacement and velocity, respectively.
From Eq. (3.62) it can be observed that in high (low frequency) limit the unbounded
domain is modelled as an array of dashpots (springs). The boundary stiffness
matrix

[
K0
b

]
is non-symmetric and it couples all the nodes at the interaction-horizon,

therefore, this approach is local in time but non-local in space. The method behaves
poorly in intermediate range of frequency. Moreover, this approach can only absorb
the waves propagating normal to the interaction-horizon.

Later Wolf and Song, 1995 combined the doubly asymptotic approach of Underwood
and Geers, 1981 and Higdon ABC to derive the doubly asymptotic multi-directional
(DAMD) ABC. In his approach Eq. (3.62) additionally contains the surface force
vector {Qs

b} which represents the remaining interaction forces. These forces were
computed from the second-order Higdon ABC (cf. Eq. (3.59)) while replacing u
with the Q. Explicit finite difference scheme was employed to calculate {Qs

b} and
then used in finite element formulation of the total dynamic system to compute
the displacement and velocity field. By numerical examples, they showed that the
approach is rigorous for both low and high frequency limit in all preselected angles of
incidence. In addition, DAMD-ABC is highly accurate for plane waves at intermediate
frequency and at other angles. The main disadvantage of this approach is that it
uses explicit finite difference scheme to solve Higdon ABC which obviously makes
entire scheme conditionally stable even if one uses unconditionally stable direct
time integration scheme for finite element analysis. Therefore, a very small time
step must be selected to ensure the overall stability. Of course one can use implicit
unconditionally stable schemes but then this will increase the overall computational
cost.

Following the Bayliss-Turkel conditions, Hagstrom and Hariharan, 1998 derived a
sequence of local boundary conditions for isotropic problems (i.e. non-dispersive
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case). In contrast to previous high-order schemes their conditions avoids the use
of higher order derivatives in the normal direction and in the preferred wave
propagation direction. This was made possible due to the use of auxiliary functions;
the local conditions of arbitrary order are expressed recursively using auxiliary
functions. This way practical use of higher order ABC is possible. However, the
scheme was only applicable in the case of spherical symmetry and axial symmetry.

Collino, 1993 presented the first use of high order asymptotic boundary conditions,
within finite difference framework, for two-dimensional time-dependent waves in
rectangular domain. Corner compatibility conditions were also provided in their
formulation. Givoli, 2001 presented a general approach to construct local arbitrary
high-order boudary conditions (AHOC) with a symmetric structure and with only
low order spatial and/or temporal derivatives. This enables the practical use of ABCs
of arbitrarily high order.

Later, Givoli and Neta, 2003 reformulated the sequence of ABCs proposed by Higdon
to obtain the arbitrary high-order local ABCs. This scheme is similar to the one
proposed by Hagstrom and Hariharan, 1998 only in the sense that it eliminates
the higher order derivatives by use of special auxiliary variables. In this case,
however, the auxiliary variables are defined by simple recursive relations. Moreover,
the formulation was presented in Cartesian coordinates for rectangular domain.
The standard (C0 continuous) finite element implementation of this scheme was
presented in Givoli et al., 2003 for the case of linear inhomogeneous dispersive wave
(Klein-Gordon) equation. It was shown that the scheme is stable even for equal-order
nodal interpolation for all the variables. Besides, the computational effort associated
with the boundary condition grows only linearly with the order of accuracy.

Joolen et al., 2005 applied the Givoli-Neta boundary conditions for exterior time-
dependent wave problems in two-dimensional unbounded domain. They reported
long-time instability of the method and suggested that the special compatibility
conditions at the corner of rectangular domain should be include in the auxiliary-
variable formulation. The corner compatibility conditions for wave equation with
artificial boundary conditions were discussed by Vacus, 2005.

Following the work of Givoli and Neta, 2003, Hagstrom and Warburton, 2004
presented a new auxiliary variable formulation which includes the special corner
compatibility conditions. Hangstrom and Warburton conditions can be considered as
the symmetrized modification of the Givoli-Neta conditions with enhanced stability
characteristics. Their formulation was also based in Cartesian coordinate system
with rectangular truncated domain. In the paper they presented a finite difference
formulation of their approach. The finite element implementation of Hagstrom-
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Warburton formulation is presented by Givoli et al., 2006 for exterior time-dependent
wave problems governed by the scalar wave equation.

Samii and Lotfi, 2012; Samii and Lotfi, 2013 implemented the Hagstrom-Warburton
ABC for the dam-reservoir interaction problem using finite element methods. Hagstrom
et al., 2008 employed the Hagstrom-Warburton ABC for dispersive medium for which
the Klein-Gordon wave equation governs. They also extended the boundary condi-
tions to take into account of evanescent modes. Rabinovich et al., 2011 extended the
Hagstrom-Warburton ABC for time dependent elastic wave in unbounded domain and
presented a variational formulation for the finite element implementation. However,
their scheme suffers from long-time instability. Later, Baffet et al., 2012 suggested
that the cause of this instability may be due to the use of only Higdon-type ABC for
elastic wave problem. In their formulation they combined Lysmer-Kuhlemeyer type
boundary operator with the Higdon-type operators. This modification leads to the
long-time stability of their formulation.

Kellezi, 2000 developed a cone boundary condition for the vibration problems on
the surface of a half-space where the generated waves propagates in an area that
increases with depth. This boundary condition can be considered as an extension of
the standard viscous boundary condition of Lysmer and Kuhlemeyer, 1969. Physically,
cone boundary condition represents a series of dashpots and springs placed in the
normal and tangential direction of the truncated boundary. Due to the inclusion of
the additional springs, the cone boundary condition approximates the stiffness of
the unbounded soil domain and therefore it eliminates the permanent movement
which occurs with the viscous boundary condition at low frequencies (Kontoe et al.,
2009). However, a drawback of the cone boundary is that the stiffness coefficients of
the springs depend on the distance of the boundary from the source of excitation.
Therefore, its use is restricted to problems with surface excitations where the distance
of the boundary from the source is known.

3.4 Viscous boundary condition

Lysmer and Kuhlemeyer, 1969 first proposed the artificial boundary condition for
elastic waves (henceforth known as LK-ABC). In this section LK-ABC is first derived
for the case of one-dimensional longitudinal wave (P-wave) impinging normally at
the boundary, then the condition is derived for the case of vertically propagating
SV-wave again impinging normally at the boundary. Finally, the LK-condition is
derived for plane wave impinging at some angle θ at the artificial boundary.
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3.4.1 LK-ABC for normal incidence of P-wave

Consider an isotropic, homogeneous, linear elastic half-space, initially at rest, sub-
jected to the uniform pressure p(t) at the plane x1 = 0 (see Fig. 3.7a). Here any
plane parallel to the x1-axis is a plane of symmetry, therefore, the displacement
can be described by u = [u1(x1, t), 0, 0]. Additionally, the wave-fronts are normal to
x1-axis. By using strain-displacement relationship Eq. (3.3) it can be shown that the
present situation is a case of one-dimensional longitudinal strain; only non-trivial
strain component is ε11. Accordingly, the equation of motion Eq. (3.1) becomes a
one-dimensional wave equation of the form

∂2u1
∂x2

1
= 1
c2
L

∂2u1
∂t2

(3.63)

where cL is the phase velocity of longitudinal wave and given by Eq. (3.11). Ini-
tial conditions and boundary conditions are given by Eq. (3.64) and Eq. (3.65),
respectively.

u1 (x1, 0) = 0; v1 (x1, 0) = 0 (3.64)

σ11 (0, t) = −p (t) p(t) = 0 for t < 0 (3.65)

The general form of solution to the wave equation Eq. (3.63) is given by

u1 (x1, t) = f

(
t− x1

cL

)
+ g

(
t+ x1

cL

)
(3.66)

where f(·) and g(·) denote the wave traveling positive and negative x1-direction,
respectively. Obviously, in the present case no wave will travel in the negative
x1-direction (see Achenbach, 2012, chapter 2), hence

u1 (x1, t) = f

(
t− x1

cL

)
(3.67)

Employing Eq. (3.2) and Eq. (3.67) the non-trivial components of stress tensor
become

σ11(x1, t) = −(λ+ 2µ)
cL

f
′
(
t− x1

cL

)
= −ρcLf

′
(
t− x1

cL

)
(3.68)

σ22(x1, t) = σ33 = − λ

cL
f
′
(
t− x1

cL

)
(3.69)

Futher, the velocity is given by

v1 (x1, t) = f
′
(
t− x1

cL

)
(3.70)
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Fig. 3.7.: Illustration of (A) a half-space subjected to uniform pressure, (B) truncation of
unbounded domain by introducing artificial boundary to obtain finite computational domain,
(C) satisfying radiation condition by placing series of dashpots along the artificial boundary.
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Noting Eq. (3.68) and Eq. (3.70) we can obtain the following relation between
normal stress σ11 and normal velocity v1 (here space, time coordinates are omitted
for clarity of expressions).

σ11 = −ρcLv1 (3.71)

Eq. (3.71) is the LK boundary condition for the case of one-dimensional P-wave
propagation. In this relation the term ρcL is called the mechanical impedance of
the medium. Mechanical impedance is the property of the medium which measures
the stress that is required to generate the motion of particles (Achenbach, 2012).
In simple terms, Eq. (3.71) signifies the amount of stress required to completely
transfer the motion (linear momentum and energy) of a plane to the next plane.
Consequently, the wave will be reflected (partially or completely) if the stress does
not satisfy the above relation. Further, Eq. (3.71) is a characteristic equation of a
dashpot with damping coefficient equal to the mechanical impedance. Therefore, it is
possible to work with the finite computational domain by introducing the artificial
boundary with boundary condition given by Eq. (3.71). In this way unbounded
domain can be replaced by a series of dashpot normal to artificial boundary as
depicted in Fig. 3.7c.

3.4.2 LK-ABC for normal incidence of S-wave

Fig. 3.8a illustrates the vertically propagating SV-wave in an isotropic, homogeneous,
linear elastic half-space. The system is initially at rest and subjected to the uniform
surface traction s(t) at the plane x2 = 0. In this case displacement is described by
u = [u1(x2, t), 0, 0]. Additionally, the wave-fronts are normal to x2-axis. ε12 is the
only non-trivial strain component (cf. Eq. (3.3)). The equation of motion is given by
following one-dimensional wave equation.

∂2u1
∂x2

2
= 1
c2
T

∂2u1
∂t2

(3.72)

where cT is the phase velocity of transverse wave and given by Eq. (3.12).

The general solution of Eq. (3.72) should represent a wave propagating in the
x2-direction. This solution can be described by

u1 (x2, t) = f

(
t− x2

cT

)
(3.73)

The non-trivial stress component σ12 and velocity v1 are given by

σ12 (x2, t) = −ρcT f
′
(
t− x2

cT

)
(3.74)
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Fig. 3.8.: Schematic diagram of (A) vertically propagating SV-wave in half-space subjected
to uniform surface traction, (B) truncation of unbounded domain by introducing artificial
boundary to obtain finite computational domain, (C) satisfying radiation condition by placing
series of dashpots along the artificial boundary.
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v1 (x2, t) = f
′
(
t− x2

cL

)
(3.75)

Accordingly, the following relationship between tangential stress σ12 and tangential
velocity v1 is self evident.

σ12 = −ρcT v1 (3.76)

Eq. (3.76) is the LK boundary condition for the case of one-dimensional S-wave
propagation. In this relation the term ρcT again denotes the mechanical impedance
of the medium. It can observed that Eq. (3.76), analogues to Eq. (3.71), represents
a dashpot with damping coefficient equal to ρcT . Further, the unbounded domain
can be truncated by placing an artificial boundary parallel to the x1-axis as depicted
in Fig. 3.8b. In the present case, the artificial boundary will perfectly absorb
the normally impinging S-wave given Eq. (3.76) is imposed on it. Physically, the
unbounded media (outside the computational domain) resembles to a situation in
which an array of dashpots is placed in tangential to the truncated boundary as
shown in Fig. 3.8c.

3.4.3 LK-ABC for general case of plane waves

In preceding two subsections LK-ABC is derived for the case of normal incidence of a
P-wave and a S-wave. In such cases LK-ABC is exact; it perfectly absorbs the incident
wave. If, however, incident wave is impinging the boundary at some angle (θ < π/2)
some amount of reflection is expected. Lysmer and Kuhlemeyer, 1969 suggested to
use following absorbing boundary conditions in order to minimize such spurious
reflection.

σn = −aρcLvn (3.77)

τ = −bρcT vs (3.78)

where σn and τ are the normal and tangential stress at the boundary, respectively.
Similarly, vn and vs are the normal and tangential velocity at the boundary, respec-
tively. As seen earlier, this condition corresponds to a situation in which a series of
dashpots are placed at the absorbing boundary in parallel and normal direction (see
Fig. 3.9b).
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Fig. 3.9.: (A) Illustration of a plane-wave impinging at the artificial boundary at some angle
θ0, (B) Interpretation of the LK-ABC as a series of dashpots configured parallel and normal
to artificial boundary.
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3.4.4 Reflection of a P-wave at the LK-boundary

Fig. 3.9a shows a P-wave approaching the boundary at some angle θ0. The wave
will be reflected as a P-wave and a SV-wave (see Achenbach, 2012, chapter 5). The
displacement and velocity field due to incident and reflected waves is represented
by

u(n) = An

 d
(n)
1
d

(n)
2

 exp
[
ikn

(
x1p

(n)
1 + x2p

(n)
2 − cnt

)]
(3.79)

v(n) = −ikncnAn

 d
(n)
1
d

(n)
2

 exp
[
ikn

(
x1p

(n)
1 + x2p

(n)
2 − cnt

)]
(3.80)

where the unit vectors d(n) =
[
d

(n)
1 , d

(n)
2

]T
and p(n) =

[
p

(n)
1 , p

(n)
2

]T
denote the

direction of motion of particle and wave propagation, respectively (see Table 3.1 and
Fig. 3.9). The number n = 0, 1, 2 is used to denote the type of wave. More details
about Eq. (3.79) can be found in section 3.2.3.

Wave-type n cn pn dn

Incident P-wave 0 cL (sin θ0, cos θ0)T (sin θ0, cos θ0)T

Reflected P-wave 1 cL (sin θ1,− cos θ1)T (sin θ1,− cos θ1)T

Reflected SV-wave 2 cT (sin θ2,− cos θ2)T (cos θ2, sin θ2)T

Tab. 3.1.: Parameters for the impinging P-wave, reflected P-wave and reflected SV-wave

Using Eq. (3.24), the normal stress σn = σ22 and tangential stress τ = σ12 at the
artificial boundary x2 = 0 can be computed. These expressions are given in Table
3.2 where the variable ηn is given by

ηn = kn (x1p
n
1 − cnt) (3.81)

n σ
(n)
22 σ

(n)
12

(0) ik0A0
(
λ+ 2µcos2θ0

)
exp (iη0) ik0A0µ sin 2θ0 exp (iη̄0)

(1) ik1A1
(
λ+ 2µcos2θ1

)
exp (iη̄1) −ik1A1µ sin 2θ1 exp (iη̄1)

(2) −ik2A2µ sin 2θ2 exp (iη̄2) σ
(2)
12 = −ik2A2µ cos 2θ2 exp (iη̄2)

Tab. 3.2.: Expression for normal and tangential stress at x2 = 0 due to impinging P-wave
(n=0), reflected P-wave (n=1) and reflected SV-wave (n=2)
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The system of incident and reflected waves should satisfy the continuity of normal
and tangential stress at the truncated boundary. This condition is given by

σ
(0)
22 + σ

(1)
22 + σ

(2)
22 = −aρcL

(
v

(0)
2 + v

(1)
2 + v

(2)
2

)
(3.82)

σ
(0)
12 + σ

(1)
12 + σ

(2)
12 = −bρcT

(
v

(0)
1 + v

(1)
1 + v

(2)
1

)
(3.83)

Using Eq. (3.79), Eq. (3.80), Table 3.1 and Table 3.2 in above stress continuity
equations one can get two linear equations in A1 and A2

A1
(
s2 − 2sin2θ0 + as2 cos θ0

)
−A2 (s sin 2θ2 + as sin θ0)

= A0
(
as2 cos θ0 − s2 + 2sin2θ0

)
(3.84)

A1 (sin 2θ0 + bs sin θ0) +A2 (s cos 2θ2 + bs cos θ2)

= A0 (sin 2θ0 − bs sin θ0) (3.85)

where A1 and A2 are the amplitude of reflected P-wave and SV-wave, respectively.
Note that Eq. (3.84 – 3.85) are obtained using the following intermediate results

s = cL
cT

(3.86)

θ1 = θ0 k1 = k0 (3.87)

sin θ2 = sin θ0
s

k2 = k0s (3.88)

In order to measure the ability of LK-ABC to absorb impinging elastic waves energy-
ratio — the ratio between the transmitted energy of the reflected waves (Er) and
the transmitted energy of the incident wave (Ei) — can be used (Lysmer and
Kuhlemeyer, 1969). Consequently, a unit energy ratio denotes the perfect reflection
while a zero energy ratio denotes the complete absorption of the incident wave. The
time averaged stress-power7 for impinging and reflected waves is given by

〈
P(n)

〉
= 1

2ρcnω
2
nAn (3.89)

7Stress-power denotes the instantaneous rate of work done by the surface traction acting on the
surface element of unit area. It is given by the scalar product of surface traction and particle
velocity. Moreover, it denotes the energy flux across the surface element.
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where ωn = kncn. The incident energy is given by

Ei =
〈
P(0)

〉
cos θ0 (3.90)

Similarly, the reflected energy is

Er =
〈
P(1)

〉
cos θ1 +

〈
P(2)

〉
cos θ2 (3.91)

and the energy ratio becomes

E := Er
Ei

=
(
A1
A0

)2
+ 1
s

cos θ2
cos θ0

(
A2
A0

)2
(3.92)

From Eq. (3.92) it can be observed that for a given choice of a and b the energy
ratio depends only in the angle of incidence θ0 and the Poisson’s ratio ν.
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Fig. 3.10.: Effect of parameters a, b on energy ratio for incident P-wave (Poisson’s ratio=0.25)

Fig. 3.10 depicts the effect of choice of free parameters a, b on the performance of
LK-ABC (Poisson’s ratio =0.25). It can be observed that the choice of a = b = 1.0
provides highly efficient LK-ABC as it gives the maximum absorption. The absorption
cannot be made perfect over the whole rage of incident angles by any choice of a and
b. This is further confirmed by Fig. 3.12 which present the variation of amplitudes
with the angle of incidence at a = b = 1.0 and Poisson’s ratio=0.25. Further, nearly
perfect absorption is attained in the range 0 < θ < 60◦ for a = b = 1. Lysmer and
Kuhlemeyer, 1969 showed that the LK-ABC for a = b = 1 is 98.5 % effective in
absorbing the impinging P-waves. Besides, Fig. 3.11 shows that LK-ABC is almost
insensitive to the value of Poisson’s ratio.
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Fig. 3.11.: Effect of Poisson’s ratio on energy ratio for incident P-wave (a = b = 1.0)
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Fig. 3.12.: Variation of the normalized amplitudes A1/A0 and A2/A0 with the angle of
incidence for incident P-wave (Poisson’s ratio=0.25, a = b = 1.0)

3.4 Viscous boundary condition 103



3.4.5 Reflection of a SV-wave at the LK-boundary

Consider a SV-wave impinging the LK-boundary at an angle θ0 with the normal as
shown in Fig. 3.9a. The displacement and velocity of the incident and reflected
waves is given by Eq. (3.79) and Eq. (3.80), respectively. Note that in present case
the unit vector d(0) and p(0) in Table 3.1 are given by Eq. (3.93) and c0 = cT while
other entries related to the reflected waves remain the same.

d(0) = (− cos θ0, sin θ0)T p(0) = (sin θ0, cos θ0)T (3.93)

In Table 3.2 the normal and tangential stress at LK-boundary due to impinging
SV-wave are given by

σ
(0)
22 = ik0A0µ sin 2θ0 exp (iη̄0) (3.94)

σ
(0)
12 = −ik0A0µ cos 2θ0 exp (iη̄0) (3.95)

After satisfying the continuity of normal and tangential stress at LK-boundary (see
Eq. 3.82 and Eq. 3.83) one can obtain the following linear equations in amplitudes
A1 and A2.

A1
(
s2 − 2sin2θ1 + as2 cos θ1

)
−A2

(
sin 2θ0s+ as2 sin θ0

)
= A0

(
as2 sin θ0 − s sin 2θ0

)
(3.96)

A1 (sin 2θ1 + bs sin θ1) +A2 (s cos 2θ0 + bs cos θ0)

= A0 (bs cos θ0 − s cos 2θ0) (3.97)

Eq. (3.96) and Eq. (3.97) are obtained using the following intermediate results

θ2 = θ0 k2 = k0 (3.98)

sin θ1 = s sin θ0 k1 = k0/s (3.99)

Accordingly, the energy ratio becomes

E := Er
Ei

=
(
A2
A0

)2
+ s

cos θ1
cos θ0

(
A1
A0

)2
(3.100)
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In case of impinging SV-wave, a special case occurs when the angle of incidence θ0

is greater than some critical angle θcr defined by

θcr = sin−1 (1/s) (3.101)

In this situation (i.e. θ0 > θcr) Eq. (3.99a) shows that sin θ1 > 1, consequently cos θ1

and p(1) (see Table 3.1) should be described by a complex number. It is noteworthy
that critical angle depends only on the Poisson’s ratio of the medium. Table 3.3
shows that θcr decreases with increasing Poisson’s ratio. Further, amplitudes A1 and
A2 are also given by complex numbers.

‘A1 = AR1 + iAI1 A2 = AR2 + iAI2 (3.102)

Noting these changes in Eq. (3.96) and (3.97) the system of linear equations in real
and imaginary components of amplitudes takes the form

[A] {x} = {b} (3.103)

where

[T] =
(
s2 − 2sin2θ1

)
−as2β −

(
sin 2θ0s+ as2 sin θ0

)
0

as2β s2 − 2sin2θ1 0 −
(
sin 2θ0s+ as2 sin θ0

)
bs sin θ1 −2β sin θ1 (s cos 2θ0 + bs cos θ0) 0
2β sin θ1 bs sin θ1 0 (s cos 2θ0 + bs cos θ0)

 (3.104)

{x} =


AR1
AI1
AR2
AI2

 {b} =


as2 sin θ0 − s sin 2θ0

0
bs cos θ0 − s cos 2θ0

0

 (3.105)

ν θcr ν θcr

0.10 41.8◦ 0.30 32.3◦
0.15 39.9◦ 0.35 28.7◦
0.20 37.8◦ 0.40 24.0◦
0.25 35.3◦ 0.45 17.5◦

Tab. 3.3.: Critical angle of incidence (θcr) for different values of Poisson’s ratio (ν)

The physical significance of the complex amplitudes (or sin θ1 > 1) is that a reflected
P-wave does not exist and, instead, a surface wave appears. The amplitude of the
surface wave decays exponentially in the normal direction to the surface. Accordingly,
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in computation of energy-ratio the energy due to surface wave should be excluded
as this wave travels parallel to the surface. Eq. (3.100) now becomes

E =
(
A2
A0

)2
=
(
AR2
A0

)2

+
(
AI2
A0

)2

(3.106)

From Fig. 3.13 it can be observed that the choice of a = b = 1.0 provides highly
efficient LK-ABC. Lysmer and Kuhlemeyer, 1969 showed that for a = b = 1.0 the
LK-ABC is 95% effective in absorbing the S-waves. Fig. 3.15 depicts the variation of
real and imaginary part of amplitudes with the angle of incidence at a = b = 1.0 and
Poisson’s ratio=0.25. In all cases the performance of LK-ABC decreases significantly
when the angle of incidence becomes greater than the critical angle. It indicates that
LK-ABC are not very efficient for the absorbing the surface waves. Further, Fig. 3.14
suggests that the performance of LK-ABC is nearly independent of the Poisson’s ratio.
Finally, it can be concluded that the performance of LK-ABC mainly depends upon
the angle of incidence. In particular, the LK-ABC performs reasonably well when the
angle of incidence is in the range 0 < θ0 < 60◦ for a = b = 1.
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Fig. 3.13.: Effect of parameters a, b on energy ratio for incident S-wave (Poisson’s
ratio=0.25)

3.5 Free field response and effective seismic input

When the source of excitation is present inside the truncated computation domain,
as discussed in previous section, the mechanical disturbance generates inside the
domain and propagates towards the infinity through the artificial boundaries. In
such cases, consequently, the dynamic response of structure does not depend upon
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the response of exterior unbounded domain. Accordingly, the prescribed boundary
condition on artificial boundary should satisfy the radiation damping with significant
accuracy in order to simulate this one-way interaction.

In practical cases, such as earthquake excitation, blast engineering, vibrations due to
high-speed railways and road-traffic among others, the source of dynamic loading
may be present outside of computational domain. Consequently, the response of
structure is coupled with the dynamic response of the unbounded domain. It is
clear that, irrespective of the type of ABC employed to truncate the domain, the
response of unbounded domain with the structure present will differ significantly
from that of the free field ground motion (Bielak and Christiano, 1984). Thereby, to
correctly model the dynamic SSI one has to ensure not only the absorption of the
outgoing scattered wave motion using appropriate ABC but also the input of the free
field ground motion into the numerical model. Unfortunately, the seismic excitation
cannot be specified directly at the artificial boundaries as this would render any
absorbing boundary ineffective (Løkke and Chopra, 2017). Thus it is necessary
to prescribe the seismic excitation in the form of effective generalized earthquake
forces.

Bielak and his coworkers (Bielak and Christiano, 1984; Bielak et al., 2003; Yoshimura
et al., 2003; Cremonini et al., 1988) presented a two step procedure for an effective
seismic input while treating the dynamic SSI as a scattering problem. In first
step, effective seismic forces were expressed in terms of free-field tractions and
displacements in unperturbed soil-medium. In second step, the effective forces
are applied as input over the domain slightly bigger to contain both structure and
absorbing boundary. Their method seems to be very efficient for reducing the size
of computation domain as it requires to store free-field displacements only in a
single layer of elements next to the soil-structure interface. Clearly, their method
has the advantage of eliminating the need to transmit seismic excitation through
the artificial boundary into the region of interest, in this way absorbing boundary
need to only absorb the outgoing waves. However, implementation of such schemes
requires a significant change in the existing finite element programs.

Alternatively, the LK-ABC can be engineered to allow sesimic excitation to enter
the computation domain. Such procedures are very simple, quite effective and
require little changes in the existing computer programs (Miura and Okinaka, 1989;
Zienkiewicz et al., 1989; Saouma et al., 2011; Løkke and Chopra, 2017; Nielsen,
2006; Zhang et al., 2003).

Fig. 3.16a illustrates the situation where a structure (possibly with nonlinear material
behaviour) embedded inside a linear elastic half-space is subjected to the earthquake
excitation. The auxiliary state of the system is defined by elastic-half space without
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Fig. 3.16.: Illustration of soil-structure interaction as a scattering problem
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the structure (see Fig. 3.16b). The term free field response will used for the dynamic
response of the auxiliary state under seismic loading.

As described earlier in this chapter, once the wave reaches at the free surface (and/or
interface between two soil layers) reflection will occur. Hence, the free field variables
(u0,v0, σ0) contains the contribution due to both incoming and reflected waves. If
some structure is embedded inside the half-space then it will perturbed the free-field
response. The degree of perturbation, of course, depends upon the dynamic response
of the structure itself. Clearly, the dynamic SSI can be scrutinized from the point
of view of scattering problem (Bielak and Christiano, 1984; Bielak et al., 2003;
Yoshimura et al., 2003; Cremonini et al., 1988; Løkke and Chopra, 2017; Basu and
Chopra, 2004). In the following subsection this concept will be utilized to modify the
viscous boundary condition, Eq. (3.77) and Eq. (3.78), so that LK ABC can absorb
the outgoing scattered waves while allowing the energy inflow from the outer free
fields.

3.5.1 Viscous boundary condition for free field input

Let Ω0 be some fictitious finite domain of the auxiliary state which will contain the
structure in the future (see Fig. 3.16). Let Γ+

∞ denotes that part of the boundary
of Ω0 which will eventually coincide with the absorbing boundaries. Let u0,v0, σ0

be the free field displacement, velocity and stress, respectively. Let Ω+
∞ be the

regular unbounded domain exterior to the Γ+
∞. One should keep in mind that that

the auxiliary state does not correspond to any physical state but is introduced to
formulate the appropriate absorbing boundary condition. Fig. 3.16c depicts the
actual computation domain Ω separated from the Ω+

∞ through the viscous boundary
Γ+
∞. u,v, σ denote the total displacement, total velocity and total stress, respectively,

inside the computation domain Ω. On contrary, the variables ũ, ṽ, σ̃ represent
the scattered motion in the exterior unbounded domain Ω+

∞. Further, the total
displacement and velocity can be decomposed in terms of scattered solution and
free-field solution (Bielak and Christiano, 1984).

u = ũ + u0 v = ṽ + v0 (3.107)

Noting the fact that the material in the vicinity of the absorbing boundary behaves
linearly, the stress at the boundary can be written as

σ · n = σ̃ · n + σ0 · n on Γ+
∞ (3.108)

where σ̃ denotes the stress corresponding to ũ and n is the unit outward normal to
Γ+
∞.
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To simulate the effect of unbounded domain viscous boundary should absorb the
outgoing scattered waves, accordingly Eq. (3.77) and Eq. (3.78) becomes

σ̃n = −aρcLṽn (3.109)

τ̃ = −bρcT ṽs (3.110)

where σ̃n and τ̃ are the normal and tangential boundary traction and ṽn, ṽs are the
normal and tangential scattered velocity components. Finally, using Eq. (3.107) and
Eq. (3.108) in the above two equation

σn = −aρcLvn + aρcL(v0)n + (σ0)n (3.111)

τ = −bρcT vs + bρcT (v0)s + τ0 (3.112)

The presence of last two terms in Eq. (3.111) and Eq. (3.112) will allow the energy
to flow from the exterior domain Ω+

∞ into the computation domain Ω0 through
the viscous boundaries Γ+

∞. At this point it is critical to note that the modified
viscous boundary requires information of the free field response (u0,v0) only at the
absorbing boundary.

3.5.2 Effective seismic input

In order to compute the effective seismic input using Eq. (3.111) and Eq. (3.112) it
is necessary to determine the free field motion (u0,v0). There are various methodolo-
gies to compute u0. For example, if the informations about the rupture characteristics
of earthquake faults, the geological material between the earthquake source and
the site, and local site conditions is available then one can conduct a large-scale 3D
simulation of seismic wave propagation from an earthquake source to region near
the structure (Bao et al., 1998). This level of details, however, is rarely available,
therefore such simulation are impractical at present.

One of the practical ways, is to define the ground motion at the some control
point based on a design spectrum. Probabilistic seismic hazard analysis, artificially
generated motions, recorded ground motions, among other techniques can be used
to generate earthquake motions. Further, these motions can be scaled and modified
to match the target spectrum in some sense (Hariri-Ardebili et al., 2016; Zhang et al.,
2003). Furthermore, under the assumption of vertically propagating body waves
and homogeneous or layered soil stratum, the free-field motion u0 at the boundary
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Γ+
∞ can be obtained by one-dimensional deconvolution of the ground motion at

the control point (Schnabel, 1972; Hashash, 2009). In principle, the motion of
every nodal point on Γ+

∞ can computed usig the the deconvolution analysis, but in
practice this approach may become a computational burden for a large number of
elevations.

The above problem related to the deconvolution technique can be avoided under the
condition that the body waves (P-wave and S-wave) due to the seismic excitation
propagates in the vertical direction in an isotropic, homogeneous, elastic half space.
To derive the expression for effective seismic input consider a vertically propagating
SV-wave as described in Section 3.4.2. Let absorbing boundary be placed at x2 = 0
where the seismic wave is entering the system. Total displacement of the particle
will be

u1 (x2, t) = f

(
t− x2

cT

)
+ g

(
t+ x2

cT

)
(3.113)

and the velocity

v1 (x2, t) = f
′
(
t− x2

cT

)
+ g

′
(
t+ x2

cT

)
(3.114)

or
v1 = vI1 + vR1 (3.115)

where vI1 = f
′(·) and vR1 = g

′(·) denote incoming and outgoing velocity wave.
Noting that σ12 is the only non-zero stress component and n = (0,−1)T at the
boundary x2 = 0, the tangential boundary traction becomes

τ = −σ12 = −ρcT
(
−vI1 + vR1

)
(3.116)

using Eq. (3.115) in Eq. (3.116)

τ = −ρcT v1 + ρcT 2vI1 (3.117)

adopting vIs = vI1 and vs = v1 for the component of incoming and total velocity
tangential to the boundary x2 = 0, respectively.

τ = −ρcT vs + ρcT 2vIs (3.118)

Following the same procedure for the vertically propagating P-wave one can obtain

σn = −ρcLvn + ρcL2vIn (3.119)

Comparing Eq. (3.118) with Eq. (3.112) and Eq. (3.119) with Eq. (3.111) it can be
seen that under the assumption of vertically propagating body waves in an isotropic,
homogeneous, linear elastic-half space the equivalent forces due to seismic motion
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on the bottom boundary can be described completely in terms of the incoming
velocity at x2 = 0. In this way the incoming velocity at the bottom can be computed
through the deconvolution of the ground motion at the control point. Furthermore,
from Eq. (3.118) and Eq. (3.119) it is evident that the incident velocity vI is half of
the total velocity at the free surface8.

3.6 Summary

In this chapter, a concise presentation regarding the theory of wave propagation
in an elastic solid is given. After briefly discussing the reflection and refraction
of a plane harmonic waves it is shown that the problem of dynamic soil-structure
interaction can be viewed as a wave-scattering phenomenon, in which the free-field
response of an elastic half-space is perturbed by the existing structure. Furthermore,
the chapter presents some of the most popular boundary conditions for solving wave
propagation problems in the unbounded domain. In addition, the viscous boundary
conditions first proposed by Lysmer and Kuhlemeyer, 1969 are derived, and a
comprehensive discussion related to the numerical characteristics of the viscous
boundary conditions is made. Lastly, the viscous boundary conditions are reviewed
to allow seismic excitation to enter the computational domain.

8This result can be obtain by setting zero traction at the free surface using Eq. (3.118) and Eq.
(3.119)
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4v-ST/FEM for The Dynamic
Soil-Structure Interaction Problem

4.1 Introduction

The seismic behaviour of a structure is highly influenced not only by the dynamic
response of the superstructure, but also by the response of the underlying soil
(Kausel, 2010). The problem of dynamic soil-structure interaction (SSI) had already
been studied as early as 1935 in Japan by Katsutada Sezawa and Kiyoshi Kanai
who published a truly remarkable, pioneering paper on the subject (Sezawa and
Kanai, 1935d; Sezawa and Kanai, 1935a; Sezawa and Kanai, 1935c; Sezawa and
Kanai, 1935b). Analytical solutions for the problem of dynamic interaction between
superstructure (with regular shaped foundation) and underlying isotropic, homoge-
nous, linear elastic half-space have been presented by many researchers (Arnold
et al., 1955; Bycroft, 1956; Richardson et al., 1971; Warburton et al., 1971; Luco
and Contesse, 1973; Trifunac, 1972; Wong and Trifunac, 1974; Saito and Wada,
1977). However, in practice, the close form solutions are applicable only under
certain circumstances, for example when the superstructure is considered as rigid
and/or massless, and the shape of the foundation is circular, rectangular, or elliptical.
Undoubtedly, it becomes indispensable to study the effect of soil-structure interaction
for heavy structures such as concrete gravity dams.

In chapter 3, it is shown that the dynamic SSI problem can be tackled as a wave-
propagation (or wave-scattering) problem in an unbounded soil domain. In order to
work with the finite computational domain artificial boundaries with appropriate
absorbing boundary conditions are used to truncate the unbounded soil-domain.
Finite element methods (FEM) have been widely used to solve dynamic SSI problem.
FEM based on frequency domain are only applicable to the linear problem, therefore,
incorporation of nonlinear material behavior will be a prohibitive task for them.
FEM in time domain, on the other hand, do not suffer from such limitations. Finite
element methods coupled with boundary element methods (FEM-BEM) in time
domain have also been developed for dynamic SSI problems (Touhei and Ohmachi,
1993; Yazdchi et al., 1999; Chuhan et al., 1995). In FEM-BEM, the domain is
divided into near-field and far-field domain, subsequently, finite elements are used
to model near-field while far-field is modeled by using boundary elements. FEM
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equipped with the infinite elements, a natural extension of finite elements to handle
unbounded domains, have been proposed to solve wave propagation in unbounded
domain (Bettess, 1977; Medina and Penzien, 1982; Valliappan and Zhao, 1992;
Zhao et al., 1992). In this approach, the near field is modeled by FEM and the far
field is modeled by infinite elements.

In this chapter v-ST/FEM is extended to solve the problem of dynamic soil-structure
interaction. The contents of this chapter are as follows. In section 4.2 governing
equations of a typical soil-structure interaction problem are presented. In section 4.3,
weak-form for v-ST/FEM is presented. The space-time finite element discretization of
weak form is discussed in Section 4.4. Subsequently, the computer implementation
of proposed method is demonstrated in section 4.5 and section 4.6. In section 4.7
v-ST/FEM method is employed for computing the seismic response of a concrete
gravity dam (without reservoir). The results are then successfully compared with
the semi-discrete FEM with Newmark-β method.

4.2 Statement of problem

Fig. 4.1 illustrates the computational setup for a typical two dimensional soil-
structure interaction problem. The structure is allowed to exhibit nonlinear behavior
and is partially (or fully) embedded in the unbounded domain. However, for clarity
of v-ST/FEM formulation it will be assumed that the structure behaves linearly. The
bounded and unbounded soil domain are assumed to behave linearly. In practice,
the structure can represent a tunnel, a gravity dam with its foundation, a high-rise
buildings, a thermal-nuclear power plant, among others.

Let Ω be the truncated computational domain that contains both the structure and
the linear bounded soil domain (see Fig. 4.1). Let Γ+

∞ denotes the artificial boundary
of Ω where the viscous boundary conditions are imposed. Γ+

∞ is divided into left
viscous boundary ΓL∞, right viscous boundary ΓR∞, and bottom viscous boundary
ΓB∞. Further, it is assumed that the seismic excitations are represented by vertically
propagating waves and entering the computation domain Ω from the bottom viscous
boundary only ΓB∞. Let aini (t) and vini (t), with i = 1, 2, denote the component of
input acceleration and velocity, respectively. 1

1Here, i = 1 and i = 2 denote the components along x1-axis and x2-axis, respectively.
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The strong form of the initial-boundary value problem of elastodynamics 2 can be
stated as, given the functions

bi : Ω× [0, T ]→ R

gi : Γgi × [0, T ]→ R

hi : Γ+
∞ ∪ Γhi × [0, T ]→ R

u0
i : Ω→ R

v0
i : Ω→ R

ρ : Ω→ R

find ui : Ω̄× [0, T ]→ R such that

ρ
∂2ui
∂t2
− ∂σij
∂xj

− ρbi = 0 ∀ (x, t) ∈ Ω× (0, T ) (4.1)

ui(x, t) = gi(x, t) ∀(x, t) ∈ Γgi × (0, T ) (4.2)

σijnj = hi ∀(x, t) ∈ Γ+
∞ ∪ Γhi × (0, T ) (4.3)

ui(x, 0) = u0
i (x) ∀x ∈ Ω (4.4)

∂ui
∂t

(x, 0) = v0
i (x) ∀x ∈ Ω (4.5)

where ρ denotes the mass density, bi denotes the body force, gi is the prescribed
displacement on Dirichlet-boundary Γgi , hi denotes the boundary traction, u0

i and
v0
i is the initial value of the velocity field. Here i = 1, 2 denotes the ith spatial

component.

The traction boundary condition given in Eq. (4.3) can be used to classify the types
of dynamic soil-structure interaction (SSI) problems. Some of the traction boundary
conditions related to the dynamic SSI problem are given below.

(i) Traction condition due to the externally applied surface load on the boundary
Γhi (see Fig. 4.1) is given by

σijnj = f si on Γhi (4.6)

2This strong form is described in Chapter 3, however, for the sake of completeness the form is
repeated here.
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Fig. 4.1.: Schematic diagram of (A) computational setup for a general soil-structure interac-
tion problem using modified viscous boundary condition, (B) orientation of dashpots and
distribution of damping coefficients at vertical and horizontal absorbing boundary
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(ii) Traction boundary conditions due to the series of dashpots arranged at the
truncated absorbing (viscous) boundary Γ+

∞ in parallel and normal direction
are derived in section 3.4 (see Eq. (3.77 – 3.78) and here rewritten as,

σn = −ρcLvn (4.7)

τ = −ρcT vs (4.8)

Recalling that in a typical two-dimensional SSI problem, the unbounded soil-
domain is usually truncated by placing vertical and horizontal artificial bound-
aries at some distance from the area of interest. The tensor component form
of viscous boundary conditions Eq. (4.7 – 4.8) for vertical boundaries ΓL∞ and
ΓR∞ is given by

σijnj = −cvipvp on ΓL∞ ∪ ΓR∞ (4.9)

Similarly, viscous boundary condition on the bottom horizontal truncated
boundary ΓB∞ can be written as,

σijnj = −chipvp on ΓB∞ (4.10)

In Eq. (4.9 – 4.10), cv and ch denote the damping coefficients matrix for the
dashpots that are placed at the vertical and horizontal truncated boundaries
(see Fig. 4.1). These matrices are described as follows.

cv =
[
ρcL 0
0 ρcT

]
(4.11)

ch =
[
ρcT 0
0 ρcL

]
(4.12)

in which, cL and cT are the speed of longitudinal wave (P-wave) and transverse
wave (S-wave) in the unbounded medium, respectively.

(iii) Traction boundary conditions for vertical artificial boundaries due to the free
field motion are derived in section 3.5 (see Eq. 3.111 and Eq. 3.112 ), where
it is shown that additional boundary terms should be included in Eq. (4.9) for
viscous boundaries to allow the energy flow from far-field to the computation
domain. The additional boundary terms are formulated in terms of free field
motion (uf ,vf , σf ) and given by

σijnj = cvipv
f
p + σfipnp on ΓL∞ ∪ ΓR∞ (4.13)

where, np is the pth spatial component of outward normal vector at the artificial
boundary, and the matrix ch is same as the one given in Eq. (4.12).
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(iv) Traction boundary condition at the bottom artificial boundary due to the incom-
ing seismic waves, which allow the vertically propagating seismic waves to en-
ter the computation, are derived in section 3.5 (see Eq. 3.118 and Eq. 3.119 ).
The tensor component form of these boundary condition is given by

σinij nj = 2chipvinp on ΓB∞ (4.14)

where vin is the incoming velocity wave.

For situations where the source of excitation resides in the computation domain
the traction boundary conditions at the artificial boundary are due to the dashpots
only, accordingly one can avoid Eq. (4.13) and Eq. (4.14) in the traction boundary
condition. Moreover, if only Eq. (4.6) is used to impose the traction boundary
condition then the problem becomes identical to the one discussed in Chapter 2 (see
Section 2.5).

The final form of traction boundary conditions used in this chapter are given by

σijnj = fsi on Γhi (4.15)

σijnj = −cvipvp + cvipv
f
p + σfipnp on ΓL∞ ∪ ΓR∞ (4.16)

σijnj = −chipvp + 2chipvinp on ΓB∞ (4.17)

The vector form is described by

σ · n = f s on Γh (4.18)

σ · n = −cv · v + cv · vf + σf · n on ΓL∞ ∪ ΓR∞ (4.19)

σ · n = −chv + 2ch · vin on ΓB∞ (4.20)

4.3 v-ST/FEM formulation

Let Ωh, the set of finite spatial elements Ωe, e = 1, · · · , nel, be the discretization of
spatial domain Ω, where nel is the total number of spatial elements in Ωh. Consider
a non-uniform subdivision for the time domain [0, T ], 0 = t0 < t1 < · · · < tN = T

with In = (tn, tn+1), ∆t = tn+1 − tn. The nth space-time slab Qn = Ωh × In, and the
space-time finite element Qn,e = Ωe × In, e = 1, · · · , nel.
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Consider Pl(Qn,e), the collection of all polynomials defined on Qn,e with a total
degree of no more than l, and C0(∗), the space of piecewise continuous functions
defined on domain (∗). Consider also the following collection of functions:

Fl,h :=
{

uh
∣∣∣uh ∈ C0

(⋃N−1
n=0

Qn

)2
, uh

∣∣∣Qn,e ∈ (Pl (Qn,e))2
}

(4.21)

where uh
∣∣∣Qn,e is the restriction of uh(x, t) to Qn,e. The space of the test functions

for the v-ST/FEM formulation is written as

V h :=
{

vh
∣∣∣vh ∈ Fl,h,vh = 0,∀ (x, t) ∈ Γgi × In

}
(4.22)

The space of trial functions for the v-ST/FEM formulation is given by

Shv :=
{

vh
∣∣∣vh ∈ Fl,h, v

h
i = ġi, ∀ (x, t) ∈ Γgi × In, i = 1, 2

}
(4.23)

Following the procedure described in Chapter 2, and noting the traction boundary
conditions Eqs. (4.15 – 4.17), the weak form for v-ST/FEM is given by; Find v ∈ Shv
such that for all δv ∈ V h, and for all n = 1, · · · , N − 1, Eq. (4.24) holds.∫
In

∫
Ωh
δviρ

∂vi
∂t
dΩdt+

∫
Ωh
δvi
(
x, t+n

)
ρvi

(
x, t+n

)
dΩ−

∫
Ωh
δvi
(
x, t+n

)
ρvi

(
x, t−n

)
dΩ

−
∫
In

∫
Ωh
δviρbidΩdt+

∫
In

∫
Ωh

∂δvi
∂xj

σnijdΩdt+
∫
In

∫
Ωh

∂δvi
∂xj

CijklψkldΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt+

∫
In

∫
ΓR∞∪ΓL∞

δvic
v
ijvjdsdt+

∫
In

∫
ΓB∞

δvic
h
ipvpdsdt

−
∫
In

∫
ΓR∞∪ΓL∞

δvi
(
cvijv

f
j + σfijnj

)
dsdt−

∫
In

∫
ΓB∞

δvi2chijvinj dsdt = 0

(4.24)

where
ψij =

∫ t

tn

∂vi (x, τ)
∂xj

dτ ∀t ∈ In, ∀v ∈ Shv (4.25)

4.4 v-ST/FEM discretization

Consider Qn,e = Ωe × In denoting the space-time finite element. Let ne be the total
number of spatial nodes in Ωe. Let vi(x, t+n ) and vi(x, t−n+1) be the spatial velocities
on the bottom and top faces of space-time slab Qn, respectively (see Section 2.6).
The time t ∈ In is given by

t = T1(θ)tn + T2(θ)tn+1, ∀θ ∈ [−1, 1] (4.26)
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where

T1(θ) = 1− θ
2 T2(θ) = 1 + θ

2 (4.27)

The test and trial function for velocity defined on Qn,e are given by

δvi (x, t) =aδviITa (θ)N I (ξ, η) (4.28)

vi (x, t) =aviITa (θ)N I (ξ, η) (4.29)

The displacement field u(x, t) is computed by consistent integration of Eq. (4.29)

ui (x, t) = ui (x, tn) + T̃1 (θ) vi (x, tn) + T̃2 (θ) vi (x, tn+1) (4.30)

further, Eq. (4.25) becomes

ψij (x, t) = T̃1 (θ) ∂vi
∂xj

(x, tn) + T̃2 (θ) ∂vi
∂xj

(x, tn+1) (4.31)

where

T̃1 (θ) = ∆tn
2
[
1− T 2

1 (θ)
]

T̃2 (θ) = ∆tn
2 T 2

2 (θ) (4.32)

In Eqs. (4.26 – 4.32), i = 1, 2 denotes the component in x1 and x2 direction, a = 1, 2
denotes the temporal node number, I = 1, · · · , ne denotes the spatial node number,
(ξ, η) are the local spatial coordinates, and θ ∈ [−1, 1] denotes the local temporal
coordinate.

Following the procedure as described in Chapter 2 for descretizing the weak form
Eq. (4.24), one can obtain the following system of equation

[M ]abij (I, J) {v}ai (J) + [K]abij (I, J) {v}ai (J) + [C∞]abij (I, J) {v}ai (J)

= {Jext}ai (I) + {J0}ai (I)− {Jσn}ai (I) + {Jf}ai (I) + {Jin}ai (I)
(4.33)

the vector form
[Kst] {ṽ} = {J} (4.34)

where
[Kst] = [M] + [K] + [C∞] (4.35)

and
{J} = {Jext}+ {J0} − {Jσn}+ {Jf}+ {Jin} (4.36)

where the space-time nodal vector {Jext} contains the contribution of external body
force and external boundary traction, {J0} contains the contribution of initial velocity,
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{Jσn} contains the contribution of initial stress σn, {Jf} contains the contribution
of free-field motion, {Jin} contains the contribution of incoming seismic velocity. In
Eq. (4.34) {ṽ} denotes the unknown space-time nodal values of velocity field

{ṽ} =
{

ṽ1

ṽ2

}
(4.37)

{ṽa} =
{

ṽa1
ṽa2

}
(4.38)

where
{
ṽ1} and

{
ṽ2} denote the space-nodal values of velocity field at time t+n =

lim
ε→0

(tn + ε) and t−n+1 = lim
ε→0

(tn − ε), respectively, and
{

ṽ(·)
1

}
and

{
ṽ(·)

2

}
denote the

space-nodal values of x1 and x2 components of velocity field. If Rayleigh damping is
consider then the damping matrix,

[CR] = α [MR] + β [KR] (4.39)

where α and β are the Rayleigh damping coefficients, should be added to the
space-time tangent matrix [Kst], and subsequently Eq. (4.35) becomes

[Kst] = [M] + [K] + [C∞] + [CR] (4.40)

Table 4.1 and Table 4.2 succinctly provide the details about the terms present in
the expression for space-time tangent matrix [Kst] and right-hand side vector {J},
respectively. A detailed description about the derivation of the space-time matrices
and space-time nodal vectors that are presented in this section can be found in
Appendix-B.

4.5 Computation of free-field motion

In order to solve Eq. (4.34) for velocity field {ṽ} contribution of the free-field
motion, in the form of {Jf}, should be computed at first. Noting that {Jf} involves
the boundary integral over the left and right viscous boundary, only the space-time
nodal values of free-field velocity vf and stress σf defined on ΓL∞ and ΓR∞ should
be stored. Besides, vf and σf are computed by solving an elastodynamics problem
defined for the auxiliary state as discussed in section 3.5.

Further, under following assumptions the computation of free-field response simpli-
fies significantly.
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Name Matrix Component Expression
notation notation

Space-time [M] [M ]abij (I, J) δij
∫
In

∫
ΩN

ITaρ
∂NJTb
∂t dtdΩ

mass matrix +δijδ1aδ1b
∫

ΩN
IρNJdΩ

Space-time tangent [K] [K]abij (I, J)
∫
In

∫
Ω
∂NITa
∂xp

Cpijq
∂NJ T̃b
∂xq

dΩdt
stiffness matrix

Space-time matrix [C∞] [C∞]abij (I, J) [CL∞] + [CR∞] + [CB∞]
due to dashpots

Space-time [CL∞] [CL∞]abij (I, J)
∫
In

∫
ΓL∞ N

ITac
v
ijN

JTbdsdt

matrix due to
dashpots at left
boundary

Space-time [CR∞] [CR∞]abij (I, J)
∫
In

∫
ΓR∞ N

ITac
v
ijN

JTbdsdt

matrix due to
dashpots at right
boundary

Space-time [CB∞] [CB∞]abij (I, J)
∫
In

∫
ΓB∞ N

ITac
h
ijN

JTbdsdt

matrix due to
dashpots at bottom
boundary

Space-time [CR] [CR]abij (I, J) α [MR] + β [KR]
Rayleigh damping
matrix

Mass proportional [MR] [MR]abij (I, J) δij
∫
In

∫
ΩN

ITaρN
JTbdΩdt

space-time Rayleigh
damping matrix

Stiffness proportional [KR] [KR]abij (I, J)
∫
In

∫
Ω
∂NITa
∂xp

Cpijq
∂NJTb
∂xq

dΩdt
space-time Rayleigh
damping matrix

Tab. 4.1.: Description of the space-time finite element matrices that appear in v-ST/FEM for
the dynamic soil-structure problem
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Term Component notation Expression

{Jext} {Jext}ai (I)

∫
In

∫
Ω
N ITaρbidΩdt

+
∫
In

∫
Γhi
N ITaf

s
i dΩdt

{J0} {J0}ai (I) δa1
∫

ΩN
Iρv0

i dΩ

{Jσn} {Jσn}ai (I)
∫
In

∫
Ω
∂NITa
∂xj

σnijdΩdt

{Jf} {Jf}ai (I)

∫
In

∫
ΓL∞

N ITa
(
cvijv

f
j − σ

f
i1

)
dsdt

+
∫
In

∫
ΓR∞

N ITa
(
cvijv

f
j + σfi1

)
dsdt

{Jin} {Jin}ai (I)
∫
In

∫
ΓB∞ N

ITa2chijvinj dsdt

Tab. 4.2.: Description of the space-time vectors that appear in v-ST/FEM for the dynamic
soil-structure problem

1. The seismic motion is described by vertically propagating body waves (P-wave
and S-wave)

2. The unbounded soil domain is represented by an isotropic, linear elastic layered
half-space.

With these assumptions a multi-dimension auxiliary state problem effectively trans-
form into a soil-column problem (Nielsen, 2006; Zienkiewicz et al., 1989; Zhang
et al., 2003; Miura and Okinaka, 1989; Saouma et al., 2011) where the body waves
propagate through a layered soil-column (see Fig. 4.2). The governing equation for
the soil-column problem is given by Eq. (4.1) with the modified Dirichlet boundary
condition (as discussed below). The top surface of the soil-column Γsct is a stress-free
boundary. The traction boundary condition at bottom surface of soil-column,Γscb is
due to the incoming seismic motion and the dashpots (see Fig. 4.2). The analysis of
soil-column problem could be performed as follows:

1. If only horizontal component of the seismic excitation is present then free-
field displacement and velocity are computed while vertical displacement of
all nodes of soil-column mesh is constrained (thus allowing only the shear
deformation of soil-column, see Fig. 4.2b). The Dirichlet boundary condition
Eq. (4.2) becomes

u2(x, t) = 0 ∀(x, t) ∈ Ωsc × (x, t) (4.41)
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The traction boundary condition on the top and bottom surface of soil-column

σ · n = 0 ∀(x, t) ∈ Γsct × (x, t) (4.42)

σ · n = ch ·
(
−v + 2vin

)
∀(x, t) ∈ Γscb × (x, t) (4.43)

where x2 components of incoming seismic motion vin is zero.

2. If only vertical component of the seismic excitation is present then the response
(uf ,vf , σf ) is computed while horizontal displacement of all nodes of soil-
column mesh is constrained (thus allowing only the axial deformation of
soil-column, see Fig. 4.2c ). The Dirichlet boundary condition is defined as

u1(x, t) = 0 ∀(x, t) ∈ Ωsc × (x, t) (4.44)

The traction boundary condition on the top and bottom surface of soil-column
becomes,

σ · n = 0 ∀(x, t) ∈ Γsct × (x, t) (4.45)

σ · n = ch ·
(
−v + 2vin

)
∀(x, t) ∈ Γscb × (x, t) (4.46)

where x1 components of incoming seismic motion vin is zero.

3. If both components are present then the computation of soil-column problem
should be carried out in two stages. In first stage horizontal response is
computed; only the horizontal seismic motion is applied at the base of the
soil-column while constraining the vertical displacement of all nodes, and
problem is analyzed (see Fig. 4.2b). In second stage vertical response of
soil-column is computed; only the vertical seismic motion is applied at the base
of the soil-column while constraining the horizontal displacement of all nodes,
and problem is analyzed (see Fig. 4.2c). Subsequently, the total response is
obtained by superimposing the results of these two stages.

Following the space-time discretization procedure for the soil-column problem one
can obtain the matrix-vector form

[Ksc
st ]
{

ṽf
}

= {Jsc} (4.47)

where the space-time tangent matrix is given by

[Ksc
st ] = [Msc] + [Ksc] + [Csc

B∞] + [Csc
R ] (4.48)

126 Chapter 4 v-ST/FEM for The Dynamic Soil-Structure Interaction Problem



(A) (B) (C)

Unbounded soil domain

Free surface

Auxiliary State

0

(uf, vf, f)

a
in(t)
1

a
in(t)
2

Soil
column

a
in(t)
1

Soil
column

a
in(t)
2

+=

Fig. 4.2.: Modeling of a multi-dimension elastodynamics problem defined for the auxiliary
state with a one-dimensional soil-column problem; (A) auxiliary state with viscous boundary
placed at the bottom, (B) boundary conditions for the soil-column problem for horizontal
seismic motion, (C) boundary condition for the soil-column problem for vertical seismic
motion.

and the right hand side,

{Jsc} = {Jscext}+ {Jsc0 } − {Jscσn}+ {Jscin} (4.49)

In Eq. (4.48), [Msc] denotes the space-time mass matrix, [Ksc] is the space-time tan-
gent stiffness matrix, [Csc

B∞] is the space-time dashpot matrix for the bottom viscous
boundary, and [Csc

R ] is the space-time Rayleigh damping matrix for the soil-column.
The brief description about these matrices (corresponding to the subscript used in
the matrix notation) can be obtained from Table 4.1 while replacing the domain of
integration appropriately. In Eq. (4.49), the space-time nodal vector {Jscext} contains
the contribution of external body force, {Jsc0 } contains the contribution of initial
velocity, {Jscσn} contains the contribution of initial stress σn, and {Jscin} contains the
contribution of incoming seismic velocity. Appendix-B contains a detailed presen-
tation about the derivation and finite element computation about these space-time
matrices and nodal vectors.

4.6 v-ST/FEM implementation

Eq. (4.34) and Eq. (4.47) involve unsymmetrical tangent matrix. These unsymmet-
rical system of linear equations are solved using GpBiCG algorithm (Zhang, 1997).
The algorithm is implemented in an element by element manner thus avoiding the as-
sembly of global tangent matrix. Further, in each time step the soil-column problem
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Eq. (4.47) is solved first to compute the free field response
{

ṽf
}

. Subsequently, the
space-time nodal values {Jf} in Eq. (4.36) can be computed using the expression
given in Table 4.2 and Appendix-B. After computing the {ṽ} the space-nodal values
of displacement at time tn+1,

{
ũ2}, is computed by

{
ũ2
}

=
{

ũ1
}

+ ∆tn
2
({

ṽ1
}

+
{

ṽ2
})

(4.50)

Accordingly, the stress is computed, at element level, from the updated displacement
using the isotropic linear elastic stress-strain relationship

σij = λ
∂up
∂xp

δij + µ

(
∂ui
∂xj

+ ∂uj
∂xi

)
(4.51)

Then the updated stress is used to compute the {Jσn} in Eq. (4.36) for the next
time-step. Eq. (4.50) and Eq. (4.51) are also utilized to update the displacement
and stress for the soil-column test. The steps involved in solving the dynamic
soil-structure interaction problem using the v-ST/FEM method are presented in
Algorithm 1.

Algorithm 1: v-ST/FEM algorithm for soil-structure interaction problem

Initialization ;
Step-1: Get the initial value of nodal displacement (u0) and velocity (v0) ;
Step-2: Compute [M], [K], [CR] for soil and structure elements;
Step-3: Compute the space-time boundary element matrices [CL∞], [CR∞],
[CB∞] for left, right, and bottom viscous boundaries;

Step-4: Compute the space-time tangent matrix [KST ] using element matrices
from step-2 and step-3 according to Eq. (4.40) ;

Time Step Loop ;
for n=0, N-1 do

Step-5a: Solve soil-column problem and compute uf ,vf , σf ;
Step-5b: Compute the Jf ;
Step-6: Compute J0 using the initial velocity vn ;
Step-7: Compute stress σn using un and isotropic linear elasticity
relationship ;

Step-8: Compute Jσn using the σn ;
Step-9: Compute Jin from incoming seismic motion ;
Step-10: Compute J according to Eq. (4.36) ;
Step-11: Solve

[Kst] v = J

using GpBiCG iterative solver algorithm;
Step-12: Update the displacement un ;
Step-13: Update the velocity vn ;
Step-14: Go to next time step; n = n+ 1

end
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4.7 Numerical example

In this section linear seismic analysis of concrete dam is performed by employing the
v-ST/FEM algorithm. To assess the performance of v-ST/FEM for the soil-structure
interaction problem (with modified viscous boundaries) the effect of reservoir will
not be pursued here. Besides, the effect of reservoir will be discussed in next
chapter.

Fig. 4.3 depicts a concrete gravity dam on an unbounded soil domain. The physical
dimension of the dam is given in Fig. 4.4. It is assumed that the material behavior of
the dam as well as the soil is given by an isotropic, homogeneous, linear elastic stress-
strain relationship. For the concrete-dam, the elastic modulus E = 28.0 GPa, mass-
density ρ = 2347.0 kg/m3, and the Poisson’s ratio ν = 0.20. For the soil, E = 40 GPa,
ρ = 2551.0 kg/m3, and ν = 0.20. Further, material damping is modeled by Rayleigh
damping with ξ = 5% viscous damping specified for the soil and dam separately; the
resultant values of damping coefficients α and β for the dam and soil are given in
Table 4.3.

Unbounded Soil Domain

Dam

Fig. 4.3.: Numerical example for the dynamic soil structure interaction problem; concrete
gravity dam on an elastic half-space

Elastic Poisson’s Mass Rayleigh damping
modulus ratio density coefficients

E ν ρ α β
(GPa) (kg/m3)

Dam 28.0 0.2 2347.0 4.1314 4.8× 10−4

Soil 40.0 0.2 2551.0 1.612 1.47× 10−3

Tab. 4.3.: Material parameters of the dam and soil domain

Fig. 4.7 illustrates the physical dimension and finite element mesh of the truncated
computational domain (Ω). The length of soil domain in x1-direction is nine times
the length of base of the dam, and the length in x2-direction is three times the height
of the dam. The computational domain is descritised using 19, 176 number of four
node quadrilateral (Quad4) elements and 453 number of three-node linear triangle
(Tria3) elements (see Fig. 4.7). There are total 19, 559 number of nodes in the mesh,
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Fig. 4.4.: Physical dimension and finite element mesh detail of concrete gravity dam used
for the numerical simulation
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Fig. 4.5.: Horizontal component of acceleration recorded at the free-surface: (A) time
history, and (B) Fourier spectrum
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hence the total number of primary unknowns to be determined are 78, 236 (four
times the total number of nodes).

The simulation is carried out for the horizontal seismic motion recorded at some
control point on the free surface (see Fig. 4.5). Total time duration of ground motion
is 45 seconds in which acceleration is set to zero after 40 seconds. Fig. 4.5a depicts
the time history of the recorded acceleration; the maximum and minimum values of
acceleration are 396.7 cm/s2 and −449.6 cm/s2, respectively. The Fourier spectrum
of acceleration is depicted in Fig. 4.5b where the dominating amplitudes 21.9 cm/s2

and 19.4 cm/s2 occur for frequencies 1.24 Hz and 2.0 Hz, respectively. The input
seismic acceleration ain1 (t) for the numerical simulation (see the discussion presented
in section 3.5.2) is taken as half that of acceleration at the free surface.

Bounded Soil Domain

Dam
Soil

Column
Soil

Column

Unbounded Soil Domain

a
in(t)1

Free surface

Fig. 4.6.: Physical dimension and finite element mesh detail of computational domain used
for the numerical simulation

Fig. 4.6 illustrates the configuration of the components required for the computation
of present problem. Dashpots are placed on the bottom and vertical boundaries of
computation domain. Recall that, in this situation, only a single soil-column problem
needs to be solved for determining the free-field response. In the soil-column
problem vertical motion of all nodes is constrained while dashpots are placed at
the bottom (see Fig. 4.6) surface only. Furthermore, material properties of the soil
column (including Rayleigh damping coefficients α and β) are identical to that of
soil-domain (see Table 4.3).

For the validation of v-ST/FEM, the same problem is solved using semi-discrete
FEM with Newmark-β direct time integration algorithm. A uniform time-step of
size ∆t = 0.01 sec is adopted for both methods. In case of v-ST/FEM, the tolerance
for GpBiCG (iterative linear solver) is set to ε = 1.0× 10−6. The observation points
selected for the comparison of results are shown in Fig. 4.4. The spatial coordinates

4.7 Numerical example 131



Fi
g.

4.
7.

:
Ph

ys
ic

al
di

m
en

si
on

an
d

fin
it

e
el

em
en

t
m

es
h

de
ta

il
of

co
m

pu
ta

ti
on

al
do

m
ai

n
us

ed
fo

r
th

e
nu

m
er

ic
al

si
m

ul
at

io
n

132 Chapter 4 v-ST/FEM for The Dynamic Soil-Structure Interaction Problem



of these points are; point-1 (40.0, 0.0), point-2 (0.0, 0.0), point-3 (0.0, 35.0), and
point-4 (0.0, 50.0).

Temporal variation of horizontal component of acceleration at observation points
computed by employing v-ST/FEM and Newmark-β method are plotted in Figs.
(4.8–4.11). In case of point-1 and point-2 the results computed by present method
are almost identical to that of Newmark-β method (see Fig. 4.8 and Fig. 4.9). In
case of point-3 and point-4, however, due to the algorithmic damping of v-ST/FEM
the response obtained by v-ST/FEM is slightly lower than the one obtained by
the Newmark-β method3. To further explain this point, frequency content of the
acceleration response at the observation points is plotted in Fig. 4.12, where it can
be seen that the dominating frequencies for point-1 and point-2 are in between 1 Hz
and 2 Hz, and for point-3 and point-4 are in between 6 Hz and 8 Hz. In Chapter
2 it is shown that the v-ST/FEM has relatively large numerical damping for high-
frequency content, therefore, the response of point-3 and point-4 is more damped
than the response of point-1 and point-2.

In Fig. 4.13 the frequency content of horizontal acceleration obtained by v-ST/FEM is
illustrated. At the base of the dam (i.e. point-1 and point-2 in Fig. 4.4) the frequency
content is similar to the recorded acceleration, and the dominating frequencies are
also located in between 1 Hz and 2 Hz. The high frequency content in the dynamic
response of the dam starts dominating as one moves away from the base towards
the crest of the dam. This is because a significant part of wave energy that enter the
dam through dam-soil interface gets trapped inside the dam-region due to multiple
reflections within the dam. To further understand this point, consider the boundaries
of the dam, the three free surfaces of the dam (upstream face, downstream face
and top surface) act as a perfect reflector. From Table 4.3 it is clear that the the
mechanical impedance of the soil is more than that of dam. Therefore, when a wave,
which is coming from the dam-region, impinges the dam-soil interface it partially
gets reflected back into the dam-region.

4.8 Summary

This chapter extends the v-ST/FEM presented in Chapter 2 for the dynamic soil-
structure interaction problems. In dynamic SSI problem, unbounded soil domain is
truncated by placing artificial boundaries at some distance from the area of inter-
est. Viscous boundary condition of Lysmer-Kuhlemeyer (Lysmer and Kuhlemeyer,
1969) is modified by introducing additional boundary terms related to the free-field
response of unbounded soil domain to facilitate the energy flow from far field to com-

3Recall that Newmark-β method has zero algorithmic damping
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Fig. 4.8.: Comparison of horizontal component of acceleration at point-1 computed by using
the v-ST/FEM and Newmark-β method
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Fig. 4.9.: Comparison of horizontal component of acceleration at point-2 computed by using
the v-ST/FEM and Newmark-β method
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Fig. 4.10.: Comparison of horizontal component of acceleration at point-3 computed by
using the v-ST/FEM and Newmark-β method
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Fig. 4.11.: Comparison of horizontal component of acceleration at point-4 computed by
using the v-ST/FEM and Newmark-β method
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Fig. 4.13.: Fourier spectrum of horizontal component of acceleration obtained by employing
v-ST/FEM for different observation points

putation domain. In the computer program, modified viscous boundary condition is
treated as a combination of various traction boundary conditions; traction boundary
condition due to dashpots, free-field motion, and input seismic motion. It is found
that the traction boundary condition due to dashpots introduces space-time dashpot
matrices [C∞] which contribute to the space-time tangent matrix. The traction
boundary condition due to input seismic motion and free-field motion introduce
corresponding space-time nodal vectors. Furthermore, it is shown how multiple
soil-column problems can be solved (with various boundary conditions) in order to
compute the free-field response. Moreover, the computation of free-field response
does not depend upon the total response of soil and structure. Thanks to this weak
coupling, the soil-column problem can be solved first, and then the total response
of soil and structure can be computed by using this free-field response. In this way,
the proposed space-time finite element formulation is applicable to a wide class of
soil-structure interaction problem.

Afterwards, a dynamic dam-soil interaction problem is considered to validate the
formulation and computer implementation of v-ST/FEM. In this problem, a dam
(without the reservoir) resting on an elastic half-space is subjected to the horizontal
component of the earthquake motion. The material damping in both dam and soil
domain is modeled using the Rayleigh damping. The results obtained by proposed
scheme are validated by solving the same problem using the semi-discrete FEM with
classical Newmark-β method. Results obtained by two methods are compared and
found to be nearly identical.
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5v-ST/FEM for The Linear
Dam-Reservoir-Soil Interaction
Problem

5.1 Introduction

The stability of dams during an event of earthquake is critical as failure of such a
structure may have catastrophic effects on life and property. When a dam-reservoir-
soil system is subjected to the earthquake-motion the hydrodynamic effects induced
by the impounded water may intensify the dynamic response of the dam. In addition,
the dynamic stresses in the dam depend on the dynamic coupling between the
dam, the water in reservoir, and the underlying soil. It is therefore necessary to
develop the numerical methods for evaluating the adequacy of a given dam-design
against a particular ground motion. Seismic analysis of a dam-reservoir system can
be viewed as a problem of dynamic fluid-structure interaction; the ground motion
and the deformations of the upstream face of a dam will generate hydrodynamic
pressure in the reservoir, and the structure deformations in turn will be affected
by the distribution of hydrodynamic pressures at the upstream face. Therefore,
the estimation of precise hydrodynamic forces on upstream face of the dam due to
earthquakes is one of the key aspects of the analysis and design of dams. In 1933,
prof. H.M. Westergaard firstly proposed a standard procedure to take into account
the hydrodynamic effects on gravity dam subjected to the earthquake loading.
In literature this procedure is well known as Westergaard’s added-mass approach.
Westergaard, 1933 made following assumptions in order to derive an expression for
the hydrodynamic pressure exerted on upstream face of the dam.

(i) Dam was idealized as two-dimensional rigid structure with vertical upstream
face.

(ii) Water in the reservoir is incompressible, and reservoir extends to infinity in
the upstream direction.

(iii) The amplitudes of displacements of fluid particles are small.

(iv) The existence of surface waves at free surface of reservoir was ignored.
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(v) Only horizontal ground motion in the direction perpendicular to the vertical
upstream face was considered.

Under aforementioned assumptions, Prof. Westergaard posed the initial-boundary
value problem, and obtained pressure solutions at upstream face of the dam. For the
purpose of practical engineering use, he approximated the hydrodynamic pressure
distribution at upstream face of the dam by a parabola. He observed that the
hydrodynamic pressure was same as if a certain body of fluid was firmly attached to
the upstream face of dam and forced to move back and forth with the dam while
the remainder of the reservoir is left in active. The amount of water included was
determined by equating the inertia forces of this body of water to the pressure that
actually were exerted upon the faces of the dam under the same motion of the dam.
Accordingly, he suggested that the hydrodynamic pressure at face of the dam could
be expressed as:

p (y, t) = 7
8ρag (t)

√
Hf (Hf − y)

where y is vertical distance from the base of the dam, ag is the horizontal ground-
acceleration, Hf is the height of the reservoir, t is time, and p(z, t) is the hydrody-
namic pressure at height y from base of the dam applied normally to the face of the
dam.

Above equation indicates that the hydrodynamic pressure is equivalent to the
inertia force of a prismatic body of water of unit cross-section area and length
7
8

√
Hf (Hf − y) attached firmly to face of the dam, and moving with dam back and

forth (with total acceleration ag) in the direction normal to the face of the dam
without friction. This body of the dam (added-mass) is confined in a volume bounded
by a two-dimensional parabolic surface on the upstream side of the dam. Although
the case prof. Westergaard studied was limited to rigid dams with vertical upstream
face, and infinitely long reservoir, ignoring surface waves and considering only small
displacements of fluid particles, this work was regarded as a milestone. Especially,
the concept of added-mass, which he introduced for incompressible water reservoir,
greatly simplified the analysis procedure of the response of dam considering the
hydrodynamic effects during earthquakes.

In the same year, von Kármán, 1933 obtained the expression for hydrodynamic
pressure force and total load on a rigid dam with a vertical upstream face by
using the principle of conservation of linear momentum. These results were very
close to the Westergaard results. Kotsubo, 1957; Chopra, 1967; Victoria et al.,
1969 performed comprehensive analysis of hydrodynamic pressures on the vertical
upstream face of a rigid dam due to horizontal as well as vertical components of
ground-acceleration. Chopra, 1967 showed that significant errors are introduced
by ignoring the compressibility of water, and hydrodynamic forces due to vertical
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component of ground motion are much larger than those due to horizontal ground
motion when the height of water in reservoir is small, however, these forces become
comparable as the height of water increases. Victoria et al., 1969 found that
hydrodynamic pressure due to vertical ground motion are strongly influenced by the
direction of approach and the velocity of propagation of the earthquake.

Chopra, 1968; Chopra, 1970 studied the hydrodynamic interaction between a reser-
voir and a linear elastic dam with vertical upstream face due to horizontal ground
motion. The dynamic response of the dam was approximated by its deformations in
the fundamental mode. It was found that the interaction effects have considerable
influence on the behavior of dam-reservoir system; the resonant period as well as
earthquake response is significantly influenced by hydrodynamic interaction and
compressibility of water. In addition, it was demonstrated that the compressibility of
water can be ignored if the dam is flexible enough compared to the reservoir.

Furhter, the analysis of hydrodynamic pressure on the dam due to the vertical
component of ground motion demands the modeling of reservoir bed. The simplest
assumption is to treat the reservoir bottom as a rigid foundation, which leads to the
perfect reflection of pressure waves at the reservoir bottom, and spatially uniform
ground-acceleration. However, this assumption may result in unrealistically large
hydrodynamic pressure at the upstream face of the dam because the reservoir-bottom
condition does not allow energy dissipation in the reservoir domain. The excessive
hydrodynamic pressure at vertical upstream face will cause large deformations in
the dam which in turn will influence the hydrodynamic response of reservoir.

Chakrabarti and Chopra, 1973b investigated the hydrodynamic pressure and struc-
tural response of concrete gravity dam with vertical upstream face, including the
dam-reservoir interaction, due to vertical component of earthquake ground motion.
The response of the dam was approximated by the deformation in the fundamental
mode of vibration, and the effect of flexibility of reservoir bottom was included in the
analysis. It was showed the structural response to the vertical component of ground
motion is significant in the presence of reservoir. This is obvious as the vertical
movement of ground may increase the hydrodynamic pressure acting perpendicular
to the dam face, which in turn may cause the additional deformation in the dam. The
response was especially significant for low height dams in which case the response to
vertical component of ground motion can be larger than the response to horizontal
component of a ground motion.

Chakrabarti and Chopra, 1973a presented a general procedure for analysis of the
response of gravity dams with vertical upstream face, including the hydrodynamic
interaction and compressibility of water, to both horizontal and vertical components
of ground motion. Their approach is based on a substructure coupling technique

5.1 Introduction 143



in which the dam and the fluid domain are treated as separate substructure, and
displacements of the dam are represented as a linear combination of the first few
modes of vibration of the dam with the reservoir empty and rigid foundation.

Chwang and Housner, 1978 used von Karman’s momentum-balance approach and
Westergaard added-mass approach to obtain analytical solution for the hydrodynamic
pressure distribution along the inclined upstream face of a rigid-dam which subjected
to horizontal ground-motion. In this study they found that at any fixed point on the
upstream face of dam the pressure decreases as the inclination angle (of the face
of dam) decreases. However, for fixed values of inclination angle between 0 and
90 ◦, the maximum hydrodynamic pressure occurs at the base of the dam. Further,
Chwang, 1978 employed the two-dimensional potential-flow theory to obtain the
exact intergral solution of the problem considered in Chwang and Housner, 1978. It
was observed that for any fixed angle of inclination of upstream face of the dam the
momentum-method (Chwang and Housner, 1978) (approximate theory) indicates
that the maximum pressure occurs at the base of the dam, whereas the exact theory
(Chwang, 1978) gives the maximum pressure at some distance above the base of
the dam. However, in case of vertical upstream face of the dam both approximate
theory and exact theory predicts maximum pressure at the base of the dam.

Hall and Chopra, 1982 investigated the effects of dam-fluid interaction, water
compressibility, fluid-foundation interaction, reservoir shape, and extent of vertical
ground motion on the dynamic response of concrete gravity dam. Fluid-foundation
interaction was approximately simulated by means of an absorbing boundary con-
dition applied at the bottom of the reservoir, while the foundation was assumed
to be rigid. They reported that if the water in the reservoir is assumed as incom-
pressible then the hydrodynamic effects are equivalent to an added mass and added
load which reduce the resonant frequencies of the system and change the resonant
amplitudes. In this case the dam accelerations with full reservoir are essentially
independent of reservoir shape. Further, in the case where water compressibility
is considered and fluid-foundation interaction is neglected the dam accelerations
strongly depend on the reservoir shape. The net effect of fluid-foundation interaction
is to reduce the response of dam, and the resultant dam accelerations depend much
less on reservoir shape, especially for horizontal ground motion.

The reservoir bottom (or the top of bedrock foundation) in upstream direction
may consist a deposition of a sediment layer of considerable depth. The effect
of sedimentary layers is to partially absorb the incident hydrodynamic pressure
waves and facilitate the energy dissipation in the reservoir domain. Fenves and
Chopra, 1983 studied the effect of reservoir bottom absorption on the hydrodynamic
pressure in reservoir and the dynamic response of concrete gravity dams. Reservoir
bottom absorption effect was modeled by means of an absorbing boundary condition
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applied at the bottom of reservoir allowing the partial absorption of hydrodynamic
pressure waves at the reservoir bottom. The foundation underneath the dam-
reservoir system was assumed to be rigid. It was concluded that the reservoir bottom
absorption-effect can significantly reduce the resonant response of gravity dams to
both horizontal and vertical ground motion components. This reduction in response
becomes more substantial as stiffness of the dam increases. The decrease in resonant
frequency of the dam due to dam-water interaction is less pronounced for a wave
absorptive reservoir bottom than for a rigid reservoir bottom. The assumption of
water incompressibility overestimates both resonant response and response to high
excitation frequencies due to horizontal ground motion, in addition, this assumption
also underestimate the importance of the response to the vertical ground motion.

Cheng, 1986 modeled the reservoir bottom as a poroelastic sediment layer of finite
extent situated on top of an elastic half-space. It was showed that in case of saturated
pore water the interaction between the sediment and the reservoir is negligible.
Even a thin sediment layer, however, can significantly modify the reservoir response
if the pore water is slightly desaturated. It was found that the resonance frequency of
the system decreases and amplitude increases as the water compressibility increases.
Further, it was observed that in case of highly permeable, partially saturated, and stiff
sediment layer the hydrodynamic force on the rigid dam decreases significantly.

Chopra and Chakrabarti, 1981 presented a general procedure for analysis of the
dynamic response of the dam-reservoir-soil (DRS) system to the horizontal and
vertical components of earthquake motions. The method was based on a substructure
coupling technique in which the DRS system was divided into three substructures;
the dam, the reservoir with infinite length in upstream direction, and the semi-
infinite viscoelastic soil domain. The displacements of the dam were expressed as
a linear combination of Ritz vectors, which are selected as normal modes of an
associated undamped dam-soil system.

Lotfi et al., 1987 developed a finite element procedure for the problems of dynamic
interaction of dam-reservoir-soil systems. They devised a technique based on the
interface elements (called the hyper-elements) for rigorous modeling of all interac-
tions, such as reservoir-soil interaction, reservoir-dam, and dam-soil interaction. In
this study they concluded that the wave reflection approach presented in (Hall and
Chopra, 1982; Fenves and Chopra, 1983) to model the reservoir bottom absorption
effect underestimate the response of the dam. Medina et al., 1990 rigorously model
the reservoir-foundation interaction in their method of analysis, which was based on
boundary element method, and found that, although the Chopra’s scheme to model
the sediment layer (Hall and Chopra, 1982; Fenves and Chopra, 1983) was capable
of providing a reasonably accurate prediction of the response to a vertical excitation,
it underestimated the peak value of crest acceleration caused by harmonic horizontal
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excitation. Hatami, 1997 modified the wave reflection approach presented by the
Chopra and coworkers to model the reservoir bottom absorption effects in the seismic
analysis of the gravity dam. Hatami’s model explicitly accounts for the thickness as
well as the effects of wave attenuation in the sediment layer and reflection of waves
from the underlying foundation rock. In addition, Hatami’s model also utilizes the
mechanical parameters of the sediment layer and the foundation rock. Unfortunately,
the model is only applicable when the analysis is performed in frequency domain.

In the finite element analysis of dynamic dam-reservoir interaction problems, diffi-
culties arise mainly because of the large extent of the fluid domain, where fluid is
practically unbounded. The infinite reservoir domain is usually truncated by placing
the artificial boundaries in the upstream direction at some distance from the dam.
In the finite representation of such domains, a proper boundary condition must be
applied at the artificial boundary to represent the effects of radiation damping. Saini
et al., 1978 developed the special finite elements extending to infinity to model the
large extent of reservoir. These infinite elements naturally satisfies the Sommer-
feld radiation condition at the infinity. Their method of analysis was based on the
substructure coupling technique in which the reservoir and the dam were handled
as two substructures. The dam was discretized by using standard finite elements,
which were coupled with the infinite fluid elements. This technique depend upon
the frequency of vibration and, therefore, unsuitable for a time domain analysis.
Sharan, 1987 proposed a simple boundary condition to model the effects of radiation
damping in the analysis of hydrodynamic pressures. It was also showed that the
Sommerfeld boundary condition at the truncated upstream boundary of reservoir
does not truly represent the effect of radiation damping, particularly when the
excitation frequency is less than the second natural frequency of the reservoir. The
use of the Sommerfeld boundary condition, therefore, requires large extent of the
fluid domain to be considered in the analysis. From the numerical experiments he
showed that the modified damping condition is advantageous as absorbing boundary
can be placed at relatively short distance from the dam as compared to distance
required in case of the Sommerfeld damping condition. Yang et al., 1993; Maity
and Bhattacharyya, 1999 proposed the explicit time-domain transmitting boundary
condition for the analysis of dam-reservoir interactions. These boundary conditions
are more accurate than Sharan’s boundary conditions, however, their finite element
implementation is relatively tedious. Recently, researchers (Basu and Chopra, 2004;
Prempramote et al., 2009; Birk et al., 2012; Lin et al., 2012; Samii and Lotfi, 2012)
have developed sophisticated procedures to model the dam-reservoir interaction
problems.

Various computational techniques have been proposed in the literature to model the
coupling phenomenon in dam-reservoir interaction problem. The simplest procedure
being adopted is that both fluid and solid domain are coupled and solved as a
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one system. Zienkiewicz and Newton, 1969; Müller, 1981 used pressure as the
unknown in the fluid and displacements in the solid, but the resultant equations
lead to unsymmetrical matrices. Olson and Bathe, 1985 used velocity potential and
a hydrostatic pressure as unknown in each fluid region, and used displacements as
unknown in the solid. The use of pressure as unknown in fluid and displacement in
solid results in unsymmetrical matrices. Sandberg and Goransson, 1988 obtained a
symmetrical system by using pressure and a displacement potential to describe the
fluid domain. Their formulation allows the use of different nodal interpolation for
pressure and displacement potential. Further, number of unknowns can be reduced
by employing static condensation to the pressure field. Belytschko and Kennedy,
1976; Bathe and Hahn, 1979; Wilson and Khalvati, 1983; Chen and Taylor, 1990;
Pelecanos et al., 2013 used displacements as the nodal variable in both the solid and
fluid domain. However, these formulations suffer from the presence of spurious zero-
energy modes unless an irrotational constraint with/without reduced integration
scheme is taken into account. Bermúdez et al., 1995 also used displacement variables
for both fluid and the solid domain. But they employed linear elements for the solid
domain and nonconforming Raviart-Thomas elements of lower order for the fluid
domain to eliminate the zero-energy modes. The advantage of the displacement-
based formulation is that the fluid elements can easily be coupled to the structural
elements using standard finite element assembly procedures. But the degrees of
freedom for the fluid domain increase significantly.

The coupled modeled of dam-reservoir interaction problems may be achieved us-
ing the substructure techniques, in which different domains are modeled as sepa-
rate computational entities amongst which interaction effects are communicated.
Ghaemian and Ghobarah, 1998 presented two unconditionally stable staggered
coupling schemes, in time domain, for the dam-reservoir interaction problem. The
fist scheme was based on approximation of the displacement from the equation of
motion in the solid domain. The second scheme was based on approximation of the
pressure from the governing equation of fluid-domain. Maity and Bhattacharyya,
2003 suggested an iterative scheme in connection with the staggered solution proce-
dure for the dam-reservoir interaction problem. More details regarding the iterative
coupling techniques for dam-reservoir interaction problem can be found in literature
(Park, 1980; Park, 1983; Felippa and Geers, 1988; Felippa et al., 2001; Jahromi
et al., 2009; Soares and Godinho, 2014).

The objective of this chapter is to compute the seismic response of the dam-reservoir
(DR) and dam-reservoir-soil (DRS) system while considering all types of dynamic
interaction. The layout of this chapter is as follows. In Section 5.2 governing
equations for DR and DRS system are presented. Viscous boundary conditions, which
contains the contribution of free-field response of DR and DRS system, are applied at
the artificial boundaries of computation domain. In Section 5.3, computation details
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related to the free-field response of DR and DRS system are discussed. Section 5.4
presents the v-ST/FEM weak form for the DR and DRS system. The space-time finite
element discretization of the weak form and computer implementation of v-ST/FEM
formulation are given in Section 5.5 and Section 5.6, respectively. In later section, a
block-iterative scheme is devised to solve the coupled equations of fluid and solid
domain. InSection 5.7, various dam-reservoir interaction problems are solved to
demonstrate the performance of the present approach. Lastly, for the verification of
the proposed scheme, results obtained by using v-ST/FEM are compared with the
results available in literature.

5.2 Statement of problem

Fig. 5.1 illustrates a dam-reservoir-soil (DRS) system that consists of following
components;

1. Structure: the dam and irregular bounded soil domain with linear or nonlinear
material behavior. In this chapter, however, for the sake of clarity of v-ST/FEM
formulation the structure is assumed to behave linearly.

2. Reservoir: the semi-unbounded prismatic channel with linear, inviscid, irro-
tational, and compressible fluid. The term fluid domain and reservoir will be
used interchangeably.

3. Soil domain : the regular unbounded soil domain which is assumed to be
isotropic, homogeneous, linear elastic material. Besides, the term soil is used
as a general expression for denoting the geological material underneath the
structure and reservoir.

Irregular Soil Domain

Regular unbounded
soil domain

Fig. 5.1.: Schematic diagram of dam-reservoir-soil system subjected to an earthquake motion

In practice, sometimes, the structure is situated on a relatively very stiff soil. In such
cases, the effect of interaction with the soil can be neglected. Subsequently, a DRS
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system can simply be represented by a dam-reservoir (DR) system (see Fig. 5.2)
where the dynamic interaction between structure (dam) and reservoir plays a major
role. It is natural, therefore, to start with the governing equations of a DR system,
and subsequently extending them to include the effect of dynamic soil-structure
interaction.

Fig. 5.2.: Illustration of different components of a dam-reservoir (DR) system on a perfectly
rigid-foundation; (A) dam and a semi-infinite reservoir with impounded water subjected to
ground motion, (B) auxiliary state of dam-reservoir system, (C) finite computation domain
of the DR system obtained by placing an artificial boundary at the upstream end of the
reservoir, (D) computation domain for fluid (reservoir), (E) computation domain for solid
(dam)

5.2.1 Governing equation for dam-reservoir system

Fig. 5.2 depicts the dam-reservoir system situated on a relatively rigid ground which
is subjected to the transient ground motion. The horizontal and vertical component
of ground motion are denoted by ag1(t) and ag2(t), respectively. Note that the ground
motion is assumed to be spatially-uniform. Henceforth, the superscript (·)s and

5.2 Statement of problem 149



(·)f will be used for denoting the quantities related to the solid (dam) and fluid
domain, respectively. Let Ωf be the computation domain for fluid (i.e. reservoir)
with free surface denoted by Γff and upstream artificial boundary denoted by Γf∞.
The fluid-soil interface (of fluid domain Ωf ) – the bottom boundary of fluid domain
which is in contact with the ground – is denoted by Γffs. The fluid-dam interface of
the fluid domain is represented by Γffd. Let Ωs denote the finite computation domain
for solid which, in the present case, is occupied by the dam body. The fluid-dam
interface of solid domain is represented by Γsfd. The outward unit normal vectors to
the fluid and solid boundary are denoted by ns and nf , respectively.

Neglecting the internal viscosity, and assuming the water to be linearly compressible
with a small amplitudes for the displacements and velocity, the hydrodynamic
pressure distribution in the reservoir is governed by the pressure wave equation
(Zienkiewicz and Taylor, 2005),

1
c2
∂2p

∂t2
− ∂2p

∂x2
i

= 0 (5.1)

where p(~x, t) is the hydrodynamic pressure in the water (in excess of hydrostatic
pressure), and c is the speed of sound in water. Further, it is assumed that the water
in the reservoir is initially at rest conditions,

p (x, 0) = 0; ∂p (x, 0)
∂t

= 0 (5.2)

The hydrodynamic pressure distribution within the reservoir domain is obtained by
solving Eq. (5.1) with the following boundary conditions.

1. Boundary condition at Γff : If the possibility of surface gravity waves at the free
surface is neglected then the boundary condition on Γff becomes

p(x, t) = 0 ∀(x, t) ∈ Γff × (0, T ) (5.3)

If, however, one wishes to include the effect of surface-gravity waves while
solving the dynamic DRI problem then the boundary condition is given by
linearized surface wave condition (Zienkiewicz and Taylor, 2005)

∂p

∂x2
= −1

g

∂2p

∂t2
∀(x, t) ∈ Γff × (0, T ) (5.4)

where g is the acceleration due to gravity, x2-axis is in the vertical direction,
and the free surface is parallel to the x1-axis.
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In this thesis the effect of surface-gravity wave is not considered, hence, the
boundary condition Eq. (5.3) will be adopted.

2. Boundary condition at Γf∞: The upstream artificial boundary is obtained by
truncating the infinite reservoir domain. In case no excitation source is present
exterior to Γf∞ the artificial boundary should be able to absorb the incoming
waves. This is the case when vertical component of ground motion is absent.
In case both horizontal and vertical component are present the vertical motion
of the ground generates the free-field response which then enters the fluid
domain Ωf through the artificial boundary. Therefore, in later case the artificial
boundary should only absorb the outgoing scattered pressure-waves. The
absorbing boundary condition for the fluid domain is given by,

∇
(
p− pf

)
· nf = −1

c

∂
(
p− pf

)
∂t

∀(x, t) ∈ Γf∞ × (0, T ) (5.5)

where pf is the free-field response of reservoir, and (p − pf ) denotes the
scattered pressure wave. Eq. (5.5) signifies that the outgoing scattered waves
are traveling towards infinity and no spurious reflection of scattered waves
will take place at the truncated boundary. After rearrangement of the terms in
Eq. (5.5),

∇p · nf = −1
c

∂p

∂t
+∇pf · nf + 1

c

∂pf

∂t
∀(x, t) ∈ Γf∞ × (0, T )

In Eq. 5.5 the first term corresponds to an array of dashpots (with damping
coefficient equal to 1/c) placed normal to the absorbing boundary Γff , and last
two terms corresponds to the free-field response of reservoir (see Fig. 5.3).
It will be shown in next section that the free-response of reservoir pf can
effectively be given by pf = pf (x2, t). In addition, noting that the outward
normal vector nf at Γf∞ is [−1, 0]T , the second term in above equation vanishes
and following traction boundary condition can be obtained

∇p · nf = −1
c

∂p

∂t
+ 1
c

∂pf

∂t
∀(x, t) ∈ Γf∞ × (0, T ) (5.6)

3. Boundary condition at Γffd: The traction boundary condition at fluid-dam
interface is describe by

∇p · nf = −ρf ∂v
∂t
· nf ∀(x, t) ∈ Γffd × (0, T ) (5.7)

where ρf is the mass density of water, and v is the total velocity of the material
points of dam that belong to the interface Γffd.

5.2 Statement of problem 151



4. Boundary condition at Γffs: The traction boundary condition at fluid-soil inter-
face is describe by

∇p · nf = −ρfag · nf − qc
∂p

∂t
∀(x, t) ∈ Γffs × (0, T ) (5.8)

where ag(t) is the acceleration of ground, and qc is the damping coefficient
which is the fundamental parameter characterizing the effect of reservoir
bottom materials and it is given in Fenves and Chopra, 1983 as,

qc = 1− αb
c (1 + αb)

(5.9)

in which αb is the ratio of the amplitude of reflected hydrodynamic pressure
wave to the amplitude of a vertically propagating pressure wave incident on
the reservoir bottom. The wave reflection coefficient αb is more physically
meaningful description than qc of the behavior of hydrodynamic pressure
waves at the reservoir bottom. The wave reflection coefficient αb may range
within the limiting values of 1 and −1. For αb = 1 the reservoir-bottom acts as
the perfect reflector for the pressure waves, and αb = −1 models a very soft
reservoir bottom (or foundation).

The second term in Eq. (5.8) represents the modification of the vertical free-
field ground acceleration due to interaction between the impounded water
and the foundation medium. Due to this term the reservoir bottom also
produces a damping effect representing the energy radiated through refraction
(or absorption) of hydrodynamic pressure waves into the foundation medium
away from the dam-water system. Accordingly, this term signifies the dynamic
interaction between the reservoir water and the ground which permits partial
absorption of hydrodynamic pressure waves at the reservoir bottom.

Lastly, computation domain of fluid, in the dam-reservoir system with a rigid
foundation, and the aforementioned boundary conditions are illustrated in Fig.
5.3.

Let us now discuss the governing equation for the solid domain (recall that in
DR-system the solid domain is occupied by dam only) which is given by,

ρs
∂vi
∂t
− ∂σij
∂xj

− ρsbi = 0 ∀(x, t) ∈ Ωs × (0, T ) (5.10)

where ρs is the mass density of the solid domain. Further, for an isotropic, homoge-
neous, linear elastic material stress-strain relationship is described by

σij = λεkkδij + 2µεij (5.11)
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Fig. 5.3.: Computation domain of the fluid in the dam-reservoir system on rigid foundation
with appropriate boundary conditions (given by equation numbers); (A) the reservoir bottom
is subjected to both both horizontal and vertical components of ground motion, (B) the
reservoir bottom is subjected to only horizontal component of ground motion(here B.C.
stands for boundary condition)

where λ and µ are the Lame parameters, and

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(5.12)

The initial conditions for the solid domain are

ui (x, 0) = u0
i (x) ∀x ∈ Ωs

vi (x, 0) = v0
i (x) ∀x ∈ Ωs

(5.13)

and the Dirichlet boundary condition is described by

ui (x, t) = gi (x, t) ∀ (x, t) ∈ Γgi × (0, T ) (5.14)

In case of DR-system, the traction boundary condition for solid domain can be decom-
posed into (i) traction boundary condition due to externally applied surface loads
(see Eq. 5.15), (ii) traction boundary condition due to total pressure (hydrostatic
and hydrodynamic pressure) of impounded water acting on Γsfd (see Eq. 5.16).

σijn
s
j = fsi ∀ (x, t) ∈ Γsi,h × (0, T ) (5.15)

σijn
s
j = −{p0(x) + p(x, t)}nsi ∀ (x, t) ∈ Γsfd × (0, T ) (5.16)
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where p0(x) and p(x, t) denote the hydrostatic and hydrodynamic pressure due
to impounded water in the reservoir, respectively, and Γsi,h denotes the portion of
solid-boundary on which surface loads in xi-direction are prescribed.

Lastly, the strong form of initial-boundary value problem of dynamic interaction
between dam-reservoir system situated on a perfectly rigid ground is stated in
Fig. 5.4.

Given the functions;

bi : Ωs × [0, T ]→ R gi : Γgi × [0, T ]→ R hi : Γsi,h × [0, T ]→ R
u0
i : Ωs → R v0

i : Ωs → R ρs : Ω→ R
agi : [0, T ]→ R pf : Γf∞ × [0, T ]→ R

and the constants λ, µ, c, qc,
find ui : Ω̄s× [0, T ]→ R, vi : Ω̄s× [0, T ]→ R, and p : Ω̄f × [0, T ] such that

1
c2
∂2p

∂t2
− ∂2p

∂x2
i

= 0 ∀(x, t) ∈ Ωf × (0, T )

p(x, t) = 0 ∀(x, t) ∈ Γff × (0, T )

∇p · nf = −1
c

∂p

∂t
+ 1
c

∂pf

∂t
∀(x, t) ∈ Γf∞ × (0, T )

∇p · nf = −ρf ∂v
∂t
· nf ∀(x, t) ∈ Γffd × (0, T )

∇p · nf = −ρfag · nf − qc
∂p

∂t
∀(x, t) ∈ Γffs × (0, T )

∂vi
∂t
− ∂σij
∂xj

− ρsbi = 0 ∀(x, t) ∈ Ωs × (0, T )

σij = λεkkδij + 2µεij εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
ui (x, 0) = u0

i (x) ∀x ∈ Ωs vi (x, 0) = v0
i (x) ∀x ∈ Ωs

ui (x, t) = gi (x, t) ∀ (x, t) ∈ Γgi × (0, T )
σijn

s
j = fsi ∀ (x, t) ∈ Γsi,h × (0, T )

σijn
s
j = −{p0(x) + p(x, t)}nsi ∀ (x, t) ∈ Γsfd × (0, T )

Fig. 5.4.: Strong form of initial-boundary value problem of dynamic interaction between a
dam and a reservoir (with impounded water) on a rigid foundation subjected to the ground
motion
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5.2.2 Governing equation for dam-reservoir-soil system

In case of dam-reservoir-soil system, solid domain Ωs consists of dam and bounded
soil domain, and in this chapter both are assumed to behave linearly. The governing
equation for fluid domain, initially at rest, is described by the pressure-wave equation
Eq. (5.1). The boundary condition at the free surface Γff , the upstream artificial
boundary Γf∞, and fluid-dam interface Γffd is given by Eq. (5.3), Eq. (5.6), and
Eq. (5.7), respectively. At reservoir bottom (i.e. fluid-soil interface) the traction
boundary condition becomes,

∇p · nf = −ρf ∂v
∂t
· nf − qc

∂p

∂t
∀(x, t) ∈ Γffs × (0, T ) (5.17)

where v is the velocity of material-points (of soil domain) that are positioned at the
fluid-soil interface Γsfs, and qc is given by Eq. (5.9).

The motion of solid domain (both soil and dam) is governed by the classical elas-
todynamics equation presented in Eqs. (5.10–5.12). The initial conditions and the
Dirichlet boundary condition are given by Eq. (5.13) and Eq. (5.14), respectively.
The traction boundary condition due to the external surface loading is given in Eq.
(5.15), and the traction boundary condition due to the hydrostatic pressure p0(x)
and hydrodynamic pressure p(x, t) of impounded water acting on the dam-fluid
interface Γsfd and the fluid-soil interface Γsfs is given by Eq. (5.18).

σijn
s
j = −{p0(x) + p(x, t)}nsi ∀(x, t) ∈ Γsfd ∪ Γsfs × (0, T ) (5.18)

in which ns is the outward normal vector to the boundary of solid domain Ωs.
Further, the traction boundary condition at the artificial boundary of truncated soil
domain must be satisfied for correctly modeling the radiation-damping effect of
unbounded soil domain. These boundary conditions are describe as follows.

σijn
s
j = −cvipvp + cvipv

f
p + σfipn

s
p ∀(x, t) ∈ ΓL∞ ∪ ΓR∞ × (0, T ) (5.19)

σijn
s
j = −chipvp + 2chipvinp ∀(x, t) ∈ ΓB∞ × (0, T ) (5.20)

where ΓL∞, ΓR∞, and ΓB∞ are the left, right and bottom artificial (absorbing) boundary
of truncated soil domain, respectively (see Fig. 5.5). vf and σf are the velocity
and stress due to free-field response of unbounded soil domain. cv and ch are
the damping coefficient matrix of dashpots which are arranged at the vertical and
horizontal viscous boundaries, respectively. Furthermore, the free-field response of
reservoir and soil domain is obtained by solving the auxiliary state problem for the
DRS system (see Fig. 5.5a). The derivation of Eq. (5.19) and Eq. (5.20) is covered
in Section 3.5 (see Eq. 3.118 and Eq. (3.119)).
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Fig. 5.5.: Illustration of dynamic dam-reservoir-soil interaction problem as a wave scatter-
ing problem, (A) auxiliary state of dam-reservoir-soil system for computing the free-field
response, (B) finite computation domain of dam-reservoir-soil system and the absorbing
boundaries
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The strong form of initial-boundary value problem of dynamic dam-reservoir-soil
interaction (DRSI) is summarized in Fig. 5.6.

Given the functions;

bi : Ωs × [0, T ]→ R gi : Γgi × [0, T ]→ R hi : Γsi,h × [0, T ]→ R
u0
i : Ωs → R v0

i : Ωs → R ρs : Ω→ R

vini : [0, T ]→ R pf : Γf∞ × [0, T ]→ R ufi : ΓL∞ ∪ ΓR∞ × [0, T ]→ R

and the constants λ, µ, c, qc, cv, ch
find ui : Ω̄s× [0, T ]→ R, vi : Ω̄s× [0, T ]→ R, and p : Ω̄f × [0, T ] such that

1
c2
∂2p

∂t2
− ∂2p

∂x2
i

= 0 ∀(x, t) ∈ Ωf × (0, T )

p(x, t) = 0 ∀(x, t) ∈ Γff × (0, T )

∇p · nf = −1
c

∂p

∂t
+∇pf · nf + 1

c

∂pf

∂t
∀(x, t) ∈ Γf∞ × (0, T )

∇p · nf = −ρf ∂v
∂t
· nf ∀(x, t) ∈ Γffd × (0, T )

∇p · nf = −ρf ∂v
∂t
· nf − qc

∂p

∂t
∀(x, t) ∈ Γffs × (0, T )

∂vi
∂t
− ∂σij
∂xj

− ρsbi = 0 ∀(x, t) ∈ Ωs × (0, T )

σij = λεkkδij + 2µεij εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
ui (x, 0) = u0

i (x) ∀x ∈ Ωs vi (x, 0) = v0
i (x) ∀x ∈ Ωs

ui (x, t) = gi (x, t) ∀ (x, t) ∈ Γgi × (0, T )
σijn

s
j = fsi ∀ (x, t) ∈ Γsi,h × (0, T )

σijn
s
j = −{p0(x) + p(x, t)}nsi ∀ (x, t) ∈ Γsfd × (0, T )

σijn
s
j = −cvipvp + cvipv

f
p + σfipn

s
p ∀(x, t) ∈ ΓL∞ ∪ ΓR∞ × (0, T )

σijn
s
j = −chipvp + 2chipvinp ∀(x, t) ∈ ΓB∞ × (0, T )

Fig. 5.6.: Strong form of initial-boundary value problem of dynamic dam-reservoir-soil
interaction

5.3 Computation of free-field response

In order to obtain the dynamic response of dam-reservoir or dam-reservoir-soil
system the free field response must be obtained by analysis of the corresponding
auxiliary system.
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5.3.1 Free-field response of dam-reservoir system

Fig. 5.2b illustrates the auxiliary state of a dam-reservoir system. Let Ωf
+ be the two-

dimensional spatial domain occupied by the auxiliary-state. The free field response
is obtained by solving pressure wave equation for the auxiliary state. Recall that the
reservoir bottom is horizontal and only vertical motion of ground (reservoir-bottom)
need to be considered in the analysis. In this situation the hydrodynamic pressure
pf depends upon x2 coordinate only and satisfied the following one-dimensional
wave equation,

1
c2
∂2pf

∂t2
− ∂2pf

∂x2
2

= 0 (5.21)

In this way the auxiliary state can be represented by a fluid-column placed adjacent
to the upstream truncated boundary of reservoir (i.e. Γf∞). The fluid-column is
considered at the rest at t = 0. At the top surface of the fluid-column pf = 0, and at
the bottom surface following traction boundary condition should be imposed

∂pf

∂x2
= ρfag2 (t) + qc

∂pf

∂t
(5.22)

where ag2(t) is the x2-component of ground acceleration, and qc is given by Eq.
(5.9).

5.3.2 Free field response of dam-reservoir-soil system

Fig. 5.5a depicts the auxiliary state for dam-reservoir-soil system. The auxiliary
state contains both the infinite reservoir and the soil domain, and the spatial-domain
occupied by the auxiliary state is given by Ω ∪ Ω+ ∪ Ωf

+. Accordingly, the free-field
hydrodynamic pressure (pf ) and the free-field displacement (uf ) of soil domain are
the primary unknowns. 1

Theoretically speaking, the free-field response (uf , pf) is obtained by analysis of
auxiliary dam-reservoir-soil system while considering the effects of reservoir-soil
interaction in spatial domain Ωf

+ ∪ Ω+. This strategy, however, will require huge
computational cost. This expensive analysis may be simplified by ignoring the
coupling between the reservoir and soil in spatial domain Ωf

+ ∪ Ω+. Under this
assumption, the bottom surface of reservoir domain Ωf

+ can be treated as a rigid-
surface thus ignoring the effects of foundation flexibility. Subsequently, pf can be
computed by solving a fluid-column problem as discussed in the previous subsection.
Further, uf will be computed by solving the soil-column problem as discussed in
Section 4.5. In this way, by ignoring the effects of secondary reservoir-soil interaction

1However, in order to compute the total response of the DRS system we only need the information of
free-field solutions at the truncated boundaries.
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in spatial domain Ωf
+ ∪ Ω+, it is now possible to compute uf and pf from the the

corresponding simple column problems at very low computational cost.

5.4 v-ST/FEM formulation

Let Ωf
h, the set of finite spatial fluid-elements Ωf

e , e = 1, · · · , nfel, be the discretization
of reservoir domain Ωf , where nfel is the total number of spatial fluid elements in
Ωf
h. Further, let Ωs

h, the set of finite spatial solid-elements Ωs
e, e = 1, · · · , nel, be the

discretization of solid domain Ωs, where nel is the total number of spatial elements
in Ωh. Now, consider a non-uniform subdivision for the time domain [0, T ], 0 = t0 <

t1 < · · · < tN = T with In = (tn, tn+1), ∆t = tn+1 − tn. The nth space-time slab for
fluid domain Qfn = Ωf

h × In and for solid domain Qsn = Ωs
h × In, and corresponding

space-time finite element for fluid domain Qfn,e = Ωf
e × In, e = 1, · · · , nfel, and for

solid domain Qsn,e = Ωs
e × In, e = 1, · · · , nel.

Let us now consider Pl(Qfn,e) and Pl(Qsn,e), the collection of all polynomials defined
on Qfn,e and Qsn,e, respectively, with a total degree of no more than l. Let the space
of piecewise continuous functions defined on domain (∗) is given by C0(∗). Consider
also the following collection of functions:

Ffl,h :=
{
ph
∣∣∣ ph ∈ C0

(⋃N−1
n=0

Qfn

)
, ph

∣∣∣Qfn,e ∈ Pl (Qfn,e)} (5.23)

Fsl,h :=
{

uh
∣∣∣uh ∈ C0

(⋃N−1
n=0

Qsn

)2
, uh

∣∣∣Qsn,e ∈ (Pl (Qsn,e))2
}

(5.24)

where ph
∣∣∣Qfn,e and uh

∣∣∣Qsn,e is the restriction of ph(x, t) to Qfn,e and restriction of
uh(x, t) to Qsn,e, respectively.

The space of the test functions for the fluid-domain is

Qh :=
{
qh
∣∣∣ qh ∈ Ffl,h, q

h = 0, ∀ (x, t) ∈ Γff × In
}

(5.25)

and the space of trial functions is same as the space of test function, i.e.

Shp = Qh (5.26)

The space of the test functions for the solid domain is

V h :=
{

vh
∣∣∣vh ∈ Fl,h,vh = 0,∀ (x, t) ∈ Γgi × In, i = 1, 2

}
(5.27)
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and the space of trial functions for solid domain is

Shv :=
{

vh
∣∣∣vh ∈ Fl,h, v

h
i = ġi,∀ (x, t) ∈ Γgi × In, i = 1, 2

}
(5.28)

In order to obtain the space-time weak form of pressure-wave equation Eq. (5.1) is
rewritten as

1
c2
∂q

∂t
− ∂2p

∂x2
i

= 0 (5.29)

where q(x, t) is the auxiliary variable given by

q = ∂p

∂t
(5.30)

and
p (x, t) = p (x, tn) +

∫ t

tn
q (x, τ) dτ ∀ (x, τ) ∈ Ωf × [tn, t] (5.31)

5.4.1 v-ST/FEM weak form for dam-reservoir system

The v-ST/FEM weak-form of strong-form presented in Fig. 5.4 can be stated as; Find
v ∈ Shv and q ∈ Shp such that for all δv ∈ V h, δq ∈ Qh, and for all n = 1, · · · , N − 1,
Eq. (5.32) and Eq. (5.33) hold true.

∫
In

∫
Ωf
h

δq
1
c2
∂q

∂t
dΩdt+

∫
Ωf
h

δq (x, tn) 1
c2 q

(
x, t+n

)
dΩ

−
∫

Ωf
h

δq (x, tn) 1
c2 q

(
x, t−n

)
dΩ

+
∫
In

∫
Ωf
h

∂δq

∂xi

∂p

∂xi
dΩdt+

∫
In

∫
Γf
fd

δqρf
∂vi
∂t
nfi dsdt

+
∫
In

∫
Γf
fs

δqρfagin
f
i dsdt+

∫
In

∫
Γf
fs

δqρfqcqdsdt

+
∫
In

∫
Γf∞

δq
1
c
qdsdt−

∫
In

∫
Γf∞

δq
1
c
qfdsdt = 0

(5.32)

∫
In

∫
Ωs
h

ρsδvi
∂vi
∂t
dΩdt+

∫
Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t+n

)
dΩ

−
∫

Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t−n

)
dΩ +

∫
In

∫
Ωs
h

∂δvi
∂xj

CijklψkldΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt−

∫
In

∫
Ωs
h

ρsδvibidΩdt

+
∫
In

∫
Ωs
h

∂δvi
∂xj

σnijdΩdt+
∫
In

∫
Γs
fd

δvi (p+ p0)nsidsdt = 0

(5.33)
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In Eq. (5.32) and Eq. (5.33), nfi and nsi are the components of outward normal
vector at the fluid and solid boundary, respectively. Hydrodynamic pressure p and
displacements u are obtained by consistent integration of q and v, respectively, and
qf is related to the the free-field hydrodynamic pressure by

qf = ∂pf

∂t
(5.34)

In Eq. (5.33) Cijkl and ψij are given by

Cijkl = λδijδkl + µ (δikδjl + δilδjk) (5.35)

ψij =
∫ t

tn

∂vi (x, τ)
∂xj

dτ ∀t ∈ In,∀v ∈ Shv (5.36)

5.4.2 v-ST/FEM weak form for dam-reservoir-soil system

The v-ST/FEM weak-form of strong-form presented in Fig. 5.6 can be stated as; Find
v ∈ Shv and q ∈ Shp such that for all δv ∈ V h, δq ∈ Qh, and for all n = 1, · · · , N − 1,
Eq. (5.37) and Eq. (5.38) hold true.

∫
In

∫
Ωf
h

δq
1
c2
∂q

∂t
dΩdt+

∫
Ωf
h

δq (x, tn) 1
c2 q

(
x, t+n

)
dΩ

−
∫

Ωf
h

δq (x, tn) 1
c2 q

(
x, t−n

)
dΩ +

∫
In

∫
Ωf
h

∂δq

∂xi

∂p

∂xi
dΩdt

+
∫
In

∫
Γf
fd

δqρf
∂vi
∂t
nfi dsdt+

∫
In

∫
Γf
fs

δqρf
∂vi
∂t
nfi dsdt

+
∫
In

∫
Γf
fs

δqρfqcqdsdt+
∫
In

∫
Γf∞

δq
1
c
qdsdt−

∫
In

∫
Γf∞

δq
1
c
qfdsdt = 0

(5.37)

∫
In

∫
Ωs
h

δviρ
s∂vi
∂t
dΩdt+

∫
Ωs
h

δvi
(
x, t+n

)
ρsvi

(
x, t+n

)
dΩ

−
∫

Ωs
h

δvi
(
x, t+n

)
ρsvi

(
x, t−n

)
dΩ−

∫
In

∫
Ωs
h

δviρ
sbidΩdt

+
∫
In

∫
Ωs
h

∂δvi
∂xj

σnijdΩdt+
∫
In

∫
Ωs
h

∂δvi
∂xj

CijklψkldΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt+

∫
In

∫
ΓR∞∪ΓL∞

δvic
v
ijvjdsdt

+
∫
In

∫
ΓB∞

δvic
h
ipvpdsdt−

∫
In

∫
ΓR∞∪ΓL∞

δvi
(
cvijv

f
j + σfijnj

)
dsdt

−
∫
In

∫
ΓB∞

δvi2chijvinj dsdt+
∫
In

∫
Γs
fd

δvi(p+ p0)nsidsdt+
∫
In

∫
Γs
fb

δvi(p+ p0)nsidsdt = 0

(5.38)
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It is noteworthy that in Eq. (5.37) the boundary integral defined on upstream
truncated boundary Γf∞ corresponds to the Eq. (5.6). This equation does not include
the term ∇pf · nf as the dynamic interaction of reservoir-soil is ignored while
computing the free-field response (see Section 5.3.2).

5.5 Space-time finite element discretization

Let ne and nfe be the total number of nodes in spatial finite element for solid and
fluid domain, respectively. Let vi(x, t+n ) and vi(x, t−n+1) be the spatial velocities on
the bottom and top faces of space-time slab Qn, respectively. Similarly, let q(x, t+n )
and q(x, t−n+1) be the spatial velocities on the bottom and top faces of space-time
slab Qfn, respectively. Linear interpolation of time t ∈ In is given by

t = T1(θ)tn + T2(θ)tn+1, ∀θ ∈ [−1, 1] (5.39)

where,

T1(θ) = 1− θ
2 T2(θ) = 1 + θ

2 (5.40)

The test and trial function for velocity defined on Qn,e are given by

δvi (x, t) =aδviITa (θ)N I (ξ, η) (5.41)

vi (x, t) =aviITa (θ)N I (ξ, η) (5.42)

The displacement field u(x, t) is computed by consistent integration of Eq. (5.42)

ui (x, t) = ui (x, tn) + T̃1 (θ) vi (x, tn) + T̃2 (θ) vi (x, tn+1) (5.43)

further, Eq. (5.36) becomes

ψij (x, t) = T̃1 (θ) ∂vi
∂xj

(x, tn) + T̃2 (θ) ∂vi
∂xj

(x, tn+1) (5.44)

where

T̃1 (θ) = ∆tn
2
[
1− T 2

1 (θ)
]

T̃2 (θ) = ∆tn
2 T 2

2 (θ) (5.45)

The test and trial function for q(x, t) defined on Qn,e are given by

δq (x, t) =aδqITa (θ)N I
f (ξ, η) (5.46)
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q (x, t) =aqITa (θ)N I
f (ξ, η) (5.47)

Using Eq. (5.47) in Eq. (5.31) to determine the hydrodynamic pressure p,

p (x, t) = p (x, tn) + T̃1 (θ) q (x, tn) + T̃2 (θ) q (x, tn+1) (5.48)

In Eqs. (5.39 – 5.48), i = 1, 2 denotes the spatial component along x1 and x2

direction, a = 1, 2 denotes the temporal node number, θ ∈ [−1, 1] denotes the local
temporal coordinate, and (ξ, η) denotes the local coordinates in the spatial finite
element. In Eq. (5.41–5.42 ) I = 1, · · · , ne, and in Eq. (5.46–5.47 ) I = 1, · · · , nfe
denote the local node number of a spatial finite element for dam and reservoir,
respectively. The shape function for an Ith spatial local node is denoted by N I and
N I
f for solid and fluid domain, respectively.

5.5.1 v-ST/FEM discretization for dam-reservoir system

By using the space-time interpolation for v, δv, u, ψij , p, q, and δq in Eq. (5.32)
and Eq. (5.33) one can obtain the following system of discrete equations (see
Appendix-C for derivation).[

Kf
st

]
· {q̃}+

[
Hf
fd

]
· {ṽ} =

{
Jf
}

(5.49)

[Ks
st] · {ṽ}+

[
Hs
fd

]
· {q̃} = {Js} (5.50)

where [
Kf
st

]
=
[
Mf

]
+
[
Kf
]

+
[
Cf
fs

]
+
[
Cf
∞

]
(5.51)

[Ks
st] = [Ms] + [Ks] (5.52){

Jf
}

=
{

Jf0
}

+
{

Jff
}
−
{

Jfsg
}
−
{

Jfpn
}

(5.53)

{Js} = {Jsext}+ {Js0} − {Jsσn} −
{

Jfdpn
}
−
{

Jfdp0

}
(5.54)

Further, if Rayleigh damping is used to model the material damping in solid domain
then Eq. (5.52) becomes,

[Ks
st] = [Ms] + [Ks] + α [Ms

R] + β [Ks
R] (5.55)

in which α and β are the Rayleigh damping coefficients.

Further, in Eq. (5.49) and Eq. (5.50) {q̃} is used to denote the space-time nodal
values of auxiliary variable q, and {ṽ} which denotes the space-time nodal values of
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velocity field are the primary unknowns for the fluid and solid domain, respectively.
The finite element structure of these unknown vectors are given by

{q̃} =
{

q̃1

q̃2

}
{ṽ} =

{
ṽ1

ṽ2

} {
ṽ1
}

=
{

ṽ1
1

ṽ1
2

} {
ṽ2
}

=
{

ṽ2
1

ṽ2
2

}

in which
{
q̃1} and

{
q̃2} are the space-nodal values of q at time t = t+n (bottom

space-time slab) and time t = t−n+1 (top space-time slab), respectively. Similarly,{
ṽ1} and

{
ṽ2} are the space-nodal values of v at time t = t+n and time t = t−n+1,

respectively. Furthermore, {ṽa1} and {ṽa2} (for a = 1, 2) stand for the space-nodal
values of spatial component of velocity field along x1 and x2 direction, respectively.

In Eq. (5.49) and Eq. (5.51),
[
Mf

]
denotes the space-time mass matrix for the

fluid domain,
[
Kf
]

corresponds to the space-time diffusion matrix for fluid domain,[
Cf
fs

]
is the space-time matrix which is related to the reservoir bottom absorption

effect,
[
Cf
∞

]
is the space-time matrix corresponding to the dashpots placed at the

truncated upstream boundary of reservoir, and
[
Hf
fd

]
is the coupling matrix which

relates the hydrodynamic pressure in the reservoir with the dynamic response of
dam. Further, in Eq. (5.53), the space-time nodal vector

{
Jf0
}

corresponds to the

value of q at time t = tn,
{

Jff
}

is related to the free-field hydrodynamic response

of the reservoir,
{

Jfsg
}

is related to the motion of underlying rigid-foundation, and{
Jfpn

}
is related to the pressure-gradient in the reservoir at time t = tn.

In Eq. (5.52) and Eq. (5.55), [Ms] denotes the space-time mass matrix for the
solid domain, [Ks] is the space-time tangent stiffness matrix for the solid domain,
[Ms

R] and [Ks
R] are the mass-proportional and stiffness-proportional space-time

Rayleigh damping matrix, respectively, and
[
Hs
fd

]
is the coupling matrix which

relates the hydrodynamic pressure in the reservoir with the dynamic response of
dam. Further, in Eq. (5.53), {Js0} corresponds to the velocity of the dam at time
t = tn, {Jsext} is related to the external body force and surface acting on the dam,
{Jsσn} is related to the stresses in the dam at time t = tn, and the vectors

{
Jfdpn

}
and{

Jfdp0

}
correspond to the hydrodynamic pressure and hydrostatic pressure due to

reservoir, respectively.

The finite element expressions of the terms present in Eqs. (5.49 – 5.55) are depicted
in Table 5.1 and Table 5.2. A detailed description about the derivation of space-time
matrices and space-time nodal vectors (including their finite element data-structure)
is given in Appendix-C.
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Matrix Component Expression
notation notation

[Ms] [M s]abij (I, J) δij
∫
In

∫
Ωs
h
N ITaρ

s ∂NJTb
∂t dtdΩ

+δijδ1aδ1b
∫

Ωs
h
N IρsNJdΩ

[Ks] [Ks]abij (I, J)
∫
In

∫
Ωs
h

∂NITa
∂xp

Cpijq
∂NJ T̃b
∂xq

dΩdt

[Ms
R] [M s

R]abij (I, J) δij
∫
In

∫
Ωs
h
N ITaρN

JTbdΩdt

[Ks
R] [Ks

R]abij (I, J)
∫
In

∫
Ωs
h

∂NITa
∂xp

Cpijq
∂NJTb
∂xq

dΩdt

[
Mf

] [
Mf

]ab
(I, J)

∫
In

∫
Ωf
h
N I
f Ta

1
c2
∂NJ

f Tb
∂t dtdΩ

+δ1aδ1b
∫

Ωs
h
N I
f

1
c2N

J
f dΩ

[
Kf
] [

Kf
]ab

(I, J)
∫
In

∫
Ωf
h

TaT̃b
∂NI

f

∂xi

∂NJ
f

∂xi
dΩdt

[
Cf
fs

] [
Cffs

]ab
(I, J)

∫
In

∫
Γf
fs

N I
f Taρ

fqcN
J
f Tbdsdt

[
Cf
∞

] [
Cf∞

]ab
(I, J)

∫
In

∫
Γf∞

N I
f Ta

1
cN

J
f Tbdsdt

[CL∞] [CL∞]abij (I, J)
∫
In

∫
ΓL∞ N

ITac
v
ijN

JTbdsdt

[CR∞] [CR∞]abij (I, J)
∫
In

∫
ΓR∞ N

ITac
v
ijN

JTbdsdt

[CB∞] [CB∞]abij (I, J)
∫
In

∫
ΓB∞ N

ITac
h
ijN

JTbdsdt[
Hf
fd

] [
Hf
fd

]ab
i

(I, J)
∫
In
Ta

∂Tb
∂t dt

∫
Γf
fd

N I
f ρ

fNJnfi ds[
Hf
fs

] [
Hf
fs

]ab
i

(I, J)
∫
In
Ta

∂Tb
∂t dt

∫
Γf
fs

N I
f ρ

fNJnfi ds[
Hs
fd

] [
Hs
fd

]ab
i

(I, J)
∫
In
TaT̃bdt

∫
Γs
fd
N INJ

f n
s
ids[

Hs
fs

] [
Hs
fs

]ab
i

(I, J)
∫
In
TaT̃bdt

∫
Γs
fs
N INJ

f n
s
ids

Tab. 5.1.: Description of the space-time finite element matrices used in the v-ST/FEM for
the linear seismic analysis of the dam-reservoir and dam-reservoir-soil system.
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Matrix Component Expression
notation notation

{Jsext} {Jsext}
a
i (I)

∫
In

∫
Ωs
h
N ITaρ

sbidΩdt
+
∫
In

∫
Γhi
N ITaf

s
i dΩdt

{Js0} {Js0}
a
i (I) δa1

∫
Ωs
h
N Iρsv0

i dΩ

{Jsσn} {Jsσn}
a
i (I)

∫
In

∫
Ωs
h

∂NITa
∂xj

σnijdΩdt

{
Jfdpn

} {
Jfdpn

}a
i

(I)
∫
In

∫
Γs
fd
TaN

Ipnnsidsdt{
Jfspn

} {
Jfspn

}a
i

(I)
∫
In

∫
Γs
fs
TaN

Ipnnsidsdt{
Jfdp0

} {
Jfdp0

}a
i

(I)
∫
In

∫
Γs
fd
TaN

Ip0n
s
idsdt{

Jfsp0

} {
Jfsp0

}a
i

(I)
∫
In

∫
Γs
fs
TaN

Ip0n
s
idsdt{

Jf0
} {

Jf0

}a
(I) δ1a

∫
Ωf
h

N I
f

1
c2 q

0dΩ

{
Jff
} {

Jff

}a
(I)

∫
In

∫
Γf∞

N I
f Ta

1
c q
fdsdt

{
Jfsg

} {
Jfsg

}a
(I)

∫
In

∫
Γf
fs

N I
f Taρ

fagin
f
i dsdt

{
Jfpn

} {
Jfpn

}a
(I)

∫
In

∫
Ωf
h

Ta
∂NI

f

∂xi
∂pn

∂xi
dΩdt

{
Jsf
} {

Jsf

}a
(I)

∫
In

∫
ΓL∞ N

ITa
(
cvijv

f
j − σ

f
i1

)
dsdt

+
∫
In

∫
ΓR∞ N

ITa
(
cvijv

f
j + σfi1

)
dsdt

{Jsin} {Jsin}
a (I)

∫
In

∫
ΓB∞ N

ITa2chijvinj dsdt

Tab. 5.2.: Description of the space-time nodal vectors used in the v-ST/FEM for the linear
seismic analysis of the dam-reservoir and dam-reservoir-soil system.
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5.5.2 v-ST/FEM discretization for dam-reservoir-soil system

After using space-time interpolation for v, δv, u, ψij , p, q and δq in the weak form
which is described by Eq. (5.37) and Eq. (5.38) one can obtain the following discrete
form. [

Kf
st

]
· {q̃}+

[
Hf
fd

]
· {ṽ}+

[
Hf
fs

]
· {ṽ} =

{
Jf
}

(5.56)

[Ks
st] · {ṽ}+

[
Hs
fd

]
· {q̃}+

[
Hs
fs

]
· {q̃} = {Js} (5.57)

where [
Kf
st

]
=
[
Mf

]
+
[
Kf
]

+
[
Cf
fs

]
+
[
Cf
∞

]
(5.58)

[Ks
st] = [Ms] + [Ks] + [CL∞] + [CR∞] + [CB∞] (5.59)

{
Jf
}

=
{

Jf0
}

+
{

Jff
}
−
{

Jfpn
}

(5.60)

{Js} = {Jsext}+ {Js0} − {Jsσn}+
{

Jsf
}

+ {Jsin}

−
{

Jfdpn
}
−
{

Jfspn
}
−
{

Jfdp0

}
−
{

Jfsp0

} (5.61)

Further, if Rayleigh damping is employed to model the material damping then Eq.
(5.59) becomes

[Ks
st] = [Ms] + [Ks] + α [Ms

R] + β [Ks
R] + [CL∞] + [CR∞] + [CB∞] (5.62)

where α and β are the Rayleigh damping coefficients.

In Eq. (5.57),
[
Hf
fd

]
is the coupling matrix which relates the hydrodynamic pressure

in the reservoir with the dynamic response of dam, and
[
Hf
fs

]
is the coupling matrix

which relates the hydrodynamic pressure in the reservoir with the dynamic response
of soil domain. In Eq. (5.58),

[
Mf

]
denotes the space-time mass matrix for the

fluid domain,
[
Kf
]

corresponds to the space-time diffusion matrix for fluid domain,[
Cf
fs

]
is the space-time matrix which is related to the reservoir bottom absorption

effect, and
[
Cf
∞

]
is the space-time matrix corresponding to the dashpots placed at

the truncated upstream boundary of reservoir. Further, in Eq. (5.60), the space-time
nodal vector

{
Jf0
}

corresponds to the value of q at time t = tn,
{

Jff
}

is related to

the free-field hydrodynamic response of the reservoir, and
{

Jfpn
}

is related to the
pressure-gradient in the reservoir at time t = tn.

5.5 Space-time finite element discretization 167



In Eq. (5.56),
[
Hs
fd

]
is the coupling matrix which relates the hydrodynamic pressure

in the reservoir with the dynamic response of dam, and
[
Hs
fs

]
is the coupling matrix

which relates the hydrodynamic pressure in the reservoir with the dynamic response
of soil domain. In Eq. (5.59) and Eq. (5.63), [Ms] denotes the space-time mass
matrix for the solid domain, [Ks] is the space-time tangent stiffness matrix for the
solid domain, [Ms

R] and [Ks
R] are the mass-proportional and stiffness-proportional

space-time Rayleigh damping matrix, respectively, [CL∞], [CR∞] and [CB∞] are the
space-time damping matrices due to dashpots placed at the left, right and bottom
side of the truncated soil-domain. Further, in Eq. (5.61), {Js0} corresponds to the
velocity of the solid domain at time t = tn, {Jsext} is related to the external body
force and surface acting on the solid domain, {Jsσn} is related to the stresses in
the solid domain at time t = tn, and the vectors

{
Jfdpn

}
,
{

Jfspn
}

correspond to the

hydrodynamic pressure in the reservoir acting over Γsfd and Γsfs, respectively.
{

Jfdp0

}
and

{
Jfsp0

}
correspond to the hydrostatic pressure in the reservoir acting over Γsfd

and Γsfs, respectively.

The finite element expressions of the terms present in Eqs. (5.56 – 5.62) are depicted
in Table 5.1 and Table 5.2. A detailed description about the derivation of space-time
matrices and space-time nodal vectors (including their finite element data-structure)
is given in Appendix-D.

5.6 v-ST/FEM implementation

In case of dam-reservoir system, if rigid-ground motion contains the vertical move-
ment then free-field hydrodynamic pressure pf should be computed first in order
to compute the total hydrodynamic pressure in the reservoir. The free-field re-
sponse of reservoir is computed by solving a one-dimensional wave equation (cf.
Eq. 5.21) with appropriate boundary conditions (cf. Eq. 5.22). Similarly, in case of
dam-reservoir-soil system, the free-field response of soil-domain (uf ,vf , σf) and
free-field response of reservoir (pf , qf) is needed to compute the total response of
dam-reservoir-soil system. Recalling that soil-column problem should be solved for
determining the free-field response of soil-domain. The detailed description about
the soil-column problem is presented in Section 4.5. Once again, the free-field
response of reservoir is computed by solving a one-dimensional wave equation as
discussed in Section 5.3.

In a given time step (i.e., In = (tn, tn+1)), once the space-time nodal values of
(uf ,vf , σf ) on ΓL∞ ∪ΓR∞ ∪ΓB∞ and (pf , qf ) on Γf∞ are determined the total response
of reservoir (in the form of primary unknown q), and the total velocity field for the
solid-domain v can be computed by solving the linear system of coupled-equations;
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Eq. (5.49, 5.50) for the dam-reservoir (DR) system, and Eq. (5.56, 5.57) for the
dam-reservoir-soil (DRS) system. Here it is important to note that the primary
unknowns to be determined are q and v. Further, it is possible to solve the coupled-
equations simultaneously, however, this implementation strategy is undesirable as
the number of unknowns increases drastically. Therefore, a block-iterative algorithm
is devised to solve the system of coupled-equations given by Eq. (5.49, 5.50) or Eq.
(5.56, 5.57) iteratively. In this strategy the solution of the coupled system can be
obtained by solving the two systems (fluid domain and solid domain) separately
with interaction effects enforced by iteration. The major advantage of this approach
is that coupled field problems can be handled in a sequential manner. The structure
of block-iterative algorithm is explicated as follows.

Without the loss of generality let’s write Eq. (5.49, 5.50) and Eq. (5.56, 5.57) in the
following form [

Kf
st

]
· {q̃}+

[
Hf
]
· {ṽ} =

{
Jf
}

(5.63)

[Ks
st] · {ṽ}+ [Hs] · {q̃} = {Js} (5.64)

where [
Hf
]

=
[
Hf
fd

]
[Hs] =

[
Hs
fd

]
(5.65)

in the case of dam-reservoir system, and[
Hf
]

=
[
Hf
fd

]
+
[
Hf
fs

]
[Hs] =

[
Hs
fd

]
+
[
Hs
fs

]
(5.66)

in the case of dam-reservoir-dam system.

Consider a time step corresponding to In = (tn, tn+1), and iteration number k. Let
the space-time nodal values of q and v in kth iteration be denoted by {q̃}(k) and
{ṽ}(k), respectively. The block-iterative algorithm for solving the Eq. (5.63) and Eq.
(5.64) can be described as

[Ks
st] · {ṽ}

(k) = {Js} − [Hs] · {q̃}(k−1) (5.67)[
Kf
st

]
· {q̃}(k) =

{
Jf
}
−
[
Hf
]
· {ṽ}(k) (5.68)

The proposed block-iterative scheme can be viewed as a two-stage iterative algorithm
in which the analysis is carried out for each field (q and v) and interaction effect
is accommodated by updating the variables of the fields in the respective coupling
terms. In first-stage, see Eq. (5.67), {q̃}(k−1) is utilized to compute the velocity field
{ṽ}(k−1) in the solid-domain. At this stage, one can start by setting q to be zero,
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Algorithm 2: v-ST/FEM algorithm with block-iterative scheme for solving the
problem of dynamic interaction of dam-reservoir (DR) and dam-reservoir-soil
(DRS) system

Initialization ;
Step-1: Get the initial value of nodal displacement

{
ũ0}, and velocity

{
ṽ0}, set{

p̃0} = 0, and
{
q̃0} = 0;

Step-2: Compute space-time tangent matrices for fluid and solid domain [Ks
st]

and
[
Kf
st

]
;

Step-3: Compute coupling matrices for solid and fluid domain [Hs] and
[
Hf
]
;

Time Step Loop ;
for n=0, N-1 do

Step-4: Solve soil-column problem and compute uf ,vf , σf . Compute the Jsf
(DRS only);

Step-5: Compute Jsext;
Step-6: Compute Js0 using

{
ṽ0} ;

Step-7: Compute stress σn using
{
ũ0}, and then compute Jsσn using the σn ;

Step-8: Compute Jsin from incoming seismic motion (DRS only);
Step-9: Compute Jfdpn using

{
p̃0} ;

Step-10: Compute Jfspn using
{
p̃0} (DRS only);

Step-11: Compute Jf0 using the initial nodal values of
{
q̃0};

Step-12: Solve fluid-column problem and compute pf , qf , then compute Jff
using qf ;

Step-13: Compute Jfpn using
{
p̃0} ;

Step-14: Compute Jfg using the rigid-ground motion ag(t) (DR only);
Step-15: Set {ṽ} = 0, {q̃} = 0;
Block-Iteration Loop ;
for k=0, maxIter do

Step-16: Compute the space time nodal vector given by [Hs] {q̃} ;
Step-17: Compute {ṽ} by solving [Ks

st] {ṽ} = {Js} − [Hs] {q̃};
Step-18: Compute the space time nodal vector given by

[
Hf
]
{ṽ} ;

Step-19: Compute {ṽ} by solving
[
Kf
st

]
{q̃} =

{
Jf
}
−
[
Hf
]
{ṽ};

Step-20: Check the convergence;
if Converged then

Update
{
ũ0},

{
ṽ0},

{
p̃0},

{
q̃0} and Go to next time step

else
Go to Step-16

end
end

end
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that is {q̃}(0) = 0. After computing the trial value of velocity field {ṽ}(k), the trial
displacement of solid domain at time t = tn+1 is computed by using the relation
given in Eq. (5.43).

{
ũ2
}(k)

=
{

ũ1
}

+ ∆tn
2

({
ṽ1
}(k)

+
{

ṽ2
}(k)

)
(5.69)

where
{
ũ1} denotes the space-nodal values of displacement field at time t = tn, and{

ũ1}(k) denotes the trial space-nodal values of displacement field at time t = tn+1.

In second-stage, see Eq. (5.68), the velocity field {ṽ}(k) is used for computing the
{q̃}(k). Subsequently, the space-nodal values of hydrodynamic-pressure at time
t = tn+1 is computed by employing the Eq. (5.48).

{
p̃2
}(k)

=
{

p̃1
}

+ ∆tn
2

({
q̃1
}(k)

+
{

q̃2
}(k)

)
(5.70)

where
{
p̃1} denotes the space-nodal values of hydrodynamic pressure in reservoir at

time t = tn, and
{
p̃2} denotes the trial space-nodal values of pressure field at time

t = tn+1.

In each iteration step, after computing trial values of q and v, convergence of
sequences formed by the trial space-time nodal values {q̃}(k) and {ṽ}(k) should be
checked. In present study following convergence criterion has been adopted∥∥∥{q̃}(k)

∥∥∥− ∥∥∥{q̃}(k−1)
∥∥∥ 6 εq

∥∥∥{q̃}(0)
∥∥∥ (5.71)

∥∥∥{ṽ}(k)
∥∥∥− ∥∥∥{ṽ}(k−1)

∥∥∥ 6 εv
∥∥∥{ṽ}(0)

∥∥∥ (5.72)

in which εq and εv denote the tolerance for convergence in q and v, respectively.
‖·‖ denotes Euclidean norm of space-time vectors. Note that Eq. (5.71) and Eq.
(5.72) define the local convergence criterion for the sequence {q̃}(k) and {ṽ}(k),
respectively. The global convergence is defined when both Eq. (5.71) and Eq. (5.72)
are true. In this way, for any given time-step, iterations are performed until global
convergence is achieved.

Note that in Eq. (5.67) and Eq. (5.68) the space-time nodal vectors {Js} and{
Jf
}

, and the space-time matrices [Ks
st],

[
Kf
st

]
, [Hs] and

[
Hf
]

remain fixed during
the iteration in a given time-step. Therefore, aforesaid space-time vectors and
matrices only need to be computed once in the beginning of the iteration for a
given time-step. Further, if a uniform time-step size ∆tn = ∆t,∀n = 0, N − 1 is
employed then the space-time matrices need to be computed only once for all the
time-step. Furthermore, the space-time tangent matrix [Ks

st] in Eq. (5.67) and[
Kf
st

]
in Eq. (5.68) yield unsymmetrical system of linear equations. These linear
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equations are solved by using GpBiCG algorithm (Zhang, 1997). The algorithm is
implemented in an element by element manner thus avoiding the assembly of global
space-time tangent matrix. Lastly, the complete procedure to solve the problem of
dynamic interaction of dam-reservoir system and dam-reservoir-soil system is given
in Algorithm 2.

5.7 Numerical examples

In this section, three types of dam-reservoir interaction problems are solved to
demonstrate the performance of the present approach. The first problem is related
to the dynamic interaction between a reservoir and a vertical faced rigid dam.
The second problem is related to the dynamic interaction between a reservoir and
a vertical faced deformable dam. In aforementioned problems, the foundation
underneath the dam-reservoir system is taken to be rigid. For the verification of
the proposed scheme results obtained by using v-ST/FEM are compared with the
available results in the literature. Lastly, linear seismic analysis of the concrete
gravity dam including the hydrodynamic effects of the reservoir is performed by
using the v-ST/FEM.

5.7.1 Vertical faced rigid dam

Fig. 5.7 depicts a vertical faced rigid dam and a reservoir of constant height extending
up to infinity in upstream direction. The height of the dam and reservoir, H, is
180 m, and the width of the dam, W , is 15 m. The reservoir domain is truncated
by placing an absorbing boundary at a distance L from the dam in the upstream
direction. The dam is subjected to a ramp acceleration in negative x1 direction as
shown in Fig. 5.8, where a0 = 1 m/s2 is the maximum ramp acceleration. The speed
of acoustic wave in water is c = 1439 m/s, and water is assumed to be inviscid and
compressible with a mass density of 1000 kg/m3. The wave reflection coefficient αb
for reservoir bottom is taken as 1 (i.e. reservoir bottom acts as a perfect reflector for
the pressure waves). In order to model a rigid-dam the elastic modulus of dam is set
to a very high value E = 2.2× 1017, the Poisson’s ratio and mass density for dam is
taken as ν = 0 and ρs = 2600 kg/m3 , respectively.

The finite element model of the present problem uses four-node quadrilateral el-
ements (Quad4) to discretize both fluid and solid domain. All simulations are
performed with a uniform time step size ∆t = 0.01 sec for total time duration of 5
seconds. In block iterative algorithm, tolerance for q and v is set to 0.01%. The resul-
tant unsymmetrical system of linear equation is solved using the GpBiCG algorithm
with tolerance value 1.0 × 10−6. Further, in order to evaluated the effectiveness
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Fig. 5.7.: Geometry of computation domain for vertical faced dam and rectangular reservoir

a0

0.02s time

-a1

Fig. 5.8.: Ramp acceleration

5.7 Numerical examples 173



of the viscous (or Sommerfeld) boundary condition (cf. Eq. 5.6) at the upstream
truncated boundary of reservoir, numerical simulations are performed for four cases
corresponding to the different length of reservoir; L = 3H, L = 4H, L = 5H, and
L = 7H (where H = 180m is the height of water in reservoir ). Fig. 5.9 shows the
finite element mesh of dam and reservoir used in the numerical simulations. Note
that the finite element mesh for vertical faced dam remains identical in all cases
corresponding to different L/H values.

(A) (B)

(C)

(D)

(E)

H=180m
U

.S
.

U
.S

.

U
.S

.

U
.S

.

L=3H

L=4H

L=5H

L=7H

U.S. = Upstream

Fig. 5.9.: Finite element meshes for vertical faced dam and reservoir system: (A) mesh for
vertical faced dam of height H = 180 m, (B) mesh for reservoir of length L = 3H, (C) mesh
for reservoir of length L = 4H, (D) mesh for reservoir of length L = 5H, and (E) mesh for
reservoir of length L = 7H

The analytical solution for hydrodynamic pressures on a rigid dam with a verti-
cal upstream face due to rectangular reservoir under general horizontal ground
acceleration is given by Tsai et al., 1990,

p (x1, x2, t) = −2ρwc
H


∞∑
k=1

(−1)k cos (λkx2)
λk

t∫
0

a1 (τ) J0 [λkc (t− τ)] dτ

 (5.73)

where λk = (2k − 1)π/2H is the kth wavelength, H is the height of the fluid and
J0(·) is the Bessel function of first kind. a1(t) is the horizontal ground acceleration
(see Fig. 5.8), c is the speed of sound in water, ρw is the mass density of water. x1
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Fig. 5.10.: Hydrodynamic pressure obtained by v-ST/FEM approach at the base of rigid dam
due to ramp acceleration for different values of reservoir length (L)
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Fig. 5.11.: Distribution of the maximum value of hydrodynamic pressure computed by
v-ST/FEM approach on the upstream vertical face of the rigid dam due to ramp acceleration
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and x2 are the spatial coordinates along horizontal and vertical direction; x1 = 0
corresponds to the vertical face the dam, and x2 = 0 correspond to the base of dam
and reservoir.

The hydrodynamic pressure at the base of the rigid dam obtained by employing
v-ST/FEM formulation, for different values of L/H, are compared with the analytical
results. Fig. 5.10 shows the time history of the normalized hydrodynamic pressures 2

at the base of the dam for different values of the reservoir lengths. It can be observed
that as the length of the reservoir increases the difference between computed and
analytical solution decreases. In 5.10, it is remarkable that the peak value of
hydrodynamic pressure is attained during the first cycle of pressure wave, and in
all cases the first cycle of hydrodynamic pressure wave is predicted correctly. In
addition, for smaller values of L/H the increase in the amplitude of the pressure
fluctuations and shortening of time period occurs much earlier than that for large
values of L/H.

Fig. 5.11 compares the distribution of the maximum hydrodynamic pressure on
the upstream face of the rigid-dam for all L/H values with the analytical solution.
Interestingly, in all cases the distribution of maximum hydrodynamic pressure on the
vertical face of rigid-dam is in good agreement with the the analytical result. This is
because the maximum pressure at any point on the face of the dam occurs during
the first half cycle of pressure wave, and from Fig. 5.10 it can be seen that, for all
values of L/H ratio, the computed peak hydrodynamic pressure is nearly same as
the analytical result.

Fig. 5.12 and 5.13 compare the hydrodynamic pressures computed by v-ST/FEM
approach at the base of the rigid dam for L/H = 3 and L/H = 7 with both the
analytical solution given by Eq. (5.73) and the finite element solution obtained by
Pelecanos et al., 2013. It can be observed that results obtained from present approach
are nearly identical to the finite element results of Pelecanos et al., 2013, which
implies that the discrepancy between the analytical solutions and the computed
results is mainly due to the viscous boundary condition given by Eq. (5.6).

Lastly, the hydrodynamic pressure fields in the reservoir of length, L = 3H, L = 5H,
and L = 7H, computed by using v-ST/FEM approach at time t = 0.19s and t = 1.6s
are given in Fig. 5.14 and Fig. 5.15, respectively. At time t = 0.19s, the spatial
variation of pressure field in the reservoir of different lengths is almost identical.
At time t = 1.6s, however, the hydrodynamic pressure in the reservoir of smaller
length is more than the hydrodynamic pressure in reservoir of the larger length.
This is because, the viscous boundary condition (cf. Eq. (5.6) ), especially in case of

2Normalized hydrodynamic pressure is given by the ratio of hydrodynamic pressure p(t) to the
ρwa0H, where a0 is the maximum value of ramp acceleration
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Fig. 5.12.: Comparison of hydrodynamic pressure at the base of rigid dam due to ramp
acceleration for L/H = 3 with the analytical solution of Tsai et al., 1990 and the finite
element solution of Pelecanos et al., 2013.
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Fig. 5.13.: Comparison of hydrodynamic pressure at the base of rigid dam due to ramp
acceleration for L/H = 7 with the analytical solution of Tsai et al., 1990 and the finite
element solution of Pelecanos et al., 2013.
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Fig. 5.14.: Hydrodynamic pressure field in the reservoir of length, L = 3H (top), L = 5H
(middle), L = 7H (bottom), computed by using v-ST/FEM at time t = 0.19 seconds due to
ramp acceleration
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Fig. 5.15.: Hydrodynamic pressure field in the reservoir of length, L = 3H (top), L = 5H
(middle), L = 7H (bottom), computed by using v-ST/FEM at time t = 1.60 seconds due to
ramp acceleration

178 Chapter 5 v-ST/FEM for The Linear Dam-Reservoir-Soil Interaction Problem



small-length reservoir, is inadequate for perfectly absorbing the impinging pressure
waves. Consequently, some fraction of incident energy will be reflected back into the
truncated reservoir domain, which in turn will amplify the hydrodynamic pressure
waves in the truncated reservoir domain.

5.7.2 Vertical faced flexible dam

A vertical faced flexible dam and a reservoir (see Fig. 5.7) of constant height
extending to infinity in upstream direction is analyzed under horizontal component
of earthquake motion . The height of the dam and reservoir, H, is 180 m, and the
width of the dam is 15 m. The reservoir domain is truncated by placing an absorbing
boundary at a distance L = 900 m from the dam in the upstream direction. The
horizontal component of earthquake motion is selected as north-south component
of El Centro (1940) ground motion and is depicted in Fig. 5.16, where g denotes
the acceleration due to gravity. The speed of acoustic wave in water is c = 1439
m/s, and the water is assumed to be inviscid and compressible with a mass density
of 1000 kg/m3. The wave reflection coefficient αb for reservoir bottom is taken as
unity (i.e. reservoir bottom acts as a perfect reflector for the pressure waves). The
foundation underlying the dam and reservoir is assumed to be rigid. The elastic
modulus, Poisson’s ratio, and mass density of dam is given by E = 3.43×1011 N/m2,
ν = 0.0, and ρs = 2400 kg/m3, respectively.
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Fig. 5.16.: Time history of north-south component of El Centro (1940) ground motion

The spatial domain of dam and reservoir are discretized by using four-node quadri-
lateral elements (see Fig. 5.9a and Fig. 5.9d ). A uniform time step size ∆t = 0.02 s
is used to discretized the time domain. The simulation is performed for total time
duration of 5 seconds. In block iterative algorithm, tolerance for q and v are set to
0.01%. The resultant unsymmetrical system of linear equation is solved by using the
GpBiCG algorithm with tolerance value of 1.0× 10−6.
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Fig. 5.17.: Comparison of hydrodynamic pressure at the base of vertical faced flexible dam
subjected to 1940 El Centro ground motion (horizontal component only) with the analytical
solution of Lee and Tsai, 1991 and the finite element solution of Küçükarslan et al., 2005.
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Fig. 5.18.: Comparison of relative horizontal-displacement at top of vertical faced flexible
dam subjected to 1940 El Centro ground motion (horizontal component only) with the
analytical solution of Lee and Tsai, 1991 and the finite element solution of Küçükarslan et al.,
2005.
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Fig. 5.19.: Hydrodynamic pressure field in the reservoir computed by using v-ST/FEM
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t = 4.82 s, due to 1940 El Centro ground motion
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The analytical solutions of the present problem are given by Lee and Tsai, 1991,
and Küçükarslan et al., 2005 analyze the same problem by using a finite element
procedure. Fig. 5.17 successfully compares the normalized hydrodynamic pressure3

computed by using the v-ST/FEM at the base of the vertical faced flexible dam with
both the analytical solutions of Lee and Tsai, 1991 and the finite element solutions
of Küçükarslan et al., 2005.

Fig. 5.18 successfully compares the normalized horizontal displacement4 at top of
vertical dam with both the analytical solutions of Lee and Tsai, 1991 and the finite
element solutions of Küçükarslan et al., 2005. The hydrodynamic pressure fields
in the reservoir computed by using v-ST/FEM approach at different times t = 1.52
s, t = 1.82 s, t = 2.32 s, and t = 1.52 s are depicted in Fig. 5.19, where it can be
observed that the absolute maximum value of hydrodynamic pressure always occurs
at the base of vertical faced dam.
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Fig. 5.20.: Convergence of v-ST/FEM method using the block-iterative scheme for vertical
faced flexible dam problem: convergence history of velocity field v at various time steps

Let us discuss now the Convergence of v-ST/FEM method using the block-iterative
scheme. The convergence histories of velocity field v and the auxiliary variable q at
various time steps are plotted in Fig 5.20 and Fig 5.21, respectively. The convergence
histories of the solutions in Fig 5.20 and suggest that the global convergence of the
proposed scheme is mainly controlled by the local convergence in the velocity field.
Further, the total number of iterations required to attain the global convergence (i.e.
convergence in both v and q) in a given time-step approximately varies between 5

3Normalized hydrodynamic pressure is defined as the ratio of hydrodynamic pressure p(t) to the
hydrostatic pressure at the of the vertical faced dam p0 = ρwgH

4Normalized horizontal displacement denotes the ratio of relative horizontal displacement ux to the
acceleration due to gravity g.
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Fig. 5.21.: Convergence of v-ST/FEM method using the block-iterative scheme for vertical
faced flexible dam problem: convergence history of auxiliary field variable q at various time
steps

to 10 iterations. The convergence tolerance in velocity field and q has been set to
0.01% to obtain the results presented in this section, although it is worthwhile to
mention that almost the same accuracy is obtained with a tolerance of 0.1%, which
reduces the number of iteration almost by 50%, making this approach much more
cost-effective.

5.7.3 Concrete gravity dam

In this section the dynamic response of a concrete gravity dam subjected to the
horizontal component of earthquake motion is computed by using the v-ST/FEM
approach. Numerical simulations are performed for following two situations,

(i) Dam-reservoir system (DR): In this case, the unbounded soil domain underneath
the dam-reservoir system is assumed to be rigid, therefore neglecting the
interaction between dam-reservoir system and the underlying foundation. The
dam-reservoir interaction is modeled by the discretizing the dam and reservoir
domain using finite elements.

(ii) Dam-reservoir-soil system (DRS): In this case, all interactions of dam-reservoir-
soil system are considered. The fluid domain and unbounded soil domain are
truncated by using the viscous boundaries.
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The physical dimensions of the dam and reservoir are given in Fig. 5.22. The height
of the vertical upstream face of the dam is 50 m, and the width of the base is 40
m. The spatial domain of dam is discretized by using 658 number of three-node
triangular (Tria3) finite elements (see Fig. 5.23). Further, it is assumed that the
depth of water in the reservoir, Hf , remains constant at value 44 m. The computation
domain for the semi-infinite reservoir is obtained by placing a viscous boundary at
a distance of 200 m from the dam in the upstream direction. Finite element mesh
of the reservoir consists of 1144 number of four-node rectangular (Quad4) finite
elements (see Fig. 5.23). Similarly, the unbounded soil domain is truncated by
using the horizontal and vertical viscous boundaries; the length of the soil domain
in x1 and x2 direction is 440 m and 150 m, respectively. Finite element mesh of the
soil domain which contains 6448 number of four-node rectangular finite elements
is depicted in Fig. 5.23. In finite element modeling of unbounded soil domain, the
free field responses of the soil domain are obtained by using the soil-columns (with
constrained vertical motion) placed next to the vertical artificial boundaries, and the
effective seismic input is described in terms of traction boundary condition at the
bottom truncated boundary.

DamReservoir

Unbounded Soil Domain
Control point

Fig. 5.22.: Physical dimensions of the concrete gravity dam and reservoir

It is assumed that the material behavior of dam as well as the soil is given by an
isotropic, homogenous, linear elastic stress-strain relationship. For the concrete-dam,
the elastic modulusE = 28.0 GPa, mass-density ρ = 2347.0 kg/m 3, and the Poisson’s
ratio ν = 0.20. For the soil, E = 40.0 GPa, ρ = 2551.0 kg/m 3, and ν = 0.20. Further,
material damping is modeled by Rayleigh damping with ξ = 5% viscous damping
specified for the soil and dam separately. The resultant values of damping coefficients
(α, β) for the dam and soil are given by (4.1314, 4.8× 10−4) and (1.612, 1.47× 10−3),
respectively. The speed of acoustic wave in water is c = 1439 m/s, and the water is
assumed to be inviscid and compressible with a mass density of 1000 kg/m3. The
wave reflection coefficient αb for reservoir bottom is taken as unity (i.e., reservoir
bottom acts as a perfect reflector for the pressure waves).

The simulations are carried out for the horizontal component of the earthquake
motion recorded at some control point on the free surface (see Fig. 5.22). Total
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time duration of ground motion is 45 seconds in which acceleration is set to zero
after 40 seconds. Fig. 5.24a depicts the time history of the earthquake motion; the
maximum and minimum values of acceleration are 396.7 cm/s2 and −449.6 cm/s2,
respectively. The Fourier spectrum of acceleration is plotted in Fig. 5.24b; the
dominating dominating amplitudes 21.9 cm/s2 and 19.4 cm/s2 occur at frequencies
1.24 Hz and 2.0 Hz, respectively. It is worthwhile to mention that in the case of
dam-reservoir system (DR), the earthquake motion plotted in Fig. 5.22 is directly
used as a boundary condition at the base of concrete-dam. On the other hand, for
numerical simulation of DS and DRS the input seismic acceleration is taken as half
that of acceleration at the free surface.

All numerical simulations are performed with a uniform time step size ∆t = 0.01 s
for total time duration of 40 seconds. The initial value of displacement and stress
field is obtained by solving corresponding static problem. The convergence tolerance
for q and v in block iterative algorithm are set to 0.01%. The resultant unsymmetrical
system of linear equation is solved by using the GpBiCG algorithm with tolerance
value of 1.0× 10−6.

Let us now focus on the effect of interaction between dam-reservoir system (with
impounded water) and the underlying soil-domain on the response of dam to hori-
zontal component of the earthquake motion. For this purpose the results obtained in
the case of DR (where the underlying soil is modeled as rigid foundation) and DRS
(in which underlying soil is modeled as flexible foundation) are compared.

The acceleration response at the crest of the concrete-dam (Node-2) obtained in the
case of DR and DRS is plotted in Fig. 5.25. The acceleration response obtained in
case of DRS is significantly lower than the one obtained in case of DR. In case of DRS
the absolute maximum value of horizontal and vertical component of acceleration
is 1489.89 Gal and 597.47 Gal, respectively, whereas for DR these values correspond
to 3897.10 Gal and 1274.65 Gal, respectively. Fourier spectrum of the acceleration
response at the crest of the dam reveals that for DRS there is significant decay in the
amplitudes, and the entire spectrum shifts towards the lower frequencies indicating
the elongation of time period in acceleration time history (see Fig. 5.25c and Fig.
5.25d ).

The effect of neglecting the interaction between dam-reservoir system and the
underlying soil on the hydrodynamic pressure at the base of the concrete-dam is
illustrated in Fig. 5.26. It can be observed that the assumption of rigid foundation
leads to an amplification of hydrodynamic pressure at upstream face of the concrete
dam. The reservoir-soil interaction also alter the hydrodynamic pressure distribution
in the reservoir domain as shown in Fig. 5.27.

186 Chapter 5 v-ST/FEM for The Linear Dam-Reservoir-Soil Interaction Problem



(A)

(B)
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Fig. 5.25.: Acceleration response at the crest of the concrete-dam (Node-2) to horizontal
component of earthquake motion for the case of dam-reservoir (DR) and dam-reservoir-soil
(DRS) system. In DR underlying foundation is rigid, and in DRS the foundation is flexible; (A)
time history of horizontal component of acceleration, (B) time history of vertical component
of acceleration, (C) Fourier spectrum of horizontal component of acceleration, (D) Fourier
spectrum of vertical component of acceleration

Fig. 5.26.: Time history of hydrodynamic pressure at the base of the dam subjected to
horizontal component of earthquake motion for the case of dam-reservoir (DR) and dam-
reservoir-soil (DRS) system. In DR underlying foundation is rigid, and in DRS the foundation
is flexible
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Fig. 5.27.: Hydrodynamic pressure distribution in the reservoir at different times due to
horizontal component of earthquake motion for the case of dam-reservoir (DR) and dam-
reservoir-soil (DRS) system. In DR underlying foundation is rigid, and in DRS the foundation
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The temporal variation of the maximum and minimum principal stress, σ1 and σ2

respectively, at the base of the dam (which corresponds to the Gauss point of triangu-
lar Element-A), which is given in see Fig. 5.28, indicates that the incomprehension
of the dynamic interaction between underlying soil and structure may cause large
compressive and tensile stresses in the dam. In Fig. 5.28, the peak value of σ1 and
σ2 for DRS is given by 2.24 MPa and −3.09 MPa, respectively, whereas for DR these
values are given by 6.08 MPa and −5.97 MPa, respectively. In both cases, tensile
stress at the base of the dam may exceed the ultimate tensile strength of the concrete,
which may cause cracking in the concrete-dam. Further, the stress distribution inside
the dam obtained in the case of DR and DRS differs significantly from each other as
shown in Fig. 5.29. In both cases, however, large tensile stresses develop near the
heel of the dam and at the downstream inclined face of the dam.

Fig. 5.28.: Time history of maximum (A) and minimum (B) principal stress at the base of
the dam (Element-A) subjected to horizontal component of earthquake motion for the case
of dam-reservoir (DR) and dam-reservoir-soil (DRS) system. In DR underlying foundation is
rigid, and in DRS the foundation is flexible

Based on the results obtained in this section, it may be concluded that interactions
between the dam-reservoir and the underlying soil significantly decay the response
of concrete-dam reservoir system to the horizontal component of the ground motion.
This is because for DR radiation of energy can occur only through the upstream artifi-
cial truncated boundary of the reservoir domain, and the pressure and displacement
waves impinging the rigid-foundation are completely reflected back into the dam-
reservoir domain, which is responsible for the amplification of the response. On the
other hand, in case of DRS the flexible foundation provides additional mechanisms
for the radiation of energy through the soil strata, which in turn reduces the overall
response of the dam-reservoir system.
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Fig. 5.29.: Spatial distribution of maximum principal stress σ1 in the concrete dam subjected
to horizontal component of earthquake motion for the case of dam-reservoir (DR) and dam-
reservoir-soil (DRS) system. In DR underlying foundation is rigid, and in DRS the foundation
is flexible
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5.8 Summary

This chapter discusses the problem of dynamic interaction in a dam-reservoir-soil
system subjected to the earthquake motion. Both dam and the underlying soil
domain is assumed to be linearly elastic, and material damping can be modeled by
Rayleigh damping. The water in the reservoir is assumed to be inviscid, linearly
compressible with a small amplitudes for the displacements and velocity. Therefore,
the hydrodynamic pressure in the reservoir is modeled by the pressure wave equation.
Viscous boundary conditions are employed to truncate the semi-infinite domain of
reservoir and underlying soil-domain. The space-time finite element formulation
for coupled problem is described in terms of velocity field in the solid domain and
the auxiliary variable q for the fluid domain, which denotes the first order time
derivative of the hydrodynamic pressure field. Subsequently, a system of linearly
coupled equations is obtained by the space-time finite element discretization of
the weak form. The resultant system of linear equations is solved for the space-
time nodal values of unknown fields q and v by using a two stage block-iterative
scheme. Due to this scheme the size of the coupled-problem significantly decreases
but at the cost of around 5 to 10 iterations per time steps. In each iteration
step, first, a system of linear equations (which corresponds to the solid domain) is
solved to compute the trial values of velocity field, and then the space-time nodal
values of auxiliary variable q are computed by solving another system of linear
equations (which corresponds to the fluid domain). The numerical performance
of the proposed scheme is demonstrated by solving different types dam-reservoir
interaction problems. The results obtained by the proposed scheme are successfully
compared with results available in the literature.

Lastly, the response of a concrete gravity dam and reservoir with impounded water to
the horizontal component of the earthquake motion is analyzed by using v-ST/FEM.
Numerical simulations are performed for two cases; (i) DR, in which the interactions
between the dam-reservoir and the underlying soil are ignored by assuming the
ground to be perfectly rigid, (ii) DRS, in which the underlying soil domain is modeled
as an isotropic, homogenous, linear elastic half space. Material damping in both
dam and underlying soil domain is modeled by using Rayleigh damping. It is
found that the dynamic interactions with the underlying deformable soil domain can
significantly dampen the response of the dam-reservoir to the horizontal component
of earthquake motion. The comparison of Fourier spectrum of acceleration response
obtained for these two cases reveals an elongation of time period for DRS. In both
cases, significant tensile stresses develop near the heel and at the downstream
inclined face of the dam. The tensile and compressible stresses in the dam are much
higher in case of DR than DRS. However, in both cases the tensile stress may exceed
the ultimate tensile strength of the concrete which may cause cracking in the dam.
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Therefore, a nonlinear analysis of concrete gravity dam and reservoir system should
be performed to evaluate the safety and performance of a specific dam design.
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6v-ST/FEM for The Nonlinear
Dam-Reservoir Interaction
Problem

6.1 Introduction

In previous chapters linear dynamic problems are solved by using v-ST/FEM. In
Chapter 5, linear dynamic analysis of gravity dam subjected to the earthquake
ground motion show that the large tensile stresses may develop in dam which can
exceed the tensile strength of the mass concrete. In such cases, a linear analysis is no
longer valid since tensile cracks will form and propagates in the concrete, affecting
the vibration properties an dynamic response of the dam. Consequently, cracking
based on seismic actions in dams is an important factor in the safety evaluation of
gravity dams and it may cause catastrophic consequences such as loss of life and
property if the dam fails.

Extensive research has been performed over the last 25 years into the fracture
behavior of concrete. A tensile-strength-based crack propagation analysis is generally
considered unreliable due to the mesh-dependent response prediction (Bažant,
1987). Non-linear behavior in the fracture process zone (FPZ), which is significantly
large for the concrete normally used in dams, is neglected in the conventional linear
elastic fracture mechanics (LEFM) models. Under very slowly applied loads and also
under impulsive loads, concrete fracture behavior seems to be adequately predicted
by the LEFM models (Bhattacharjee and Leger, 1993). In the intermediate range,
from short-term static loading to seismic-induced strain rates, non-linear fracture
mechanics (NLFM) models considering the strain softening behavior in the FPZ
appear to be more appropriate.

Continuum mechanics approaches to represent the tensile crack propagation are
computationally very attractive for applications in complex structural analysis when
the crack profiles are not known a priori. General drawbacks of the conventional
smeared crack analysis model, such as the mesh-sensitive response prediction and
the stress-locking in finite elements, can largely be overcome using the energy
conserving co-axial rotating crack model (CRCM), which is an improved NLFM
model (Bhattacharjee and Leger, 1993).
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Bhattacharjee and Leger, 1993 investigated the dynamic fracture response of Koyna
dam by using the CRCM concrete model. In the analysis of this dam, the foundation
was assumed to be rigid, and the dynamic interaction of dam-reservoir system was
modeled by the Westergaard added mass technique. The response results of the dam
indicated that cracks formed at the base and at the upper portion near the change
in downstream slope for the Koyna earthquake records. Lee and Fenves, 1998 also
obtained similar solutions for Koyna dam under the same boundary and loading
conditions by using a plastic-damage concrete model which includes tension and
compression strain softening effects. They studied in detail tension damage in the
dam and noted that damage in compression is less important in comparison with
damage in tension for dams. In another paper, Cervera et al., 1995 developed an
isotropic damage model for the seismic evaluation of concrete gravity and arch dams.
This model accounts for the different behavior of concrete in tension and compression
by splitting the stress tensor into tensile and compressive components, each with its
own damage surface and evolution law. The seismic analyses of their selected gravity
dam which resembles very closely Koyna dam, including dam-reservoir-foundation
interactions, subjected to artificially generated earthquakes of different intensities
indicated tension damage in the dam, but no compression damage occurred. The
formed tension damage was seen at the upper portion of the dam. In the lights of
these investigations, the tension cracks have only important influence on the seismic
response of concrete gravity dams. Therefore, tension cracking is only considered in
the present study.

In this chapter, v-ST/FEM is employed for the problems involving dynamic response
of solids and structures with nonlinear stress-strain relationships. The structure
of the present chapter is described as follows. Section 6.2 defines the problem
of dynamic interaction between the concrete gravity dam and reservoir, in which
a generalized nonlinear stress-strain relationship is used to describe the material
behavior of concrete in the dam. The space-time weak form the model problem is
described in Section 6.3, and its space-time finite element discretization is explained
in Section 6.4. It is shown that the nonlinearity is caused by only the presence
of stress term in the v-ST/FEM weak form. Subsequently, two v-ST/FEM schemes
are proposed for the time integration of the space-time nodal vectors and matrices
comprising the stress term. Section 6.5 then presents a block-iterative scheme
to enforce the coupling between the solid and fluid domain. In Section 6.6, a
co-axially rotating crack model (CRCM) with exponential strain softening rule is
used to model the fracture of the concrete. Afterwards, to evaluate the numerical
performance of the v-ST/FEM schemes dynamic fracture analyses of the concrete
dam are performed in Section 6.7 and Section 6.8. The former section ignores
the hydrodynamic coupling between the dam and reservoir while the latter section
includes the coupling between dam and reservoir.
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6.2 Statement of problem

Fig. 5.2 depicts the dam-reservoir system situated on a relatively rigid ground which
is subjected to the spatially uniform transient ground motion. The horizontal and
vertical component of ground motion are denoted by ag1(t) and ag2(t), respectively.
Henceforth, the superscript (·)s and (·)f will be used for denoting the quantities
related to the solid (dam) and fluid domain, respectively. Let Ωf be the computation
domain of reservoir which is enclosed by a free surface Γff , an upstream artificial
boundary Γf∞, a fluid-soil interface Γffs, and a fluid-dam interface Γffd. Accordingly,
the boundary of the fluid domain can be described by

Γf = Γff ∪ Γf∞ ∪ Γffs ∪ Γffd (6.1)

Let Ωs be the computation domain of dam, Γsfd be the fluid-dam interface of dam,
and Γsds be the base of the dam. The outward unit normal vectors to the fluid and
solid boundary are denoted by ns and nf , respectively, and

ns + nf = 0 (6.2)

Since the ground underneath the dam, which is in spatially uniform motion, is
assumed to be perfectly-rigid it is advantageous to describe the motion of the dam
relative to the ground. Let u and v be the relative displacements and relative
velocities of the dam, respectively, and ρs be the mass-density of the dam. The
governing equation of motion for the dam becomes,

ρs
∂vi
∂t
− ∂σij
∂xj

= ρs (bi − agi ) ∀(x, t) ∈ Ωs × (0, T ) (6.3)

where bi is the external body force density, and −ρsag(t) is the pseudo force acting
on the dam due to the accelerating frame of reference. The above equation can be
derived from the Eq. (5.10) while noting that the spatial gradient of ground motion
is zero.

The initial conditions for the dam are given by,

ui (x, 0) = u0
i (x) ∀x ∈ Ωs

vi (x, 0) = v0
i (x) ∀x ∈ Ωs

(6.4)

and the boundary condition,

ui (x, t) = 0 ∀ (x, t) ∈ Γdss × (0, T ) (6.5)

characterizes the rigid-base boundary condition for the dam at Γsds.
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The traction boundary condition for the dam can be divided into two components;
(i) traction boundary condition due to the external surface loads acting on Γsh (see
Eq. 6.6), (ii) traction boundary condition due to total pressure (hydrostatic and
hydrodynamic pressure) of impounded water acting on Γsfd (see Eq. 6.7).

σ · ns = h ∀ (x, t) ∈ Γsh × (0, T ) (6.6)

σ · ns = −p0 (x) ns − p (x, t) ns ∀ (x, t) ∈ Γsfd × (0, T ) (6.7)

If it is assumed that the strains in the dam body are small enough so that the problem
remains geometrically linear then the nonlinear stress-strain relationship for the
dam can be described by rate-form,

∂σ

∂t
= C : d or

∂σij
∂t

= Cijkl : dkl (6.8)

where C denotes a fourth order tangent modulus tensor which may depends upon the
small-strain tensor ε, stretching tensor d, and/or some internal variables (Hashiguchi,
2014). Expression for small-strain tensor and stretching tensor is given below,

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
(6.9)

dij = 1
2

(
∂vi
∂xj

+ ∂vj
∂xi

)
(6.10)

Let us now focus on the governing equations for the impounded water in the reservoir.
Assuming the impounded water in the reservoir to be inviscid, linearly compressible
with a small amplitudes for the displacements and velocity, the initial-boundary
value problem for the fluid domain can be described as follows (Zienkiewicz and
Taylor, 2005).

1
c2
∂2p

∂t2
− ∂2p

∂x2
i

= 0 in ∀(x, t) ∈ Ωf × (0, T ) (6.11)

p (x, 0) = 0 ∀x ∈ Ωf (6.12)

∂p (x, 0)
∂t

= 0 ∀x ∈ Ωf (6.13)

p(x, t) = 0 ∀(x, t) ∈ Γff × (0, T ) (6.14)
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∇p · nf = −1
c

∂p

∂t
+ 1
c

∂pf

∂t
∀(x, t) ∈ Γf∞ × (0, T ) (6.15)

∇p · nf = −ρf ∂v
∂t
· nf − ρfag · nf ∀(x, t) ∈ Γffd × (0, T ) (6.16)

∇p · nf = −ρfag · nf − qc
∂p

∂t
∀(x, t) ∈ Γffs × (0, T ) (6.17)

where p(~x, t) is the hydrodynamic pressure in the water (in excess of hydrostatic
pressure), c is the speed of sound in water, pf is the free-field hydrodynamic pressure
in the reservoir, ag(t) is the spatially uniform ground motion, ρf is the mass density
of the water. In Eq. (6.16), v denotes the relative velocity of the dam with respect
to the base of the dam. In Eq. (6.17), qc is the damping coefficient which is the
fundamental parameter characterizing the effect of reservoir bottom materials and it
is given in Fenves and Chopra, 1983 as,

qc = 1− αb
c (1 + αb)

(6.18)

in which, αb is the ratio of the amplitude of reflected hydrodynamic pressure wave
to the amplitude of a vertically propagating pressure wave incident on the reservoir
bottom. More information about the boundary conditions Eq. (6.14–6.18) can be
found in section 5.2.

Note that the governing equation for the fluid domain, which is given by Eq. (6.11),
remains linear for both p and v. This equation is identical to the one presented in
the last chapter (see section 5.2.1). The governing equation for the solid domain
(i.e. dam), which is given by Eq. (6.3), is nonlinear due to the nonlinear stress-strain
relationship. However, this equation is linear in hydrodynamic pressure acting on
the dam-fluid interface (see boundary condition given by Eq. 6.7 ). The linearity
of Eq. (6.3) in p and Eq. (6.11) in v implies the linear coupling between fluid and
solid domain.

6.3 v-ST/FEM formulation

Let Ωf
h, the set of finite spatial fluid-elements Ωf

e , e = 1, · · · , nfel, be the discretization
of reservoir domain Ωf , where nfel is the total number of spatial fluid elements in
Ωf
h. Further, let Ωs

h, the set of finite spatial solid-elements Ωs
e, e = 1, · · · , nel, be the

discretization of solid domain Ωs, where nel is the total number of spatial elements
in Ωh. Now, consider a non-uniform subdivision for the time domain [0, T ], 0 = t0 <

t1 < · · · < tN = T with In = (tn, tn+1), ∆t = tn+1 − tn. The nth space-time slab for
fluid domain Qfn = Ωf

h × In and for solid domain Qsn = Ωs
h × In, and corresponding
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space-time finite element for fluid domain Qfn,e = Ωf
e × In, e = 1, · · · , nfel, and for

solid domain Qsn,e = Ωs
e × In, e = 1, · · · , nel.

Consider Pl(Qfn,e) and Pl(Qsn,e), the collection of all polynomials defined on Qfn,e
and Qsn,e, respectively, with a total degree of no more than l. Let the space of
piecewise continuous functions defined on domain (∗) is given by C0(∗). Consider
also the following collection of functions:

Ffl,h :=
{
ph
∣∣∣ ph ∈ C0

(⋃N−1
n=0

Qfn

)
, ph

∣∣∣Qfn,e ∈ Pl (Qfn,e)} (6.19)

Fsl,h :=
{

uh
∣∣∣uh ∈ C0

(⋃N−1
n=0

Qsn

)2
, uh

∣∣∣Qsn,e ∈ (Pl (Qsn,e))2
}

(6.20)

where ph
∣∣∣Qfn,e and uh

∣∣∣Qsn,e is the restriction of ph(x, t) to Qfn,e and restriction of
uh(x, t) to Qsn,e, respectively. The space of the test functions for the fluid-domain is

Qh :=
{
qh
∣∣∣ qh ∈ Ffl,h, q

h = 0,∀ (x, t) ∈ Γff × In
}

(6.21)

and the space of trial functions is same as the space of test function, i.e.

Shp = Qh (6.22)

The space of the test functions for the solid domain is

V h :=
{

vh
∣∣∣vh ∈ Fl,h,vh = 0, ∀ (x, t) ∈ Γsds × In, i = 1, 2

}
(6.23)

and the space of trial functions for solid domain is same as the space of test function,
i.e.

Shv = V h (6.24)

In order to obtain the space-time weak form of pressure-wave equation Eq. (6.11) is
rewritten as

1
c2
∂q

∂t
− ∂2p

∂x2
i

= 0 (6.25)

where q(x, t) is an auxiliary variable given by

q = ∂p

∂t
(6.26)

and
p (x, t) = p (x, tn) +

∫ t

tn
q (x, τ) dτ ∀ (x, τ) ∈ Ωf × [tn, t] (6.27)
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The v-ST/FEM weak-form for Eq. (6.25) and Eq. (6.3) can be stated as; Find v ∈ Shv
and q ∈ Shp such that for all δv ∈ V h, δq ∈ Qh, and for all n = 1, · · · , N − 1, Eq.
(6.28) and Eq. (6.29) hold true.

∫
In

∫
Ωf
h

δq
1
c2
∂q

∂t
dΩdt+

∫
Ωf
h

δq (x, tn) 1
c2 q

(
x, t+n

)
dΩ

−
∫

Ωf
h

δq (x, tn) 1
c2 q

(
x, t−n

)
dΩ +

∫
In

∫
Ωf
h

∂δq

∂xi

∂p

∂xi
dΩdt

+
∫
In

∫
Γf
fd

δqρf
∂vi
∂t
nfi dsdt+

∫
In

∫
Γf
fd

δqρfagin
f
i dsdt

+
∫
In

∫
Γf
fs

δqρfagin
f
i dsdt+

∫
In

∫
Γf
fs

δqρfqcqdsdt

+
∫
In

∫
Γf∞

δq
1
c
qdsdt−

∫
In

∫
Γf∞

δq
1
c
qfdsdt = 0

(6.28)

∫
In

∫
Ωs
h

ρsδvi
∂vi
∂t
dΩdt+

∫
Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t+n

)
dΩ

−
∫

Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t−n

)
dΩ +

∫
In

∫
Ωs
h

∂δvi
∂xj

σijdΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt−

∫
In

∫
Ωs
h

ρsδvi (bi − agi ) dΩdt

+
∫
In

∫
Γs
fd

δvip0n
s
idsdt+

∫
In

∫
Γs
fd

δvipn
s
idsdt = 0

(6.29)

In Eq. (6.28) and Eq. (6.29), nfi and nsi are the components of outward normal
vector at the fluid and solid boundary, respectively (see also Eq. 6.2). Hydrodynamic
pressure p and displacements u are obtained by consistent integration of q and v,
respectively, and qf is related to the the free-field hydrodynamic pressure by

qf = ∂pf

∂t
(6.30)

More information regarding the free-field response of reservoir, that is pf and qf ,
can be found in the section 5.3.

6.4 Space-time finite element discretization

Let ne and nfe be the total number of nodes in spatial finite element for solid and
fluid domain, respectively. Let vi(x, t+n ) and vi(x, t−n+1) be the spatial velocities on
the bottom and top faces of space-time slab Qn, respectively. Similarly, let q(x, t+n )

6.4 Space-time finite element discretization 199



and q(x, t−n+1) be the spatial velocities on the bottom and top faces of space-time
slab Qfn, respectively. Considering linear interpolation of time t ∈ In,

t(θ) = T1(θ)tn + T2(θ)tn+1, ∀θ ∈ [−1, 1] (6.31)

where,

T1(θ) = 1− θ
2 T2(θ) = 1 + θ

2 (6.32)

The test function and trial function for velocity field defined on Qn,e are given by

δvi (x, t) =aδviITa (θ)N I (ξ, η) (6.33)

vi (x, t) =aviITa (θ)N I (ξ, η) (6.34)

The displacements of dam u(x, t) are given by Eq. (6.32) which are obtained by
time integration of Eq. (6.34) while using Eq. (6.32).

ui (x, t) = ui (x, tn) + T̃1 (θ) vi (x, tn) + T̃2 (θ) vi (x, tn+1) (6.35)

in which,

T̃1 (θ) = ∆tn
2
[
1− T 2

1 (θ)
]

T̃2 (θ) = ∆tn
2 T 2

2 (θ) (6.36)

The test and trial function for q(x, t) defined on Qn,e are given by

δq (x, t) =aδqITa (θ)N I
f (ξ, η) (6.37)

q (x, t) =aqITa (θ)N I
f (ξ, η) (6.38)

The hydrodynamic pressure p due to impounded water in the reservoir is given
by Eq. (6.39) which is obtained by time integration of Eq. (6.38) while using the
expression for T1 and T2 given in Eq. (6.32).

p (x, t) = p (x, tn) + T̃1 (θ) q (x, tn) + T̃2 (θ) q (x, tn+1) (6.39)
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In Eqs. (6.31 – 6.39), i = 1, 2 denotes the spatial component along x1 and x2

direction, a = 1, 2 denotes the temporal node number, θ ∈ [−1, 1] denotes the
local temporal coordinate, and (ξ, η) denotes the local coordinates in a spatial finite
element. In Eq. (6.33–6.34 ) I = 1, · · · , ne, and in Eq. (6.37–6.38 ) I = 1, · · · , nfe
denote the local node number of a spatial finite element for dam and reservoir,
respectively. The shape function for an Ith spatial local node is denoted by N I and
N I
f for solid and fluid domain, respectively.

The weak form described in Eq. (6.28) and Eq. (6.29) are now discretized by using
the aforementioned space-time finite element interpolation for δv, v, δq, and q.
Accordingly, the space-time matrix-vector forms of the resultant system of discretized
equations can be described by Eq. (6.40) and Eq. (6.41), where former corresponds
to the solid domain and latter corresponds to the fluid domain.

[Ms] {ṽ}+
[
Hs
fd

]
· {q̃}+ {Jsσ} − {Js0}+

{
Jsg
}
− {Jsext}+

{
Jfdp0

}
+
{

Jfdpn
}

= 0
(6.40)

[
Mf

]
· {q̃}+

[
Kf
]
· {q̃}+

[
Cf
fs

]
· {q̃}+

[
Cf
∞

]
· {q̃}+

[
Hf
fd

]
· {ṽ}

−
{

Jf0
}
−
{

Jff
}

+
{

Jfdg
}

+
{

Jfsg
}

+
{

Jfpn
}

= 0
(6.41)

Further, if Rayleigh damping is used to model the material damping in solid domain
then Eq. (6.40) becomes,

[Ms] {ṽ}+ α [Ms
R] {ṽ}+ β [Ks

R] {ṽ}+
[
Hs
fd

]
· {q̃}

+ {Jsσ} − {Js0}+
{

Jsg
}
− {Jsext}+

{
Jfdp0

}
+
{

Jfdpn
}

= 0
(6.42)

in which α and β are the Rayleigh damping coefficients.

In Eqs. (6.40–6.42), [·] and {·} represent the space-time matrix and space-time nodal
vector, respectively. {q̃} is used to denote the space-time nodal values of auxiliary
variable q, and {ṽ} which denotes the space-time nodal values of velocity field are
the primary unknowns to be determined for the fluid and solid domain, respectively.
The finite element structure of these unknown vectors are given by

{q̃} =
{

q̃1

q̃2

}
{ṽ} =

{
ṽ1

ṽ2

} {
ṽ1
}

=
{

ṽ1
1

ṽ1
2

} {
ṽ2
}

=
{

ṽ2
1

ṽ2
2

}

in which
{
q̃1} and

{
q̃2} are the space-nodal values of q at time t = t+n (bottom

space-time slab) and time t = t−n+1 (top space-time slab), respectively. Similarly,{
ṽ1} and

{
ṽ2} are the space-nodal values of v at time t = t+n and time t = t−n+1,
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respectively. Furthermore, {ṽa1} and {ṽa2} (for a = 1, 2) stand for the space-nodal
values of spatial component of velocity field along x1 and x2 direction, respectively.

In Eq. (6.41),
[
Mf

]
denotes the space-time mass matrix for the fluid domain,[

Kf
]

denotes the space-time diffusion matrix for fluid domain,
[
Cf
fs

]
is the space-

time matrix which corresponds to the reservoir bottom absorption effect,
[
Cf
∞

]
is the space-time matrix corresponding to the dashpots placed at the truncated
upstream boundary of reservoir, and

[
Hf
fd

]
is the coupling matrix which relates the

hydrodynamic pressure in the reservoir with the dynamic response of dam. Further,
in Eq. (6.41), the space-time nodal vector

{
Jf0
}

corresponds to the value of q at

time t = tn,
{

Jff
}

is related to the free-field hydrodynamic response of the reservoir,{
Jfsg

}
and

{
Jfdg

}
are related to the motion of underlying rigid-foundation, and{

Jfpn
}

is related to the pressure-gradient in the reservoir at time t = tn.

In Eq. (6.40) and Eq. (6.42), [Ms] denotes the space-time mass matrix for the
solid domain, [Ms

R] and [Ks
R] are the mass-proportional and stiffness-proportional

space-time Rayleigh damping matrix, respectively, and
[
Hs
fd

]
is the coupling matrix

which relates the hydrodynamic pressure in the reservoir to the dynamic response of
the dam. Furthermore, in Eq. (6.40) and Eq. (6.42), {Jsσ} is related to the stresses in
the dam, {Js0} corresponds to the velocity of the dam at time t = tn,

{
Jsg
}

is related
to the motion of underlying rigid-ground, {Jsext} is related to the external body force
and surface acting on the dam, and the vectors

{
Jfdpn

}
and

{
Jfdp0

}
correspond to the

hydrodynamic pressure and hydrostatic pressure due to reservoir acting at fluid-dam
interface Γsfd.

Lastly, the finite element expressions of the terms present in Eqs. (6.40 – 6.42) are
depicted in Table 6.1 and Table 6.2. A detailed description about the derivation of
space-time matrices and space-time nodal vectors (including their finite element
data-structure) is given in Appendix-E.

6.5 Implementation of v-ST/FEM formulation

The finite element discretized equations for fluid domain, Eq. (6.41), and solid
domain, Eq. 6.42, constructs a system of coupled equations. The coupling between
dam (solid-domain) and reservoir (fluid-domain) takes place through the soil-dam
interface Γsfd; the motion of the dam influences the hydrodynamic pressure in the
reservoir which in turn modifies the response of dam. In addition, the nature of
interfacial coupling between the dam and reservoir is linear; Eq. (6.41) (for fluid
domain) is linear in both v, and Eq. (6.42) is linear in q.
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Matrix Component Expression
notation notation

[Ms] [M s]abij (I, J) δij
∫
In

∫
Ωs
h
N ITaρ

s ∂NJTb
∂t dtdΩ

+δijδ1aδ1b
∫

Ωs
h
N IρsNJdΩ

[Ms
R] [M s

R]abij (I, J) δij
∫
In

∫
Ωs
h
N ITaρN

JTbdΩdt

[
Mf

] [
Mf

]ab
(I, J)

∫
In

∫
Ωf
h
N I
f Ta

1
c2
∂NJ

f Tb
∂t dtdΩ

+δ1aδ1b
∫

Ωs
h
N I
f

1
c2N

J
f dΩ

[Ks
R] [Ks

R]abij (I, J)
∫
In

∫
Ωs
h

∂NITa
∂xp

Cpijq
∂NJTb
∂xq

dΩdt

[
Kf
] [

Kf
]ab

(I, J)
∫
In

∫
Ωf
h

TaT̃b
∂NI

f

∂xi

∂NJ
f

∂xi
dΩdt

[
Cf
fs

] [
Cffs

]ab
(I, J)

∫
In

∫
Γf
fs

N I
f Taρ

fqcN
J
f Tbdsdt

[
Cf
∞

] [
Cf∞

]ab
(I, J)

∫
In

∫
Γf∞

N I
f Ta

1
cN

J
f Tbdsdt[

Hf
fd

] [
Hf
fd

]ab
i

(I, J)
∫
In
Ta

∂Tb
∂t dt

∫
Γf
fd

N I
f ρ

fNJnfi ds[
Hs
fd

] [
Hs
fd

]ab
i

(I, J)
∫
In
TaT̃bdt

∫
Γs
fd
N INJ

f n
s
ids

Tab. 6.1.: Description of the space-time finite element matrices used in the v-ST/FEM for
the nonlinear dynamic analysis of the dam-reservoir sysmtem.
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Matrix Component Expression
notation notation

{Jsext} {Jsext}
a
i (I)

∫
In

∫
Ωs
h
N ITaρ

sbidΩdt
+
∫
In

∫
Γhi
N ITaf

s
i dΩdt

{Js0} {Js0}
a
i (I) δa1

∫
Ωs
h
N Iρsv0

i dΩ

{Jsσ} {Jsσ}
a
i (I)

∫
In

∫
Ωs
h

∂NITa
∂xj

σijdΩdt

{
Jfdpn

} {
Jfdpn

}a
i

(I)
∫
In

∫
Γs
fd
TaN

Ipnnsidsdt{
Jfdp0

} {
Jfdp0

}a
i

(I)
∫
In

∫
Γs
fd
TaN

Ip0n
s
idsdt{

Jsg
} {

Jsg

}a
(I)

∫
In

∫
Ωs
h
N ITaρ

sagi dΩdt

{
Jf0
} {

Jf0

}a
(I) δ1a

∫
Ωf
h

N I
f

1
c2 q

0dΩ

{
Jff
} {

Jff

}a
(I)

∫
In

∫
Γf∞

N I
f Ta

1
c q
fdsdt

{
Jfdg

} {
Jfdg

}a
(I)

∫
In

∫
Γf
fd

N I
f Taρ

fagin
f
i dsdt{

Jfsg
} {

Jfsg

}a
(I)

∫
In

∫
Γf
fs

N I
f Taρ

fagin
f
i dsdt

{
Jfpn

} {
Jfpn

}a
(I)

∫
In

∫
Ωf
h

Ta
∂NI

f

∂xi
∂pn

∂xi
dΩdt

Tab. 6.2.: Description of the space-time vectors used in the v-ST/FEM for the nonlinear
dynamic analysis of dam-reservoir system.
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Further, Eq. (6.41) and Eq. (6.42) individually constitute a system of linear and
nonlinear algebraic equations, respectively. Moreover, the nonlinearity of Eq. (6.42),
and the system of coupled equations, only comes from the nonlinear stress-strain
relationship of the dam. The space-time nodal vector {Jsσ} in Eq. (6.42) is the one
which contains the stress term, and finite element expression for this term is given
by 1

{Jsσ} := {Jsσ}
a
i (I) =

∫
In
Ta

(∫
Ωs
h

∂N I

∂xj
σijdΩ

)
dt (6.43)

In Eq. (6.43), the term enclosed inside the parentheses denotes the spatial-nodal
value of the internal force vector fint, which is often used in the semi-discrete finite
element analysis. For the sake of clarity, let us recast {Jsσ} in terms of internal force
vector {fint} as,

{Jsσ}
a
i (I) =

∫
In
Tafint (i, I) dt (6.44)

where

fint (i, I) =
∫

Ωs
h

∂N I

∂xj
σijdΩ (6.45)

denotes the nodal value of ith spatial component of the internal force vector at time
t ∈ In.

In a finite element computer program, integration over the spatial domain of a
finite element is computed by using the Gaussian quadrature rules. 2 Similarly,
the integration in time domain given in Eq. (6.44) can be performed by using the
Gaussian quadrature rules. In former case, the choice of a particular quadrature rule
for numerical integration depends upon the topology of the spatial finite element.

In the context of numerical integration in time domain one can notice that the topo-
logical structure of a time finite element is essentially same as the topological struc-
ture of the one-dimensional spatial finite element. Therefore, by using a finite set of
quadrature points,

{
θ1, · · · , θnipt

}
, and corresponding weights,

{
w1
t , · · · , wtnipt

}
, for

numerical integration of Eq. (6.44),

{Jsσ}
a
i (I) ≈ ∆tn

2

nipt∑
α=1

Tαa f
α
int (i, I)wαt (6.46)

1In Eq. (6.43), i = 1, 2 denotes the spatial component, a = 1, 2 denotes the temporal node,
I = 1, · · · , nse denotes the local spatial node, accordingly {Jsσ}ai (I) corresponds to the value of ith

spatial component of the vector {Jsσ} defined at Ith local spatial node and ath temporal node of a
local space-time finite element.

2In a typical numerical integration method based on quadrature rules, the integrand is evaluated
a finite set of points called the integration points and a weighted sum of these values is used to
approximate the integral. The choice of integration points and weights depends upon the specific
method used and the accuracy required from the approximation.
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where nipt is the total number of integration points, Tαa for a = 1, 2 are obtained by
using θα in Eq. (6.32), and fαint(i, I) is given by

fαint (i, I) =
∫

Ωs
h

∂N I

∂xj
σαijdΩ (6.47)

in which σαij := σ (x, θα) is the stress at any spatial point x ∈ Ωs
h and time tα =

t(θα) ∈ In (cf. Eq. 6.31).

Gauss-Legendre Quadrature Gauss-Lobatto Quadrature

Number of points Quadrature points Weights Quadrature points Weights
(n) (θ) (w) (θ) (w)

1 0 2

2 ± 1√
3 1

3 0 8
9 0 4

3

±
√

3
5

5
9 ±1 1

3

4 ±
√

3
7 −

2
7

√
6
5

18+
√

30
36 ±

√
1
5

5
6

±
√

3
7 + 2

7

√
6
5

18−
√

30
36 ±1 1

6

Tab. 6.3.: Low order Gauss-Legendre and Gauss-Lobatto quadrature rules.

The numerical integration of Eq. (6.47) is performed by using the finite number of
quadrature points,

{(
ξ1, η1) , · · · , (ξnips , ηnips)} defined in the parent domain, and

corresponding weights,
{
w1
s , · · · , w

nips
s

}
.

fαint (i, I) ≈
nips∑
β=1

wβJβ
∂N I

∂xj

∣∣∣∣∣
β

σαij

∣∣∣
β

(6.48)

where Jβ denotes the determinant of the Jacobian matrix of mapping between the
parent element and physical element, and σαij

∣∣∣
β

denotes the value of stress evaluated

at α-integration point of the time domain, and β-integration point of the space
domain (i.e., value at the space-time quadrature point).

Although various type of quadrature rules are available for numerical integration
in Eq. (6.46), within finite element framework the choice of Gauss-Legendre and
Gauss-Lobatto quadrature rules seems to be advantageous. Table 6.3 presents some
low-order Gauss-Legendre and Gauss-Lobatto quadrature rules for computing the
integration over the interval [−1, 1]. It is worthwhile to mention that most of the
finite element programs demand information of the Gauss-Legendre quadrature
rules to perform integration over the spatial domain of a line element, a quadrangle,
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brick element, among others. From the view point of Eq. (6.46), Gauss-Legendre
rules, however, appear to be inconvenient since the end points of the domain [−1, 1]
are not included in the Gauss-Legendre quadrature points. Therefore, stresses
already computed at time t = tn cannot be used in Eq. (6.46), moreover, additional
computations must be performed in case information about the stress at time t = tn+1

is required. The Gauss-Lobatto quadrature rules, on the other hand, always comprise
the end points of the domain [−1, 1]. It should also be note that n Gauss-Lobatto
quadrature points are only accurate for polynomials up to degree 2n− 3, whereas n
number of Gauss-Legendre quadrature points yields an exact result for polynomial
of degree 2n− 1 or less.

Let us now focus on the total number of temporal quadrature points required in
Eq. (6.46). The linear interpolation of velocity in time (see Eq. 6.34) makes the
displacement and strain quadratic in time (see Eq. 6.35 and Eq. 6.9 ). In accordance
with Eqs (6.8,6.10,6.34), it is safe to assume a quadratic variation of the stress in
time interval In which will make the integrand in Eq. (6.44) third order in time.
Therefore, it is sufficient to use the two-point Gauss-Legendre rule or the three-point
Gauss-Lobatto rule in Eq. (6.46) (see Table 6.3).

The two-point Gauss-Legendre form of Eq. (6.46) can be obtained by using the
quadratures points

{
− 1√

3 ,
1√
3

}
, and the corresponding weights {1, 1}. The results

are presented below.

{Jsσ}
a=1
i (I) = ∆tn

2
{

0.211f1
int (i, I) + 0.789f2

int (i, I)
}

{Jsσ}
a=2
i (I) = ∆tn

2
{

0.789f1
int (i, I) + 0.211f2

int (i, I)
} (6.49)

where f1
int (i, I) and f2

int (i, I) correspond to the stress evaluated at time t1 = 0.211tn+
0.789tn+1 and t2 = 0.789tn + 0.211tn+1, respectively.

The three-point Gauss-Lobatto form of Eq. (6.46) is obtained by using the quadra-
tures points {−1, 0, 1}, and the corresponding weights

{
1
3 ,

4
3 ,

1
3

}
. The results are

presented below.

{Jsσ}
a=1
i (I) = ∆tn

6 f0
int (i, I) + ∆tn

3 f1
int (i, I)

{Jsσ}
a=2
i (I) = ∆tn

6
{

2f1
int (i, I) + f2

int (i, I)
} (6.50)

where f0
int (i, I), f1

int (i, I) and f2
int (i, I) correspond to the stress evaluated at time

t0 = tn, t1 = 0.5(tn + tn+1) and t2 = tn+1, respectively.
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The generalized form of Eq. (??) and Eq. (??) can be described as,

{Jsσ}
a
i (I) = ∆tn

2
{
Aaf

0
int (i, I) +Baf

1
int (i, I) + Caf

2
int (i, I)

}
(6.51)

where the Aa, Ba, Ca, for a = 1, 2 are constant values associated with the two-
point Gauss-Legendre form and three-point Gauss-Lobatto form, and f0

int (i, I),
f1

int (i, I) and f2
int (i, I) correspond to the stress evaluated at time t = tn, t = t1

and t = t2, respectively. The values of Aa, Ba, Ca are listed in Table 6.4.

A1 A2 B1 B2 C1 C2

Two-point
Gauss-Legendre 0 0

√
3−1

2
√

3

√
3+1

2
√

3

√
3+1

2
√

3

√
3−1

2
√

3
rule

Three-point
Gauss-Lobatto 1

3 0 2
3

2
3 0 1

3
rule

Tab. 6.4.: Numerical values of the coefficients in Eq. (6.51)

The matrix vector form

{Jsσ} = {Jsσ0}+ {Jsσ1}+ {Jsσ2} (6.52)

where,

{Jsσ0} := {Jsσ0}ai (I) = ∆tn
2 Aaf

0
int (i, I) (6.53)

{Jsσ1} := {Jsσ0}ai (I) = ∆tn
2 Baf

1
int (i, I) (6.54)

{Jsσ2} := {Jsσ0}ai (I) = ∆tn
2 Caf

2
int (i, I) (6.55)

Using Eq. (6.52) in Eq. (6.42), and rearranging the terms in (6.41), the system of
coupled equations can be recast into the following.

{Rs} := {Js0} −
{

Jsg
}

+ {Jsext} −
{

Jfdp0

}
−
{

Jfdpn
}
− {Jsσ0}

−
[
Hs
fd

]
· {q̃} − {Jsσ1} − {Jsσ2} − [Ms] {ṽ}

−α [Ms
R] {ṽ} − β [Ks

R] {ṽ} = 0

(6.56)

[
Kf
st

]
{q̃} =

{
Jf
}
−
[
Hf
fd

]
{ṽ} (6.57)
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where, {Rs} corresponds to the residual of Eq. (6.42), and[
Kf
st

]
=
[
Mf

]
+
[
Kf
]

+
[
Cf
fs

]
+
[
Cf
∞

]
(6.58)

{
Jf
}

=
{

Jf0
}

+
{

Jff
}
−
{

Jfdg
}
−
{

Jfsg
}
−
{

Jfpn
}

(6.59)

6.5.1 Block-iterative scheme

The algorithm for the direct solution of the coupled problem defined by Eq. (6.56)
and Eq. (6.57) can be chosen from among the variety of linearization schemes
available for the solution of nonlinear problems. However, this implementation
strategy may become undesirable as the number of unknowns increases. In this
section, a block-iterative scheme is devised to solve the coupled problem. The
scheme can be characterized as a partitioned method in which Eq. (6.56) and Eq.
(6.57) are solved separately while the nonlinearity and coupling of the problem are
dealt within a single iterative loop.

Consider a time step corresponding to In = (tn, tn+1), and iteration number k. Let
the space-time nodal values of q and v in kth iteration be denoted by {q̃}(k) and
{ṽ}(k), respectively. Noting {q̃}(k) and {ṽ}(k) in Eq. (6.57) the residual vector can
be decomposed in two parts;

{
Jsfixed

}
which remains fixed during the iteration and

{Jsiter}
(k) which needs to be updated during each iteration.

{Rs}(k) =
{

Jsfixed
}
− {Jsiter}

(k) (6.60)

where {
Jsfixed

}
= {Js0} −

{
Jsg
}

+ {Jsext} −
{

Jfdp0

}
−
{

Jfdpn
}
− {Jsσ0} (6.61)

{Jsiter}
(k) =

[
Hs
fd

]
· {q̃}(k) + [Ms] {ṽ}(k) + α [Ms

R] {ṽ}(k)

+ β[Ks
R](k){ṽ}(k) + {Jsσ1}(k) + {Jsσ2}(k)

(6.62)

In a kth iteration, Eq. (6.60) is linearized with respect to the space-time nodal
velocities {ṽ} while keeping {q̃} fixed to obtain

[Ks
st]

(k−1){∆ṽ}(k) = {Rs}(k−1) (6.63)
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in which, [Ks
st]

(k−1) is the space-time tangent matrix for the solid domain which can
be evaluated by using {ṽ}(k−1). In similarity with {Rs}(k) (see Eq. ??), [Ks

st]
(k−1)

can be divided into a fixed part and an iterative part as shown below.

[Ks
st]

(k−1) =
[
Ks
fixed

]
+ [Ks

iter]
(k−1) (6.64)

where [
Ks
fixed

]
= [Ms] + α [Ms

R] (6.65)

[Ks
iter]

(k−1) = β[Ks
R](k−1) + [Ks

σ1 ](k−1) + [Ks
σ2 ](k−1) (6.66)

where [Ks
R](k−1) denotes the stiffness proportional Rayleigh damping matrix,

[
Ks
σ1
](k−1)

and
[
Ks
σ2
](k−1) corresponds to the linearization of Eq. (6.54) and Eq. (6.55), respec-

tively. The detailed description about the derivation of these space-time matrices is
included in Appendix E.

Once the incremental-velocity vector {∆ṽ}(k) is being computed from Eq. (6.63) the
velocity vector can be updated using

{ṽ}(k) = {ṽ}(k−1) + {∆ṽ}(k) (6.67)

The updated space-time nodal values of velocity are then used for predicting the
{q̃}(k) by solving the following equation in fluid-domain.[

Kf
st

]
{q̃}(k) =

{
Jf
}
−
[
Hf
fd

]
{ṽ}(k) (6.68)

At the end of an iteration the displacements in the solid domain and hydrodynamic
pressures in the fluid domain are updated by using Eq. (6.35) and (6.39), respec-
tively. The strains in solid domain are also computed using the updated values
of displacement field which are subsequently used for calculating the stress and
material tangent tensor Cijkl from the stress-strain relationship. The stresses and
material tangent modulus are then used for computing the residual vector (see Eq.
6.60) and the space-time tangent matrix in Eq. (6.64) and Eq. (6.66). Finally, the
convergence in solutions is checked by computing the Euclidian norm of residual
vector

∥∥∥{Rs}(k)
∥∥∥ and incremental-velocity vector

∥∥∥{∆ṽ}(k)
∥∥∥ and using the following

convergence criterion. ∥∥∥{Rs}(k)
∥∥∥ 6 εR

∥∥∥{Rs}(0)
∥∥∥ (6.69)

∥∥∥{∆ṽ}(k)
∥∥∥ 6 εv

∥∥∥{∆ṽ}(0)
∥∥∥ (6.70)
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where εR and εv are the tolerance for convergence in residual vector and velocity
field, respectively. The iterations are stopped incase Eq. (6.69) and/or Eq. (6.70)
are satisfied by the trial solutions.

In Eq. (6.63) and Eq. (6.68) the space-time nodal vectors
{

Jf
}

and
{

Jsfixed
}

, and

the space-time matrices
[
Ks
fixed

]
,
[
Hs
fd

]
,
[
Hf
fd

]
, and

[
Kf
st

]
remain fixed during the

iteration in a given time step. Accordingly, these space-time vectors and matrices
only need to be computed once in the beginning of the iteration in a given time step.
In this context, if a uniform time-step size ∆tn = ∆t,∀n = 0, · · · , N − 1 is employed
then the aforementioned space-time matrices need to be computed only once for all
the time. Furthermore, the space-time tangent matrix [Ks

st] in Eq. (6.63) and
[
Kf
st

]
in Eq. (6.68) yield unsymmetrical system of linear equations. These linear equations
can be solved by using GpBiCG algorithm (Zhang, 1997). The algorithm should be
implemented in an element by element manner for avoiding the assembly of global
space-time tangent matrix. Lastly, the complete procedure to solve Eq. (6.63) and
Eq. (6.68) with the block-iterative scheme as discussed in this section is summarized
in Algorithm 3.

The presentation of v-ST/FEM formulation and its implementation procedure made
so far is applicable to a wide class of nonlinear material behavior such as elasto-
plasticity, elasto-visco-plasticity, damage-model, nonlinear cyclic models for soils,
among others. Moreover, if the hydrodynamic pressure related terms are ignored
in governing equations of the solid domain (both partial differential equations and
space-time finite element discretization), then the present model-problem transforms
into a problem of analyzing the dynamic response of solids with nonlinear stress-
strain relationship to the transient loading. To demonstrated the performance of
v-ST/FEM the Coaxially-Rotating-Crack-Model (CRCM) will be used to model the
concrete material in the dam since the major nonlinearities of typical concrete
structures are often caused by cracking. The theoretical and computational aspects
of the CRCM model are discussed in the next section.

6.6 A nonlinear smeared crack model for concrete
material

Materials such as concrete, mortar, and rocks have very less tensile strength (about
10 percent) than compressive strength and exhibit a quasi-brittle behavior. Tensile
fracture in concrete like materials involves progressive micro-cracking, tortuous
debonding and other processes of internal damage which eventually coalesce into a
macro-cracks. Accordingly, a mass concrete when subjected to the tensile loading
undergo strain softening before leading to a complete loss of strength. Fig. 6.1
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Algorithm 3: v-ST/FEM algorithm with block-iterative scheme to solve a system
of nonlinear-linear coupled equations

Initialization ;
Step-1: Solve a static problem and get the initial displacement

{
ũ0}, and stress

in the solid-domain, and set
{
ṽ0} = 0,

{
p̃0} = 0, and

{
q̃0} = 0;

Start Time Step Loop ;
for n=0, N-1 do

Step-2: Compute and store the fixed space-time tangent matrices for
fluid-domain by using Eq. (6.58) and solid-domain by using Eq. (6.65);

Step-3: Compute and store the coupling matrices for solid-domain
[
Hs
fd

]
and

fluid-domain
[
Hf
fd

]
;

Step-4: Compute and store
{

Jsfixed
}

by using Eq. (6.61);

Step-5: Compute and store
{

Jf
}

by using Eq. (6.59);

Step-6: Set {ṽ}(k) = 0 and {q̃}(k) = 0 for k = 0;
Start Block-Iteration Loop ;
for k=1, maxIter do

Step-7: Compute displacements at time t1 and t2 from {ṽ}(k−1) by using
Eq. (6.35), and also calculate strains;

Step-8: Obtain trial stress σ1 and σ2 from constitutive model, and use
them to compute

{
Jsσ1

}(k−1),
{
Jsσ2

}(k−1) and [Ks
iter]

(k−1);
Step-9: Compute {Jsiter}

(k) and assemble the residual {Rs}(k), then solve
Eq. (6.63) and update velocity {ṽ}(k) by using Eq. (6.67);

Step-10: Update the right hand side of Eq. (6.68) by using {ṽ}(k) and{
Jf
}

, and obtain
{

qf
}(k)

;

Step-11: Check the convergence;
if Converged then

Update
{
ũ0},

{
ṽ0},

{
p̃0},

{
q̃0}, and stresses in the solid domain;

Go to next time step
else

Go to Step-7
end

end
end
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shows a typical stress-strain relationship for mass concrete from uniaxial tension test
obtained by Brühwiler, 1990. At the beginning, a linear relationship between stress
and strain exists until the elastic limit is reached. Once the elastic limit is crossed,
micro-cracks develop within the mass concrete, which results in nonlinearity in the
curve up to the ultimate tensile strength σt. The post-peak behavior starts with
the strain-softening due to growth of micro-cracks in the weakest cross-section of
the specimen which then coalescence into a crack: a geometrical discontinuity that
separates the material. Therefore, the stress-strain relationship for the concrete like
materials can be divided into two regime: (i) pre-softening regime and (ii) softening
regime.
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Fig. 6.1.: Typical stress-strain curve for mass concrete from simple tension test after (Brüh-
wiler, 1990)

In what follows the co-axially rotating crack model (CRCM)3 which is defined by
(i) the pre-softening material behavior, (ii) the criterion for crack initiation, (iii) the
fracture energy conservation, and (iv) the growth, closing and reopening of cracks,
and v-ST/FEM implementation of this constitutive model are presented.

6.6.1 Pre-softening behavior

The stress-strain relationship at a material point is given by

{σ} = [C] · {ε} (6.71)

3The CRCM model was first proposed by Bhattacharjee and Leger, 1993 and recently modified by
Calayir and Karaton, 2005b
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where [C], {σ} = [σ11, σ22, σ12] and {ε} = [ε11, ε22, 2ε12] denotes Voigt-form of the
constitutive matrix, stress tensor and strain tensor, respectively. In pre-softening
case since there are no cracks developed in concrete, the standard elastic plane
stress-strain matrix for an isotropic material is used. Then, the matrix [C] is given by

[C] = E0
1− ν2


1 ν 0
ν 1 0
0 0 1−ν

2

 (6.72)

where ν is the Poisson’s ratio, and E0 is the modulus of elasticity.
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Fig. 6.2.: Constitutive modeling for nonlinear smeared crack analysis. (a) Idealized stress-
strain curve for concrete; (b) biaxial stress effect in the strain softening initiation; (c) local
axis system; (d) closing and reopening of cracks.

6.6.2 Crack initiation criterion

The stress-strain relationship for concrete becomes non-linear near the peak strength
as shown in Fig. 6.2a. In the post-peak strain softening phase, coalescence of the
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micro-cracks causes a gradual reduction of the stress resistance. The area under the
uniaxial stress-strain curve up to the peak, defined in Eq. (6.71), is taken as the
index for softening initiation:

U0 = 1
2σtε0 = σ2

t

2E0
(6.73)

where σt is the uniaxial tensile strength of mass concrete, ε0 is the corresponding
strain threshold, E0 is the modulus of elasticity. In the plane-stress finite element
analyses, the crack initiation criterion is given by (Bhattacharjee and Leger, 1993;
Calayir and Karaton, 2005b)

1
2σ1ε1 ≥ U0 (6.74)

where σ1 and ε1 are the maximum principal stress and strain, respectively. In above
equation the term (σ1ε1/2) denotes the tensile strain energy density. Accordingly,
the biaxial effect in the crack initiation criterion may be given by

σ1 ≥
σ2
t

E0ε1
or

σ1
σt
≥
√

σ1
E0ε1

(6.75)

This equation represents a biaxial failure envelope which is illustrated in Fig. 6.2b
It can be observed that strain softening occurs for tension-tension and tension-
compression stress states due to tension cracking, however, no cracks develop under
compression-compression stress state.

6.6.3 Strain softening model for concrete and fracture energy
conservation

Bhattacharjee and Leger, 1993 used a linear strain softening relationship; the
tensile resistance of concrete is assumed to decrease linearly from the pre-softening
undamaged state to the fully damaged state of zero tensile resistance. Recently,
numerous researchers have shown that it is more realistic to assume a strain softening
curve with a steep initial decline followed by an extended tail (Kurumatani et al.,
2016; Geers et al., 2000; Jirasek and Grassl, 2008; Giry et al., 2011; Peerlings et al.,
1998; Calayir and Karaton, 2005b). According to Calayir and Karaton, 2005b, the
post-peak strain softening behavior of concrete can be modeled by using following
exponential strain softening relationship (see also Fig. 6.2a)

σ (ε) =


E0ε, ε 6 ε0

σt
[
2e−a(ε−ε0) − e−2a(ε−ε0)

]
, ε0 < ε < εcr

0, ε > εcr

(6.76)
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where εcr denotes the maximum strain that may not be exceeded during strain
softening, and is consistent with the study carried out by Bažant, 1987. The value
of εcr can be calculated when its corresponding stress given is equal to δcrσt. Thus,
σ = δcrσt in Eq. (6.76b) one can expressed ε as

εcr = ε0 + 1
a

ln
(

1 +
√

1− δcr
δcr

)
(6.77)

In this study δcr = 0.02, therefore, εcr is given by

εcr = ε0 + 4.6
a

(6.78)

In Eqs. (6.76,6.77, 6.78) a is a dimensionless parameter which is related to the slope
of the softening curve. The parameter a should be adjusted such that the energy
dissipation for a unit area of crack plane propagation is conserved. Let the fracture
energy4 be denoted by Gf . In the energy balance approach it is assumed that the
fracture energy Gf will be absorbed due to formation of a unit area of crack surface.
When the crack propagates a certain amount of stored energy is released, and the
crack can only propagates when the released energy is equal to or greater than the
absorbed energy (Hillerborg et al., 1976). The limiting value of a can be obtained b,

∫ ∞
0

σdε :=
∫ ε0

0
σdε+

∫ ∞
ε0

σdε = Gf
lch

(6.79)

Now, use of the stress-strain relationship as given by Eq. (6.76) in above equation
will yield following expression for a.

a = 3
εo
( 2Gf
lchσtεo

− 1
) > 0 (6.80)

In Eq. (6.79) and Eq. (6.80), lch is a geometrical constant which is introduced
as a measure of the length of fracture processing zone in mass concrete. In two-
dimensional finite element analyses, lch can be calculated by using the relations
given below (Kurumatani et al., 2016),

Triangular element:lch =
√

2Ae
Quadrilateral element:lch =

√
Ae

(6.81)

in which Ae denotes the area of a two-dimensional finite element.

4The fracture energy is defined as the energy per unit area required to form a fracture surface
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6.6.4 Constitutive relationship during softening

After the softening initiation, a smeared band of micro-cracks is assumed to appear
in the direction normal to the principal the tensile stress. The axes of principal
stresses rotates during the cracking. In a co-axially rotating crack model (CRCM),
the axes of principal stress and strain are allowed to rotate during or after cracking
while assuming stress and strain to be coaxial (Rots, 1991; Bhattacharjee and Leger,
1993; Calayir and Karaton, 2005). The material reference axis system, referred to as
the local axis system, is aligned with the principal strain directions (direction n− s
in Fig. 6.2c ). The constitutive matrix relating the local stresses to local strains is
defined as

[Cns] = E0
1− ην2


η νη 0
ην 1 0
0 0 µ 1−ην2

2(1+ν)

 ; η = En
E0

(6.82)

where η ∈ [0, 1] is the ratio of the softened elastic modulus (En) in the direction
normal to the fracture plane to the initial isotropic elastic modulus (E0), thus η
denotes the damaged state of the material; η = 1 implies undamaged state and
η = 0 implies a fully damaged state. In this equation, µ is the shear resistance factor
defined for the CRCM as follows:

µ = 1 + ν

1− ην2

(
ηεn − εs
εn − εs

− ην
)
, µ ∈ [0, 1] (6.83)

where εn is the maximum principal strain, εs = max (ε1, ε2), which is in normal
direction to the fracture plane, and εs is the minimum principal strain , εs =
min (ε1, ε2), which in the direction parallel to the fracture plane (i.e., smeared band
of micro-cracks).

It is important to note that in Eq. (6.82) constitutive matrix [Cns] is defined in
the local axis system (n − s direction in Fig. 6.2c). However, in a finite element
computation this matrix is transformed to the global x − y coordinate directions,
[Cglobal], by using

[Cglobal] = [R]T [Cns] [R] (6.84)

where

[R] =


cos2θ sin2θ sin θ cos θ
sin2θ cos2θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2θ − sin2θ

 (6.85)

in which θ is the angle between the n-axis and x-axis as shown in Fig. 6.2c.

With increasing strain softening, the damaged elastic modulus En (see Fig. 6.2d),
and therefore the parameters η and µ decrease gradually and may eventually reach
zero values after complete fracture (εn > εcr). The damaged state constitutive
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matrix given in Eq. (6.82) is updated as the parameters η and µ change their values,
and these changes are also reflected in the global constitutive matrix (see Eq. 6.84).
In addition, the change in global constitutive matrix [Cglobal] is also caused by a
rotation of the local axis system, which is always kept aligned with the directions of
principal strains to keep the principal stresses and strains coaxial. The CRCM is very
effective in alleviating the stress locking which is usually observed in fixed crack
models (Rots, 1991).

6.6.5 Closing and reopening of cracks

During the unloading/reloading, when the strain, εn, is less than the previously
attained maximum value, εmax (see Fig. 6.2d), the secant modulus, En and therefore
η, do not change; however, the parameter µ changes during this process. During
unloading the shear reduction factor, µ, gradually increases with the reduction of
εn. The damaged state elastic modulus in the normal direction, En (which may
have reached a zero value), is replaced by the undamaged initial value, E0, if
the parameter µ is greater than a threshold value µc. In this study µc = 0.95 is
considered. In subsequent loading steps, when εn > 0, the value µ is determined by
using the damaged value η to determine the reopening of cracks. If µ becomes less
than µc, the element behavior is determined by either reloading or the reopening
path depending on the final state attained in previous tensile cycles. The appropriate
value of the damage modulus, En, is reused in Eq. (6.82) at that state.

In what follows an informal explanation regarding the the physical significance of
CRCM during the unloading/reloading process is presented. Imagine the smeared
band of micro-cracks developed inside the test-specimen subjected to dynamic
loading. In addition, assume that the material is partially damaged (this state
is described by point-A in Fig. 6.2d ). At this stage, strength of the material has
degraded in both normal and tangential directions to the plane. In CRCM this
corresponds to the η < 1.0 and µ < 1.0, where the former and later are related
to the strength reduction in normal and tangential directions, respectively. At this
stage, if loading continues then η and µ will keep decreasing denoting the strength
reduction in smeared band due to growth of cracks. In case of unloading, the normal
strain εn decreases and cracks start closing, accordingly the shear resistance factor,
µ, starts to increase compare to its value at point-A in Fig. 6.2d. This signifies the
gain of strength in tangential direction to the damaged plane due to the partial
closing of cracks. During unloading, as long as the cracks are still opened (i.e.
µ < µc), the strength in the normal direction remains same as that of point-A. In
CRCM, this behavior is simulated by keeping En and η fixed to their values at point
point-A as long as the condition µ < µc is satisfied. The condition µ ≥ µc depicts the
state of fully closed cracks. In this situation material regains its undamaged initial
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compressible strength. In addition to µ ≥ µc, one should also check the value of η
since η < 1 and eta = 1 refer to the damaged and undamaged state, respectively.
During reloading, partially or fully closed cracks reopen, and the condition µ < µc is
satisfied. The element behavior is determined by either reloading or the reopening
path depending on the final state attained in previous tensile cycles. The appropriate
values, η, µ, and En should be used in Eq. (6.82) to compute the constitutive
matrix.

6.6.6 Finite element implementation

In the finite element implementation of CRCM strains are computed at each inte-
gration point and the average of Gaussian point strains is taken as representative of
the behavior of the element as a whole (Bhattacharjee and Leger, 1993; Calayir and
Karaton, 2005b). In space-time finite element procedures there are two different
ways to compute the average strains: (i) average of space-time integration point
strains in a space-time element, (ii) average of space-integration point strains in
spatial-element at a given time instant. Henceforth, the term space-time averaged
strain and space averaged strain will be used for the average strain obtained from
the former and later procedures, respectively. The steps involved in implementation
of CRCM are given below.

Step-1: Compute the space-time averaged strain or space averaged strain as fol-
lows

εavgst = 1
niptnips

nipt∑
α=1

nips∑
β=1

εαβ

εavgs = 1
nips

nips∑
β=1

εαβ

where εavgst denotes the space-time averaged strain, εavgs denotes the space averaged
strain, εαβ is the strain defined at space-time integration point, nipt, nips are the total
number of integration points for space and time domain, respectively.

Step-2: Compute the principal strains (εn, εs) and principal direction θ of averaged
strain tensor;
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Step-3: Check loading condition;

If(εn ≥ εmax) Then

ε = εn; Loading = .T rue.

Else

ε = εmax; Loading = .False.

End If

Step-4: Check damaged state of material and compute η;

If(ε ≥ ε0) Then

Damaged = .T rue.

If(ε ≥ εcr) Then

η = 0.0;

Else

η = ε0
ε

[
2e−a(ε−ε0) − e−2a(ε−ε0)

]
(see Eq. 6.80)

End If

Else

Damaged = .T rue.; η = 1.0;µ = 1.0

End If

Step-5: Check the crack-closing condition

If(µ ≥ 0.95 .and. Damaged .and. .Not. Loading ) Then

η = 1.0

End If

Step-6: Compute the local constitutive matrix by using η and µ in Eq. (6.82),
and then compute global constitutive matrix by transformation of local constitutive
matrix (see Eq. 6.84).

Step-7: Compute stress by using{
σβα

}
= [Cglobal]

{
εβα

}
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where
{
σβα

}
and

{
εβα

}
are the vector of stress and strain components in Voigt-

notation corresponding to a space-time integration point.

6.7 Dynamic response of the nonlinear dam
without hydrodynamic effects

Koyna concrete gravity dam, which is extensively analyzed in several previous studies
(Bhattacharjee and Leger, 1993; Calayir and Karaton, 2005b; Calayir and Karaton,
2005a; Cervera et al., 1995; Omidi et al., 2013; Ghrib and Tinawi, 1995), is selected
for numerical application. This dam is one of the few concrete dams that have
experienced a destructive earthquake. The earthquake of December 11, 1967, with
maximum and minimum acceleration around 0.5g, caused significant structural
damage of the dam, including horizontal cracks on the upstream and down streams
faces of a number of number of non-overflow monoliths around the elevation at
which the slope of downstream face changes abruptly.

In this section, the nonlinear dynamic fracture analysis of Koyna concrete gravity
dam which is subjected to both horizontal and vertical components of earthquake
motion is performed. The physical dimensions and finite element mesh of the tallest
section of the dam are illustrated in Fig. 6.3. The dam is 103 m tall and 70 m wide at
the base. The height of water in the reservoir is taken to be 90.5 m and the upstream
face of the dam is assumed to be straight and vertical. The dam is subjected to the
self-weight and hydrostatic pressure loads to determine the pre-seismic state.

Further, the concrete material in the dam is modeled by using the co-axially rotat-
ing crack model (CRCM) which is described in the previous section. The material
parameters for the concrete dam are selected as follows: The elastic modulus (E)
is 31027 MPa, the Poisson’s ratio (ν) is 0.2, the mass density (ρ) is 2643 Kg/m3, the
ultimate tensile strength (σt) is 1.5 MPa and the fracture energy (Gf ) is 150 N/m. Dy-
namic loading affects the concrete material parameters. Elastic modulus of concrete
is generally considered to be less sensitive to strain rate than the tensile strength
and fracture energy Bhattacharjee and Leger, 1993. Due to strain rate effects, the
tensile strength and the fracture energy are increased by 20% approximately, leading
to the values of 1.8 MPa and 180 N/m. Further, damping in the concrete dam is
modeled by Rayleigh damping with critical damping ratio of 5% in the fundamental
vibration mode of the dam alone with no cracking. The resultant values of damping
coefficients are α = 0.0026 and β = 0.9676.

Numerical simulations are carried out for the horizontal and vertical components
of the Koyna accelerogram (Fig. 6.4) without considering the hydrodynamic in-
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Fig. 6.3.: Physical dimensions and finite element mesh of the Koyna dam.
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Fig. 6.4.: The Koyna-1967 earthquake ground motion: (a) Transverse component, and (b)
vertical component

teractions between the dam and reservoir 5. A uniform time step size ∆t = 0.01 s
is adopted for time integration, and the resultant unsymmetrical system of linear
equations is solved by using the GpBiCG algorithm with tolerance value of 1.0×10−6.
In this section, dynamic response of the dam is computed by using following three
different v-ST/FEM schemes:

(i) v-ST/FEM-1, which represents the v-ST/FEM with a three-point Gauss-Lobatto
integration rule for computing Eq.(6.43) and Eq.(6.46) (see also Eq. 6.50). In
finite element implementation of CRCM, average of spatial-integration point
strains is taken as representative of the behavior of the spatial-element as a
whole.

(ii) v-ST/FEM-2, which represents the v-ST/FEM with a two-point Gauss-Legendre
integration rule for computing Eq.(6.43) and Eq.(6.46) (see also Eq. 6.49). In
finite element implementation of CRCM, average of spatial-integration point
strains is taken as representative of the behavior of the spatial-element as a
whole.

(iii) v-ST/FEM-3, which represents the v-ST/FEM with a two-point Gauss-Legendre
integration rule for computing Eq.(6.43) and Eq.(6.46) (see also Eq. 6.49).
In finite element implementation of CRCM, average of space-time integration
point strains is taken as representative of the behavior of the space-time
element as a whole.

5Hydrodynamic interactions between the dam and reservoir are included in Section 6.8
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The contents of this section are as follows. In Section 6.7.1, v-ST/FEM-1 is employed
to compute the nonlinear response of the Koyna dam. Subsequently, the nonlinear
response of the dam is compared with the linear response to examine the effects
of cracking in the concrete material. The last two subsections then assess the
performances of these v-ST/FEM schemes.

6.7.1 Results for v-ST/FEM-1 scheme

This section examines the cracking effects of the concrete material on the seismic
response of the concrete dam. In linear analysis isotropic, homogeneous, linear
elastic stress-strain relationship is used for the concrete whereas for nonlinear
analysis material behavior is modeled by CRCM. v-ST/FEM-1 with tolerance in
residual and velocity set to 1.0× 10−3 (see Eq. 6.69 and Eq. 6.70) is employed to
compute the nonlinear response of the Koyna dam.

Fig. 6.6 and Fig. 6.8 show the time history graphs of the horizontal and vertical
components of the displacement, velocity, and acceleration at node-9 6 and node-5
7 of the dam, respectively. Due to the infinite rigidity of the foundation, a stress
concentration induces a crack at the base of the dam. At time t = 1.89 sec, the heel
of the dam (element-1 in Fig. 6.3) softens completely (i.e., η ≈ 0) which corresponds
to the case of complete fracture of that element, subsequently, the crack propagates
horizontally in the downstream direction along the base of the dam. The cracks
at the base of the dam then extend to an approximate distance of 13 m from the
heel of the dam. During the upstream movement of the dam around t = 2.94 sec
element-2080 in the dam starts softening. The crack, however, does not propagate
instantaneously since more elements at the base of the dam continue softening. The
spatial distribution of CRCM parameter η, which indicates the strength reduction of
the material in the direction normal to the fractured plane, at time t = 2.73 sec is
depicted in Fig. 6.11a, and the corresponding deformed configuration of the dam is
plotted in Fig. 6.12a.

During the upstream movement of the dam, around time t = 3.91 sec, a fully opened
crack appears in the element-2080 which subsequently propagates in the horizontal
direction towards the downstream face of the dam. This process forms a localized
band of cracked elements in the neck-area of the dam which can be seen from the
deformed configuration of the dam given in Fig. 6.12b. Fig. 6.11b depicts the
spatial distribution of the CRCM parameter, η, at time t = 3.91 sec, where it is
noteworthy that due to the upstream movement of the dam cracks at the base are

6Node-9 corresponds to the crest of the dam see Fig. 6.3
7Node-5 corresponds to the point at the downstream face of the dam where discontinuity in the slope

of the downstream face occurs as shown in Fig. 6.3
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closed. The continued upstream movement of the dam causes the cracks in the
neck-area of the dam to propagate in the downward direction towards the upstream
face of the dam (see Fig. 6.11c and Fig. 6.12c). Subsequently, the downstream
movement of the dam causes new cracks at the base and the upstream face of the
dam. In addition during this time, the band of cracks near the element-2080 starts
to close. Accordingly, the elements in this regime momentarily gain their original
compressive strength (see Fig. 6.10). Spatial distribution of the CRCM parameter,
η, and deformed configuration of the dam at time t = 4.15 sec are presented in Fig.
6.11d and Fig. 6.12d depict, respectively.

The maximum displacement at node-9 of the dam in the upstream direction occurs
at time t = 4.35 sec as depicted in Fig. 6.6. At this instant, the spatial distribution of
the CRCM parameter, η, and the corresponding deformed configuration of the dam
are illustrated in Fig. 6.11e and Fig. 6.12e, respectively. The maximum horizontal
and vertical displacement of the node-9, which occurs at time t = 4.55 sec as
depicted in Fig. 6.6, corresponds to the situation where element-726 at the upstream
face of the dam undergoes a complete strain-softening. This is confirmed by the
deformed configuration of the dam at time t = 4.55 given in Fig. 6.12f. The spatial
distribution of the parameter η, which is given in Fig. 6.11f, shows the localization
of a crack band meeting the downstream crack profile in the dam interior. At this
time, the cracks near the downstream face close as the dam swings towards the
downstream direction. Accordingly, the maximum compressive principal stresses
inside the element-2080 of the dam achieve a peak value of 9 MPa around this time
(see Fig. 6.10). At this instant the entire neck of the dam is damaged, and the
subsequent motion of the cracked dam is dominated by rigid-body rocking of the
upper portion of the dam.

From the time-history graphs of displacement, velocity and acceleration plotted in
Fig. 6.6 (at node-9) and Fig. 6.8 (at node-5) it is evident that the vibration period of
the dam increases due to crack propagation in the dam. This effect is clearly visible
in the corresponding Fourier spectrums presented in Fig. 6.7 and Fig. 6.9, where the
cracking in concrete dam shifts the spectrum towards the lower frequency regime.

The time history graphs of the maximum tensile and compressive principal stresses
occurred in the element-1, element-726, and element-2080 are plotted in Fig. 6.10.
8 The maximum tensile principal stresses for the linear case take larger peak values
while the maximum peak values of those for the nonlinear case are about the tensile
strength of the concrete. In Fig. 6.10 it is visible that the tensile strength of an
element is completely removed after the cracking. The maximum compressive

8Element-1 is located at the base of the dam, element-726 is located at upstream face of the dam, and
element-2080 is located at the downstream face of the dam where the discontinuity in the slope
occurs as shown in Fig. 6.3
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principal stresses for linear case also generally take larger peak values than those
for nonlinear case. However, in situations where a crack closes completely (i.e.,
µ ≥ 0.95), peak values of the maximum compressive principal stresses in nonlinear
case are slightly more than the peak values of those for the linear case (see Fig.
6.10). Lastly, the evolution of CRCM parameter η in selected elements of the Koyna
dam is depicted in Fig. 6.5.
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Fig. 6.5.: Evolution of the CRCM parameter, η = En/E0, for some elements of the Koyna
dam obtained by using the v-ST/FEM-1 without considering the hydrodynamic effects of the
reservoir.
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Fig. 6.6.: Time history graphs of the displacement, velocity and acceleration at the crest of
the Koyna dam (node-9) computed by using v-ST/FEM-1 without considering the hydrody-
namic effects of the reservoir.
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Fig. 6.7.: Fourier spectrum of the displacement, velocity and acceleration at the crest of the
Koyna dam (node-9) computed by using v-ST/FEM-1 without considering the hydrodynamic
effects of the reservoir.
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Fig. 6.8.: Time history graphs of the displacement, velocity and acceleration at node-9 of the
Koyna dam computed by using v-ST/FEM-1 without considering the hydrodynamic effects of
the reservoir.
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Fig. 6.9.: Fourier spectrum of the displacement, velocity and acceleration at node-9 of the
Koyna dam computed by using v-ST/FEM-1 without considering the hydrodynamic effects of
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the hydrodynamic effects of the reservoir.

6.7 Dynamic response of the nonlinear dam without hydrodynamic effects 231



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CRCM parameter, 𝜂

t = 2.73 sec t = 3.91 sec t = 3.98 sec

t = 4.15 sec t = 4.34 sec t = 4.55 sec

(a) (c)(b)

(d) (f)(e)

Fig. 6.11.: Spatial distribution of the CRCM parameter, η = En/E0 in Koyna dam at selected
times computed by using the v-ST/FEM-1 without considering the hydrodynamic effects of
the reservoir.
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Fig. 6.12.: Amplified deformed configuration of the Koyna dam at selected times computed
by using the v-ST/FEM-1 without considering the hydrodynamic effects of the reservoir.
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6.7.2 Results for v-ST/FEM-2 scheme

In this section, the nonlinear dynamic response of the Koyna dam is computed by
using the v-ST/FEM-2 with the tolerance in residual and velocity is set to 1.0× 10−3.
The analysis terminates at about 6.8 sec because of an energy balance error during
the rigid body rocking of the upper part of the dam body. Fig. 6.14 and Fig. 6.15
compare the temporal variation of the displacement, velocity and acceleration at
node-9 and node-5 of the dam obtained by employing v-ST/FEM-1 and v-ST/FEM-2.
The results obtained by using v-ST/FEM-2 are nearly identical to those obtained
by using the v-ST/FEM-1. The spatial distribution of the CRCM parameter η and
the deformed configuration of the dam at selected times are given in Fig. 6.16
and Fig. 6.17, respectively, which is nearly identical to those obtained in case of
v − ST/FEM − 1 (see Fig. 6.11 and Fig. 6.12. The evolutions of CRCM parameter
η in element-726 and element-2080 obtained by using v-ST/FEM-1 and v-ST/FEM-2
are plotted in Fig. 6.13 which further confirm that these two schemes predict the
event of cracking nearly at the same time.
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Fig. 6.13.: Comparison of the CRCM parameter, η = En/E0, in (a) element-726 and (b)
element-2080 of the Koyna-dam obtained by using v-ST/FEM-1 and v-ST/FEM-2 schemes.
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Fig. 6.14.: Comparison of the displacement, velocity and acceleration responses at node-9
of the Koyna-dam computed by using the v-ST/FEM-1 and v-ST/FEM-2 without considering
the hydrodynamic effects of the reservoir.
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Fig. 6.15.: Comparison of the displacement, velocity and acceleration responses at node-5
of the Koyna-dam computed by using the v-ST/FEM-1 and v-ST/FEM-2 without considering
the hydrodynamic effects of the reservoir.
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Fig. 6.16.: Spatial distribution of the CRCM parameter, η = En/E0 in Koyna dam at selected
times computed by using the v-ST/FEM-2 without considering the hydrodynamic effects of
the reservoir.
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Fig. 6.17.: Amplified deformed configuration of the Koyna dam at selected times computed
by using the v-ST/FEM-2 without considering the hydrodynamic effects of the reservoir.
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6.7.3 Results for v-ST/FEM-3 scheme

In this section, the nonlinear dynamic response of the Koyna dam is computed by
using the v-ST/FEM-3 with the tolerance in residual and velocity is set to 1.0× 10−2.
Unlike v-ST/FEM-2 this scheme could converge for all the time steps. Fig. 6.19 and
Fig. 6.20 compare the displacements, velocity, and acceleration time history at node-
9 and node-5 obtained by using v-ST/FEM-3 with those obtained by v-ST/FEM-1 and
v-ST/FEM-2.

The spatial distribution of the CRCM parameter (Fig. 6.21), η, and the corresponding
deformed configuration (Fig. 6.22) of the dam obtained by using v-ST/FEM-3 are
consistent with those obtained by using other v-ST/FEM schemes. Evolution of the
CRCM parameter, η, in different v-ST/FEM schemes is plotted in Fig. 6.18 which
confirms that the events of cracking predicted by the proposed schemes are nearly
identical with the each other.

Furthermore, it should be noted that in case of v-ST/FEM-3 the dynamic response
is obtained at relatively low tolerance value. It is remarkable that the numerical
solutions obtained by using the v-ST/FEM-3 at low tolerance are nearly identical to
those obtained by using the v-ST/FEM-1 and v-ST/FEM-2 at relatively high tolerance.
In addition, the use of space-time averaged strains as representative of the behavior
of the space-time element as a whole significantly improves the convergence of the
numerical scheme.
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Fig. 6.18.: Comparison of the CRCM parameter, η = En/E0, in (a) element-726 and
(b) element-2080 of the Koyna-dam obtained by using the v-ST/FEM-1, v-ST/FEM-2 and
v-ST/FEM-3.
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Fig. 6.19.: Comparison of the displacement, velocity and acceleration responses at node-9
of the Koyna-dam computed by using the v-ST/FEM-1, v-ST/FEM-2 and v-ST/FEM-3 without
considering the hydrodynamic effects of the reservoir.
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Fig. 6.20.: Comparison of the displacement, velocity and acceleration responses at node-5
of the Koyna-dam computed by using the v-ST/FEM-1, v-ST/FEM-2 and v-ST/FEM-3 without
considering the hydrodynamic effects of the reservoir.
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Fig. 6.21.: Spatial distribution of the CRCM parameter, η = En/E0 in Koyna dam at selected
times computed by using the v-ST/FEM-3 without considering the hydrodynamic effects of
the reservoir.
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Fig. 6.22.: Amplified deformed configuration of the Koyna dam at selected times computed
by using the v-ST/FEM-3 without considering the hydrodynamic effects of the reservoir.
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6.8 Dynamic response of nonlinear dam including
hydrodynamic effects

In this section, the nonlinear dynamic fracture analysis of Koyna concrete gravity dam
subjected to the earthquake motion is performed including the dynamic interactions
between the dam and reservoir. The physical dimensions, finite element mesh and
the material properties of the concrete dam are identical to the those presented in
the previous section. The height of water in the reservoir, Hf , is assumed to be
constant at a value of 90.5 m. Reservoir domain is truncated by placing a viscous
boundary at a distance of 412 m, which is four times the height of the concrete dam,
from the dam in the upstream direction. Fig. 6.23 depicts the finite element mesh
of the reservoir used for the numerical simulations. The speed of acoustic wave
in water is 1439 m/s, and the mass density of the water is 1000 kg/m3. The wave
reflection coefficient αb for reservoir bottom is taken as unity (i.e., reservoir bottom
acts as a perfect reflector for the hydrodynamic pressure waves).

Numerical simulations are carried out for the horizontal and vertical components
of the Koyna accelerograms plotted in Fig. 6.4. The dam-reservoir interactions are
modeled by solving the system of coupled equations using the v-ST/FEM and the
block-iterative scheme presented in this chapter. For time integration a uniform time
step size ∆t = 0.01 sec is adopted, and GpBiCG algorithm with tolerance value of
1.0× 10−6 is used to solve the resultant unsymmetrical system of linear equations.
In Section 6.8.1, v-ST/FEM-1 is employed to compute the nonlinear response of
the dam-reservoir (DR) system. Subsequently, the nonlinear response of the DR
system is compared with the linear response to examine the effects of cracking in
the concrete material. Section 6.8.2 then compare the performances of v-ST/FEM-1
and v-ST/FEM-3 schemes.
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Fig. 6.23.: Finite element mesh for the reservoir domain.
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6.8.1 Results for v-ST/FEM-1 scheme

This section examines the cracking effects of the concrete material on the seismic
response of the concrete dam. In linear analysis isotropic, homogeneous, linear
elastic stress-strain relationship is used for the concrete whereas for nonlinear
analysis material behavior is modeled by CRCM. v-ST/FEM-1 with tolerance in
residual and velocity set to 1.0× 10−3 (see Eq. 6.69 and Eq. 6.70) is employed to
compute the nonlinear response of the Koyna dam.

Fig. 6.25 and Fig. 6.27 show the time history graphs of the horizontal and vertical
components of the displacement, velocity, and acceleration at node-9 and node-5
of the dam, respectively. Around time t = 1.82 sec, element-1 near the heel of the
dam (see Fig. 6.3) softens completely (i.e., η ≈ 0). Due to the infinite rigidity of the
foundation during the downstream motion of the dam, the cracks propagate in the
downstream direction along the base of the dam. At time t = 2.30 sec the cracks at
the base of the dam extend to an approximate distance of 17 m from the heel of the
dam.

During the upstream movement of the dam, around time t = 2.46 sec, significant
strain softening occurs (i.e., η ≈ 0) in element-1404 located near the discontinuity
in the slope of the downstream face (see Fig. 6.24). The crack quickly propagates in
the horizontal direction towards the downstream face of the dam. Thus a localized
band of cracked elements forms in the neck-area of the dam. Both the deformed
configuration of the dam given in Fig. 6.31a and the spatial distribution of the CRCM
parameter, η, given in Fig. 6.30a confirms this. In the later figure, it is noteworthy
that due to the upstream movement of the dam cracks at the base are closed.
Subsequently, the downstream movement of the dam causes severe cracks at the
upstream face. At time t = 2.70 sec the crack profile and the corresponding deformed
configuration of the dam are given in Fig. 6.30b and 6.31b, respectively. During this
time, the cracks near the vicinity of element-1404 start closing. Therefore, elements
in this regime momentarily gain their original compressible strength (see Fig. 6.29
). The maximum displacement at node-9 of the dam in the upstream direction
occurs at time t = 4.00 sec as shown in Fig. 6.25. Consequently, during this time,
vertical displacement at node-5 of the dam achieves a peak value (see Fig. 6.27)
which corresponds to the maximum opening state of the crack at the downstream
face. At this instant, the spatial distribution of the CRCM parameter, η, and the
corresponding deformed configuration of the dam are illustrated in Fig. 6.30d and
Fig. 6.11d, respectively. Note that the cracks at the upstream face are in the closed
state due to the upstream motion of the dam. However, these closed cracks open
again when the dam swings back in the downstream direction leading to a maximum
displacement of the node-9 in both horizontal and vertical directions (see Fig. 6.25).
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The spatial distribution of the CRCM parameter, η, and the corresponding deformed
configuration of the dam at time t = 4.17 are given in Fig. 6.30e and Fig. 6.31e,
respectively. The cracks at the downstream face are in the closed state due to the
downstream motion of the dam. Accordingly, the maximum compressive principal
stress inside the element-1404 of the dam achieve a peak value of 10 MPa around
this time (see Fig. 6.29). At this instant the entire neck of the dam is damaged, and
the subsequent motion of the cracked dam is dominated by rigid-body rocking of the
upper portion of the dam.

From the time-history graphs of displacement, velocity and acceleration plotted in
Fig. 6.25 (at node-9) and Fig. 6.27 (at node-5) it is evident that the vibration period
of the dam increases due to crack propagation in the dam. This effect is clearly
visible in the corresponding Fourier spectrums presented in Fig. 6.26 and Fig. 6.28,
where the cracking in concrete dam shifts the spectrum towards the lower frequency
regime.

The time history graphs of the maximum tensile and compressive principal stresses
occurred in the element-1 and element-1404 are plotted in Fig. 6.29. 9 The
maximum tensile principal stresses for the linear case take larger peak values while
the maximum peak values of those for the nonlinear case are about the tensile
strength of the concrete. In Fig. 6.29 it is visible that the tensile strength of an
element is completely removed after the cracking. The maximum compressive
principal stresses for linear case also generally take larger peak values than those
for nonlinear case. However, in situations where a crack closes completely (i.e.,
µ ≥ 0.95), peak values of the maximum compressive principal stresses in nonlinear
case are slightly more than the peak values of those for the linear case (see Fig.
6.29). Lastly, the evolution of the CRCM parameter, η, in selected elements of the
Koyna dam is depicted in Fig. 6.24.

9Element-1 is located at the base of the dam, and and element-1404 is located at the downstream
face of the dam where the discontinuity in the slope occurs as shown in Fig. 6.3
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Fig. 6.24.: Evolution of the CRCM parameter, η = En/E0, for some elements of the Koyna
dam obtained by using the v-ST/FEM-1 including the hydrodynamic effects of the reservoir.
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Fig. 6.25.: Time history graphs of the displacement, velocity and acceleration at node-9 of
the Koyna dam computed by using the v-ST/FEM-1 including the hydrodynamic effects of
the reservoir.

248 Chapter 6 v-ST/FEM for The Nonlinear Dam-Reservoir Interaction Problem



v-ST/FEM-1 Linear

0.1 1 10
0

3

6

9

12

Frequency

0.1 1 10
0.00

0.05

0.10

0.15

0.20

Frequency

0.1 1 10
0.0

0.1

0.2

0.3

0.4

Frequency

0.1 1 10
0

1

2

3

4

Frequency

0.1 1 10
0.00

0.02

0.04

0.06

0.08

Frequency

0.1 1 10
0.0

0.1

0.2

0.3

0.4

Frequency

Fig. 6.26.: Fourier spectrum of the displacement, velocity and acceleration at node-9 of the
Koyna dam computed by using the v-ST/FEM-1 including the hydrodynamic effects of the
reservoir.
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v-ST/FEM-1 Linear
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Fig. 6.27.: Time history graphs of the displacement, velocity and acceleration at node-5 of
the Koyna dam computed by using v-ST/FEM-1 including the hydrodynamic effects of the
reservoir.
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Fig. 6.28.: Fourier spectrum of the displacement, velocity and acceleration at node-5 of
the Koyna dam computed by using v-ST/FEM-1 including the hydrodynamic effects of the
reservoir.
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Fig. 6.29.: Time history graphs of the maximum tensile principal stresses, σ1 on the left
hand side, and maximum compressive principal stresses, σ2 on the right hand side, inside
the selected elements of the Koyna-dam computed by using the v-ST/FEM-1 including the
hydrodynamic effects of the reservoir.
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Fig. 6.30.: Spatial distribution of the CRCM parameter, η, in the Koyna dam at selected
times computed by using the v-ST/FEM-1 including the hydrodynamic effects of the reservoir.
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Fig. 6.31.: Amplified deformed configuration of the Koyna dam at selected times computed
by using the v-ST/FEM-1 including the hydrodynamic effects of the reservoir.
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6.8.2 Results for v-ST/FEM-3 scheme

In this section, the nonlinear dynamic response of the Koyna dam is computed by
using the v-ST/FEM-3 with the tolerance in residual and velocity 1.0×10−2. Fig. 6.32
and Fig. 6.33 successfully compare the numerical solutions at node-9 and node-5
obtained by using the v-ST/FEM-1 and v-ST/FEM-3. Spatial distribution of the CRCM
parameter, η, and the deformed configuration of the dam are given in Fig. 6.34 and
Fig. 6.35, respectively. The events of cracking predicted by the both schemes are
nearly identical with the each other. Note that v-ST/FEM-3 results are obtained at
relatively low tolerance value compare to the v-ST/FEM-1. It is remarkable that the
numerical solutions obtained by using the v-ST/FEM-3 at low tolerance are nearly
identical to those obtained by using the v-ST/FEM-1. In addition, the use of space-
time averaged strains as representative of the behavior of the space-time element as
a whole significantly improves the convergence of the numerical scheme.
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Fig. 6.32.: Comparison of the displacement, velocity and acceleration responses at node-
9 of the Koyna dam computed by using the v-ST/FEM-1 and v-ST/FEM-3 including the
hydrodynamic effects of the reservoir.
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Fig. 6.33.: Comparison of the displacement, velocity and acceleration responses at node-
5 of the Koyna dam computed by using the v-ST/FEM-1 and v-ST/FEM-3 including the
hydrodynamic effects of the reservoir.
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Fig. 6.34.: Spatial distribution of the CRCM parameter, η = En/E0 in Koyna dam at selected
times computed by using the v-ST/FEM-3 including the hydrodynamic effects of the reservoir.
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Fig. 6.35.: Amplified deformed configuration of the Koyna dam at selected times computed
by using the v-ST/FEM-3 including the hydrodynamic effects of the reservoir.

6.8 Dynamic response of nonlinear dam including hydrodynamic effects 259



6.9 Summary

The chapter presents space-time finite element formulations for the problems involv-
ing dynamic response of solids and structures with nonlinear stress-strain relation-
ships. The problem of dynamic interaction between the concrete gravity dam and
reservoir is taken as a model problem, in which a generalized nonlinear stress-strain
relationship is used to describe the material behavior of concrete in the dam. The
foundation underneath the dam-reservoir (DR) system is assumed to be perfectly
rigid. The governing equations describing the dynamic interaction between dam
and reservoir constitute a system of linear-nonlinear coupled equations, in which
linear equations govern the reservoir domain and nonlinear equations govern the
solid domain. Subsequently, v-ST/FEM weak form is derived and then discretized
by using the space-time finite elements. Accordingly, an unsymmetrical system of
linear-nonlinear algebraic equations describes the discrete form of the v-ST/FEM
weak form. A block-iterative scheme is devised to enforce the coupling between
the solid and fluid domain. In each iteration of v-ST/FEM with the block-iterative
scheme, the linearized equations of the solid domain are first solved to compute
the increments in the velocity field. Subsequently, the total velocities are corrected
and then used for computing the trial values of hydrodynamic pressures in the
reservoir by solving the linear equation for the reservoir domain. Iterations are
performed until the convergence in the solutions is achieved. In each iteration of
the proposed scheme, therefore, linear equations for the solid and fluid domain are
solved, separately, which significantly decreases the computation cost.

In the present problem, nonlinearity is caused by only the presence of stress term
in the v-ST/FEM weak form. Accordingly, two v-ST/FEM schemes are proposed for
the time integration of the space-time nodal vectors and matrices comprising the
stress term. The first scheme uses the three-point Gauss-Lobatto quadrature rule for
time-integration, whereas the second scheme uses the two-point Gauss-Legendre
quadrature rule. Further, the Gauss-Lobatto quadrature rules include the endpoints
of the time interval, while the latter approach includes the points only located inside
the time interval.

Subsequently, to evaluate the numerical performance of the v-ST/FEM schemes
dynamic fracture analyses of the concrete dam are performed. Numerical simulations
are performed for following two cases: the first case ignores the coupling between
the dam and reservoir, and the second case includes the coupling between dam
and reservoir. In the former case, hydrodynamic pressures are set to zero in the
discretized equations of the solid domain, consequently, block-iterative scheme
reduces to the Newton method.
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A co-axially rotating crack model (CRCM) with exponential strain softening rule
is employed to model the fracture of the concrete. Finite element implementation
of the CRCM requires the average of integration point strains to determine the
cracking behavior of the element as a whole. In v-ST/FEM, one can opt the average
of either spatial integration point strains or the space-time integration point strains.
Accordingly, three v-ST/FEM schemes are devised for the dynamic fracture analysis
of the concrete dam: v-ST/FEM-1 corresponds to the three-point Gauss-Lobatto
rule and the spatially averaged strains, v-ST/FEM-2 corresponds to the two-point
Gauss-Legendre rule and the spatially averaged strains, and v-ST/FEM-3 corresponds
to the two-point Gauss-Legendre rule and the space-time averaged strains.

Numerical simulations presented in this chapter confirms that all v-ST/FEM schemes
are consistent with each other. All schemes can successfully simulate the crack
propagation in the concrete dam during the earthquake loading. Dynamic fracture
analysis of concrete dam involves the rapid change of the stiffness of the dam due to
the crack opening-closing-reopening cycles. The results indicates that v-ST/FEM-1
is the most robust algorithm among the three v-ST/FEM schemes discussed here.
Further, total number of iteration increases at the instant of crack closing and smaller
time steps may be required to achieve the convergence. During the crack opening and
reopening, however, number of iterations are relatively low which can be attributed
to the high order accuracy of the v-ST/FEM schemes.
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7Concluding Remarks

This dissertation uses the time-discontinuous Galerkin finite element method to
develop a high-order accurate time integration scheme, which is termed as the
v-ST/FEM, for the dynamic problems in geotechnical and structural engineering. In
v-ST/FEM, the shape functions depend upon both the space and the time domain
unlike the classical semi-discrete finite element approaches where shape functions
depend only on the space domain. The central ideas in v-ST/FEM is to use the
time-discontinuous interpolation for the velocity field and to develop a weak-form of
the linear-momentum balance equation which is defined on the space-time domain.
The space-time weak-form is designed to satisfy the continuity of the velocity field in
time in the weak sense, which in turn allows the natural introduction of the initial
conditions. Furthermore, both the displacement and stress fields in the v-ST/FEM are
secondary unknowns, and are computed in a post processing steps. The numerical
performance of the v-ST/FEM is then demonstrated by solving several practical
engineering problems involving both the linear and nonlinear dynamics behavior of
the structures.

In what follows the content of foregoing chapters are summarized.

In Chapter 2, the working principles of the time-discontinuous Galerkin finite element
method (TDG/FEM) are described by using a first order ordinary differential equation
(ODE). This ODE resembles to the uncoupled modal equations of the linear parabolic
partial differential equations (PDE), and involves only a single unknown. The
ideas related to the time-discontinuous interpolation and jump discontinuity in
time are then explained. It is proved that TDG/FEM is an unconditional stable
algorithm, moreover, it is shown that the algorithm is third order accurate for linear
interpolation in time.

Subsequently, the concept of discontinuous interpolation in time is extended to a
second order ODE in time which involves displacement and velocity as the unknowns.
Here, the second order ODE represents the uncoupled modal equation of a viscoelas-
tic media. Three types of TDG schemes are proposed for solving the second order
ODE; uv-TDG/FEM, u-TDG/FEM, and v-TDG/FEM. In uv-TDG/FEM, an independent
time-discontinuous interpolation is performed for both the displacement and velocity.
In u-TDG/FEM, time-discontinuous approximation is used only for the displacement,
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and velocity is computed by taking the first order time derivative of the displacement.
In v-TDG/FEM, however, time-discontinuous approximation is employed only for
velocity, and the displacement is obtained by time-integration of the velocity. It
is shown that the u-TDG/FEM and v-TDG/FEM are mathematically equivalent but
computationally different. Both uv-TDG/FEM and v-TDG/FEM are unconditional
stable algorithms, and have third order accuracy in time for the linear interpolation.
However, the former approach produces a larger system of linear equations compare
to the one in latter approach.

The framework of v-TDG/FEM is then extended to devise the velocity-based time-
discontinuous space-time finite element method (v-ST/FEM) for a multidimensional
elastodynamics problem. In v-ST/FEM, space-time nodal values of the velocity
field are the main unknowns, and displacement field is obtained through a time-
integration post-processing step. In this way, the present methodology can greatly
reduce the size of the resulting linear system to be solved in each time step. Several
numerical tests are performed to demonstrate the efficiency and the applicability of
the v-ST/FEM. Furthermore, it is proven that the present method is unconditionally
stable and third-order accurate in time. In addition, the proposed scheme is found
to be non-dissipative in both low and high-frequency regimes and to attenuate only
the middle band of frequencies. Moreover, v-ST/FEM induces negligible numerical
dispersion into the system, and hence, produces negligible phase delay. In the case
of a shock problem, the performance of v-ST/FEM was found to be superior to both
HHT-α and Newmark-beta method.

In Chapter 3, a concise presentation regarding the theory of wave propagation in
an elastic solid is given. After briefly discussing the reflection and refraction of
a plane harmonic waves it is shown that the problem of dynamic soil-structure
interaction (SSI) can be viewed as a wave-scattering phenomenon, in which the
free-field response of an elastic half-space is perturbed by the existing structure.
In dynamic SSI problem, unbounded soil domain is truncated by placing artificial
boundaries at some distance from the area of interest. Accordingly, the chapter
presents some of the most popular boundary conditions for solving wave propagation
problems in the unbounded domain. In addition, the viscous boundary conditions
first proposed by Lysmer and Kuhlemeyer, 1969 are derived, and a comprehensive
discussion related to the numerical characteristics of the viscous boundary conditions
is made. Later in this chapter, viscous boundary condition of Lysmer-Kuhlemeyer is
modified by introducing additional boundary terms related to the free-field response
of unbounded soil domain to facilitate the energy flow from far field to computation
domain.

In Chapter 4, v-ST/FEM method is used to solve the problem of dynamic soil-
structure interaction. In this context, finite element modeling of the unbounded
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soil domain is performed by placing modified viscous boundaries at some distance
from the existing structure. In the computer program, these boundary conditions are
treated as a combination of various traction boundary conditions; traction boundary
condition due to dashpots, free-field motion, and input seismic motion. It is found
that the traction boundary condition due to dashpots introduces space-time dashpot
matrices which contribute to the space-time tangent matrix. The traction boundary
condition due to input seismic motion and free-field motion introduce corresponding
space-time nodal vectors. Furthermore, a procedure involving solutions to the soil-
column problems is presented for obtaining the free-field response. It is noticed
that the computation of the free-field response does not depend upon the total
response of soil and structure. Due to this weak coupling, the soil-column problem
is solved first, and then the total response of soil and structure is computed by
using this free-field response. Afterwards, a dynamic dam-soil interaction problem is
considered to validate the formulation and computer implementation of v-ST/FEM.
The results obtained by proposed scheme are validated by solving the same problem
using the semi-discrete FEM with classical Newmark-β method. Results obtained by
two methods are compared and found to be nearly identical.

In Chapter 5, v-ST/FEM is used to compute the seismic response of the dam-reservoir
(DR) and dam-reservoir-soil (DRS) system while considering all types of dynamic
interaction. Both dam and the underlying soil domain is assumed to be linearly
elastic, and material damping is modeled by Rayleigh damping. The water in the
reservoir is assumed to be inviscid, linearly compressible with a small amplitudes for
the displacements and velocity. Thus, the hydrodynamic pressure in the reservoir
is given by the pressure wave equation. In the finite element modeling, viscous
boundary conditions are used to truncate the semi-infinite domain of reservoir and
underlying soil-domain.

The space-time finite element formulation for coupled problem is then described
in terms of velocity field for the solid domain and the auxiliary variable q for the
fluid domain. Here q denotes the first order time derivative of the hydrodynamic
pressure field. The space-time discretization of the governing equations leads to a
system of linearly coupled equations. A two-stage block-iterative scheme is then
developed to solve the resultant system of linear equations for the space-time nodal
values of unknown fields q and v. Due to the block-iterative scheme the size of the
coupled-problem significantly decreases but at the cost of around 5 to 10 iterations
per time steps.

In each iteration step, first, a system of linear equations (which corresponds to the
solid domain) is solved to compute the trial values of velocity field, and then the
space-time nodal values of auxiliary variable q are computed by solving another
system of linear equations (which corresponds to the fluid domain). The numerical
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performance of the proposed scheme is demonstrated by solving different types
dam-reservoir interaction problems. The results obtained by the proposed scheme
are successfully compared with results available in the literature.

Afterwards, in this chapter, the response of a concrete gravity dam and reservoir
with impounded water to the horizontal component of the earthquake motion is
analyzed by using the v-ST/FEM. Numerical simulations are performed for two cases:
(i) DR, in which the interactions between the dam-reservoir and the underlying
soil are ignored by assuming the ground to be perfectly rigid, and (ii) DRS, in
which the underlying soil domain is modeled as an isotropic, homogenous, linear
elastic half space. It is found that the dynamic interactions with the underlying
deformable soil domain can significantly dampen the response of the dam-reservoir
to the horizontal component of earthquake motion. The comparison of Fourier
spectrum of acceleration response obtained for these two cases reveals an elongation
of time period for DRS. In both cases, significant tensile stresses develop near the
heel and at the downstream inclined face of the dam.

In Chapter 6, v-ST/FEM is employed for the problems involving dynamic response
of solids and structures with nonlinear stress-strain relationships. The problem of
dynamic interaction between the concrete gravity dam and reservoir is taken as a
model problem, in which a generalized nonlinear stress-strain relationship is used to
describe the material behavior of concrete in the dam. The foundation underneath
the dam-reservoir (DR) system is assumed to be perfectly rigid. The governing
equations describing the dynamic interaction between dam and reservoir constitute
a system of linear-nonlinear coupled equations, in which linear equations govern the
reservoir domain and nonlinear equations govern the solid domain. A block-iterative
scheme is used to enforce the coupling between the solid and fluid domain. In each
iteration of v-ST/FEM with the block-iterative scheme, the linearized equations of
the solid domain are first solved to compute the increments in the velocity field.
Subsequently, the total velocities are corrected and then used for computing the trial
values of hydrodynamic pressures in the reservoir by solving the linear equation for
the reservoir domain. In each iteration of the proposed scheme, therefore, linear
equations for the solid and fluid domain are solved, separately, which significantly
decreases the computation cost.

In this chapter, nonlinearity is caused by only the presence of stress term in the
v-ST/FEM weak form. Accordingly, two v-ST/FEM schemes are proposed for the
time integration of the space-time nodal vectors and matrices comprising the stress
term. The first scheme uses the three-point Gauss-Lobatto quadrature rule for
time-integration, whereas the second scheme uses the two-point Gauss-Legendre
quadrature rule. Further, the Gauss-Lobatto quadrature rules include the endpoints
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of the time interval, while the latter approach includes the points only located inside
the time interval.

Subsequently, to evaluate the numerical performance of the v-ST/FEM schemes
dynamic fracture analyses of the concrete dam are performed. Numerical simulations
are performed for following two cases: the first case ignores the coupling between
the dam and reservoir, and the second case includes the coupling between dam
and reservoir. A co-axially rotating crack model (CRCM) with exponential strain
softening rule is employed to model the fracture of the concrete. Finite element
implementation of the CRCM requires the average of integration point strains to
determine the cracking behavior of the element as a whole. In v-ST/FEM, one can opt
the average of either spatial integration point strains or the space-time integration
point strains. Accordingly, three v-ST/FEM schemes are devised for the dynamic
fracture analysis of the concrete dam: v-ST/FEM-1 corresponds to the three-point
Gauss-Lobatto rule and the spatially averaged strains, v-ST/FEM-2 corresponds to the
two-point Gauss-Legendre rule and the spatially averaged strains, and v-ST/FEM-3
corresponds to the two-point Gauss-Legendre rule and the space-time averaged
strains.

Numerical simulations presented in this chapter confirms that all v-ST/FEM schemes
are consistent with each other. All schemes can successfully simulate the crack
propagation in the concrete dam during the earthquake loading. Dynamic fracture
analysis of concrete dam involves the rapid change of the stiffness of the dam due to
the crack opening-closing-reopening cycles. The results indicates that v-ST/FEM-1
is the most robust algorithm among the three v-ST/FEM schemes discussed here.
Further, total number of iteration increases at the instant of crack closing and smaller
time steps may be required to achieve the convergence. During the crack opening and
reopening, however, number of iterations are relatively low which can be attributed
to the high order accuracy of the v-ST/FEM schemes.

In conclusion, v-ST/FEM is an effective technique for solving both the linear and
nonlinear dynamic problems due to following reasons

(i) The main drawback of time-discontinuous space-time finite element schemes
is that such schemes results in large number of unknowns which preclude
their application to the large scale practical problems due to high computation-
cost and memory-storage requirements. The advantage of v-ST/FEM is that
it involves less number of unknowns–unlike other ST/FEM–which makes v-
ST/FEM applicable to the large-scale practical problems at relatively low
computation cost. The problem of memory-storage can be solved by using the
iterative linear solvers (e.g., GpBiCG) within element-by-element framework.
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(ii) The scheme is third order accurate in the time for the linear interpolation in
time. Besides, the technique developed in this thesis can be used to formulate
the arbitrary high-order time accurate schemes by adopting the higher order
time-interpolation for the velocity field.

(iii) v-ST/FEM is an unconditionally stable time integration algorithm. In addition,
the proposed method forms a true energy decaying scheme which implies
that the v-ST/FEM will remain unconditionally stable even for the nonlinear
problems.

(iv) It is well established that the time-discontinuous Galerkin method can effec-
tively solve the problems which are governed by the hyperbolic PDE (e.g.,
Conservation laws) or by the parabolic PDE (e.g., Heat diffusion equation).
Since the foundation of v-ST/FEM is based on the time-discontinuous Galerkin
methods, the proposed scheme provides a stable and high-order accurate
framework for solving different types of dynamic problems.

By using the present research as a basis, we now consider how this study may be
extended.

(i) The major limitation of v-ST/FEM for structural dynamics problems is that it
can not attenuate the spurious high-frequency components. Further efforts
should be made for including a parameter to control the numerical dissipation
of the high-frequency components. In this context, research may focus on the
selection of an appropriate combination of the test and trial functions for the
velocity field.

(ii) In nonlinear problems, the effect of quadrature points (the total number of
quadrature points and the type of quadrature points) for the time-integration
of space-time nodal vector comprising the stress term should be studied further.

(iii) In this thesis, geometrical nonlinear problems have not been discussed. How-
ever, it is belived that v-ST/FEM may be an effective approach for solving large
deformation dynamic problems. In such problems, one can use v-ST/FEM
while working with Lagrangian mesh.

(iv) In addition, incorporation of the moving mesh framework with v-ST/FEM is
natural since the shape functions in v-ST/FEM are defined in terms of space-
time coordinates. In this case, the governing equations should be recast into
their Eulerian forms.
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ASpace-Time Finite Element
Matrices and Vectors for
Elastodynamics Problem

In Section 2.6 following v-ST/FEM weak-form for elastodynamics problem was
presented (see Eq. 2.139),

∫
In

∫
Ωh
δviρ

∂vi
∂t
dΩdt+

∫
Ωh
δvi
(
x, t+n

)
ρvi

(
x, t+n

)
dΩ

−
∫

Ωh
δvi
(
x, t+n

)
ρvi

(
x, t−n

)
dΩ +

∫
In

∫
Ωh

∂δvi
∂xj

CijklψkldΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt−

∫
In

∫
Ωh
δviρbidΩdt

+
∫
In

∫
Ωh

∂δvi
∂xj

σnijdΩdt = 0

(A.1)

In above equation using the space-time interpolation for vi and δvi, given in Eq.
(2.142) and Eq.(2.149), respectively.

{δv}ai (I) · [M ]abij (I, J) · {v}aj (J) + {δv}ai (I) · [K ]abij (I, J) · {v}aj (J)

− {δv}ai (I) · {Jext}ai (I)− {δv}ai (I) · {J0}ai (I)

+ {δv}ai (I) · {Jσn}ai (I) = 0

(A.2)

Noting that the above equation is true for all values of {δv}ai (I), hence

[M ]abij (I, J) · {v}aj (J) + [K ]abij (I, J) · {v}aj (J)

− {Jext}ai (I)− {J0}ai (I) + {Jσn}ai (I) = 0

or

[M ]abij (I, J) · {v}aj (J) + [K ]abij (I, J) · {v}aj (J)

= {Jext}ai (I) + {J0}ai (I)− {Jσn}ai (I)
(A.3)

The matrix-vector form of Eq. (A.3) is

[M] · {ṽ}+ [K] · {ṽ} = {Jext}+ {J0} − {Jσn} (A.4)
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If Rayleigh damping is employed to model the material damping then Eq. (A.4)
becomes

[M] · {ṽ}+ [K] · {ṽ}+ α [MR] · {ṽ}+ β [KR] · {ṽ}

= {Jext}+ {J0} − {Jσn}
(A.5)

Description of the space-time matrices and space-time nodal vectors that appear in
the above mentioned equations is given as follows.

In Eq. (A.4) and Eq. (A.5), [M] (in component form [M ]abij (I, J) ) is the space-time
mass matrix.

[M ]abij (I, J) = δij

∫
In

∫
Ω
N ITaρ

∂NJTb
∂t

dΩdt

+ δijδ1aδ1b

∫
Ω
N IρNJdΩ

(A.6)

or

[M ]abij (I, J) = δij

∫
In
Ta
∂Tb
∂t

dt

∫
Ω
N IρNJdΩ

+ δijδ1aδ1b

∫
Ω
N IρNJdΩ

(A.7)

where δij is the Dirac-delta function. In above equation using the expression for
T1(θ) and T2(θ) given in Eq. (2.141) one can obtain the following.

[M] = 1
2

[
MΩ MΩ

−MΩ MΩ

]
(A.8)

where [
MΩ

]
=
[

m 0
0 m

]
(A.9)

in which
m (I, J) =

∫
Ω
N IρNJdΩ (A.10)

In Eq. (A.4) and Eq. (A.5), [K] (or [K ]abij ) is the space-time tangent stiffness matrix.

[K]abij (I, J) =
∫
In

∫
Ω

∂N ITa
∂xp

Cpijq
∂NJ T̃b
∂xq

dΩdt (A.11)

or

[K]abij (I, J) =
∫
In
TaT̃bdt

∫
Ω

∂N I

∂xp
Cpijq

∂NJ

∂xq
dΩ (A.12)
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In above equation, using the expression for Ta(θ) and T̃a(θ) as given in Eq. (2.141)
and Eq. (2.146), respectively.

[K] = ∆t2n
24

[
3KΩ KΩ

5KΩ 3KΩ

]
(A.13)

where [
KΩ

]
=
[

k11 k12

k21 k22

]
(A.14)

in which

kij (I, J) =
∫

Ω

∂N I

∂xp
Cpijq

∂NJ

∂xq
dΩ (A.15)

In Eq. (A.5), [MR] is the mass proportional space-time Rayleigh damping matrix.

[MR]abij (I, J) = δij

∫
In

∫
Ω
N ITaρN

JTbdΩdt (A.16)

or
[MR]abij (I, J) = δij

∫
In
TaTbdt

∫
Ω
N IρNJdΩ (A.17)

In above equation using the expression for T1(θ) and T2(θ) as given in Eq. (2.141).

[MR] = ∆tn
6

[
2MΩ MΩ

MΩ 2MΩ

]
(A.18)

where MΩ is given by Eq. (A.9).

In Eq. (A.5), [KR] is the stiffness proportional space-time Rayleigh damping matrix.

[KR]abij (I, J) =
∫
In

∫
Ω

∂N ITa
∂xp

Cpijq
∂NJTb
∂xq

dΩdt (A.19)

or

[KR]abij (I, J) =
∫
In
TaTbdt

∫
Ω

∂N I

∂xp
Cpijq

∂NJ

∂xq
dΩ (A.20)

In above equation using the expression for T1(θ) and T2(θ) given in Eq. (2.141).

[KR] = ∆tn
6

[
2KΩ KΩ

KΩ 2KΩ

]
(A.21)

where KΩ is given by Eq. (A.14).

271



In Eq. (A.4) and Eq. (A.5), {Jext} (or {Jext}ai (I)) is the space-time nodal vector
which contains the contribution of external body force b and surface force f s.

{Jext}ai (I) =
∫
In

∫
Ω
N ITaρbidΩdt+

∫
In

∫
Γhi
N ITaf

s
i dsdt (A.22)

The space-time data-structure of {Jext} is given by

{Jext} =
{

J1
ext

J2
ext

}
(A.23)

where
{
J1
ext

}
and

{
J2
ext

}
correspond to the space-nodal values at the bottom and top

space-time slab. These vectors are arranged in terms of x1 and x2 spatial components
as,

{
J1
ext

}
=
{

J1
ext,1

J1
ext,2

} {
J2
ext

}
=
{

J2
ext,1

J2
ext,2

}
(A.24)

where
{

Jaext,1
}

and
{

Jaext,1
}

denote the space-nodal values of x1 and x2 components,
respectively (here a = 1 corresponds to the bottom space-time slab and a = 2
corresponds to the top space-time slab).

J1
ext,1(I) =

∫
In

∫
Ω
N IT1ρb1dΩdt+

∫
In

∫
Γh1
N IT1f

s
1dsdt

J1
ext,2(I) =

∫
In

∫
Ω
N IT1ρb2dΩdt+

∫
In

∫
Γh2
N IT1f

s
2dsdt

(A.25)

J2
ext,1(I) =

∫
In

∫
Ω
N IT2ρb1dΩdt+

∫
In

∫
Γh1
N IT2f

s
1dsdt

J2
ext,2(I) =

∫
In

∫
Ω
N IT2ρb2dΩdt+

∫
In

∫
Γh2
N IT2f

s
2dsdt

(A.26)

In Eq. (A.4) and Eq. (A.5), {J0} is the space-time vector which contains the
contribution of initial velocity 0v.

{J0}ai (I) = δa1δij

(∫
Ω
N IρNJdΩ

){
0vjJ

}
(A.27)

The space-time data-structure of {J0} is given by

{J0} =
{

JΩ
0

0

}
(A.28)

where {
JΩ

0

}
=
[
MΩ

]
·
{

ṽ0
}

(A.29)
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where
[
MΩ

]
is given by Eq. (A.9), and

{
ṽ0} is space-nodal values of velocity at the

last time step.

In Eq. (A.4) and Eq. (A.5), {Jσn} is the space-time vector that contains the contri-
bution of initial stress σn.

{Jσn}ai (I) =
∫
In

∫
Ω

∂N ITa
∂xj

σnijdΩdt

or

{Jσn}ai (I) =
∫
In
Tadt

∫
Ω

∂N I

∂xj
σnijdΩ (A.30)

The space-time data-structure of {Jσn} is given by

{Jσn} = ∆tn
2

{
fint

fint

}
(A.31)

where fint represent the space nodal values of internal-force. This vectors is further
arranged in terms of x1 and x2 spatial components as,

{fint} =
{

f int
1

f int
2

}
(A.32)

in which f int
1 and f int

1 denote the space-nodal values of x1 and x2 components,
respectively.

f int
1 (I) =

∫
Ω

∂N I

∂xj
σnj1dΩ f int

2 (I) =
∫

Ω

∂N I

∂xj
σnj2dΩ (A.33)
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B
Space-Time Finite Element
Matrices and Vectors for Dynamic
Soil-Structure Interaction Problem

In section 4.3 of chapter 4 following v-ST/FEM weak form for dynamic soil-structure
interaction problem was derived,∫

In

∫
Ωh
δviρ

∂vi
∂t
dΩdt+

∫
Ωh
δvi
(
x, t+n

)
ρvi

(
x, t+n

)
dΩ

−
∫

Ωh
δvi
(
x, t+n

)
ρvi

(
x, t−n

)
dΩ−

∫
In

∫
Ωh
δviρbidΩdt

+
∫
In

∫
Ωh

∂δvi
∂xj

σnijdΩdt+
∫
In

∫
Ωh

∂δvi
∂xj

CijklψkldΩdt−
∫
In

∫
Γhi
δvif

s
i dsdt

+
∫
In

∫
ΓR∞∪ΓL∞

δvic
v
ijvjdsdt+

∫
In

∫
ΓB∞

δvic
h
ipvpdsdt

−
∫
In

∫
ΓR∞∪ΓL∞

δvi
(
cvijv

f
j + σfijnj

)
dsdt−

∫
In

∫
ΓB∞

δvi2chijvinj dsdt = 0

(B.1)

In above equation using the space-time interpolation for vi and δvi that is given by
Eq. (4.28) and Eq. (4.29) , respectively, (see section 4.4)

{δv}ai (I) · [M ]abij (I, J) · {v}bj (J) + {δv}ai (I) · [K ]abij (I, J) · {v}bj (J)

+ {δv}ai (I) · [CL∞]abij (I, J) · {v}bj (J) + {δv}ai (I) · [CR∞]abij (I, J) · {v}bj (J)

+ {δv}ai (I) · [CB∞]abij (I, J) · {v}bj (J)− {δv}ai (I) · {Jext}ai (I)

− {δv}ai (I) · {J0}ai (I) + {δv}ai (I) · {Jσn}ai (I)

− {δv}ai (I) · {Jf}ai (I)− {δv}ai (I) · {Jin}ai (I) = 0

(B.2)

Noting that the above equation is true for all values of {δv}ai (I), hence

[M ]abij (I, J) · {v}bj (J) + [K ]abij (I, J) · {v}bj (J) + [CL∞]abij (I, J) · {v}bj (J)

+ [CR∞]abij (I, J) · {v}bj (J) + [CB∞]abij (I, J) · {v}bj (J)

− {Jext}ai (I)− {J0}ai (I) + {Jσn}ai (I)− {Jf}ai (I)− {Jin}ai (I) = 0
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or

[M ]abij (I, J) · {v}bj (J) + [K ]abij (I, J) · {v}bj (J) + [CL∞]abij (I, J) · {v}bj (J)

+ [CR∞]abij (I, J) · {v}bj (J) + [CB∞]abij (I, J) · {v}bj (J)

= {Jext}ai (I) + {J0}ai (I)− {Jσn}ai (I) + {Jf}ai (I) + {Jin}ai (I)

(B.3)

The matrix-vector form of Eq. (B.3) is

[M] · {ṽ}+ [K] · {ṽ}+ [CL∞] · {ṽ}+ [CR∞] · {ṽ}+ [CB∞] · {ṽ}

= {Jext}+ {J0} − {Jσn}+ {Jf}+ {Jin}
(B.4)

If Rayleigh damping is adopted to model the material damping then Eq. (B.4)
becomes the following.

[M] · {ṽ}+ [K] · {ṽ}+ [CL∞] · {ṽ}+ [CR∞] · {ṽ}+ [CB∞] · {ṽ}

+ α [MR] · {ṽ}+ β [KR] · {ṽ} = {Jext}+ {J0} − {Jσn}+ {Jf}+ {Jin}
(B.5)

Description of the space-time matrices and space-time nodal vectors that appear in
the above mentioned equations is given as follows.

In Eq. (B.4) and Eq. (B.5), [M] is the space-time mass matrix which is identical
to the one given by Eq. (A.6). [K] is the space-time tangent matrix given and
its expression is given by Eq. (A.11). [MR] is the mass proportional space-time
Rayleigh damping matrix given by Eq. (A.16), and [KR] is the stiffness proportional
space-time Rayleigh damping matrix given by Eq. (A.19).

In Eq. (B.4) and Eq. (B.5), [CL∞] is the space-time matrix due to the dashpots
placed at the left-side truncated (or absorbing) boundary.

[CL∞]abij (I, J) =
∫
In

∫
ΓL∞

N ITac
v
ijN

JTbdsdt (B.6)

or
[CL∞]abij (I, J) =

∫
In
TaTbdt

∫
ΓL∞

N IcvijN
Jds (B.7)

In above equation using the expression for T1(θ) and T2(θ) given in Eq. (4.27) (see
section 4.4)

[CL∞] = ∆tn
6

[
2CΓ

L∞ CΓ
L∞

CΓ
L∞ 2CΓ

L∞

]
(B.8)

where the matrix
[
CΓ
L∞

]
is evaluated on the spatial domain of left-side truncated

boundary ΓL∞ and given by

[
CΓ
L∞

]
=
[

cL∞11 0
0 cL∞22

]
(B.9)
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in which
cL∞11 (I, J) =

∫
ΓL∞

N IρcLN
Jds (B.10)

cL∞22 (I, J) =
∫

ΓL∞
N IρcTN

Jds (B.11)

where cL and cT denote the speed of P-wave and S-wave in the elastic medium.

In Eq. (B.4) and Eq. (B.5), [CR∞] is the space-time matrix due to the dashpots
placed at the right-side truncated (or absorbing) boundary.

[CR∞]abij (I, J) =
∫
In

∫
ΓR∞

N ITac
v
ijN

JTbdsdt (B.12)

or
[CR∞]abij (I, J) =

∫
In
TaTbdt

∫
ΓR∞

N IcvijN
Jds (B.13)

In above equation using the expression for T1(θ) and T2(θ) given in Eq. (4.27) (see
section 4.4)

[CR∞] = ∆tn
6

[
2CΓ

R∞ CΓ
R∞

CΓ
R∞ 2CΓ

R∞

]
(B.14)

where the matrix
[
CΓ
R∞

]
is evaluated on the spatial domain of right-side truncated

boundary ΓR∞ and given by

[
CΓ
R∞

]
=
[

cR∞11 0
0 cR∞22

]
(B.15)

in which
cR∞11 (I, J) =

∫
ΓR∞

N IρcLN
Jds (B.16)

cR∞22 (I, J) =
∫

ΓR∞
N IρcTN

Jds (B.17)

where cL and cT denote the speed of P-wave and S-wave in the elastic medium.

In Eq. (B.4) and Eq. (B.5), [CB∞] is the space-time matrix due to the dashpots
placed at the bottom truncated (or absorbing) boundary.

[CB∞]abij (I, J) =
∫
In

∫
ΓB∞

N ITac
h
ijN

JTbdsdt (B.18)

or
[CB∞]abij (I, J) =

∫
In
TaTbdt

∫
ΓB∞

N IchijN
Jds (B.19)
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In above equation using the expression for T1(θ) and T2(θ) given in Eq. (4.27) (see
section 4.4)

[CB∞] = ∆tn
6

[
2CΓ

B∞ CΓ
B∞

CΓ
B∞ 2CΓ

B∞

]
(B.20)

where the matrix
[
CΓ
B∞

]
is evaluated on the spatial domain of bottom truncated

boundary ΓB∞ and given by

[
CΓ
B∞

]
=
[

cB∞11 0
0 cB∞22

]
(B.21)

in which
cB∞11 (I, J) =

∫
ΓB∞

N IρcTN
Jds (B.22)

cB∞22 (I, J) =
∫

ΓB∞
N IρcLN

Jds (B.23)

where cL and cT denote the speed of P-wave and S-wave in the elastic medium.

In Eq. (B.4) and Eq. (B.5), {Jext} is the space-time nodal vector that contains
the contribution of external body force b and surface force f s (see Eq. (A.22)).
{J0} is the space-time nodal vector that contains the contribution of initial velocity,
and is given by Eq. (A.27). {Jσn} is the space-time nodal vector that contains the
contribution of initial stress (σn), and is given by Eq. (A.30).

In Eq. (B.4) and Eq. (B.5), {Jf} is the space-time nodal vector that contains the
contribution of free-field response of soil-domain.

{Jf}ai (I) =
∫
In

∫
ΓL∞

N ITa
(
cvijv

f
j − σ

f
i1

)
dsdt

+
∫
In

∫
ΓR∞

N ITa
(
cvijv

f
j + σfi1

)
dsdt

(B.24)

The space-time data-structure of {Jf} is given by

{Jf} =
{

J1
f

J2
f

}
(B.25)

where
{

J1
f

}
and

{
J2
f

}
correspond to the space-nodal values at the bottom and top

space-time slab. These vectors are further arranged in terms of x1 and x2 spatial
components as,

{
J1
f

}
=
{

J1
f,1

J1
f,2

} {
J2
f

}
=
{

J2
f,1

J2
f,2

}
(B.26)
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where
{

Jaf,1
}

and
{

Jaf,2
}

denote the space-nodal values of x1 and x2 components,
respectively (here a = 1 and a = 2 correspond to the bottom and top space-time slab
).

J1
f,1 (I) =

∫
In

∫
ΓL∞

N IT1
(
ρcLv

f
1 − σ

f
11

)
dsdt

+
∫
In

∫
ΓR∞

N IT1
(
ρcLv

f
1 + σf11

)
dsdt

(B.27)

J1
f,2 (I) =

∫
In

∫
ΓL∞

N IT1
(
ρcT v

f
2 − σ

f
21

)
dsdt

+
∫
In

∫
ΓR∞

N IT1
(
ρcT v

f
2 + σf21

)
dsdt

(B.28)

J2
f,1 (I) =

∫
In

∫
ΓL∞

N IT2
(
ρcLv

f
1 − σ

f
11

)
dsdt

+
∫
In

∫
ΓR∞

N IT2
(
ρcLv

f
1 + σf11

)
dsdt

(B.29)

J2
f,2 (I) =

∫
In

∫
ΓL∞

N IT2
(
ρcT v

f
2 − σ

f
21

)
dsdt

+
∫
In

∫
ΓR∞

N IT2
(
ρcT v

f
2 + σf21

)
dsdt

(B.30)

In Eq. (B.4) and Eq. (B.5), {Jin} is the space-time nodal vector that contains the
contribution of input seismic motion.

{Jin}ai (I) =
∫
In

∫
ΓB∞

N ITa2chijvinj dsdt (B.31)

The space-time data-structure of {Jin} is given by

{Jin} =
{

J1
in

J2
in

}
(B.32)

where
{
J1
in

}
and

{
J2
in

}
correspond to the space-nodal values at bottom and top

space-time slab. These vectors are further arranged in terms of x1 and x2 spatial
components as,

{
J1
in

}
=
{

J1
in,1

J1
in,2

} {
J2
in

}
=
{

J2
in,1

J2
in,2

}
(B.33)
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where
{

Jain,1
}

and
{

Jain,2
}

denote the space-nodal values of x1 and x2 components,
respectively (here a = 1 and a = 2 correspond to the bottom and top space-time
slab).

J1
in,1 (I) =

∫
In

∫
ΓB∞

N IT12ρcT vin1 dsdt (B.34)

J1
in,2 (I) =

∫
In

∫
ΓB∞

N IT12ρcLvin2 dsdt (B.35)

J2
in,1 (I) =

∫
In

∫
ΓB∞

N IT22ρcT vin1 dsdt (B.36)

J2
in,2 (I) =

∫
In

∫
ΓB∞

N IT22ρcLvin2 dsdt (B.37)
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C
Space-Time Finite Element
Matrices and Vectors for
Dam-Reservoir Interaction
Problem

Section 5.4.1 describes the following v-ST/FEM weak form for the dynamic interac-
tion between dam and reservoir subjected to the horizontal and verticle components
of the ground motion.

∫
In

∫
Ωf
h

δq
1
c2
∂q

∂t
dΩdt+

∫
Ωf
h

δq (x, tn) 1
c2 q

(
x, t+n

)
dΩ

−
∫

Ωf
h

δq (x, tn) 1
c2 q

(
x, t−n

)
dΩ +

∫
In

∫
Ωf
h

∂δq

∂xi

∂p

∂xi
dΩdt

+
∫
In

∫
Γf
fd

δqρf
∂vi
∂t
nfi dsdt+

∫
In

∫
Γf
fs

δqρfagin
f
i dsdt

+
∫
In

∫
Γf
fs

δqρfqcqdsdt+
∫
In

∫
Γf∞

δq
1
c
qdsdt

−
∫
In

∫
Γf∞

δq
1
c
qfdsdt = 0

(C.1)

∫
In

∫
Ωs
h

ρsδvi
∂vi
∂t
dΩdt+

∫
Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t+n

)
dΩ

−
∫

Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t−n

)
dΩ +

∫
In

∫
Ωs
h

∂δvi
∂xj

CijklψkldΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt−

∫
In

∫
Ωs
h

ρsδvibidΩdt

+
∫
In

∫
Ωs
h

∂δvi
∂xj

σnijdΩdt+
∫
In

∫
Γs
fd

δvipn
s
idsdt

+
∫
In

∫
Γs
fd

δvip0n
s
idsdt = 0

(C.2)
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In Eq. (C.1) and Eq. (C.2) by using the space-time interpolation for δv, v, δq, and
q given by Eq. (5.41), Eq. (5.42), Eq. (5.46), and Eq. (5.47), respectively, one can
obtain the following discrete form of v-ST/FEM weak form.

{δq}a (I) ·
[
Mf

]ab
(I, J) · {q}b (J) + {δq}a (I) ·

[
Kf
]ab

(I, J) · {q}b (J)

+ {δq}a (I) ·
[
Cffs

]ab
(I, J) · {q}b (J) + {δq}a (I) ·

[
Cf∞

]ab
(I, J) · {q}b (J)

+ {δq}a (I) ·
[
Hf
fd

]ab
i

(I, J) · {v}bi (J)− {δq}a (I) ·
{
Jf0

}a
(I)

− {δq}a (I) ·
{
Jff

}a
(I) + {δq}a (I) ·

{
Jfsg

}a
(I)

+ {δq}a (I) ·
{
Jfpn

}a
(I) = 0

(C.3)

{δv}ai (I) · [M s]abij (I, J) · {v}bj (J) + {δv}ai (I) · [Ks]abij (I, J) · {v}bj (J)

− {δv}ai (I) · {Jsext}
a
i (I)− {δv}ai (I) · {Js0}

a
i (I) + {δv}ai (I) · {Jsσn}

a
i (I)

+ {δv}ai (I) ·
[
Hs
fd

]ab
i

(I, J) · {q}b (J) + {δv}ai (I) ·
{
Jfdpn

}a
i

(I)

+ {δv}ai (I) ·
{
Jfdp0

}a
i

(I) = 0

(C.4)

Since Eq. (C.3) and Eq. (C.4) are true for all values of {δv}ai (I) and {δq}a (I), the
discrete weak form will produce following system of algebraic equations.

[
Mf

]ab
(I, J) · {q}b (J) +

[
Kf
]ab

(I, J) · {q}b (J)

+
[
Cffs

]ab
(I, J) · {q}b (J) +

[
Cf∞

]ab
(I, J) · {q}b (J)

+
[
Hf
fd

]ab
i

(I, J) · {v}bi (J)−
{
Jf0

}a
(I)

−
{
Jff

}a
(I) +

{
Jfsg

}a
(I) +

{
Jfpn

}a
(I) = 0

(C.5)

[M s]abij (I, J) · {v}bj (J) + [Ks]abij (I, J) · {v}bj (J)

+
[
Hs
fd

]ab
i

(I, J) · {q}b (J)− {Jsext}
a
i (I)− {Js0}

a
i (I)

+ {Jsσn}
a
i (I) +

{
Jfdpn

}a
i

(I) +
{
Jfdp0

}a
i

(I) = 0

(C.6)

The matrix-vector form of Eq. (C.5) and Eq. (C.6) is given by[
Mf

]
· {q̃}+

[
Kf
]
· {q̃}+

[
Cf
fs

]
· {q̃}+

[
Cf
∞

]
· {q̃}+

[
Hf
fd

]
· {ṽ}

=
{

Jf0
}

+
{

Jff
}
−
{

Jfsg
}
−
{

Jfpn
} (C.7)
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[Ms] {ṽ}+ [Ks] · {ṽ}+
[
Hs
fd

]
· {q̃}

= {Jsext}+ {Js0} − {Jsσn} −
{

Jfdpn
}
−
{

Jfdp0

} (C.8)

If Rayleigh damping is employed to model the material damping in the solid domain
then Eq. (C.8) is given by

[Ms] · {ṽ}+ [Ks] · {ṽ}+ α [Ms
R] · {ṽ}+ β [Ks

R] · {ṽ}

+
[
Hs
fd

]
· {q̃} = {Jsext}+ {Js0} − {Jsσn} −

{
Jfdpn

}
−
{

Jfdp0

} (C.9)

In Eq. (C.7),
[
Mf

]
(or

[
Mf

]ab
(I, J)) is space-time mass matrix for the fluid domain.

[
Mf

]ab
(I, J) =

∫
In

∫
Ωf
h

N I
f Ta

1
c2
∂NJ

f Tb

∂t
dΩdt+ δ1aδ1b

∫
Ωf
h

N I
f

1
c2N

J
f dΩ (C.10)

or [
Mf

]ab
(I, J) =

∫
In
Ta
∂Tb
∂t

dt

∫
Ωf
h

N I
f

1
c2N

J
f dΩ

+ δ1aδ1b

∫
Ωf
h

N I
fN

J
f dΩ

(C.11)

In above equation using the expression for T1(θ) and T2(θ) given in Eq. (5.40),

[
Mf

]
= 1

2

[
mf mf

−mf mf

]
(C.12)

where
mf (I, J) =

∫
Ωf
h

N I
f

1
c2N

J
f dΩ (C.13)

In Eq. (C.7),
[
Kf
]

(or
[
Kf
]ab

(I, J)) is the space-time diffusion matrix for the fluid
domain. In order to derive the expression for diffusion matrix following relation
between p and q should be used,

p (x, t) = p (x, tn) + T̃1 (θ) q (x, tn) + T̃2 (θ) q (x, tn+1) (C.14)

where q(x, tn) and q(x, tn) are the values of q at bottom and top space-time slab,
respectively. The expression for T̃1 and T̃2 are given in Eq. (5.45),

[
Kf
]ab

(I, J) =
∫
In

∫
Ωf
h

TaT̃b
∂N I

f

∂xi

∂NJ
f

∂xi
dΩdt (C.15)

283



or [
Kf
]ab

(I, J) =
∫
In
TaT̃bdt

∫
Ωf
h

∂N I
f

∂xi

∂NJ
f

∂xi
dΩ (C.16)

In above equation using the expression for Ta(θ) and T̃a(θ) presented in Eq. (5.40)
and Eq. (5.45), respectively.

[
Kf
]

= ∆t2n
24

[
3kf kf

5kf 3kf

]
(C.17)

kf (I, J) =
∫

Ωf
h

∂N I
f

∂xi

∂NJ
f

∂xi
dΩ (C.18)

In Eq. (C.7),
[
Cf
fs

]
is the space-time matrix that correspond to the reservoir bottom

absorption. [
Cffs

]ab
(I, J) =

∫
In

∫
Γf
fs

N I
f Taρ

fqcN
J
f Tbdsdt (C.19)

or [
Cffs

]ab
(I, J) =

∫
In
TaTbdt

∫
Γf
fs

N I
f ρ

fqcN
J
f ds (C.20)

In above equation using the expression for T1(θ) and T2(θ) given in Eq. (5.40)

[
Cf
fs

]
= ∆tn

6

[
2cffs cffs
cffs 2cffs

]
(C.21)

where
cffs (I, J) =

∫
Γf
fs

N I
f ρ

fqcN
J
f ds (C.22)

In Eq. (C.7),
[
Cf
∞

]
is the space-time matrix that correspond to the dashpots placed

at the truncated upstream boundary of reservoir.

[
Cf∞

]ab
(I, J) =

∫
In

∫
Γf∞

N I
f Ta

1
c
NJ
f Tbdsdt (C.23)

or [
Cf∞

]ab
(I, J) =

∫
In
TaTbdt

∫
Γf∞

N I
f

1
c
NJ
f ds (C.24)

using the expression for T1(θ) and T2(θ) presented in Eq. (5.40)

[
Cf
∞

]
= ∆tn

6

[
2cf∞ cf∞
cf∞ 2cf∞

]
(C.25)

where
cf∞ (I, J) =

∫
Γf∞

N I
f

1
c
NJ
f ds (C.26)
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In Eq. (C.7),
[
Hf
fd

]
is the space-time matrix which couples the hydrodynamic

response of reservoir and the dynamic response of the dam. Note that the reservoir
dynamically interacts with the dam at the dam-reservoir interface. The space-time
nodal vector for fluid domain that contains the contribution of the motion of dam is
denoted by

{
Jffd

}
, and it is given by

{
Jffd

}a
(I) =

∫
In

∫
Γf
fd

N I
f Taρ

f ∂vi
∂t
nfi dsdt (C.27)

In above equation using the space-time interpolation for velocity v as presented in
Eq. (5.42)

{
Jffd

}a
(I) =

(∫
In

∫
Γf
fd

N I
f Taρ

f ∂N
JTb
∂t

nfi dsdt

)
· {v}bi (J) (C.28)

or {
Jffd

}a
(I) =

(∫
In
Ta
∂Tb
∂t

dt

∫
Γf
fd

N I
f ρ

fNJnfi ds

)
{v}bi (J) (C.29)

The matrix-vector form of above equation is{
Jffd

}
=
[
Hf
fd

]
{ṽ} (C.30)

where [
Hf
fd

]ab
i

(I, J) =
∫
In
Ta
∂Tb
∂t

dt

∫
Γf
fd

N I
f ρ

fNJnfi ds (C.31)

In above equation using the expression for T1(θ) and T2(θ) as presented in Eq. (5.40)

[
Hf
fd

]
= 1

2

[
−HΓ

fd HΓ
fd

−HΓ
fd HΓ

fd

]
(C.32)

where the matrix HΓ
fd is evaluated at the fluid-dam interface Γffd, and given by

[
HΓ
fd

]
=
[

hfd11 0
0 hfd22

]
(C.33)

in which,
hfd11 (I, J) =

∫
Γf
fd

N I
f ρ

fNJnf1ds (C.34)

hfd22 (I, J) =
∫

Γf
fd

N I
f ρ

fNJnf2ds (C.35)
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In Eq. (C.7),
{

Jf0
}

is the space-time nodal vector that contain the contribution of
the initial value of

{
q̃0}.

{
Jf0

}a
(I) =

(
δ1a

∫
Ωf
h

N I
f

1
c2N

J
f dΩ

)
0qJ (C.36)

the space-time structure of
{

Jf0
}

is given by

{
Jf0
}

=
{

JΩ
0
0

}
(C.37)

where {
JΩ

0

}
=
[
mf

] {
q̃0
}

(C.38)

in which the matrix
[
mf

]
is given by Eq. (C.13).

In Eq. (C.7),
{

Jff
}

is the space-time nodal vector that contain the contribution of
the free-field hydrodynamic pressure.

{
Jff

}a
(I) =

(∫
In

∫
Γf∞

N I
f Ta

1
c
NJ
f Tbdsdt

)
·
{
qf
}b

(J) (C.39)

the matrix vector form of above equation is

{
Jff

}a
(I) =

[
Cf∞

]ab
(I, J) ·

{
qf
}b

(J) (C.40)

or {
Jff
}

=
[
Cf
∞

] {
q̃f
}

(C.41)

where the matrix
[
Cf
∞

]
is same as given by Eq. (C.23).

In Eq. (C.7),
{

Jfsg
}

is the space-time nodal vector that contain the contribution of
the rigid-ground motion.{

Jfsg

}a
(I) =

∫
In

∫
Γf
fs

N I
f Taρ

fagin
f
i dsdt (C.42)

the space-time data structure of
{

Jfsg
}

is given by

{
Jfsg

}
=
{

J1
g,fs

J2
g,fs

}
(C.43)
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where
{

J1
g,fs

}
and

{
J2
g,fs

}
correspond to the space-nodal values at the bottom and

top space-time slab. These vectors are defined at the reservoir-ground interface
Γffs.

J1
g,fs (I) =

∫
In

∫
Γf
fs

N I
f T1ρ

fagin
f
i dsdt (C.44)

J2
g,fs (I) =

∫
In

∫
Γf
fs

N I
f T2ρ

fagin
f
i dsdt (C.45)

In Eq. (C.7),
{

Jfpn
}

is the space-time vector that contains the contribution of pressure
gradient at time t = tn.

{
Jfpn

}a
(I) =

∫
In

∫
Ωf
h

Ta
∂N I

f

∂xi

∂pn

∂xi
dΩdt (C.46)

or {
Jfpn

}a
(I) =

∫
In
Tadt

∫
Ωf
h

∂N I
f

∂xi

∂pn

∂xi
dΩ (C.47)

In above equation using the expression for T1(θ) and T2(θ) as presented in the
Eq. (5.40) {

Jfpn
}

= ∆tn
2

{
JΩ
pn

JΩ
pn

}
(C.48)

where

JΩ
pn (I) =

∫
Ωf
h

∂N I
f

∂xi

∂pn

∂xi
dΩ (C.49)

In Eq. (C.8) and Eq. (C.9), [Ms] is the space-time mass matrix for solid-domain and
given by Eq. (A.6). [Ks] is the space-time stiffness matrix for solid-domain and given
by Eq. (A.11). [Ms

R] is the mass-proportional space-time Rayleigh damping matrix
and given by Eq. (A.16). [Ks

R] is the stiffness-proportional space-time Rayleigh
damping matrix and given by Eq. (A.19).

In Eq. (C.8) and Eq. (C.9),
[
Hs
fd

]
is the space-time matrix that couples the hydrody-

namic response of reservoir and the dynamic response of the dam. Note that the dam
dynamically interacts with the reservoir at the dam-reservoir interface. The space-
time nodal vector for solid domain that contain the contribution of hydrodynamic
pressure is denoted by

{
Jsfd

}
, and it is given by

{
Jsfd

}a
i

(I) =
∫
In

∫
Γs
fd

N ITapn
s
idsdt+

∫
In

∫
Γs
fd

N ITap0n
s
idsdt (C.50)
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In above equation by using the space-time interpolation for the pressure (cf. Eq.
(C.14)) as presented in Eq. (5.48)

{
Jsfd

}a
i

(I) =
∫
In

∫
Γs
fd

N ITap
nnsidsdt

+
∫
In

∫
Γs
fd

N ITap0n
s
idsdt

+
∫
In

∫
Γs
fd

N ITaT̃bN
J
f n

s
idsdt{q}

b (J)

(C.51)

or {
Jsfd

}a
i

(I) =
∫
In
Tadt

∫
Γs
fd

N Ipnnsids

+
∫
In
Tadt

∫
Γs
fd

N Ip0n
s
ids

+
∫
In
TaT̃bdt

∫
Γs
fd

N INJ
f n

s
ids{q}

b (J)

(C.52)

In above equation using the expression for Ta(θ) and T̃a(θ) as presented in Eq. (5.40)
and Eq. (5.45), respectively, following matrix-vector form can be obtained.{

Jsfd
}

=
{

Jfdp0

}
+
{

Jfdpn
}

+
[
Hs
fd

]
· {q̃} (C.53)

where

{
Jfdpn

}
= ∆tn

2

{
f fdp
f fdp

} {
Jfdp0

}
= ∆tn

2

{
f fdp0

f fdp0

}
(C.54)

in which

{
f fdp
}

=
{

f fdp,1
f fdp,2

} {
f fdp
}

=
{

f fdp0,1
f fdp0,2

}
(C.55)

ffdp,1 (I) =
∫

Γs
fd

N Ipnns1ds ffdp,2 (I) =
∫

Γs
fd

N Ipnns2ds (C.56)

ffdp0,1 (I) =
∫

Γs
fd

N Ip0n
s
1ds ffdp0,2 (I) =

∫
Γs
fd

N Ip0n
s
2ds (C.57)

and [
Hs
fd

]ab
i

(I, J) =
∫
In
TaT̃bdt

∫
Γs
fd

N INJ
f n

s
ids (C.58)
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The space-time data-structure of
[
Hs
fd

]
is given below,

[
Hs
fd

]
= ∆t2n

24

[
3HΓ

fd HΓ
fd

5HΓ
fd 3HΓ

fd

]
(C.59)

where [
HΓ
fd

]
=
[

hfd11 0
0 hfd22

]
(C.60)

in which,

hfd11 (I, J) =
∫

Γs
fd

N INJ
f n

s
1ds hfd22 (I, J) =

∫
Γs
fd

N INJ
f n

s
2ds (C.61)

In Eq. (C.8) and Eq. (C.9), {Jsext} is the space-time nodal vector that contains the
contribution of external body force b and surface force f s. It is given by Eq. (A.22).
{Js0} is the space-time nodal vector that contains the contribution of initial velocity.
It is given by Eq. (A.27). {Jsσn} is the space-time nodal vector that contains the
contribution of initial stress σn. It is given by Eq. (A.30).
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DSpace-Time Finite Element
Matrices and Vectors for
Dam-Reservoir-Soil Interaction
Problems

Section 5.4.2 describes the following v-ST/FEM weak form for the dynamic dam-
reservoir-soil interaction problem.

∫
In

∫
Ωf
h

δq
1
c2
∂q

∂t
dΩdt+

∫
Ωf
h

δq (x, tn) 1
c2 q

(
x, t+n

)
dΩ

−
∫

Ωf
h

δq (x, tn) 1
c2 q

(
x, t−n

)
dΩ +

∫
In

∫
Ωf
h

∂δq

∂xi

∂p

∂xi
dΩdt

+
∫
In

∫
Γf
fd

δqρf
∂vi
∂t
nfi dsdt+

∫
In

∫
Γf
fs

δqρf
∂vi
∂t
nfi dsdt

+
∫
In

∫
Γf
fs

δqρfqcqdsdt+
∫
In

∫
Γf∞

δq
1
c
qdsdt

−
∫
In

∫
Γf∞

δq
1
c
qfdsdt = 0

(D.1)

∫
In

∫
Ωs
h

δviρ
s∂vi
∂t
dΩdt+

∫
Ωs
h

δvi
(
x, t+n

)
ρsvi

(
x, t+n

)
dΩ

−
∫

Ωs
h

δvi
(
x, t+n

)
ρsvi

(
x, t−n

)
dΩ−

∫
In

∫
Ωs
h

δviρ
sbidΩdt

+
∫
In

∫
Ωs
h

∂δvi
∂xj

σnijdΩdt+
∫
In

∫
Ωs
h

∂δvi
∂xj

CijklψkldΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt+

∫
In

∫
ΓR∞∪ΓL∞

δvic
v
ijvjdsdt

+
∫
In

∫
ΓB∞

δvic
h
ipvpdsdt−

∫
In

∫
ΓR∞∪ΓL∞

δvi
(
cvijv

f
j + σfijnj

)
dsdt

−
∫
In

∫
ΓB∞

δvi2chijvinj dsdt+
∫
In

∫
Γs
fd

δvi(p+ p0)nsidsdt

+
∫
In

∫
Γs
fb

δvi(p+ p0)nsidsdt = 0

(D.2)
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In Eq. (D.1) and Eq. (D.2) using the space-time interpolation for δv, v, δq, and q
given in Eq. (5.41), Eq. (5.42), Eq. (5.46), Eq. (5.47), respectively, one can obtain
the following discrete form of v-ST/FEM weak form.

{δq}a (I) ·
[
Mf

]ab
(I, J) · {q}b (J) + {δq}a (I) ·

[
Kf
]ab

(I, J) · {q}b (J)

+ {δq}a (I) ·
[
Cffs

]ab
(I, J) · {q}b (J) + {δq}a (I) ·

[
Hf
fs

]ab
i

(I, J) · {v}bi (J)

+ {δq}a (I) ·
[
Hf
fd

]ab
i

(I, J) · {v}bi (J) + {δq}a (I) ·
[
Cf∞

]ab
(I, J) · {q}b (J)

− {δq}a (I) ·
{
Jf0

}a
(I)− {δq}a (I) ·

{
Jff

}a
(I)

+ {δq}a (I) ·
{
Jfpn

}a
(I) = 0

(D.3)

{δv}ai (I) · [M s]abij (I, J) · {v}bj (J) + {δv}ai (I) · [Ks]abij (I, J) · {v}bj (J)

+ {δv}ai (I) · [CL∞]abij (I, J) · {v}bj (J) + {δv}ai (I) · [CR∞]abij (I, J) · {v}bj (J)

+ {δv}ai (I) · [CB∞]abij (I, J) · {v}bj (J)− {δv}ai (I) · {Jsext}
a
i (I)

− {δv}ai (I) · {Js0}
a
i (I) + {δv}ai (I) · {Jsσn}

a
i (I)− {δv}ai (I) ·

{
Jsf

}a
i

(I)

− {δv}ai (I) · {Jsin}
a
i (I) + {δv}ai (I) ·

[
Hs
fd

]ab
i

(I, J) · {q}b (J)

+ {δv}ai (I) ·
[
Hs
fs

]ab
i

(I, J) · {q}b (J)

+ {δv}ai (I) ·
{
Jfdpn

}a
i

(I) + {δv}ai (I) ·
{
Jfspn

}a
i

(I)

+ {δv}ai (I) ·
{
Jfdp0

}a
i

(I) + {δv}ai (I) ·
{
Jfsp0

}a
i

(I) = 0

(D.4)

Since Eq. (D.3) and Eq. (D.4) are true for all values of {δv}ai (I) and {δq}a (I), the
discrete weak form will produce following system of algebraic equations.

[
Mf

]ab
(I, J) · {q}b (J) +

[
Kf
]ab

(I, J) · {q}b (J)

+
[
Cffs

]ab
(I, J) · {q}b (J) +

[
Hf
fs

]ab
i

(I, J) · {v}bi (J)

+
[
Hf
fd

]ab
i

(I, J) · {v}bi (J) +
[
Cf∞

]ab
(I, J) · {q}b (J)

−
{
Jf0

}a
(I)−

{
Jff

}a
(I) +

{
Jfpn

}a
(I) = 0

(D.5)
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[M s]abij (I, J) · {v}bj (J) + [Ks]abij (I, J) · {v}bj (J)

+ [CL∞]abij (I, J) · {v}bj (J) + [CR∞]abij (I, J) · {v}bj (J)

+ [CB∞]abij (I, J) · {v}bj (J)− {Jsext}
a
i (I)

− {Js0}
a
i (I) + {Jsσn}

a
i (I)−

{
Jsf

}a
i

(I)− {Jsin}
a
i (I)

+
[
Hs
fd

]ab
i

(I, J) · {q}b (J) +
[
Hs
fs

]ab
i

(I, J) · {q}b (J)

+
{
Jfdpn

}a
i

(I) +
{
Jfspn

}a
i

(I)

+
{
Jfdp0

}a
i

(I) +
{
Jfsp0

}a
i

(I) = 0

(D.6)

The matrix-vector form of Eq. (D.5) and Eq. (D.6) is given by[
Mf

]
· {q̃}+

[
Kf
]
· {q̃}+

[
Cf
fs

]
· {q̃}+

[
Hf
fs

]
· {ṽ}+

[
Hf
fd

]
· {ṽ}

+
[
Cf
∞

]
· {q̃} =

{
Jf0
}

+
{

Jff
}
−
{

Jfpn
} (D.7)

[Ms] · {ṽ}+ [Ks] · {ṽ}+ [CL∞] · {ṽ}+ [CR∞] · {ṽ}+ [CB∞] · {ṽ}

+
[
Hs
fd

]
· {q̃}+

[
Hs
fs

]
· {q̃}

= {Jsext}+ {Js0} − {Jsσn}+
{

Jsf
}

+ {Jsin}

−
{

Jfdpn
}
−
{

Jfspn
}
−
{

Jfdp0

}
−
{

Jfsp0

}
(D.8)

If Rayleigh damping is considered for modelling the material damping in solid
domain then Eq. (D.8) is given by

[Ms] · {ṽ}+ [Ks] · {ṽ}+ α [Ms
R] · {ṽ}+ β [Ks

R] · {ṽ}

+ [CL∞] · {ṽ}+ [CR∞] · {ṽ}+ [CB∞] · {ṽ}+
[
Hs
fd

]
· {q̃}+

[
Hs
fs

]
· {q̃}

= {Jsext}+ {Js0} − {Jsσn}+
{

Jsf
}

+ {Jsin}

−
{

Jfdpn
}
−
{

Jfspn
}
−
{

Jfdp0

}
−
{

Jfsp0

}
(D.9)

Description of the space-time matrices and space-time nodal vectors that appear in
Eq. (D.7), Eq. (D.8), and Eq. (D.9) is given as follows.

In Eq. (D.7),
[
Mf

]
is space-time mass matrix for the fluid domain, and it is given

by Eq. (C.10).
[
Kf
]

is space-time diffusion matrix for the fluid domain, and it

is given by Eq. (C.14).
[
Cf
fs

]
is the space-time matrix that corresponds to the

reservoir-bottom absorption, and it is given by Eq. (C.19).
[
Cf
∞

]
is space-time

matrix that corresponds to the dashpots placed at the truncated upstream boundary
of reservoir, and it is given by Eq. (C.23).

[
Hf
fd

]
is the space-time matrix that
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couples the hydrodynamic respone of reservoir and the dynamic response of the
dam, and it is given by Eq. (C.31).

In Eq. (D.7),
[
Hf
fs

]
is the space-time matrix that couples the hydrodynamic respone

of reservoir and the dynamic response of the soil. Note that the reservoir dynamically
interacts with the soil at the fluid-dam interface. The space-time nodal vector for
fluid domain that contains the contribution of the motion of soil is denoted by

{
Jffd

}
,

and it is given by

{
Jffs

}a
(I) =

∫
In

∫
Γf
fs

N I
f Taρ

f ∂vi
∂t
nfi dsdt (D.10)

in above equation using the space-time interpolation for velocity v as presented in
Eq. (5.42)

{
Jffs

}a
(I) =

(∫
In

∫
Γf
fs

N I
f Taρ

f ∂N
JTb
∂t

nfi dsdt

)
· {v}bi (J) (D.11)

or {
Jffs

}a
(I) =

(∫
In
Ta
∂Tb
∂t

dt

∫
Γf
fs

N I
f ρ

fNJnfi ds

)
{v}bi (J) (D.12)

The matrix-vector form of above equation is given by{
Jffs

}
=
[
Hf
fs

]
{ṽ} (D.13)

where [
Hf
fs

]ab
i

(I, J) =
∫
In
Ta
∂Tb
∂t

dt

∫
Γf
fs

N I
f ρ

fNJnfi ds (D.14)

In above equation using the expression for T1(θ) and T2(θ) as presented in Eq. (5.40)

[
Hf
fd

]
= 1

2

[
−HΓ

fd HΓ
fd

−HΓ
fd HΓ

fd

]
(D.15)

where the matrix HΓ
fs is evaluated at the fluid-soil interface Γffs, and given by

[
HΓ
fs

]
=
[

hfs11 0
0 hfs22

]
(D.16)

in which,
hfs11 (I, J) =

∫
Γf
fs

N I
f ρ

fNJnf1ds (D.17)

hfs22 (I, J) =
∫

Γf
fs

N I
f ρ

fNJnf2ds (D.18)
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In Eq. (D.7),
{

Jf0
}

is the space-time nodal vector that contain the contribution of the

initial value of q, and it is given by Eq. (C.36).
{

Jff
}

is the space-time nodal vector
that contain the contribution of the free-field hydrodynamic pressure, and it is given
by Eq. (C.39).

{
Jfpn

}
is the space-time nodal vector that contain the contribution of

pressure gradient at time t = tn, and it is given by Eq. (C.46).

In Eq. (D.8) and Eq. (D.9), [Ms] is the space-time mass matrix for the solid domain,
and it is given by Eq. (A.6). [Ks] is the space-time tangent stiffness matrix for the
solid domain, and it is given by Eq. (A.11). [Ms

R] is the mass-proportional space-time
Rayleigh damping matrix for the solid domain, and it is given by Eq. (A.16). [Ks

R] is
the stiffness-proportional space-time Rayleigh damping matrix for the solid domain,
and it is given by Eq. (A.19). [CL∞] is the space-time matrix due to the dashpots
placed at the left-side truncated boundary, and it is given by Eq. (B.6). [CR∞] is the
space-time matrix due to the dashpots placed at the right-side truncated boundary,
and it is given by Eq. (B.12). [CB∞] is the space-time matrix due to the dashpots
placed at the bottom truncated boundary, and it is given by Eq. (B.18).

[
Hs
fd

]
is

the space-time matrix that couples the hydrodynamic response of reservoir and the
dynamic response of the dam, and it is given by Eq. (C.58).

In Eq. (D.8) and Eq. (D.9),
[
Hs
fs

]
is the space-time matrix that couples the hy-

drodynamic response of reservoir and the dynamic response of the soil. Note that
the soil-domain dynamically interacts with the reservoir at the soil-reservoir inter-
face. The space-time nodal vector for solid domain that contain the contribution of
hydrodynamic pressure is denoted by

{
Jsfs

}
, and it is given by

{
Jsfs

}a
i

(I) =
∫
In

∫
Γs
fs

N ITapn
s
idsdt (D.19)

In above equation using space-time interpolation for the pressure (cf. Eq. (C.14)) as
presented in Eq. (5.48)

{
Jsfs

}a
i

(I) =
∫
In

∫
Γs
fs

N ITap
nnsidsdt+

∫
In

∫
Γs
fs

N ITap0n
s
idsdt

+
∫
In

∫
Γs
fs

N ITaT̃bN
J
f n

s
idsdt{q}

b (J)

(D.20)
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or {
Jsfs

}a
i

(I) =
∫
In
Tadt

∫
Γs
fs

N Ipnnsids

+
∫
In
Tadt

∫
Γs
fs

N Ip0n
s
ids

+
∫
In
TaT̃bdt

∫
Γs
fs

N INJ
f n

s
ids{q}

b (J)

(D.21)

Now using the expression for Ta(θ) and T̃a(θ) as presented in Eq. (5.40) and
Eq. (5.45), respectively, following matrix-vector form can be obtained.

{
Jsfs

}
=
{

Jfsp0

}
+
{

Jfspn
}

+
[
Hs
fs

]
· {q̃} (D.22)

where {
Jfspn

}
= ∆tn

2

{
f fsp
f fsp

}
(D.23)

in which {
f fsp
}

=
{

f fsp,1
f fsp,2

}
(D.24)

ffsp,1 (I) =
∫

Γs
fs

N Ipnns1ds ffsp,2 (I) =
∫

Γs
fs

N Ipnns2ds (D.25)

and [
Hs
fs

]ab
i

(I, J) =
∫
In
TaT̃bdt

∫
Γs
fs

N INJ
f n

s
ids (D.26)

The space-time data-structure of
[
Hs
fs

]
is given below,

[
Hs
fs

]
= ∆t2n

24

[
3HΓ

fs HΓ
fs

5HΓ
fs 3HΓ

fs

]
(D.27)

where [
HΓ
fs

]
=
[

hfs11 0
0 hfs22

]
(D.28)

in which,

hfs11 (I, J) =
∫

Γs
fs

N INJ
f n

s
1ds hfs22 (I, J) =

∫
Γs
fs

N INJ
f n

s
2ds (D.29)

In Eq. (D.8) and Eq. (D.9), {Jsext} is the space-time nodal vector that contains the
contribution of external body force b and surface force f s, and it is given by Eq.
(A.23). {Js0} is the space-time nodal vector that contains the contribution of initial
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velocity, and it is given by Eq. (A.27). {Jsσn} is the space-time nodal vector that
contains the contribution of initial stress σn, and it is given by Eq. (A.30).

{
Jsf
}

is
the space-time nodal vector that contains the contribution of free-field response of
soil-domain, and it is given by Eq. (B.24). {Jsin} is the space-time nodal vector that
contains the contribution of input seismic motion, and it is given by Eq. (B.31).
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E
Space-Time Finite Element
Matrices and Vectors for
Nonlinear Dam-Reservoir
Interaction Problems

Section 6.3 presents the following v-ST/FEM weak form for the nonlinear dynamic
analysis of the dam-reservoir system subjected to the horizontal and vertical ground
motion. ∫

In

∫
Ωf
h

δq
1
c2
∂q

∂t
dΩdt+

∫
Ωf
h

δq (x, tn) 1
c2 q

(
x, t+n

)
dΩ

−
∫

Ωf
h

δq (x, tn) 1
c2 q

(
x, t−n

)
dΩ +

∫
In

∫
Ωf
h

∂δq

∂xi

∂p

∂xi
dΩdt

+
∫
In

∫
Γf
fd

δqρf
∂vi
∂t
nfi dsdt+

∫
In

∫
Γf
fd

δqρfagin
f
i dsdt

+
∫
In

∫
Γf
fs

δqρfagin
f
i dsdt+

∫
In

∫
Γf
fs

δqρfqcqdsdt

+
∫
In

∫
Γf∞

δq
1
c
qdsdt−

∫
In

∫
Γf∞

δq
1
c
qfdsdt = 0

(E.1)

∫
In

∫
Ωs
h

ρsδvi
∂vi
∂t
dΩdt+

∫
Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t+n

)
dΩ

−
∫

Ωs
h

ρsδvi
(
x, t+n

)
vi
(
x, t−n

)
dΩ +

∫
In

∫
Ωs
h

∂δvi
∂xj

σijdΩdt

−
∫
In

∫
Γhi
δvif

s
i dsdt−

∫
In

∫
Ωs
h

ρsδvi (bi − agi ) dΩdt

+
∫
In

∫
Γs
fd

δvip0n
s
idsdt+

∫
In

∫
Γs
fd

δvipn
s
idsdt = 0

(E.2)
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In Eq. (E.1) and Eq. (E.2) using the space-time finite element approximations for δv,
v, δq, and q given in Eq. (6.33), Eq. (6.34), Eq. (6.37), and Eq. (6.38), respectively,
one can obtain the following discrete form of the v-ST/FEM.

{δv}ai (I) · [M s]abij (I, J) · {v}bj (J) + {δv}ai (I) ·
[
Hs
fd

]ab
i

(I, J) · {v}bj (J)

+ {δv}ai (I) · {Jsσ}
a
i (I)− {δv}ai (I) · {Js0}

a
i (I) + {δv}ai (I) ·

{
Jsg

}a
i

(I)

− {δv}ai (I) · {Jsext}
a
i (I) + {δv}ai (I) ·

{
Jfdp0

}a
i

(I)

+ {δv}ai (I) ·
{
Jfdpn

}a
i

(I) = 0

(E.3)

{δq}a (I) ·
[
Mf

]ab
(I, J) · {q}b (J) + {δq}a (I) ·

[
Kf
]ab

(I, J) · {q}b (J)

+ {δq}a (I) ·
[
Cffs

]ab
(I, J) · {q}b (J) + {δq}a (I) ·

[
Cf∞

]ab
(I, J) · {q}b (J)

+ {δq}a (I) ·
[
Hf
fd

]ab
i

(I, J) · {v}bi (J)− {δq}a (I) ·
{
Jf0

}a
(I)

− {δq}a (I) ·
{
Jff

}a
(I) + {δq}a (I) ·

{
Jfdg

}a
(I)

+ {δq}a (I) ·
{
Jfsg

}a
(I)

+ {δq}a (I) ·
{
Jfpn

}a
(I) = 0

(E.4)

Since Eq. (E.3) and Eq. (E.4) are true for all values of {δv}ai and {δq}a, , the discrete
weak form will produce following system of algebraic equations.

[M s]abij (I, J) · {v}bj (J) +
[
Hs
fd

]ab
i

(I, J) · {v}bj (J) + {Jsσ}
a
i (I)

− {Js0}
a
i (I) +

{
Jsg

}a
i

(I)− {Jsext}
a
i (I)

+
{
Jfdp0

}a
i

(I) +
{
Jfdpn

}a
i

(I) = 0

(E.5)

[
Mf

]ab
(I, J) · {q}b (J) +

[
Kf
]ab

(I, J) · {q}b (J) +
[
Cffs

]ab
(I, J) · {q}b (J)

+
[
Cf∞

]ab
(I, J) · {q}b (J) +

[
Hf
fd

]ab
i

(I, J) · {v}bi (J)−
{
Jf0

}a
(I)

−
{
Jff

}a
(I) +

{
Jfdg

}a
(I) +

{
Jfsg

}a
(I) +

{
Jfpn

}a
(I) = 0

(E.6)

The matrix-vector form of Eq. (E.5) and Eq. (E.6) can be depicted by

[Ms] {ṽ}+
[
Hs
fd

]
· {q̃}+ {Jsσ} − {Js0}+

{
Jsg
}

− {Jsext}+
{

Jfdp0

}
+
{

Jfdpn
}

= 0
(E.7)
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[
Mf

]
· {q̃}+

[
Kf
]
· {q̃}+

[
Cf
fs

]
· {q̃}+

[
Cf
∞

]
· {q̃}+

[
Hf
fd

]
· {ṽ}

−
{

Jf0
}
−
{

Jff
}

+
{

Jfdg
}

+
{

Jfsg
}

+
{

Jfpn
}

= 0
(E.8)

If the Rayleigh damping is used to model the material damping in the solid domain
then Eq. (E.7) becomes

[Ms] {ṽ}+ α [Ms
R] {ṽ}+ β [Ks

R] {ṽ}+
[
Hs
fd

]
· {q̃}

+ {Jsσ} − {Js0}+
{

Jsg
}
− {Jsext}+

{
Jfdp0

}
+
{

Jfdpn
}

= 0
(E.9)

In Eq. (E.8), the space-time finite element matrices and space-time nodal vectors
for fluid domain are identical to those presented in Appendix C (see Eq. C.7 ).
In Eq. (E.7) and Eq. (E.9), the space-time mass matrix, [Ms] and the mass pro-
portional Rayleigh damping matrix, [Ms

R], are given in Eq. (A.6) and Eq. (A.16),
respectively. The space-time nodal vectors, {Js0} and {Jsext} are given by Eq. (A.27)
and Eq. (A.22), respectively. Nodal vectors

{
Jfdp0

}
and

{
Jfdpn

}
contains the contribu-

tion of the hydrostatic and hydrodynamic pressures, respectively. These vectors are
described in Appendix C (see Eq. C.54).

The space-time nodal vector
{

Jsg
}

in Eq. (E.7) and Eq. (E.9) corresponds to the
motion of the perfectly rigid foundation underneath the dam-reservoir system. Finite
element expression for this term is given below.

{
Jsg

}a
i

(I) =
∫
In

∫
Ωs
h

N ITaρ
sagi dΩdt (E.10)

The stiffness proportional tangent stiffness matrix [Ks
R] is given by

[Ks
R]abij (I, J) =

∫
In

∫
Ωs
h

∂N ITa
∂xp

Cpijq
∂NJTb
∂xq

dΩdt (E.11)

where Cijkl denotes the material tangent matrix for the nonlinear stress-strain
relationship. Recasting the above equation in following,

[Ks
R]abij (I, J) =

∫
In
TaTbkij (I, J)dt (E.12)

where

kij (I, J) =
∫

Ωs
h

∂N I

∂xp
Cpijq

∂NJ

∂xq
dΩ (E.13)
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denotes the tangent stiffness matrix which is identical to the one presented in the
Eq. (A.15).

It is noteworhty that the stiffness tangent matrix in above equation changes with
time due to the nonlinear stress-strain relationship. Therefore, Eq. (E.11) should
be computed by using the numerical integration techniques. By using a finite set of
quadrature points,

{
θ1, · · · , θnipt

}
, and corresponding weights,

{
w1
t , · · · , w

nipt
t

}
, for

numerical integration of the Eq. (E.11),

[Ks
R]abij (I, J) = ∆t

2

nipt∑
α=1

Tαa T
α
b k

α
ij (I, J)wαt (E.14)

where kαij is tangent stiffness matrix corresponding to Cαijkl which is computed at
some time tα ∈ In.

For three-point Gauss-Lobatto rule the quadrature points and the corresponding
weights are given by {−1, 0, 1} and

{
1
3 ,

4
3 ,

1
3

}
, respectively. If this rule is used in

above equation then,

[Ks
R] = ∆t

6

[
KΩ

0 + KΩ
1 KΩ

1
KΩ

1 KΩ
1 + KΩ

2

]
(E.15)

where KΩ
0 , KΩ

1 and KΩ
2 are tangent stiffness matrices defined at the time t = tn,

t = (tn + tn+1)/2, and t = tn+1, respectively. The finite element structure of tangent
stiffness matrix is discusses in Appendix A (see Eq. A.14).

For two-point Gauss-Legendre rule the quadrature points and the corresponding
weights are given by {−1/3, 1/3} and {1, 1}, respectively. If this rule is used in Eq.
(E.14), then

[Ks
R] = ∆t

24


(
1 +
√

3
)2

KΩ
1 2KΩ

1

2KΩ
1

(
1−
√

3
)2

KΩ
1


+ ∆t

24


(
1−
√

3
)2

KΩ
2 2KΩ

2

2KΩ
2

(
1 +
√

3
)2

KΩ
2


(E.16)

where KΩ
1 and KΩ

1 are the tangent stiffness matrices computed at the time t = t1

and t = t2, respectively. The expressions for t1 and t2 are given below.
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t1 =
tn
(√

3 + 1
)

+ tn+1
(√

3− 1
)

2
√

3
(E.17)

t2 =
tn
(√

3− 1
)

+ tn+1
(√

3 + 1
)

2
√

3
(E.18)

In Eq. (E.7) and Eq. (E.9) the space-time nodal vector {Jsσ} corresponds to the
internal stresses in the solid domain. The space-time finite element structure is given
below

{Jsσ} =
{

J1
σ

J2
σ

}
(E.19)

where
{
J1
σ

}
and

{
J2
σ

}
correspond to the spatial nodal values at the bottom and top

space-time slab. In Section 6.5, a three-point Gauss-Lobatto rule is used to compute
this term to obtain following expression (see Eq. 6.50, Eq. 6.52 ).

{
J1
σ

}
= ∆t

6
{

f0
int

}
+ ∆t

3
{

f1
int

}
(E.20)

{
J2
σ

}
= ∆t

3
{

f1
int

}
+ ∆t

6
{

f2
int

}
(E.21)

where f0
int, f1

int, and f2
int denote the internal force vectors computed at time t1 = tn,

t2 = (tn + tn+1)/2, and t3 = tn+1, respectively. The finite element expressions for
these terms are given below.

{
f0
int

}
:= f0

int (i, I) =
∫

Ωs
h

∂N I

∂xj
σ0
ijdΩ (E.22)

{
f1
int

}
:= f1

int (i, I) =
∫

Ωs
h

∂N I

∂xj
σ1
ijdΩ (E.23)

{
f2
int

}
:= f2

int (i, I) =
∫

Ωs
h

∂N I

∂xj
σ2
ijdΩ (E.24)

In Eqs. (E.22 – E.24), σ0, σ1, and σ2 are stresses computed at the times t1, t2, and t3,
respectively. It should be noted that the σ0 and

{
f0
int
}

are already known from the
previous time step, therefore, linearization of Eq. (E.22) will vanish. Linearization
of Eq. (E.23) and Eq. (E.24) will yield following tangent stiffness matrices.

{
∆f1

int

}
=
[
KΩ

1

]
{∆ũ}t=t1 (E.25)
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{
∆f2

int

}
=
[
KΩ

2

]
{∆ũ}t=t2 (E.26)

where {∆ũ}t=t1 and {∆ũ}t=t2 denote the displacement-increments at time t1 and t2,
respectively, and the tangent stiffness matrices KΩ

1 and KΩ
2 are indentical to those

given in Eq. (E.15).

In v-ST/FEM, {∆ũ}t=t1 and {∆ũ}t=t2 should be recast in terms of the velocity
increments. Further, in Section 6.4, the displacements at time t ∈ In are given by
following equation (see Eq. 6.35)

{ũ}t = {ũ}t=tn + T̃1 (θ)
{

ṽ1
}

+ T̃2 (θ)
{

ṽ2
}

(E.27)

where T̃1 (θ) and T̃2 (θ) are given in Eq. (6.36). Here,
{
ṽ1} and

{
ṽ2} are the un-

known velocity vectors at the bottom and top space-time slab, respectively. In above
equation, {ũ}t=t1 and {ũ}t=t2 correspond to the θ = 0.0 and θ = 1.0, respectively.
Therefore,

{ũ}t=t1 = {ũ}t=tn + 3∆tn
8

{
ṽ1
}

+ ∆tn
8
{

ṽ2
}

(E.28)

{ũ}t=t2 = {ũ}t=tn + ∆tn
2
{

ṽ1
}

+ ∆tn
2
{

ṽ2
}

(E.29)

Accordingly, one can obtain the following relatioship between displacement increa-
ments and velocity increaments.

{∆ũ}t=t1 = 3∆tn
8

{
∆ṽ1

}
+ ∆tn

8
{

∆ṽ2
}

(E.30)

{∆ũ}t=t2 = ∆tn
2
{

∆ṽ1
}

+ ∆tn
2
{

∆ṽ2
}

(E.31)

Using Eq. (E.30) in Eq. (E.27) and Eq. (E.31) in Eq. (E.26) the space-time tangent
stiffness matrix corresponding to the three-point Gauss-Lobatto rule can be described
as

{∆Jsσ} :=
{

∆J1
σ

∆J2
σ

}
= [Ks

σ1 ]
{

∆ṽ1

∆ṽ2

}
+ [Ks

σ2 ]
{

∆ṽ1

∆ṽ2

}
(E.32)

in which

[Ks
σ1 ] = ∆t2n

24

 3
[
KΩ

1

] [
KΩ

1

]
3
[
KΩ

1

] [
KΩ

1

]  (E.33)

[Ks
σ2 ] = ∆t2n

12

 0 0[
KΩ

2

] [
KΩ

2

]  (E.34)
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Lastly, a similar process can be followed to compute the space-time tangent matrix
in case of the two-point Gauss-Legendre quadrature rule.

305





Bibliography

Achenbach, Jan D. (2012). Wave propagation in elastic solids. Vol. 16. Elsevier, p. 425 (cit. on
pp. 56, 72, 74, 79, 85, 94, 96, 100).

Adam, Christoph, Dietmar Adam, Fritz Kopf, and Ivan Paulmichl (2009). „Computational
validation of static and dynamic plate load testing“. In: Acta Geotechnica 4.1, pp. 35–55
(cit. on pp. 65, 66).

Aharoni, D. and P. Bar-Yoseph (1992). „Mixed finite element formulations in the time domain
for solution of dynamic problems“. In: Computational Mechanics 9.5, pp. 359–374 (cit. on
p. 7).

Alonso-Mallo, Isaias and Nuria Reguera (2003). „Discrete absorbing boundary conditions
for Schrödinger-type equations. construction and error analysis“. In: SIAM Journal on
numerical Analysis 41.5, pp. 1824–1850 (cit. on p. 71).

Anandarajah, A (1993). „Dynamic analysis of axially-loaded footings in time domain“. In:
Soils and foundations 33.1, pp. 40–54 (cit. on p. 5).

Argyris, J.H. and D.W. Scharpf (1969). „Finite elements in time and space“. In: Nuclear
Engineering and Design 10.4, pp. 456 –464 (cit. on p. 6).

Arnold, R.N., G.N. Bycroft, and G.B. Warburton (1955). „Forced vibrations of a body on an
infinite elastic solid“. In: ASME J. Appl. Mech 77, pp. 391–401 (cit. on p. 115).

Baffet, Daniel, Jacobo Bielak, Dan Givoli, Thomas Hagstrom, and Daniel Rabinovich (2012).
„Long-time stable high-order absorbing boundary conditions for elastodynamics“. In:
Computer Methods in Applied Mechanics and Engineering 241-244, pp. 20–37 (cit. on
p. 93).

Bailey, C. D. (1980). „The Galerkin formulation and the Hamilton-Ritz formulation: A
comparison“. In: Acta Mechanica 36.1, pp. 63–70 (cit. on p. 6).

Bailey, CD (1982). „Hamilton’s principle and the calculus of variations“. In: Acta Mechanica
44.1-2, pp. 49–57 (cit. on p. 6).

Bailey, Cecil D. (1975). „A new look at Hamilton’s principle“. In: Foundations of Physics 5.3,
pp. 433–451 (cit. on p. 6).

Bajer, C. and C. Bohatier (1995). „The soft way method and the velocity formulation“. In:
Computers & Structures 55.6, pp. 1015 –1025 (cit. on p. 7).

Bajer, Czesław I. (1987). „Notes on the stability of non-rectangular space-time finite ele-
ments“. In: International Journal for Numerical Methods in Engineering 24.9, pp. 1721–
1739 (cit. on p. 7).

307



Bao, Hesheng, Jacobo Bielak, Omar Ghattas, et al. (1998). „Large-scale simulation of elastic
wave propagation in heterogeneous media on parallel computers“. In: Computer Methods
in Applied Mechanics and Engineering 152.1-2, pp. 85–102 (cit. on pp. 71, 111).

Baruch, M and R Riff (1984). „Stability of time finite elements“. In: AIAA journal 22.8,
pp. 1171–1173 (cit. on p. 6).

Baruch, Menahem and Richard Riff (1982). „Hamilton’s principle, Hamilton’s law-6 to the n
power correct formulations“. In: AIAA Journal 20.5, pp. 687–692 (cit. on p. 6).

Basu, Ushnish and Anil K Chopra (2004). „Perfectly matched layers for transient elasto-
dynamics of unbounded domains“. In: International Journal for Numerical Methods in
Engineering 59.8, pp. 1039–1074 (cit. on pp. 110, 146).

Bathe, K. J. and W. F. Hahn (1979). „On transient analysis of fluid-structure systems“. In:
Computers & Structures 10.1-2, pp. 383–391 (cit. on p. 147).

Bathe, Klaus-Jürgen and Edward L Wilson (1976). Numerical methods in finite element
analysis. Prentice-Hall (cit. on pp. 2, 6, 42).

Bayliss, Alvin and Eli Turkel (1980). „Radiation boundary conditions for wave-like equations“.
In: Communications on Pure and Applied Mathematics 33.6, pp. 707–725 (cit. on p. 89).
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