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Abstract

Shared autonomous electric vehicles (SAEVs), also known as autonomous mobility

on demand systems, are expected to become commercially available by the next

decade. The introduction of SAEVs can transform the car into a service, accelerate

electrification of the transport sector, and allow for large scale control of electric

vehicle charging. It would also alter the availability of controllable storage from

electrified transportation when compared to private vehicles. Although literature

exists on the operation of SAEVs, there has been no investigation of their potential

for grid integration.

This thesis aims at exploring the integration of SAEVs with the electric grid.

Several aspects of this problem are investigated, using the Tokyo transport survey

as a case study. A novel model of SAEV operation with scheduled charging based

on dynamic electricity price is firstly proposed. The potential for the system to

supply operating reserve is investigated by formulating an optimization problem for

the optimal deployment of vehicles during a grid operator request. The influence of

fleet size is studied in terms of transport service quality and break-even prices for

the system. The results of the simulations for the case study show that a fleet of

SAEVs would only need to be about 10%-14% of a fleet of private cars providing

a comparable level of transport service, with low break-even prices. The system

can also provide operating reserve under several operational conditions even at peak

transport demand without significant disruption to transport service.

The integration of SAEVs with renewable energy is then investigated. A simula-

tion methodology is developed for the optimization of vehicle charging in the context

of a virtual power plant (VPP) or microgrid, with and without grid connection or
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distributed dispatchable generators. The model considers aggregate storage avail-

ability from vehicles based on transport patterns taking into account the necessary

vehicle redistribution. The case of a grid-connected VPP with rooftop solar and

the case of an isolated microgrid with solar, wind, and dispatchable generation were

investigated. A comprehensive sensitivity analysis is conducted to study the effect

of several parameters on the results for both cases.

Finally, the problem of charging optimization and vehicle relocation is consid-

ered. A methodology for the optimization of SAEV charging with vehicle-to-grid

in parallel with optimized routing and rebalancing is presented. The challenge of

the different time frames for the optimization of transport service and charging is

overcome by running two model-predictive control optimization algorithms in par-

allel. Charging is optimized over longer time scales to minimize both approximate

waiting times and electricity costs. Routing and rebalancing is optimized at shorter

time scales to minimize waiting times, with the results of the long-time-scale op-

timization as charging constraints. This approach allows efficient optimization of

both aspects of system operation. The problem is solved as a mixed-integer linear

program. Results for the case study show that the system can substantially reduce

charging costs without significantly affecting waiting times, with cost reduction de-

pendent on electricity price variability. Vehicle-to-grid is shown to be unsuitable

for current electricity and battery prices, however offering substantial savings with

price profiles with higher variability.
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Chapter 1

Introduction

1.1 Background

The ubiquitous presence of the internet and smartphones is allowing a shift from car

ownership to intelligent car sharing models of transportation. One-way free-floating

car sharing services (in which cars can be taken wherever they are currently parked

and left at any other place within a specified area) are already commonplace in

large cities in Europe [2]. The diffusion of shared transportation can significantly

change the vehicle ownership rate: each car sharing vehicle is estimated to remove

9 to 13 vehicles from the roads [3], as most private cars are used less than 10%

of the time [4]. It can also improve the efficiency of the transport sector, as high

annual vehicle-km traveled per vehicle create a strong economic incentive towards

highly efficient vehicles [3]. Shared transport is also expected to be cheaper than

private transportation. Savings for the average American household are estimated

to be about $6,000 a year by joining a shared transport program instead of owning

a private vehicle [5].

The advent of autonomous driving technology will further speed up the adoption

of this transport mode, making it more convenient: vehicles can move to pick up

customers autonomously without the need to move to a parked vehicle, a service

comparable to that of a taxi without the cost of the driver. The popularity of sim-

ilarly convenient but relatively expensive services such as Uber show the potential

1
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(a) (b)

Figure 1.1: Two of Google’s Waymo prototype autonomous cars. [Images: Wikimedia

Commons]

for this kind of transport mode. Autonomous driving technology has been exten-

sively tested and is planned to be commercially available by the next decade [6].

Figure 1.1 shows two of Google’s Waymo prototype autonomous cars, an example

of a company at the forefront of autonomous driving technology. The combined

Waymo fleet has driven over 10 million km autonomously [7], demonstrating the vi-

ability of the technology. Waymo is planning to introduce a commercial ride-hailing

service using autonomous cars in Phoenix, Arizona in late 2018 [8]. Advantages

of a car sharing system (or ride-hailing service) using autonomous vehicles include

the efficiency gains from automated driving, with fuel economy improvements of 4

to 10%, elimination of the time spent for parking, and decreased need for parking

spaces in cities [5]. Autonomous vehicles also have the potential to significantly

decrease greenhouse-gas emissions in the transport sector, with estimated 87%-94%

decreases in per-mile GHG emissions compared to current private vehicles in the

United States by 2030, mainly due to the possibility of using vehicles sized to the

specific trip [9].

Shared autonomous vehicles can also facilitate the electrification of the transport

sector, as the cars involved can optimize their state of charge (SOC) and their charg-

ing schedule while reliably ensuring service to the user [10, 11]. This can overcome

several problems currently hindering the wider adoption of electric vehicles, such
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as the scarcity of charging stations [12], high cost, and range limitations [13]. It is

therefore important to study the impact of this system on the electricity grid [11].

This type of car sharing—using autonomous driving technology and battery electric

vehicles—will be referred to as Shared Autonomous Electric Vehicles (SAEV) in this

work.

It is predicted that the widespread adoption of electric vehicles could significantly

change the management and balancing of the electricity system and facilitate the

integration of intermittent renewable energy in the grid [14]. For example, Dallinger

and Wietschel [15] found that EVs can absorb over 50% of the yearly excess re-

newable generation in the high renewable scenario of Germany in 2030 that would

have been curtailed otherwise. Electric vehicles with vehicle-to-grid (V2G) power

capability can also offer several additional services to the electric grid, such as peak

power generation, operating reserve, and regulation [16]. Implementation of V2G

can also allow a higher renewable energy penetration by further increasing grid flex-

ibility [17]. However, private electric vehicles are expected to put a large burden on

distribution systems, especially when considering large scale V2G implementation

[18]. By contrast, SAEVs can be more easily controlled and optimized to implement

fast, large-scale demand response [19]. This would allow a deeper grid integration,

which is fundamental to achieving the potential environmental benefits of vehicle

electrification [20].

SAEVs would also allow easier utilization of electric vehicles for providing ancil-

lary services, which may be uneconomical for private vehicles [21]. Another potential

advantage of SAEVs is their ability to move autonomously to specific charging sta-

tions. This allows for a direct connection to the high voltage electricity transmission

system in designated points without overloading the low-voltage distribution net-

work. The centralization of grid connection may also help to implement efficient

V2G connections by providing more balanced and controlled electricity flow and

improved safety equipment.

The integration of SAEVs with the grid is not only a remarkable opportunity to

supply much needed grid storage in a grid with increasing penetration of renewable
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energy, it is also a necessity to ensure grid stability and a sustainable electrification

of the transport sector. A successful transition to a new energy and transport

paradigm is only possible through a holistic approach that considers both as one

system. The shift to a grid reliant on intermittent renewable energy means that

a much more flexible, smart, and resilient grid is needed. On the other hand, a

sustainable transportation system needs to decrease its reliance on private transport

to limit resource waste and increase its efficiency.

This is even more important considering the fast pace of progress in the world

today. Countries such as China and India are increasing their consumption at very

fast rate. This is an extremely positive development that will finally bring most of

the world to a level of prosperity that was only known to a fraction of humanity until

very recently. However, this transition can be sustained only through an increase in

efficiency and a decrease of wasteful consumption.

The advent of transport as a service could mean less material needs (less ve-

hicles), more efficient use of resources, and higher marginal cost of car transport.

Although SAEVs have prices per km traveled that are comparable to private vehi-

cles, these costs would be all marginal costs to the user, instead of fixed sunk costs.

This incentivises a more thoughtful use of this resource. Potential passengers would

consider alternatives such as public transport, walking or riding a bicycle whenever

convenient. This is in contrast to a private car, where each trip is marginally so

inexpensive that there are often no incentives to try an alternative mode. On the

other hand, the fact that no upfront payment is necessary means that a large part

of the population that could not have access to the flexibility of a private car can

now afford this luxury whenever they think it is worth it, only paying the relatively

low marginal price.

1.2 Aim of the work

The aim of this work is to quantitatively predict and evaluate the potential for

SAEVs to offer grid services, such as operating reserves and storage for renewable
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energy. For this purpose, simulation models were developed in this work to study

SAEV systems in the context of a electricity grid with increasing penetration of

renewable energy. A grid with dynamic electricity prices that reflect a competitive

electricity market is considered throughout the work. The aim of the first model

presented (Chapter 2) is to evaluate the optimal fleet size considering electricity

price-aware charging and the potential for operating reserve provision. The aim of

the second model (Chapter 3) is to study the possibility of integrating SAEVs with

renewable energy in the context of a grid-connected Virtual Power Plant (VPP)

and an isolated microgrid. The aim of the third model (Chapter 4) is to develop

a more systematic simulation framework to study the simultaneous optimization of

charging and relocation of SAEVs.

The models presented in this work are based on present transport patterns taken

from surveys, and do not consider the effect of SAEV on transport fluxes. This

aspect is still a topic of debate in the literature and it is highly uncertain, thus as a

first approximation this work assumes that transport patterns remain unchanged in

the case studies presented. This thesis does not include experimental work, and the

results are intrinsically uncertain to some extent due to the lack of real-world data

of SAEV systems for validation. However, the models were subjected to extensive

sensibility analyses to ensure their internal consistency, and can be a valuable tool

to quantitatively predict the effects of these systems on the electricity system.

1.3 Related work

This section provides a summary of the relevant literature related to this work. The

section is divided into four sub sections. The first section deals with the literature

on generic (non-electric) shared autonomous vehicle systems. The second section

summarizes the specific literature on systems that deal with charging. A summary

table detailing the methodology of the selected literature is also included. A third

section briefly presents a selection of the literature on electric car sharing systems.

The fourth and last section discusses concisely the existing vast literature on the
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integration of electric vehicles with the grid.

1.3.1 Shared autonomous vehicles

Most of literature dealing with shared autonomous vehicles does not explicitly con-

sider the vehicle energy source, and is mostly focused on the transportation aspects

of the problem. In particular, most of the studies focus on the minimization of

waiting times for passengers through the optimization of vehicle redistribution.

Burns et al. [22] simulate a fleet of shared autonomous vehicles (SAV) fulfilling

the transport demand of a city in which numerical and analytical models were de-

veloped with simplified assumptions, such as homogeneous trip rates and simplified

distance calculations without a road network. The model was applied to several

case studies in different contexts, and the authors concluded that in all cases SAVs

offered higher efficiencies, lower costs and higher convenience to users, when com-

pared to other public and private transport modes. In the specific case study of

Manhattan, it was found that 9,000 SAV could replace over 13,000 taxicabs by sat-

isfying the same transport demand with a total cost of 0.31 $/km, compared to 2.5

$/km for current taxis, while decreasing waiting times from an average of 5 minutes

to 1 minute.

Fagnant and Kockelman [4] also developed an agent-based model of SAV using

simplified transport assumptions. Macro areas with homogeneous trip generation

rates and gridded road network were used. They concluded that SAV could provide

adequate service with a fleet size of about a tenth of the equivalent fleet of private

vehicles, and that the quality of service was dependent on the density of users.

In [23], the transport modeling framework MATSim was employed to predict

the impact of SAV on the modal share of the transport sector. On a simplified

road network, the results showed that SAV could be the dominant transport mode,

potentially also disrupting public transport.

Liu et al. [24] used MATSim to simulate a fleet of SAV in Austin, Texas, to

investigate the rate of penetration of SAV at different price levels. They found that

mode split reaches over 50% with a 0.31 $/km fare. The authors did not consider
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changes in transport patterns due to SAVs, but only change in mode split for the

same trips. Other authors have explored the impact of SAV on urban form, including

urban parking demand, suggesting that SAV could eliminate the need for 90% of

current parking space for users of the system [25].

Spieser et al. [26] used a more detailed and realistic transport model to study the

fleet sizing problem and estimate the economic benefits of a fleet of SAV replacing

all other private transport modes in Singapore, based on actual transport data. The

authors determined both the minimum fleet size to meet the transport demand of

the city and the fleet size necessary to obtain a certain peak waiting time. The

results show that, for the specific case of Singapore, the personal mobility needs of

the entire population can be met with a fleet size of a third of the total number

of passenger vehicles currently in operation. This work also assumes unchanged

transport patterns.

Levin et al. [27] focused on studying the effect of SAVs on traffic congestion

by introducing SAVs in existing traffic simulation models. The results show that

the level of service of SAV may be lower than predicted by previous studies when

accounting for traffic congestion, since SAV may shift demand from other modes

and increase the number of passenger-km traveled by car. However, they found

that ride-sharing (more passengers sharing the same vehicle) was effective at solving

this problem. Moreover, differential pricing (peak price) may also be beneficial in

limiting peak congestion.

Several other studies have dealt with the problem of shared autonomous vehicle

rebalancing strategies [28, 29, 30]. In all these studies the energy aspects were not

considered, and the vehicle energy source was generally not specified.

1.3.2 SAEV

Some studies considered the constraints associated with the charging of electric

vehicles, thus dealing with SAEVs. A summary of selected works on SAEV that

consider vehicle charging is given in this section. In these studies, the charging

is generally secondary to the transport optimization, and vehicles are assumed to
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charge as fast as possible independently of the grid conditions. As these systems

are deployed at scale, however, the problem of optimal charging becomes apparent,

as the increased load and charging peaks on the grid would be problematic if not

managed. Moreover, electric vehicles offer the opportunity for large scale demand

response that can help increase the penetration of intermittent renewable energy in

the grid, as mentioned previously [15].

Most studies agree that SAEVs can significantly reduce green-house gas (GHG)

emissions and increase electrification in the transport sector [11]. Greenblatt and

Saxena [9] estimate that SAEVs could reduce GHG emissions by 87%-94% com-

pared to current private vehicles in the United States. Even when accounting for a

substantial increase in distance traveled due to higher convenience, SAEVs are still

found to reduce emissions compared to the baseline scenario.

Chen et al. [10] studied the operation of a SAEV system with methods based on

a previous model developed by Fagnant and Kockelman [4]. The agent-based trans-

port model methodology is similar, but the investigation is expanded by including

charging of the electric vehicles serving 10% of trip demand in a medium-sized

metropolitan area. The analysis includes a charging station generation phase to

find the number and position of charging stations needed to serve passengers within

a certain waiting time. The model was run in different scenarios to investigate the

sensitivity to several parameters. The study considers short- and long-range type of

vehicles, with slow and fast charging. It was found that although double the number

of vehicles are needed for the case with short-range and slow charging vehicles, this

is the most profitable scenario. For the case study in Austin, Texas, the results

indicate that each SAEV can replace between 5 and 9 private vehicles, depending

on range and speed of charge. The model does not consider ‘smart’ charging and

found that simultaneous charging of the fleet at peak times may be problematic for

the electric grid.

Rigas et al. developed a mixed integer programming optimization for shared

electric vehicles with battery swapping [31]. Biondi et al. [32] propose an opti-

mization formulation for the positioning of charging station for electric car sharing
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systems and analyze the impact of these fleets on the electricity grid.

Pourazarm et al. [33] developed a theoretical optimization of vehicle routing with

charging constraints. The problem is solved as a mixed integer nonlinear program

(MINLP). The work also presents a faster problem with a sub-optimal solution that

is however more computationally manageable and obtains almost the same results.

The model allows for a variable electricity pricing at charging stations, however

time-vaying pricing is not considered.

Chen et al. [34] developed a framework for the optimal routing and charging

of electric vehicles in a fleet context. The problem is formulated as an extended

pick-up and delivery problem in a graph and is solved as a mixed-integer quadrat-

ically constrained program. The work also includes a discussion of the possible

impacts of the system on the electricity distribution network, although with simpli-

fied assumptions. The peak load of stations is found and it is suggested that future

work may address the problem of sitting and sizing of charging stations. As in [33],

charging optimization also considers different electricity pricing at stations but no

time-varying electricity pricing is considered.

Bauer et al. [35] developed an agent-based model for the simulation of SAEV.

The model proceeds through the day assigning trips to the nearest vehicle. If vehicles

are not available within a threshold waiting time, a ”new” vehicle is added to the

necessary vehicles to satisfy demand. An iterative process was used to optimize the

positioning of charging stations by starting with chargers everywhere and eliminating

at each iteration the least used chargers. The model was tested in Manhattan with

transport data from taxi trips. They find the optimal battery size and number of

charging stations to minimize costs through sensitivity analysis. They conclude that

vehicles with 50-90 miles range and 66 chargers per square mile (25 per square km)

with a 11 kW connection can provide service with a cost of $0.29-$0.61 per mile

($0.18-$0.38 per km), about 10 times lower than normal taxis and lower than if the

service was provided by any non-electric vehicle. They also calculate that SAEVs

would reduce GHG emissions by 73% compared to current taxis with the current

power grid thanks to higher vehicle efficiency.
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Zhang et al. [36] present a model predictive control approach for the optimization

of an autonomous car-sharing system with optimal rebalancing and consideration

of vehicle charging constraints. The problem is solved as a mixed integer linear

program (MILP). The algorithm is shown to outperform all the previous control

strategies considered. The model formulation as a global optimization is however

unsuitable for large-scale simulations, with the computational time increasing fast

for larger systems. The proposed optimization assumes uncontrolled charging of

vehicles.

One paper deals with time-varying electricity price [37], however dealing with a

personal usage (not shared) scenario of autonomous electric vehicles.

1.3.3 Electric car sharing systems

Shared non-autonomous electric vehicles (car sharing systems) have also received

much interest in recent years, and there are a number of studies focused on the

integration of these vehicles with the electricity system.

Freund et al. [38] developed a control and optimization system to manage the

charging of shared electric vehicles in a smart microgrid in order to maximize the

use of renewable energy sources.

In another study [2], a model of an electric vehicle car sharing system with

reservation was developed. The model is based on charging stations serving requests

in the vicinity. The fact that demand is known in advance through reservation

allows for the use of an optimization algorithm, which is also used to determine the

optimal fleet size by maximizing the car sharing operator’s net revenues and the

user’s benefit, also taking into account the necessary car relocation among charging

stations.

Several authors explore the feasibility of taxi services using electric vehicles.

Bischoff and Maciejewski [39] studied a fleet of electric (non-autonomous) taxis

through MATSim. The authors conclude that electric vehicles can be used as taxis

and only a limited number of charging pods is sufficient. However, the work does not

focus specifically on the grid-side aspects. In another study [40], the operation of a
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Table 1.1: Summary of the selected literature on SAEV modeling with focus on methodology. Information on the case study used is also

given where applicable and available. Only works dealing explicitly with charging during simulation time were considered. Opt. rel. =

optimal relocation; Det. = deterministic model; C.S. = charge scheduling

Methodology Case study

Opt.

rel.

Det. Comments Realistic

road net.

C.S. Charging

stations

Formulation Place Size Trips Vehicles

[32] no no Stochastic optimiza-

tion of charging sta-

tion deployment con-

sidering parking avail-

ability, quantification

of electric demand

(non-autonomous free

floating car sharing

system)

no, based

on cells

no yes, op-

timized

positioning

and size

set cover

problem

Netherlands 51,000

total

trips

400

[35] yes yes Analysis of impact of

dynamic electricity

prices without change

in charging behavior.

Detailed cost analysis,

emissions impact

yes, with

traffic con-

ditions

no optimized

position,

sensitivity

to number

of c.s.

agent-

based

Manhattan,

NY

350,000

TPD

minimum

6470
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[34] - yes Studied the effect of

different pricing at

charging stations.

Also considers load on

electric distribution

networks

simplified,

based on

graph

no yes MIQCP Sioux Falls,

South

Dakota

24 nodes 6

[10] yes no Trips generated

stochastically

no no yes, opti-

mized with

heuristics

agent-

based

Austin,

Texas

10,000

sq. mi

(100x100

miles)

680,000

TPD

30,000-

57,000

[41] no no Framework integrating

4 sub-problems: fleet

size and assignment

schedule; number and

locations of charging

stations; vehicle pow-

ertrain requirements;

and service fees

no no yes, op-

timized

positioning

nearest

neighbor

assignment

Ann Arbor,

Michigan

121

sq. mi

(11x11

miles)
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[33] yes yes Theoretical optimiza-

tion of vehicle routing

with charging con-

straints. Developed

suboptimal solution

that is however more

manageable and ob-

tains almost same

results. Case of differ-

ent pricing at charging

stations.

possible,

with con-

gestion

no yes, at

specific

nodes

MINLP

global op-

timization

- - - -

[37] - no Personal usage sce-

nario (not shared ve-

hicles). Stochastic

energy consumption

model

not explic-

itly

yes,

price

based

yes, at

specific

locations

dynamic

program-

ming

- - - -

[36] yes both

cases

Global optimization of

vehicle redistribution

and charging allows

for flexibility of con-

straints

no, based

on nodes

no at each

node

MILP

global op-

timization

Manhattan,

New York

15 nodes 2,300-

3,500

TPD

40
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electric taxi fleet with trip reservation in Singapore was investigated. An interesting

aspect of the results is that changing the number of charging stations had limited

effect on the performance of the system.

1.3.4 Electric vehicles grid integration

Electric vehicles can offer several services to the grid, such as grid storage and ancil-

lary services. Ancillary services are those services that are necessary to support the

electricity grid, and in particular its real-time stability and the real-time balancing

of demand and generation. Batteries are especially valuable providers of ancillary

services, since they can ramp-up instantly and at no cost [42, 43]. This is in con-

trast with conventional generators which generally have a significant ramp-up delay

and cost. The possibility for electric vehicles to offer ancillary services has been

extensively studied [42, 17].

Almost all literature on electric vehicles’ grid integration deals with private ve-

hicles. However, there has been some work focusing on shared vehicles. Kahlen and

Ketter [43] developed an algorithm for the control of vehicles in a carsharing system.

Decisions concern the commitment of vehicles for operating reserve, the charging of

vehicles, or the commitment for transport service. The decision is determined by

comparing expected profits over future time steps for each action, and it is calcu-

lated with a multiple linear regression model. By testing the model with data from

a free floating carsharing system they found that profits could increase by 7-12%

with practically no decrease in vehicle availability.

The use of electric vehicles as grid service providers for integrating renewable

energy has also been studied extensively [44], demonstrating the feasibility and ef-

fectiveness of using these vehicles for grid stabilization and to replace fossil fuel

power plants in grids with high penetration of renewable energy [45]. Electric vehi-

cles offer great opportunities for grid balancing and integration of renewable energy

sources, because of the charging flexibility.

Hu et al. present a review of smart charging literature for electric vehicle fleet

operators [46]. Nosratabadi et al. [47] present a useful review of distributed energy
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scheduling in microgrid and virtual power plants, including work that considers

electric vehicles.

In conclusion, although the literature on electric vehicle grid integration is ex-

tremely developed, there has been limited work on the development of intelligent

charging strategies for car sharing systems that take into account grid integration,

or on the assessment of the potential for these systems to provide grid services.

1.3.5 Summary

The literature presents several possible methodologies for the simulation of shared

autonomous vehicles. Some works do not consider relocation optimization, and the

simulation usually progresses in time steps with assignment of trips to the nearest

vehicle. This approach generally produces longer waiting times, especially in the case

of highly asymmetrical passenger fluxes. In the cases with optimized relocation, the

main types of models are those based on some form of heuristics and those that use

a global optimization approach. In the first case, the simulations are more easily

scalable, while in the latter the feasibility of the problem is limited to relatively

small domains in terms of number of vehicles, number of nodes (geographic size of

the simulation or resolution) and passenger request rate.

The literature explicitly dealing with electric vehicles in the context of shared

autonomous vehicle systems is more limited. Existing work approach the problem

from the point of view of the transport service, thus focusing on the minimization

of waiting time without considering the impact on the grid. As mentioned, this

approach is not realistic if these vehicles were to account for a large part of the

transport modal share in certain areas. Their uncontrolled charge would risk in-

creasing the congestion on the electric distribution network, increasing the cost of

grid balancing, and missing out on the opportunity of providing a useful service for

the integration of renewable energy in future grids. Some models [34, 33] assume

price differences among charging stations. This however neglects the most important

aspect of electricity price variability, which is the temporal variability. Although ser-

vice (connection) price may change across different private charging stations [34],
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electricity prices do not generally vary across small regions, as this would imply

strong grid congestion effects. Another paper [35] considers the impact of variable

electricity price (time of use tariffs) on the cost performance of the SAEV system,

however without considering any responsive strategy (passive sensitivity analysis).

In summary, there has been very limited work dealing with the interaction of

SAEVs with the electricity grid. As this is considered a fundamental problem for

the large scale implementation of these systems, as well as an important opportunity

for the future smart grid, this work aims at filling this gap in the literature.

1.4 Contributions of this study

The academic contribution of this study is the extension of the current research

on electric vehicles grid integration in the context of shared transportation with

autonomous vehicles. The problem of grid integration has been largely overlooked

in the literature on SAEVs, as detailed in Chapter 1.3. This work aims at putting the

foundations of this important topic of research by looking at several aspects of the

problem. In particular, the work focuses on the transport and economic implications

of SAEVs with electricity-price-aware charging, their potential to provide ancillary

services, their possible integration with renewable energy, and the formulation of a

more systematic methodology for the simulation of shared transport systems with

optimized charging.

The practical contribution of this study is the development of models to quan-

titatively assess and simulate the impact of SAEVs on the grid. As mentioned

previously in the Introduction, this is of primary importance in order to develop

appropriate policy and facilitate the electrification of the transport sector and its

integration with the grid. This would be a key element to allow a wider adoption

of intermittent renewable energy sources. A wide deployment of smart-charging

SAEVs would allow the implementation of large scale demand response and grid

storage to support renewable energy deployment.
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1.5 Overview of the work

Chapter 1 is an introduction to the work. This includes a general background on

Shared Autonomous Electric Vehicles, their differences with conventional and private

electric vehicles, and their potential for grid integration; a review of the literature on

shared autonomous vehicles, SAEVs, and more generally on electric vehicles’ grid

integration and ancillary services provision; a statement of academic contribution,

in which the relevance of this work is summarized and put in the context of the

literature.

Chapter 2 presents a novel methodology to simulate SAEVs, taking into account

electric charge scheduling based on price signals from the grid with a heuristics-based

approach and the possibility of providing operating reserves. A detailed description

of the model is presented, including the transport model, the trip assignment, and

the charge scheduling algorithm. The model is applied to a case study in Tokyo,

and the cost of the system, waiting times for users, and operating reserve provision

potential are investigated. The results and conclusions from the case study are then

discussed, and their potential implications for policy are discussed.

Chapter 3 deals with the potential synergies of SAEVs when combined with

intermittent renewable energy. In order to quantify this effect, a model is presented

where SAEVs provide transport and storage for renewable energy in a virtual power

plant (VPP) or a microgrid. In the first section the problem is introduced and

discussed. The second section the methodology is presented. The model is then

applied to the Tokyo case study using stochastic renewable energy generation data.

The results are divided in two parts. In the first part, the results for the VPP are

reported and discussed. This part includes a comprehensive sensitivity analysis. In

the second part, the model is applied to the case of an isolated microgrid including

dispatchable distributed generators. The conclusions and recommendation for future

work are reported in the last section.

In Chapter 4 the problem of SAEVs’ charge scheduling is analyzed more in

depth, with the use of an analytic optimization model for the price-based charge

scheduling while also considering the rebalancing of vehicles. The methods are
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reported in section 2, including a summary of the model from the literature and a

detailed description of the extension proposed. The model is then applied to the

case study in the central district of Tokyo and the findings are discussed. Finally,

the conclusions and the possible future developments of the model are reported.

Chapter 5 reports the conclusions of the work and the future possible research

directions.

An Appendix chapter presents the methodology for the transport survey data

analysis and stochastic trip generation. This data is used throughout the work to

test the simulation models developed.

fleet sizing

Chapter 2 

individual vehicles 
heuristics-based charging
optimal vehicle commitment for
ancillary services 

Chapter 3 

aggregate vehicles 
optimal charging 
integration with renewable energy and
distributed generation

Chapter 4 

individual vehicles 
charging and rebalancing multi-
objective optimization 

large scale,
less detailed, 

faster
simulation 

small scale,
more detailed,

slower
simulation

Figure 1.2: Summary of the characteristics of the models presented in each chapter

Figure 1.2 presents an overview of the models presented in each chapter. Below,

a summarized outline of the work is presented:

Chapter 2

• developed first model of SAEV operation to incorporate demand response with

dynamic electricity price
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• fast heuristics algorithm allows for fast computation on large systems: exten-

sive sensitivity analysis performed for parameter selection and fleet sizing

Chapter 3

• developed first model of SAEV in a grid with renewable energy incorporating

power flow balance

• aggregate model of the system based on results from previous chapter: fast

simulation allows for sensitivity analysis to identify best deployment scenarios

for SAEV and renewable energy

Chapter 4

• developed first model of SAEV operation with multi-objective optimization of

relocation and charging with demand response

• slower simulations but optimal analytical solution of the problem: allows to

test other models by comparing them to results of this model (benchmark)

with a scaled-down scenario
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Chapter 2

A novel SAEV transport model

with charge scheduling and

operating reserve provision

2.1 Introduction

In this chapter, a novel model for simulating a Shared Autonomous Electric Vehicle

system and its interaction with the power grid is presented. The work includes a

static transport model based on the transport survey data detailed in Section A.1

to simulate the transport patterns. The vehicles satisfy trip requests while charging

their batteries according to a heuristics-based demand-response strategy based on

electricity price signals from the grid. Subsequently, the model is used to evaluate

the potential for the system to participate in the operating reserve market and the

influence of several parameters on the results.

It is assumed that vehicles are managed by a company or entity that oversees

the shared transport service. Control is of two types: the vehicle routing control

is centralized, with a central authority (control center) assigning available vehicles

to new passenger trips; the decision to move to charging station, and how much to

charge, is decentralized, and depends on each vehicle’s SOC, waiting times, and the

current and expected price of electricity and aggregated transport demand. The
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vehicles are assumed to communicate with the control center reporting their status

and SOC in order for the control center to optimize the assignment of trips.

SAEVs can potentially offer more significant operating reserve than private ve-

hicles thanks to their ability to move autonomously to specific charging stations.

These charging stations can be positioned strategically to access the high-voltage

transmission system without overloading the distribution network, and making the

prospect of large scale grid injections more realistic. Figure 2.1 is a map of high-

voltage substations in the Tokyo grid, showing possible positions of large charging

stations for autonomous vehicles. The limited number of charging stations needed

also make the required high power V2G connections more affordable.

A new system for responding to grid capacity requests is proposed and tested to

evaluate the SAEV system performance as an operating reserve provider. Operating

reserve is surplus electricity generation capacity that can respond to sudden drops

of generation (such as a power plant failure or a sudden drop in renewable energy

generation) or sudden increases in load. This provides a margin that ensures the

stability and reliability of the electricity system [48]. Operating reserves can be

distinguished in two types, depending on response time: spinning reserve and non-

spinning reserve. The first is the reserve that can respond instantly, while the second

is the reserve generation that can respond with a delay of several minutes, up to 15

minutes [48]. In the system, the fleet of SAEVs provide spinning and non-spinning

operating reserve in response to grid operator requests (both to generate energy

and to absorb surplus generation). In case of grid requests, the charging decisions

are centralized and controlled by the control center to reach the aggregated power

generation needed. The results show that a SAEV system can be used reliably as

an emergency supply of energy when coordinated with the electric grid.

The aim of this chapter is to evaluate the feasibility of an autonomous car shar-

ing systems with charge scheduling in terms of transportation service quality and

economic performance, and its potential to effectively respond to price signals from

the grid and provide ancillary services.
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Figure 2.1: Map of high voltage substations in the Tokyo grid. Stations used in the model

(Section 2.2.3) could be positioned at these points to take advantage of the high voltage

transmission without overloading the distribution network.

2.2 Simulation model

This section describes the methods used in this chapter. The first part of the sec-

tion deals with the general methodology for the transport model and the operating

reserve request model. In the second part, the specific case study methods are

reported. These include the calculation of the parameters used.

Nomenclature

A. Indices

h Hour

k Trip

t Time step

v Vehicle

B. Simulation variables

Ai Area of node i

av(t) Waiting time variable

BEP Break-even price
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di,j Distance between node i and j

ev(t) Energy exchanged

f(h) Frequency of trips at hour h

` Length of time step (minutes)

m(t) Price of electricity

pv(t) Charging power

qv(t) State of charge (SOC) of battery

rdk Destination node of trip k

rok Origin node of trip k

rtk Time (hour) of trip k

rwk Weight of trip k

isv Binary state variable i

T Total number of time steps

TPH Average trips per hour

V Total number of vehicles

wv(t) Distance to current destination

Wpass,v Total distance traveled with passengers

Wtot,v Total distance traveled

λ(t) Expected number of requests at time step t

∆max Price of electricity at which car charge at maximum rate

πv(t) Agent price

C. Operating reserve simulation variables

rmax(t) Total power available for request at time t

αv Initial delay of v before connection

Γ Duration of the request

δ Allowed delay of request

εv(τ) Energy delivered by v at minute τ

τ Time step

D. Parameters and constants

acon Time needed to connect to charging station
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aidle Maximum idle time

acharge Minimum charging time

Cbattery Cost of battery

Ccar Cost of car (with no battery)

CAP Battery capacity (kWh)

EC Electricity consumption of cars (kWh/km)

hz Prediction horizon

Lbattery Life of battery in equivalent full cycles

Lcar Life of car not including battery (years)

pi,j(t) Probability of a trip starting in i with destination j

pmax Maximum charge rate (kW)

ppeak Peak charge rate for short periods (kW)

qcharge SOC at which car move to charging stations

qmax Maximum SOC in normal operation

qmin Minimum SOC in normal operation

u(t) Average speed of vehicles (km/time step)

PSP Passenger service priority factor (JPY/km or USD/km)

β Ratio of trip distance to Euclidean distance

η Battery round-trip efficiency

2.2.1 Transport model

The first, and fundamental component of this study, was the transport route and trip

selection model. This is used to determine where SAEVs travel, which is primarily

in order to satisfy customer requests. The model applied in this study was developed

in MATLABTM and is based on a simplified road network, represented by nodes at

specific coordinates and their associated areas.

The simulation evolves through T time steps. At each time step, trip requests

can arrive at each node of the model, with an associated destination node. A fleet

of V autonomous electric vehicles move from one node to another satisfying trip

requests.
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In order to have an acceptable computational time for the simulation, the actual

street layout is not considered. The distance is calculated as the Euclidean distance

times a tortuosity factor β that represents the lengthening due to the city’s street

layout. The distance between nodes is stored in a distance matrix where each

element di,j represents the distance between node i and node j.

Distances inside the same node (for trips starting and ending in the same node)

are calculated using the approximation of the average distance between two uni-

formly distributed random points in a square:

di,i = 0.52 ·
√
Ai · β (2.1)

Where Ai is the area associated with node i.

These assumptions do not alter the probabilistic location of requests’ origins or

destinations, as these are the initial given conditions of the model. They do, how-

ever, fail to consider the congestion effect and the fact that a real road network is

not homogeneous. This is considered acceptable for this work, as the aim is not to

simulate the change in the city traffic patterns, but to understand the energy as-

pects of SAEV as a ‘marginal’ player (that does not significantly alter the transport

patterns) in the transport system. This also makes the model readily adjustable

to alternative cities if the other required data is available. It is, however, impor-

tant to consider the average effect of traffic congestion, because it can significantly

change the pattern of availability of vehicles during peak times. Traffic congestion

is therefore introduced in the model as a variable average speed of vehicles. This is

represented with a periodic time-varying vector u(t) which represents the distance

traveled by each vehicle in a time step of the simulation. This is related to the

average speed of vehicles in km/h by a factor `/60.

The current state of each vehicle v is registered as a binary variable isv(t) ∈

{0, 1}, representing different situations. If the vehicle is currently in state i, the

corresponding state variable isv(t) is set to 1, otherwise it is set to 0. A summary

of the different states is presented in Table 2.2 and Figure 2.2. Vehicles can be in

only one state at any given time.
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Table 2.2: States of vehicles

state description

0 charging, not available

1 charging, available

2 idle, available

3 moving, available after drop-off

4 moving to charging station, not available

5 connecting to charging station, not available

Figure 2.2: Simplified outline of the model. Yellow backgrounds indicate connection to

the grid, green backgrounds indicate movement.

2.2.2 Trip requests

Trip requests are generated stochastically during the simulation. The number of

requests at each time step t is decided through a Poisson process with a periodically

time-varying rate λ(t). The number of requests in each time step t is therefore

sampled from the Poisson distribution with a cumulative mass function (CMF)

defined as:

CMF (x) =
x∑
i=1

λ(t)i · e−λ(t)

i!
; (2.2)

Each request is then associated with a starting node and a destination node

[i, j]. The origin/destination pair is extracted from a periodically time-varying dis-

tribution where pi,j(t) is the probability associated with the pair [i, j] at time t and
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∑
i

∑
j pi,j(t) = 1. It is assumed that no reservation is possible: all passenger re-

quests are expected to be fulfilled immediately. This can be considered to be the

worst case (conservative) scenario, because if reservations were possible, this would

always allow cars to be repositioned more efficiently. This is a significant differ-

ence from much of the previous work that includes reservations, making the system

predictable in advance, and potentially more efficient.

Trip requests generated are assigned at each time step to available vehicles

through the Kuhn-Munkres algorithm (Hungarian algorithm, [49]), which matches

vehicles and requests to minimize total travel distance. A vehicle is considered to

be available in any of the following cases:

• it is charging and has been charging for more than a minimum charging time

(state 1);

• it is parked idle (state 2);

• it is currently transporting a passenger (state 3)

In the last case, the vehicle will travel to pick up the next passenger after the

current one has reached their destination. In terms of system states the constraint

is:

1sv +2 sv +3 sv = 1 (2.3)

A further necessary condition is that the vehicle has enough charge for the specific

trip request:

(wv(t) + dk,i + di,j) · EC < (qv(t)− qmin) · CAP (2.4)

Node k is the last destination of the vehicle (or the current position for idle

or charging vehicles), wv is the distance to the last destination, EC is the energy

consumption, q is the SOC and CAP is the battery capacity. Note that the charge

available is calculated considering that vehicles should never be below a minimum

SOC when the destination is reached, in order to have enough charge to move to a
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charging station. When a request is assigned, the vehicle’s distance to destination

wv is increased, the destination node k is updated and the vehicle’s state is changed:

wv(t+ 1) = wv(t) + dk,i + di,j

1sv(t+ 1) = 0

2sv(t+ 1) = 0

3sv(t+ 1) = 1

(2.5)

At each time step, the distance to destination will decrease: wv(t+ 1) = wv(t)−

u(t), until wv(t) = 0 and the destination is reached.

The request is rejected if it is not assigned to a vehicle in the same time step,

thus not allowing request queuing. The number of these rejected requests is later

used as one indicator of system performance.

2.2.3 Charging stations

Vehicles can only charge their batteries at designated charging stations. The charg-

ing stations are placed at specific nodes in the grid, and vehicles need to travel to

these nodes in order to charge. Autonomous vehicles are assumed to be able to

connect to a charging pod automatically and with minimum delay. Several imple-

mentations of this technology have been proposed [50]. Charging station congestion

has not been assessed in this work, so it is assumed that charging spaces are al-

ways available. This is considered reasonable since charging stations would be sized

according to usage patterns.

A vehicle with no requests pending moves to a charging station either when its

battery’s SOC is below a certain level qcharge, or when it has not been assigned

requests for a certain period of time (maximum idle time aidle). In this last case,

this also helps the re-positioning of vehicles that find themselves in peripheral nodes

with limited request rates. Vehicle reaching a charging station start charging after

a certain delay acon, to account for the time to physically connect to the pod. Once

it starts charging, the vehicle keeps charging for at least a minimum charging time
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acharge to avoid continuous disconnection (see Table 2.3). After the time threshold

is reached, the vehicle becomes available for passengers, while still connected to the

grid. It therefore participates in the assignment algorithm, although with lower

priority compared to an idle vehicle: if the two vehicles have the same distance to

the request, the idle vehicle is chosen. The vehicle stays connected otherwise and it

therefore counts as an additional storage for the grid.

The number of time steps of delay in each case is assigned to the variable av(t),

which evolves as follows:

av(t+ 1) = max(av(t)− 1

+ (0sv(t+ 1) ·5 sv(t)) · acharge

+ (2sv(t+ 1)−2 sv(t)) · aidle

+ (5sv(t+ 1) ·4 sv(t)) · acon, 0)

(2.6)

The first two terms inside the max expression in (2.6) accounts for the decreasing

delay at each time step. The third term accounts for the minimum charging time,

the fourth term for the maximum idle time, and the fifth term for the time to connect

to a charging station. Note that av is always non-negative. Moreover, when terms

3 and 5 are nonzero, they are always positive and av(t) in (2.6) is necessarily zero

per (2.12) and (2.17).

2.2.4 Charging

All vehicles in the simulation are battery electric and therefore need to charge to be

able to serve the passenger requests. A heuristics-based charge scheduling algorithm

is used in the simulations, and the interaction between the power grid and the

vehicles is mediated by the electricity price from the grid. A price-based demand

response is helpful in balancing the grid in the case of high penetration of renewable

energy [51].

The charge scheduling algorithm is based on an ‘agent price’ πv. In this work,

the agent price is a measure of the value of electricity stored in each vehicle. In other
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words, the agent price is the ‘perceived’ value of electricity for each agent (vehicle)

at a certain time.

The vehicle will buy electricity when the agent price is higher than the electricity

price. In particular, the vehicle will charge at a rate proportional to the difference

between π and the electricity price, up to a maximum ∆max, which corresponds to

the maximum charging rate pmax. The unconstrained rate of charge, or the propor-

tion of the maximum power that would be used in absence of other constraints, can

therefore be defined as:

bv(t) = max(min(
πv(t)−m(t)

∆max

, 1) , −1) (2.7)

Wherem(t) is the price of electricity from the grid. ∆max was set at 30 JPY/kWh.

This behavior was introduced to increase the system stability when the agent price

is close to the price of electricity. The energy exchanged (in kWh) at time step t is

therefore:

ev(t) = (0sv(t) +1 sv(t)) ·max

(
min

(
bv(t) ·

pmax · `
60

,

CAP · (qmax − qv(t))+

)
, CAP · (qmin − qv(t))−

) (2.8)

The shorthand notation used in (2.8) is defined as: x+ := max(x, 0), x− :=

min(x, 0). Equation (2.8) refers to the energy reaching the vehicle and thus does

not account for the efficiency of the battery, which is counted only for the charging

cycle when calculating the cost of the energy. ev(t) is positive when the vehicle is

charging, and negative when discharging.

It is assumed that in order to calculate the agent price, predictions of short-

term future price and transport demand are available to the system up to a certain

horizon. Moreover, it is assumed that the electricity price is not influenced by the

behavior of SAEVs (the model simulates a small enough fleet of SAEVs). This is

justified by the scale used in the simulations. Even assuming 2000 vehicles (the

maximum number used in simulations) charging at the same time at 10 kW, the
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total load would be 20 MW, which is less than a thousandth of the average power

generation by Tokyo Electric Power Company (TEPCO) of ∼23 GW in 2015 [52].

The algorithm is based on the average of expected future prices and transport

demand as follows:

πv(t) =

∑hz
j=1 (m(t+ j) + λ′(t+ j) · PSP/EC)

2 · qv(t) · hz
(2.9)

λ′(t) =
λ(t) · 60

` ·
∑t−1

t−1440/` λ(t)
(2.10)

Where πt is the agent price at time t, hz is the prediction horizon for future

prices, PSP is the passenger service priority factor, and λ′ represents the relative

rate of requests in the time step compared to the total in the previous 24 hours,

normalized as a rate of trips per hour. The PSP (expressed in JPY/km or USD/km)

is a weighting parameter used to allocate a certain amount of energy to transport

requests as opposed to energy storage. A higher PSP would put more priority on

passengers, reducing probability of dropped requests and possibly waiting times, but

also rendering storage less effective. The simple equation allows for a fast calculation

of the agent price at each time step for each vehicle.

The state of charge of each vehicle will then evolve according to:

qv(t+ 1) = qv(t) +
ev(t)

CAP
− u(t) · EC

CAP
· (3sv(t) +4 sv(t)) (2.11)

In accordance with the model described, the state variables evolve according to

the following equations:

0sv(t+ 1) =0 sv(t) + (5sv(t)−0 sv(t)) · (1− sgn (av(t))) (2.12)

1sv(t+ 1) =1 sv(t) +0 sv(t) · (1− sgn (av(t))) (2.13)

2sv(t+ 1) =2 sv(t) +3 sv(t) · (1− sgn (wv(t))) (2.14)
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3sv(t+ 1) =3 sv(t) · sgn (wv(t)) (2.15)

4sv(t+ 1) =4 sv(t)−4 sv(t)) · (1− sgn (wv(t))) (2.16)

5sv(t+ 1) =5 sv(t)−5 sv(t) · (1− sgn (av(t))) +4 sv(t) · (1− sgn (wv(t))) (2.17)

with sgn(x) the sign function which is 0 when x = 0, 1 when x is positive and

−1 when x is negative.

2.2.5 Transport system evaluation

In order to evaluate the economic feasibility of the SAEV system, a conservative

estimate of the costs was made (see Table 2.4). The values were estimated based

on currently available electric vehicles and on estimates of the price of autonomous

vehicle control hardware (see section 2.3.2). The life expectancy of the vehicle is

defined in years, while the life of the battery is defined by its total number of full

cycles (100-0-100% SOC). The cost of the vehicle will therefore be considered a fixed

cost based on the lifetime of the vehicle, while the cost of the battery will depend

on its use (charge/discharge cycles).

To assess the cost of the system, the break-even price (BEP) is used. This is

defined as the minimum price per km the passengers have to pay to cover the total

costs of the SAEV system. Any price higher than the BEP will be a net profit for

the system. The BEP is calculated based on the results of the simulation:

BEP =

∑
v (V Cv + FCv)∑

vWpass,v

(2.18)

where V Cv and FCv are the variable and fixed cost, respectively, for vehicle

v, and Wpass,v is the distance traveled with passengers for vehicle v. The BEP is

expressed in JPY/km (or USD/km).The system would incur further overhead costs,

such as the cost for managing the assignment system. However, for simplicity, these
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are assumed to be included in the overall price of the vehicle (fixed costs). The

variable and fixed costs are:

V Cv =

∑
t ev(t)

Lbattery · CAP
· Cbattery +

∑
T

ev(t) ·m(t) (2.19)

FCv =
Ccar · T · `
Lcar · 525600

(2.20)

Where Cbattery and Ccar are the cost of the battery and the vehicle, respectively;

Lbattery and Lcar are, respectively, the life of the battery (in number of cycles) and

the vehicle (in years); 525600 is the total number of minutes in a year.

The variable cost depends on the specific vehicle (function of the total distance

traveled), while the fixed cost is the same for each vehicle. The total costs are then

the sum of all the individual vehicles’ costs. Moreover, the system efficiency is also

calculated as:

Efficiency =

∑
vWpass,v∑
vWtot,v

(2.21)

where Wtot,v is the total distance traveled.

2.2.6 Operating reserve model

The potential for the cars to act as operating reserve is subject to the speed at

which they can deploy capacity, and for how long. To evaluate these factors, a

request mechanism was implemented as an extension of the model developed in

Chapter 2.

An operating reserve request in this model is characterized by a duration Γ and

an allowed delay δ. At time step t of the simulation the system is tested to calculate

the maximum theoretical operating reserve power available rmax(t). This is the

maximum constant power deliverable for the request duration.

It is assumed that during an operating reserve request the vehicles will put prior-

ity in satisfying the grid operator request over new passengers’ requests if necessary.

Vehicles can therefore be called back to charging stations to contribute. The rate
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at which these vehicles can be called back determines the delay in fulfilling the re-

quest and the overall energy and power available. Vehicles with pending passenger

requests (already accepted) can move to charging stations only after transporting

their passengers, thus affecting their connection time or grid waiting time. More-

over, in these special cases, vehicles are allowed to reach the full range of battery

capacity from 0% to 100% SOC if needed.

The calculation of the power available progresses with a time step τ through the

duration of the grid operator request. For each vehicle v, the time needed to deploy

capacity α is calculated, subtracting the allowed delay δ of the request:

αv = max

(
0 , (2sv(t) +3 sv(t) +4 sv(t)) ·

(
wv(t) + di,j

u(t)
+ acon

)

+5 sv(t) · av(t)− δ

) (2.22)

with i the vehicle’s node (or current passenger’s drop-off node) and j the node

with the closest charging station. Vehicles which are already connected to a charging

station will always have a time delay of 0 minutes. The state of charge at the time

of connection to the charging station is also calculated for each vehicle:

qv,conn = qv(t)− (wv(t) + di,j) ·
EC

CAP
· (2sv +3 sv +4 sv) (2.23)

The energy delivered at each time step of the request by each vehicle is referred

to with εv(τ). In order to have the maximum energy delivered the following objective

function should be maximized:

fp(εv) =
∑
τ

∑
v

εv(τ) (2.24)

Also, it is desirable that the minimum number of vehicles are used for the grid

request, in order to limit the disruption to the transport service. The cost function

can therefore be introduced:

fs(cv) = ·
∑
v

cv (2.25)
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cv ∈ {0, 1} (2.26)

where cv is a binary variable that represents the commitment of vehicle v for the

request. Equation (2.25) can be considered the cost of commitment of each vehicle,

which is paid only when the vehicle is used (called back to the charging station).

The overall objective function to maximize is then:

f(x) = fp(εv)− b · fs(cv) (2.27)

b is the secondary objective’s relative weight. Only vehicles that are connected

at time τ can contribute to energy delivery:

εv(τ) = 0 τ < αv (2.28)

moreover, the energy deliverable at each time step is constrained by the maxi-

mum power:

0 6 εv(τ) 6
ppeak
60

(2.29)

The state of charge of each vehicle has to remain within the interval [0, 1] at each

time step:

0 6 qv,conn −
∑τ

k=1 εv(k)

CAP
6 1 τ ∈ Γ (2.30)

The commitment costs are introduced as:

∑
τ

εv(τ) 6
ppeak
60
· Γ · cv (2.31)

meaning that if the commitment variable cv is 0, vehicle v can not supply energy.

A limit to how many vehicles can be used was also introduced, to ensure that there

are always enough vehicles left for the transport service:

∑
τ

cv 6 z · V (2.32)
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where z is the maximum ratio of vehicles that can be used for the grid request.

This value is only relevant during periods of relatively low passenger request rates,

for example at night, since most of the times the number of vehicles used is limited

by other factors. In the simulations, z was chosen as 0.7. Choosing a lower value

would put more priority on the passenger requests. The last constraint dictates that

the power delivered should stay constant during the request time:

∑
v

εv(τ + 1) =
∑
v

εv(τ) τ ∈ Γ (2.33)

The problem can therefore be stated as:

maximize
x

f(x)

subject to (2.26), (2.28), (2.29), (2.30), (2.31), (2.33)

(2.34)

The problem (2.34) is a mixed integer linear program and was solved with the

built-in MATLABTM function intlinprog.

The disruption to the transport service during and after the request is also in-

vestigated. During a request, the vehicles participating will stay in state 0, thus

not available, and their power exchange will be determined by the optimization re-

sults. Vehicles not participating in the operating reserve request are not permitted

to exchange power with the grid during the request time, so that the system acts

as a single agent. Moreover, as mentioned previously, during the request vehicles

can discharge until they reach 0 state of charge. The final impact on the transport

service is assessed by the number of extra rejected requests and extra minutes of

waiting times when compared to the base scenario.

2.2.7 Model assumptions, validation and limits

Validation of the model is important in ensuring the credibility of the results. While

it is not possible to validate the model with real world demonstration or experiment,

it is possible to validate the internal consistency and performance against theoret-

ical expectations. The influence of model parameters was verified with sensitivity

analysis. Model parameters such as idle time and battery capacity were chosen
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through sensitivity analysis to maximize BEP and minimize waiting times. The

model’s limitations come primarily from the assumptions made to make the simula-

tions possible with limited data. The main simplifying assumption is related to the

transport simulation, as the city’s road network is not considered. This is to allow

for a faster simulation time and also due to the difficulty of properly considering

traffic congestion in the simulations.

Other simplifying assumptions are related to the energy aspects of the model.

Detailed charge and discharge behavior of batteries is not considered: charge power

and charging/discharging efficiency are assumed to be the same at any SOC level.

This is considered acceptable for this level of analysis. This is further justified by

the fact that the simulations assume relatively conservative charging power levels.

Moreover, the detailed electric grid is not considered: the model assumes that there

are no transmission capacity constraints, and does not consider transmission losses.

This is justified by the assumption that the centralized nature of charging stations

allow vehicles to be connected directly to the medium or high voltage transmission

grid, as opposed to the distribution network. Moreover, the positioning of these

charging stations could be optimized to minimize power losses. These aspects were

not considered in this paper, and are planned as the focus of future work.

Another limitation of the model is the consideration of static transport patterns.

It is possible that the service will also attract people currently using public trans-

portation or other means, thus affecting the position and time of trips from the

survey. All these simplifying assumptions have been previously used in most of the

models reviewed in Chapter 1.3. Numerical assumptions in the case study were

backed by references whenever possible. The results are intrinsically uncertain due

to the lack of real-world examples of commercial shared autonomous vehicle fleets

and due to the experimental nature of this technology, which makes it impossible

to compare the model with real data. However, despite this limitation, the inter-

nal and theoretical consistency should provide sufficient validation of the model‘s

demonstrative analytical capacity for the case study presented.
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2.3 Numerical data for simulations

2.3.1 Transport data

The case study examined here is based on the Tokyo Person Trip Survey 2008 [1].

In order to have a representative collection of trip characteristics for a city, the

area of service in the simulations was limited to a central 40x40 km area of Tokyo,

so only trips starting and ending in zones in this area were considered. This is

approximately equivalent to the 23 special wards of Tokyo, which are the core and

the most populous part of the city. The selected area includes 514 zones, which

are selected as the nodes in the model. 34.5% of all the trips in the survey start

and end in the central zones selected. Figure 2.4 shows the distribution of trip

distances and starting time for the selected trips. The centers of the nodes selected

are shown in Figure 2.3. Figure 2.5 shows the origin (blue spikes) and destinations

(red spikes) of trips in the morning and evening. The asymmetry between origin

and destination at the morning peak and evening peak is evident in the figures,

with a large concentration of red spikes in the central area in the morning and blue

spikes in the evening showing commuters’ trips. The details of the stochastic trip

generation methodology and the determination of the tortuosity factor of roads are

reported in Section A.1.

30 charging stations were positioned in total, chosen with a sensitivity analysis.

The results of the sensitivity analysis are reported in Figure 2.6. Although increas-

ing the number of charging stations continue to decrease waiting times and BEP,

the effects were deemed not large enough to justify the added expense of a larger

number of charging stations. The position of charging stations in the case study was

determined in order to minimize (to a large extent) the distance of travel from each

node to the closest station. The first station was positioned in the node for which

the sum of the distances to all other nodes is minimal. Subsequent stations were po-

sitioned in the same way, taking into account the presence of previous stations (i.e.

considering only distances to the closest station). This algorithm is not optimal, but

provides a good approximation of a distribution minimizing travel distances from
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Figure 2.3: Map of nodes in central Tokyo. Dots represent the approximate location of

the center of the node. From [1]. Red dots represent nodes with charging stations in the

simulation.

each point.

Three levels of traffic congestion were considered: peak, average, and off-peak,

at 20, 30 and 40 km/h, respectively. Figure 2.7 show the chosen speeds at each

time of the day. The lowest speed of 20 km/h was chosen as the reported average

speed in central Tokyo at peak time [53]. The average and off-peak speeds were

chosen as 1.5 and 2 times the peak speed, as precise data on average speed in Tokyo

could not be found. In setting this at these levels it also makes evaluation of the

performance of the model corresponding to these changes more facile. Moreover, the

actual speeds depend on type of road and origin/destination pair. Considering the

average speed allows for the consideration of the effects of traffic congestion without

simulating the actual road routing and congestion, which would render simulations
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(a)

(b)

Figure 2.4: (a) cumulative distribution of trip distance and (b) distribution of trip start-

ing time from transportation survey [1]

of this scale impractical. It should be noted that the off-peak speed does not affect

results significantly, since the limiting factor for fleet sizing and operating reserve

service is the minimum speed at the moment of maximum transport request rate.

The results of a sensitivity analysis for the average speed is reported in Figure 2.8.

The figure confirms that the choice of off-peak speeds is less critical also for waiting

times, since while the sensitivity of results on peak speed at peak transport demand

is very high, the sensitivity to off-peak speeds is very low, as shown in the figure.

The peak/off-peak times were chosen to coincide with the pattern of trip requests

(more trips translates into slower average speeds). The speed in km/h is related to

the distance traveled in one time step u(t) in the simulation as: u(t) = speed · `/60.
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(a) (b)

Figure 2.5: A visual representation of trips origin and destination for the central 40x40

km area at different times in the day: (a) 8 am (b) 7 pm. Blue spikes represent origins,

while red spikes represent destinations. Higher spikes correspond to higher trip frequency.

2.3.2 Vehicle characteristics and costs

The parameters chosen for the vehicles are summarized in Table 2.4. Electricity

consumption of vehicles EC was chosen at 0.15 kWh/km, taken from [54] and simi-

lar to the Nissan Leaf energy consumption at city speeds [55]. Battery cycle life was

estimated at 1500 full cycles. Studies show that lithium-ion batteries for electric

vehicles have low capacity fade even after 1000 cycles [56]. Real-life examples for

lithium-ion batteries confirm these findings. Tesla Model S batteries have shown

less than 10% capacity degradation over 700 cycles in surveys of private users [57]

and the Powerwall (stationary Li-ion battery) from the same company offers a war-

ranty of 60% capacity retention after 10 years with unlimited cycles [58]. A more

controlled charging schedule can also contribute to increase battery life. Uddin et

al. demonstrate an increase in battery life for electric vehicles when using smart

charging with V2G compared to private charging at home [59]. Capacity fade of the

battery is not considered in the model, thus the stated capacity should be considered
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Figure 2.6: Sensitivity of results on number of charging stations. Simulations with 1000

TPH. The blue diamond is the average waiting time.

as an average during the battery life.

Prices are given in Japanese Yen (JPY) and US Dollars (USD), with a conversion

rate of 1 JPY=0.009 USD (rate as of January 2018). Autonomous driving technology

is expected to add $7,000 to $10,000 to the price of a vehicle by 2025 [60]. Fagnant

and Kockelman estimate $10,000 added cost for early adoption [61]. A conservative

estimate of 5 million JPY ($45,000) was used for the cost of the vehicle and other

expenses (such as control center, maintenance etc.), excluding battery. The cost of

the battery was calculated assuming 200 USD/kWh (22,200 JPY/kWh) [62].

Maximum charging/discharging power was set at 10 kW for normal operation

and at 20 kW for short times (peak power when responding to grid requests). These

power levels can be provided by several existing technological standards [44], which

are not discussed in this work. Simulations were also run with a hypothetical 50

kW connection to investigate the influence of charging speed on performance.

Minimum SOC was set at 25% in order to enhance durability of the battery (see

Table 2.3) [63]. The maximum SOC was set at 80% in normal operation, to increase

the ability to absorb excess generation from the grid when needed. This has also

been shown to further extend battery life as lithium-ion batteries suffer higher stress
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Figure 2.7: Average speed during the day.

at high SOC [64].

Table 2.3: Summary of simulation parameters

Name/symbol Value Unit

qcharge 0.35 -

qmin 0.25 -

qmax 0.8 -

` 1 minutes

acon 3 minutes

acharge 30 minutes

aidle 5 minutes

The time needed for the vehicle to connect to a charging station has been assumed

to be 3 minutes. This includes the time to park the vehicle and connect it to a

charging pod. Internal parameters of the model, such as minimum charging time and

maximum idle time, were chosen through sensitivity analysis to minimize waiting

times and BEP.

Due to the uncertainties related to future implementations of autonomous driving

technology, conservative parameters were chosen in the simulations. However, it is

possible that prices and vehicle performance would be better than in the current
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Figure 2.8: Sensitivity of several output parameters to (a) peak speed (b) off-peak speed.

The blue diamond is the average waiting time.

study. For example, cheaper and more durable batteries could increase the energy

available and the storage capability, while keeping costs low.

2.3.3 Electricity prices

The influence of electricity pricing was also studied. Three example price profiles

were considered to test the model (see Figure 2.9):

1. TOD - Time-of-day pricing with 2 price periods (peak/off-peak).

2. TOD+solar - TOD with high solar penetration, with peaks at early morning

and evening.

3. HighRe - Wholesale electricity market with high renewable energy penetra-

tion: random price profile extracted from a gamma distribution with shape

parameter k = 2 and scale parameter θ = 20.

The electricity market in Japan is undergoing a process of liberalization, and

some electricity providers already offer several time-of-day pricing options [65].

All price profiles were normalized to the same average value of 40 JPY/kWh (0.36

USD/kWh), in order to investigate the ability of the proposed charge scheduling
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Table 2.4: Summary of technical and economic assumptions

Name/symbol Value Unit

EC 0.15 kWh/km

CAP 50 kWh

η 0.9 -

pmax 10 kW

ppeak 20 kW

Lcar 5 years

Lbattery 1500 full cycles

Ccar 5,000,000

45,000

JPY

USD

Cbattery 1,110,000

10,000

JPY

USD

algorithm to minimize energy expenditures. The average price is conservatively

higher than current average prices (about 20 to 30 JPY/kWh for TEPCO, depending

on type of connection [65]) to account for a possible future rise of energy prices.

This may happen due to the rising cost of renewable energy subsidies and dispatch

and cost of energy imports. In the third case, the system buys and sell electricity

in the wholesale electricity market as a price taker. Gamma distributions were

shown to fit the current prices on the Japanese wholesale markets. Figure 2.10

shows histograms of spot prices for the main regions in Japan on the Japanese

electricity exchange (JEPX) between April 2013 and end of 2017 with associated

gamma distributions fitted. A random distribution for prices that could simulate

the variability and range of prices in a market was needed to test the stochastic

model. Although the generated price profiles in this case may not reflect the specific

time distribution of prices in current markets, the temporal variability is justified by

the high intermittent renewable energy penetration that is assumed in this scenario.
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Figure 2.9: Comparison of 24-hours samples of price profiles used in the simulations.

The average for all profiles is 40 JPY/kWh (0.36 USD/kWh). (a) Time-of-day pricing

with two periods; (b) time-of-day pricing with high solar penetration; (c) free market with

high renewable energy penetration, modeled with a gamma distribution.

2.4 Results and discussion

In this section, the results from the case study are presented. In the first section,

the model is tested with different trip rates and number of vehicles to investigate the

optimal fleet size as a trade-off between costs and transport service performance.

In the second section, the effect of different price profiles on costs and transport

performance is investigated using the optimal fleet size from the previous section.

In the third section, the results of operating reserve simulations are presented for

several request characteristics.
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Figure 2.10: Histograms of spot prices for the main regions in Japan on the Japanese

electricity exchange (JEPX) between April 2013 and end of 2017 at half-hour intervals,

with associated gamma distributions fitted.

2.4.1 Fleet sizing

The aim of the first part of the simulations is to estimate the number of vehicles

needed to satisfy the transportation requests. Simulations were run with different

numbers of vehicles to estimate the optimal fleet size based on a number of output

parameters. The parameters chosen were the waiting time for passengers, the break-

even price of the system and the number of rejected requests.

The simulations have a time step of 1 minute over a period of 20 days. One extra

day was added at the beginning to avoid start-up transients. The forecast horizon

was set at 12 hours (720 time steps). Considering that both electricity price and

passenger request rates change hourly, there are effectively only 12 distinct forecast

values for each. Several trip rates were tested to show the influence of the rate on the

system performance. This is useful to understand the sustainability of the system

at different levels of request density, for example during the initial implementation

phase when adoption rates are low. The passenger priority factor (PSP) was set

at 100 JPY/km (0.9 USD/km). This value implies a bigger priority for transport

service compared to grid services, as it corresponds to an equivalent electricity price

of 667 JPY/kWh (6 USD/kWh), considering the electricity consumption of vehicles.
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Figure 2.11: Example of SOC evolution in a day (1440 time steps). At each time step,

the minimum, maximum, median and 5th and 95th percentile of vehicles’ SOC are reported

(simulation with 1000 trips per hour and 1400 vehicles).

The simulations are based on numbers of vehicles that are constant proportions

of the average rate of trips in order to compare the results. For example, if the

average rate of trips per hour is 500, then a proportion of 1.4 vehicles per average

rate of trip per hour would be a fleet of 500 · 1.4 = 700 vehicles. The charging of the

vehicles is managed by the charging algorithm introduced in section 2.2.4. A simple

time-of-day hourly price profile with two periods was chosen for the electricity price

(Figure 2.9a), with an average electricity price of 40 JPY/kWh (0.36 USD/kWh).

Figure 2.12 shows an example of the movements of a vehicle during simulation

time. Results are shown in Figure 2.15 and 2.16. Waiting times tend to stabilize

when the number of SAEVs available is more than 1.2—1.4 times the average rate

of trips per hour.

The median waiting time drops to 7 minutes and 95% of requests are fulfilled

within 18 minutes for a simulation with 1000 TPH and 1400 vehicles (Figure 2.15).

Waiting times tend to reach a plateau with a certain amount of vehicles over TPH,

depending on the TPH. After this plateau is reached, the waiting times are essen-

tially not dependent on the number of vehicles. Figure 2.17 show the cumulative
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Figure 2.12: Example of the first 20 movements of a vehicle during simulation time.

waiting time distribution for simulations with 1000 TPH, for varying fleet sizes.

Waiting times are strongly dependent on position and time of day, with increased

waiting for requests in peripheral areas and during peak demand. An important

characteristic of the system is that the expected waiting time is always known when

a trip request is accepted (otherwise the request is rejected), so in a real case sce-

nario the user can always plan in advance for the time needed (or use another means

of transportation). Moreover, waiting times are quite predictable, depending on a

certain time and position of the trip request. All these factors may be investigated

further in future work.

Break-even prices tend to increase as the fleet size increases (Figure 2.16a). This

is due to the increased investment needed for a larger fleet while efficiency levels

and number of passengers served are stable (no rejected requests). Overall, BEP

decreases as the TPH increase, together with the increase in efficiency of the system
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Figure 2.13: Occupancy for each station at different time of day (hour of the day dis-

played on top of each figure). Size of circle is proportional to the number of vehicles

connected to that charging station.

(Figure 2.16b). For 1000 TPH and a fleet size of 1200 vehicles the BEP is about 30

JPY/km (0.27 USD/km), about 10 times lower than the average Japanese standard

taxi fare of about 300 JPY/km (2.70 USD/km) [66]. This is a price comparable

with public transport fares.

The efficiency of the system tends to increase with larger fleets, thanks to a

more ubiquitous presence of vehicles to satisfy transport demand without extra

empty trips (Figure 2.16c). However, as with waiting times, efficiency also tends

to reach a plateau, the value of which is a function of the total TPH. Higher TPH

values are associated with higher overall efficiency of the system. Rejected requests

drop to zero for fleet sizes larger than a threshold size, which is dependent on the

total TPH (Table 2.5).
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Figure 2.14: Example of vehicles’ status (see Table 2.2) during a day. The curves show

the percentage of vehicles at each state at any given time. (a) Overall (b) Zoom-in to the

lowest 10% to show transitional states with few vehicles at any given time

Results show that the system is able to operate efficiently with between 1.2 and

1.6 vehicles per trip per hour, or about 5 to 7 vehicles per 100 trips per day. Assuming

an average of 2 trips per private vehicle per day, this suggests that autonomous

vehicles can replace private vehicles with a proportion of about 1:7 to 1:10, depending

on the expected quality of service (waiting times and prices), in accordance with

previous studies as discussed in section 2. The results also demonstrate the feasibility

of the system even without planned active re-balancing of the vehicles. However,
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Figure 2.15: Waiting times as a function of the number of SAEVs and trips per hour

(tph). The marker indicates the median value and the error bars the 5th and 95th per-

centiles.

with an effective re-balancing strategy waiting time can be reduced further. For

the rest of this work, a fleet size of 1.4 vehicles/TPH was chosen. This represent a

compromise between waiting times and costs.

2.4.2 Charge scheduling algorithm

The influence of electricity pricing was investigated by testing the model with the

price profiles introduced in section 2.3.3. Figure 2.18 shows the results of different

charging strategies with the different price profiles. In all the simulations there are

no rejected requests and the waiting times are the same as those found in section

2.4.1, thus demonstrating that the charge scheduling algorithm has no negative effect

on the transport service quality.

The charge scheduling algorithm lowers the BEP, with the benefits substantially

higher when employing V2G. The non-V2G strategy differs only in that the vehicle

can not sell back to the grid, thus only the positive values of (2.8) are considered.

The savings are particularly significant with highly volatile price profiles such as

profile 3. V2G can therefore play a role in making the system more economically
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Figure 2.16: System performance parameters as a function of the number of SAEVs and

trips per hour (tph). (a) Break-even prices; (b) efficiency
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Table 2.5: Requests served

vehicles/TPH

TPH 1 1.2 1.4 1.6 1.8

100 95.65% 99.64% 99.98% 99.99% 100%

200 98.16% 99.95% 99.99% 99.99% 100%

500 99.70% 99.99% 100% 100% 100%

1000 99.79% 99.99% 100% 100% 100%
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Figure 2.17: Cumulative waiting time distribution for simulations with 1000 TPH and

1 to 1.8 vehicles per TPH.

viable. In a scenario with rapidly changing electricity prices, that is, with a high

penetration of non-dispatchable generation, under the assumptions of this work V2G

has the potential to significantly decrease the energy costs for the system and help

to balance the grid.

2.5 Operating reserve model

Two types of operating reserve were tested: spinning reserve, modeled with requests

with no allowed delay; and non-spinning reserve, modeled with an allowed delay of

15 minutes. In both cases, the capacity of the system was tested for different request
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Figure 2.18: BEP for different charging strategies and price profiles. Simulation with

1000 trips per hour and 1.4 vehicles/TPH over 20 days.

duration of 30 and 60 minutes. Two types of grid connection for peak power were

also tested: 20 kW and 50 kW. Moreover, the possibility for the system to be used

to supply reserve storage was also tested in the same way. The secondary objective

weight in (2.27) was chosen as 0.001. This is an arbitrarily small value in order not

to affect the main optimization, while still allowing for the optimization of the use

of vehicles for the same amount of power delivered. The results would not change

as long as the secondary objective weight is small enough.

The available power varies significantly depending on the time of day, due to

variable number of vehicles connected to charging stations and the available SOC.

Figure 2.13 shows the occupancy for each station at different time of day. Central

stations are busier during afternoon (hours 16:00 and 18:00, upper right and lower

left panel), while peripheral stations are more occupied at night (4:00 am, lower right

panel). Lowest level of occupancy is during the morning rush hour at 9:00 am (upper

left panel). Figure 2.11 shows an example of SOC evolution during a day. The SOC

evolution depends on transport demand and electricity prices. Figure 2.14 shows

the status of vehicles during a day. States 0 and 1 represent vehicles connected to

charging stations. The limiting period was identified as the peak transport demand
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Figure 2.19: Results of 50 tests for operating reserve capacity with no delay for 30

minutes. Results for 60 minutes duration were found to be the same. Whiskers in the

boxplot include the upper and lower values up to 1.5 IQR distance from the third and first

quartiles, respectively. Red plus signs indicate outliers.
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Figure 2.20: Results of 50 tests for operating reserve capacity with 15 minutes delay for

30 minutes. Results for 60 minutes duration were found to be the same.

between 8 and 9 in the morning, when the lowest number of vehicles are connected.

The system was therefore tested for this period, to calculate the minimum power

available. The tests were run at 10 minutes intervals for 50 times.

Figure 2.19 and 2.20 show the results with a maximum power connection of 20

kW and duration of 30 minutes. The results of the tests with a duration of 60
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Figure 2.21: Results of 50 tests for operating reserve capacity with no delay for 30

minutes, with a 50 kW connection

minutes were the same as for the 30 minutes, thus are not shown. The allowed

delay is the most significant factor in determining the amount of available power

for a 20 kW connection: when 15 minutes delays are allowed, the power available

grows by about 1-1.5 MW per 1000 vehicles. This results from the fact that the

limiting factor in this case is the power deliverable (that is, the number of vehicles

connected to charging stations), and not the energy stored in the batteries. A longer

allowed delay allows more vehicles to move to charging stations to contribute during

an operating reserve request. This conclusion is supported by the results of the 50

kW connection in Figure 2.21, which are almost exactly increased by a factor 50/20.

Figures 2.22-2.23 show the results for negative operating reserve capacity, or to

absorb excess generation (storage). This service may become relevant as penetration

of intermittent renewable energy increase.

The impact on the transport service was also investigated. In Figure 2.24 the av-

erage waiting times are shown for a 30 minutes non-spinning request in the morning

peak and at the afternoon peak. Note that the 15 minutes allowed delay is the worst

case scenario since with no allowed delay the vehicles participating in the request

will necessarily be fewer.

Providing operating reserve with 20 kW connection does not influence the request

58



CHAPTER 2. A NOVEL SAEV TRANSPORT MODEL WITH CHARGE
SCHEDULING AND OPERATING RESERVE PROVISION

8:00 8:10 8:20 8:30 8:40 8:50 9:00

time of day

0

2

4

6

M
W

 p
e
r 

1
0
0
0
 v

e
h
ic

le
s

Figure 2.22: Results of 50 tests for negative operating reserve capacity (storage of excess

generation) with no delay for 30 minutes, with a 20 kW connection
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Figure 2.23: Results of 50 tests for negative operating reserve capacity (storage of excess

generation) with 15 minutes delay for 30 minutes, with a 20 kW connection

rejection rate, and momentarily increase the average waiting time for passengers

during peak times.

2.6 Conclusions

A simulation model was developed in MATLABTM to study the feasibility of a

shared autonomous electric vehicle transport system and its integration with the
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Figure 2.24: Average waiting times for base case (no reserve request) and for a case with

a 30 minutes non-spinning operating reserve request. (a) morning peak; (b) afternoon peak.

Average over 10 simulations for each case. For all the simulations, there were no rejected

requests.

electricity grid. The model simulates a SAEV fleet serving passengers and charging

at designated charging stations. A charge scheduling algorithm based on electricity

prices was used and tested with several price profiles. A new model for estimating

the availability of vehicles for operating reserve was developed and used to estimate
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the potential for the SAEV system to provide spinning and non-spinning operating

reserve to the grid.

The city of Tokyo was taken as a case study, with passenger data based on a

transport survey. The system is studied in a transitional phase, with the assumption

of unchanged transport demand patterns and a limited number of vehicles, and

assuming that the power flow of vehicles does not influence electricity prices or

transmission congestion levels.

The results of the simulations show that every shared vehicle in a fleet of SAEVs

in Tokyo could replace 7 to 10 private cars, depending on the trade-off between

waiting time and cost of the system. The system’s break-even price per km is

significantly lower than the fare of traditional taxis, and comparable to the average

cost of car ownership and public transport. The results also suggests that the

integration of a charge scheduling algorithm can further lower the cost of transport

by providing load shifting and storage for the grid. In the case of highly volatile

price profiles, the break-even prices of the system drop by up to 30% thanks to

charge scheduling with vehicle-to-grid.

For the operating reserve model, the results show that the amount of operating

reserve power available depends strongly on the time of day and the allowed delay.

In particular, the system is able to supply spinning reserve of up to about 3.5 MW

per 1000 vehicles even at the worst time for 1 hour with a 20 kW connection. This

increase to 8-9 MW per 1000 vehicles when using a 50 kW connection.

In a scenario of a wide implementation of this system, the model suggest that

SAEVs could provide significant grid-scale storage and spinning reserves. However,

to assess the real impact of this technology implemented at large scale, a dynamic

transport model needs to be developed to account for the change in transport pat-

terns and congestion levels. Moreover, a model of the electricity transmission net-

work could be included in future work to account for transmission constraints for a

full-scale system.
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Chapter 3

SAEVs as storage for renewable

energy

3.1 Introduction

As detailed in Chapter 1.3, most studies on the charging of electric vehicles and

their interaction with renewable energy have focused on private vehicles, mostly as-

suming that vehicles are used once or twice a day and charged at night [67, 68, 14].

This chapter presents a new methodology for the optimization of SAEVs charging

with distributed dispatchable generators (DG), renewable energy generators, grid

electricity with variable pricing, vehicle-to-grid, and considering vehicles’ rebalanc-

ing requirements. The costs and carbon emissions of a SAEV system is investigated

in the context of a grid-connected VPP and of an isolated microgrid compared to

alternative energy storage and transport options.

The economic performance of SAEVs is expected to improve in the case of larger

fluctuating renewable energy penetration. This is considered to be a synergy effect

of SAEVs and renewable energy. Therefore, the aim of this study is to evaluate

this synergy effect quantitatively by using the proposed method for optimizing the

charging of SAEVs.
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3.2 Methods

A mixed-integer linear optimization model is used to schedule the optimal charging

and discharging of the aggregate fleet of SAEVs in order to minimize total costs

for the VPP or microgrid. Transport demand, non-transport load and renewable

energy generation are considered external inputs. Transport demand and renewable

energy generation profiles are generated stochastically based on transport survey

and historical weather data, respectively.

3.2.1 Transport demand generation

Nomenclature

A. Indices and simulation variables

c(t), q(t) Charge energy and V2G discharge energy

di,j distance between node i and j

e(t) Energy stored in vehicles

emax(t) Maximum energy exchangeable

fpass(t) Distance for passenger trips

frel(t) Distance for rebalancing

ftot(t) Total distance

Gre(t) Generation from renewable sources

gj(t) Generation from DG

oj(t) DG operation binary variable

i(t), k(t) Energy imports and exports

L(t) Non-transport electricity load

mav(t) Vehicles available

t Time step

vj(t), wj(t) DG start-up and shut-down binary variables

λ(t) Rate of Poisson process

B. Parameters and constants
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Cbattery Cost of battery (yen/kWh)

Ccar Cost of car (with no battery)

Cstartup Start-up cost

CAP Battery capacity (kWh)

EC Electricity consumption of cars (kWh/km)

ev,max Maximum energy exchangeable per vehicle (kWh/km)

imax Maximum power exchangeable with grid (kW)

Lbattery Life of battery in equivalent full cycles

Lcar Life of car not including battery (years)

m Total number of vehicles

u(t) Average speed of vehicles (km/time step)

y(t) Electricity price (yen/kWh)

zi,j Markov transition probability between state i and j

β Ratio of trip distance to Euclidean distance

η Battery round-trip efficiency

The transport demand is based on transport survey data. The total number of

passengers at each time interval t is determined stochastically with a Poisson process

with rate λ(t) dependent on the relative frequency of trips at that time of day and the

average trips per hour of the simulation. The scaling of the simulation is determined

by the average trips per day (TPD) or average trip rate.

Each passenger request is generated at a specific node of the simulation, which

is extracted from the trip origin and destination node distributions for the specific

time of day. The generated trips are stored in matrix A(t), where aij is the number

of passengers originating from node i with destination node j. The distance between

each node and each other node is stored in the symmetric square matrix D, where

each element dij is the distance between node i and node j. The values are calculated

from the Euclidean distance between nodes multiplied by an average tortuosity factor

to account for the street layout. The total distance traveled to transport passengers

can therefore be expressed as:
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fpass(t) =
∑
j

∑
i

aij(t) · dij (3.1)

Passenger origin and destination distributions are typically not symmetric during

any period of time shorter than a day. Vehicles would therefore tend to accumulate

at certain nodes with higher destination rates and would be unavailable at nodes

with high origin rates. In order to ensure service to all passengers, redistribution

of vehicles is needed. It has been shown that the minimum amount of additional

distance to travel for redistribution is equivalent to the Earth Mover’s Distance

(EMD) between the origin and destination distributions during a certain period of

time [26]. This is also known as Wasserstein or Kantorovich distance. The EMD is a

theoretical minimum rebalancing distance, which can however be reached in practice

with an efficient routing strategy [26]. For the purpose of this work, the EMD is

calculated for each time interval from the trip distributions using the algorithm

in [69]. This extra relocation travel distance frel(t) is added to the total distance

traveled for trips with passengers to account for the energy needed for rebalancing.

The model assumes that the distribution of trips within a time period is uniform.

Also, the position of electricity load and injections in the grid is not considered, since

the actual position of specific vehicles is not simulated.

3.2.2 Charge scheduling model

The total energy stored in the vehicles e evolves as:

e(t+ 1) = e(t)− d(t) + c(t)− q(t)/η (3.2)

where d, c, and q are respectively transport energy demand, charge, and V2G

discharge during time t, all non-negative. η is the efficiency of V2G, set at 0.9. q = 0

for simulations without V2G. The electricity flow balance is stated as:

Gre(t)− L(t) + i(t)− k(t)− c(t) + q(t) +
∑
j

gj(t) ≥ 0 (3.3)
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Where Gre is the renewable energy generation, L is non-transport electric load

in the system, i is the grid import, k is the grid export, and gj is the generation

from unit j.

The dispatchable distributed generators (DG) units are controlled with three

binary decision variables: vj(t), wj(t), oj(t), all ∈ {0, 1}, to account respectively for

startup, shutdown and operation of generator j at time t. The constraints for the

generators are:

oj(t)− oj(t− 1) = vj(t)− wj(t) (3.4)

gj,min · oj(t) ≤ gj(t) ≤ gj,max · oj(t) (3.5)

with gj,min and gj,max respectively the minimum and maximum generation for

generator j when operational. The grid import/export capacity should also be less

than the maximum capacity imax:

0 ≤ i(t) ≤ imax (3.6)

0 ≤ k(t) ≤ imax (3.7)

The energy stored is constrained by the battery capacity of vehicles and the

initial energy stored at the beginning and at the end of the time period:

e(0) = CAP ·m · SOC0 (3.8)

CAP ·m · SOCmin ≤ e(t) ≤ CAP ·m (3.9)

e(tend) ≥ CAP ·m · SOCend (3.10)

With CAP the battery capacity of each vehicle, m the number of vehicles,

SOCmin the minimum state of charge of the combined fleet, and SOC0 and SOCend

respectively the initial SOC and the minimum final SOC at the end of the period.
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The amount of energy that can be charged or discharged from vehicles during a

time interval is constrained by the number of vehicles connected to a charging station

during the interval. Assuming a uniform distribution of passenger trip requests

during the period, the average number of vehicles connected is:

mav(t) = m− fpass(t) + frel(t)

u(t) · tlen
(3.11)

where u is the average speed of vehicles and tlen is the length of the time step

interval. The maximum energy exchangeable is therefore:

emax(t) = mav(t) · ev,max (3.12)

0 ≤ c(t) ≤ emax(t) (3.13)

0 ≤ q(t) ≤ emax(t) (3.14)

where ev,max is the maximum energy that can be exchanged by each vehicle

during a time interval. This is a function of the choice of power connection and

the length of the interval. The actual instantaneous power exchangeable during the

period may vary depending on the specific position of vehicles. In this work it is

assume that the power connections allow for higher power levels if required.

The model objective is the minimization of total cost. This includes costs from

the grid, from the generators, and the cost of battery cycling. The cost function for

the grid interaction is:

Cgrid(t) = i(t) · y(t)− k(t) · y(t) · ηgrid (3.15)

ηgrid is an efficiency parameter representing the cost of selling to the grid and to

avoid simultaneous import and export. This was chosen at 0.99. The cost function

for DG considers the start-up costs and cost of generation:

CDG(t) =
∑
j

(ij(t) · Cop,j + vj(t) · Cstart,j) (3.16)
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The objective function is therefore:

min
∑
t

(
Cgrid(t) + CDG(t) +

γcycles · c(t) · Cbat
Lbat

)
(3.17)

with y(t) the price of electricity from the grid at time t. γcycles is the fraction

of the battery costs amortized by cycling as opposed to aging, which was chosen as

0.5 (see also section 3.3.4). The model presented can be solved with mixed integer

linear programming methods.

A model predictive control (MPC) approach (also known as receding horizon

control) was used in the simulations to account for the limited prediction horizons

for weather patterns and transport demand. This allows us to obtain results from

optimization based on realistic prediction horizons, while still allowing us to study

the behavior of the system over long simulation periods. An optimization period

(horizon) of 2 days was used. At each step of the MPC, the first day of the opti-

mization is implemented, and the optimization is rerun with an updated prediction

horizon for the next day. For more accurate results but slower simulation times, the

optimization can be run at each hour with only the first hour implemented.

3.2.3 Renewable energy generation

Two intermittent renewable energy sources are considered: wind and solar power.

Renewable energy generation profiles g for both sources were generated stochasti-

cally based on historical data. Load, solar, and wind profiles were assumed to be

independent.

Wind speed profiles were generated with a Markov model based on historical

wind speed observation. Markov models are often used to generate wind speed pro-

files based on historical data [70]. Each element of the Markov transition probability

matrix Z was determined as:

zi,j =
wi,j∑
i nwi,j

(3.18)

Where nwi,j is the number of transitions from state i to state j in the historical
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data, where each state corresponds to a range of wind speeds, discretized into 20

states. The wind power generation Pw is then calculated considering the wind

turbine characteristic curve, which was linearized for simplicity:

Pw =

Prated ·min(1,max(0, W−Wcutin

Wrated−Wcutin
)) if W ≤ Wcutoff

0 if W > Wcutoff

(3.19)

where W is the wind speed.

Solar irradiance profiles were generated from hourly extraterrestrial solar irra-

diation profiles for the simulation days and location and a stochastically generated

average daily clearness index K. The probability distribution of K was calculated

by comparing computed values for the maximum daily extraterrestrial solar irradia-

tion over actual measured historical irradiation values for each day. Extraterrestrial

irradiation was calculated based on methodology reported in the HOMER software

documentation [71].

3.3 Numerical simulations

The model was developed in MATLABTM and tested with a case study in Tokyo.

3.3.1 Transport data

The transport request probability is based on the Tokyo Person Trip Survey 2008.

More information about the survey extraction methodology can be found in Section

A.1. Trips by car in a central 20x20 km area of Tokyo were considered for this work.

This area includes about 300 nodes (origin and destination points). Figure 3.4 shows

the location of the selected nodes. Figure 3.3a shows the amount of vehicles-minute

traveled during a day with the selected trips from the survey, and the corresponding

calculated EMD.
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Figure 3.1: Markov transition probability matrix for the wind speed historical observa-

tions.

3.3.2 Electricity load and price

The electricity load profile was taken from the Tokyo Electric Power Company

(TEPCO) [72]. Data for the year 2017 was used in the simulations. The elec-

tricity load profile was normalized to a daily electricity consumption of 6.3 kWh per

person, the average for Japanese residential consumers [73]. It is assumed that the

VPP has access to the wholesale electricity market as a price-taker. This is justified

by the scale of the VPP relative to the total electricity market.

The electricity price was taken from the Japan Electric Power Exchange (JEPX)

historical day-ahead trading data for the corresponding electricity load in 2017.

3.3.3 Renewable generation data

Hourly solar irradiation data was taken from the Japan Meteorological Agency for

Tsukuba weather station (near Tokyo) in the years 2011-2015 [74]. Figure 3.2a shows

the theoretical extraterrestrial daily solar irradiation and the historical measured

irradiation levels for the period considered. Seasonal variations are clearly visible.

Seasonality effect is much less prominent in the clearness index, shown in Figure
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(a) (b)

Figure 3.2: Calculation of solar power distribution for stochastic solar power profile gen-

eration. (a) Theoretical extraterrestrial daily solar irradiation (blue) and actual measured

daily irradiation during five years (red). (b) clearness index K during the five years.

3.2b for the same period. Solar panels are assumed with tilt equal to the latitude

(36◦) and peak generation at 1kW/m2, resulting in an average yearly capacity factor

of 13%.

Wind model data was based on 6 years of historical observations from 2010 to

2015 at Tokyo Haneda Airport, taken from NOAA [75]. The Markov transition

probability matrix obtained from historical observations is reported in Figure 3.1.

Each element represents the probability of a transition to the next state from each

current state. To obtain wind power generation profiles from wind speeds, an hy-

pothetical typical wind turbine was used with cut-in speed of 4 m/s, rated speed of

12 m/s and cut-off speed of 25 m/s, resulting in an average yearly capacity factor

of 21% with the considered wind speed profile.

The generation capacity was sized to generate the total non-transport electricity

consumption over a year. For simulation with solar power only, this is equivalent

to about 2 kW of solar PV per person, which is consistent with a rooftop solar PV

system size considering the number of people in the household. In Japan, residential

rooftop solar installation average size ranges between 4 and 6 kW [76]. Figure 3.3b

shows an example of solar and wind power generation during a week.
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Figure 3.3: (a) EMD for trips from the transport survey during a day; (b) Example of

profiles for solar and wind power generation during a week.

3.3.4 Cost and emissions assumptions

The exchange rate used in this work was 1 USD=100 JPY (similar to the current

exchange rate as of April 2018). Battery costs were estimated at $200/kWh [62],

with a cycle life of 1500 cycles. Costs of the battery were divided in equal parts

between amortization costs (calculated over 5 years) and cycling costs, thus reflect-

ing the practical life of batteries and avoiding underestimating costs of underused

storage. Life-cycle emissions of batteries were also included at 50 kg CO2/kWh

capacity, similar to lithium-ion batteries manufactured in the United States [79].

The private vehicle for comparison was assumed to be a hybrid electric vehicle

(HEV) with a high fuel efficiency of 23 km/l, similar to those of the 2016 Toyota
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Figure 3.4: Map of origin/destination nodes in the central 20x20 km area of Tokyo,

taken from transport survey [1].

Prius in city driving [80]. This value is conservative, as it is considerably higher than

current average new vehicle efficiency in Japan and higher than the 2020 target for

new vehicles of 20.3 km/l [81]. Gasoline prices were assumed at 150 yen/liter. The

cost of the vehicle was taken as 2 million yen or $20,000 with a life expectancy of 12

years, the current average for new vehicles in Japan [81]. Emissions from gasoline

consumption is 2.3 kg CO2/liter.

Autonomous vehicles costs (excluding battery) were conservatively estimated at

5 million yen or $50,000 with a life expectancy of 5 years. This is supported by

literature putting the extra price of fully autonomous technology at about $10,000

[61, 60]. The extra cost was assumed to be necessary due to the heavier usage

of the vehicle compared to a private car, and by the extra cost of maintenance

and other expenses which is assumed included in the capital cost. The vehicles’
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Table 3.2: Transport mode characteristics

HEV SAEV

capital cost 2 million yen 5 million yen

consumption 4.3 l/100km 0.15 kWh/km

expected life 12 years 5 years

Table 3.3: Summary of renewable energy characteristics

solar wind ref

capital cost [million yen/kW] 0.25 0.20 [77]

O&M cost [yen/kW/year] 0 7600 [77]

payback [years] 10 10 -

capacity factor [%] 13 21 -

emissions [kg CO2/kWh] 0.041 0.011 [78]

battery capacity was set at 50 kWh and the maximum power exchange (charging

or discharging) at 10 kW. A summary of the transport cost assumptions can be

found in Table 3.2. Grid emission intensity was set at 0.452 kg CO2/kWh, the

average between the value for the Japanese electricity supply in 2015 (0.534) and

the 2030 target (0.37) [82]. Renewable energy costs, operation and maintenance

costs, payback periods, capacity factors and emissions are summarized in Table 3.3.

As of 2018, Japan had a residential solar feed-in tariff of 26 yen/kWh [83].

High feed-in tariffs in recent years have caused a sharp increase in photovoltaic

installations in the country with about 50 GW of cumulative installation at the

end of 2017, a 10-fold increase from 2011. It is expected that the feed-in tariff

will be progressively decreased and phased out in the coming years to favour self-

consumption [84]. In this work, it is assumed that excess PV power is bought at the

price of electricity in the wholesale electricity market (marginal cost of generation).

The price of electricity for households was set at 20 yen/kWh, which is close to the

average price for TEPCO.

For the microgrid case, hypothetical DG units representing a gas turbine, a diesel
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Table 3.4: Summary of distributed generation characteristics

DG unit min. max. cost CO2

kW kW yen/kWh kg/kWh

gas turbine 2000 5000 20 0.6

diesel engine 100 1000 25 0.65

biomass 1000 2000 15 0.4

generator, and biomass steam plant were used. Table 3.4 presents a summary of the

characteristics of these units. Approximate values were taken from [85]. Start-up

costs for each unit were chosen as the cost of running the unit at full power for one

hour.

3.3.5 Simulation parameters and scale

The time interval length for the simulations presented was set to 1 hour and the

tortuosity factor of roads was set to 1.5 (see also Section A.1.2). The fleet size

was selected at 1.4 vehicles per average trip per hour (TPH). This ratio was found

in previous work to be a good compromise between minimizing waiting times and

operating costs of the system (see Chapter 2). Assuming an average of 2 trips

per private vehicle per day, this suggests that autonomous vehicles would replace

traditional vehicles with a proportion of about 1:8.6, in accordance with previous

studies [4], [61]. The total population assumed in these simulation was chosen as

12,000 people, resulting in a total of 24,000 trips per day (1,000 trips per hour

average).

3.4 Results and discussion

In this study, two cases were considered for analysis: grid-connected VPP without

DG, and isolated microgrid with DG. Each data point represents 100 week-long

simulations, taken from Mondays to Sundays of the load profile.
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Table 3.5: Summary of scenarios. VPP does not apply to the microgrid case.

scenario
trans-

port
storage

charge

sched.
V2G VPP RE

BAU HEV × × × × ©

Battery HEV © © × © ©

SAEV1 SAEV © × × © ©

SAEV2 SAEV © © × © ©

SAEV3 SAEV © © © © ©

BAU Battery SAEV1 SAEV2 SAEV3
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Figure 3.5: Weekly total costs for 100 iterations for each case considered.

3.4.1 VPP case

5 scenarios were considered to compare the cost and emissions performance of SAEV

to other options and the effectiveness of the optimization algorithm in the context

of a VPP. These are summarized in Table 3.5. The Business as usual (BAU) case

assumed private vehicles and electricity from utility at a fixed price of 20 yen/kWh

and excess generation sold at the marginal price (see section 3.3.4). The battery

case assumes that households install a battery and join a VPP with an energy

management system that minimizes total costs. The 3 SAEV scenarios assume

that households join a VPP that also provides transport services via SAEV (thus

they avoid buying a private vehicle) without installing a battery. The 3 scenarios
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Figure 3.6: Sensitivity of (a) total costs to autonomous vehicle cost and (b) variable

costs (electricity, fuel, and battery costs) to battery costs.

differ with regard to the charging strategy applied, and correspond respectively to

unscheduled charging, optimized charging without V2G, and optimized charging

with V2G.

Total costs for each scenario are reported in Figure 3.5. The breakdown of

costs and the CO2 emissions for each scenario are reported in Table 3.6. The cases

with transport provided by SAEV (scenarios 4 to 6) are the lowest cost options.

The cost savings are dominated by capital costs, as vehicles are shared among all

participants in the VPP while avoiding the cost of each individual buying a private

vehicle. However, the cost of electricity becomes significantly higher in the case

of SAEV, although it is still lower than the fuel costs it replaces. The proposed

algorithm decreases electricity costs by 32% and 75%, respectively for the scenario

with no V2G and with V2G over the unscheduled charging. The difference would

increase with more variable electricity prices in markets with higher penetration of

intermittent sources.

Carbon emissions increase significantly in the SAEV cases, due to the combined

effect of high carbon intensity of the Japanese grid and the high efficiency of hybrid

cars. Another important factor is the higher total distance traveled by SAEV com-
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Figure 3.7: Sensitivity of variable costs to (a) HEV fuel efficiency and (b) fuel cost.

Table 3.6: Costs and emissions for VPP scenarios. Capital includes the cost of vehicles

and solar panels.

Costs (million yen) CO2

ele. fuel batt. capital total (t)

BAU 3.60 3.29 0.00 49.94 56.83 86.7

Battery -0.99 3.29 3.35 49.94 55.59 94.6

SAEV1 2.17 0.00 3.96 38.44 44.57 129.2

SAEV2 1.47 0.00 3.90 38.44 43.80 124.2

SAEV3 0.77 0.00 4.30 38.44 43.51 128.9

pared to private vehicles due to the need to rebalance empty vehicles, as discussed

previously. However the life-cycle emissions were not considered, which would likely

be significantly lower due to the need for less vehicles. The optimization objective

function could also be expanded with carbon pricing and hourly carbon intensity to

minimize the emissions. This was not considered in this work due to lack of data.

Sensitivity to autonomous driving technology costs

Autonomous driving technology costs are the most important factor determining

the total cost of the system. This is because capital costs dominate the total costs,
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Figure 3.8: (a) Exponential fit of the relation between prices and dispatchable generation

on the Japan Electric Power Exchange (JEPX) in 2017. (b) Effect of increasing solar

penetration in the grid.

being about 10 times the variable costs (Table 3.6). However, even for the case in

which vehicles cost 6 million yen ($60,000), the SAEV+VPP systems are cheaper

than the alternative (Figure 3.6a).

Sensitivity to battery costs

The sensitivity to battery costs is presented in Figure 3.6b. Battery costs are a major

factor in determining the operating or variable costs. Costs for SAEV with V2G

decrease faster than other cases, as the lower cost of battery cycling allows vehicles

to be used for grid storage. It should be noted that battery prices are expected to

fall significantly in coming years. Bloomberg New Energy Finance 2017 Lithium-Ion

Battery Price Survey gives average pack prices of $209/kWh (20,900 yen/kWh) in

2017, and they expect they will fall below $100/kWh (10,000 yen/kWh) by 2025

[86].

Sensitivity to fuel prices and fuel efficiency

Operating or variable costs (fuel, electricity and battery) are very sensitive to fuel

prices and HEV fuel efficiency. While variable costs for the BAU and battery cases

are similar with SAEV cases in the baseline scenario, these costs diverge significantly
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with less optimistic assumptions for HEV. This is shown in Figure 3.7. A fuel

efficiency of 20 km/liter is the target for new vehicles sold in Japan in 2020 [87]. 15,

20 and 23 km/liter are equivalent to 35, 47 and 54 mpg, respectively. This is still

very optimistic for HEV, and the average fuel efficiency of vehicles may be towards

the lower end of the range, thus favoring SAEVs. Fuel prices may also increase as

oil prices increase.

Effect of increasing solar grid penetration

The value of grid storage is higher with higher grid penetration of intermittent

renewable energy. To test the effect of different levels of intermittent renewable

energy penetration on the grid, the approximate aggregate cost curve of dispatchable

generation in the TEPCO area was estimated by fitting an exponential curve to the

demand/price data from JEPX (Figure 3.8a). This allows the generation of artificial

electricity price profiles depending on load and renewable energy generation profiles.

The case of increasing penetration of solar power in the grid was tested, with the

results reported in Figure 3.8b. Higher solar penetration depresses prices paid for

excess solar generation and encourages self-consumption and storage. This especially

favours SAEV cases that can charge when prices are lower. The V2G case shows

almost no difference with the scheduled case without V2G. This is because this

simple analysis neglects some side-effects of higher solar penetration, such as the

fast and expensive ramping needed at evenings. This would further increase the

value of V2G providing peak generation.

3.4.2 Microgrid case

The same transport, load and weather data used for the VPP was used to test the

microgrid case, assuming an isolated microgrid with no grid connection (imax = 0).

The same scenarios presented in Table 3.5 were used with renewable capacity sized

to cover all electrical loads over a year with a 50/50% share of wind and solar power.

Total costs for each scenario in the microgrid case are reported in Figure 3.9. The

breakdown of costs, the installed renewable energy generation capacity, and the
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Table 3.7: Costs, installed renewable generation capacity, and emissions for microgrid

scenarios. Fuel includes cost of fuel for cars and cost of dispatchable generators. The

renewable generation capacity is sized to cover all load in the system during a year with

50% wind and 50% solar. SAEV scenarios have higher RE capacity (and associated higher

costs) because of the higher load from the electrified transport.

Costs (million yen) RE (MW) CO2

fuel batt. capital total solar wind (t)

BAU 8.14 0.00 48.10 56.24 12.15 7.52 181.3

Battery 5.09 3.56 48.10 56.75 12.15 7.52 117.9

SAEV1 6.64 3.96 40.11 50.71 16.55 10.24 184.5

SAEV2 4.61 3.87 40.11 48.59 16.55 10.24 131.0

SAEV3 2.62 4.46 40.11 47.19 16.55 10.24 92.7

carbon emissions for the microgrid case are listed in Table 3.7. An example of the

results for one week with and without V2G is presented in Figure 3.10.

SAEV scenarios are the lowest cost options, even considering the increased re-

newable energy capacity installed. The difference between non-scheduled, scheduled

without V2G, and with V2G is much more evident than for the VPP case. The

scheduled SAEV model with V2G is able to avoid the use of more expensive gen-

erators and maximize the use of renewable energy. This also significantly decreases

carbon emissions, which are about half for the SAEV+V2G case compared to the

BAU case.

In Figure 3.11 the average utilization and load factors are reported. These are

defined respectively as the share of time a generator is active over the whole period,

and the load level of the generator when active. As generators are less efficient at

lower load factors, higher load factors are preferable. The effect of lower load factor

on varying the per unit carbon emissions or costs were not considered for simplicity.

The cases with batteries and with SAEV+V2G show the highest load factors and

the lowest utilization factors. In particular, this implies the possibility to re-size

the system with less generators, thus reducing the capital costs. This effect was not
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Figure 3.9: Weekly average total costs for the cases considered in the microgrid case.

considered in this work (the generators are assumed to be already present).

Sensitivity to renewable energy capacity

The sensitivity to renewable energy capacity is shown in Figure 3.12. The values of

capacity represent the share of yearly load generated by renewable energy. These

correspond to RE capacities listed in Table 3.7. SAEVs are effective at integrating

renewable energy in the system. The total cost for the BAU case with no renewable

energy is approximately the same as for the case with SAEV+V2G with 150%

renewable energy. As shown in Figure 3.12b, this allows a drastic decrease in carbon

emissions at the same cost level.

3.4.3 Implications for policy and practice

The results suggest that there would be significant advantages for households shifting

from a private vehicle to a SAEV system in the context of a VPP or in a microgrid.

This could help accelerate transport electrification, provide large amount of grid

storage to integrate intermittent renewable sources, and avoid the problems con-

nected with the introduction of a large amount of non-controlled EVs on the grid.

Rapidly decreasing costs of batteries and autonomous driving technology would

make the system even more favorable. However, in the current situation the system
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Figure 3.10: Example of SOC, charge [C], load [L] and generation from gas [GT], diesel

[DE], biomass [B], solar [S] and wind [W] (a) without V2G (b) with V2G. V2G discharge

(negative charge) allows to avoid gas turbine and diesel generator start-up.

may increase carbon emissions in the Japanese context. The introduction of carbon

pricing with a real-time carbon intensity signal from the grid may not only solve

this problem, but actively decrease the total carbon emissions. It should also be

noted that, even though in this work the carbon intensity was considered constant

and equal to the average, vehicles tend to charge at periods of excess electricity gen-

eration and low prices, which often correspond to high renewable energy generation

and thus lower carbon intensity.

The results may also apply to non-autonomous car sharing systems, although

the cost of manual rebalancing would likely make the system more expensive and

the absence of autonomous capability less attractive to users.
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Figure 3.11: Utilization factor and load factor for gas turbine [GT], diesel engine [DE],

and biomass [B] in the microgrid case.
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Figure 3.12: Microgrid case: sensitivity to total renewable energy (RE) capacity of (a)

total costs (b) carbon emissions

3.5 Conclusions

The synergies between SAEVs and renewable energy sources were studied in the

context of a grid-connected Virtual Power Plant (VPP) and an isolated microgrid.

An optimization methodology was developed for the charge and discharge of the ve-

hicles to minimize costs for the system. The model was tested with several scenarios

using weather data and transport patterns for the Tokyo region. The results for the

case study show that SAEVs with the optimized charging are effective at decreasing

the overall costs in the VPP. The proposed algorithm also decreases electricity ex-

penditures by 75% over the unscheduled charging in the case of SAEV+V2G. Total
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cost savings are however dominated by capital cost savings due to lower number

of vehicles needed. Overall, total costs are about 20% lower for households with

rooftop solar power shifting from utility power and hybrid private vehicles to the

VPP with SAEV. It was also shown that further electricity savings (and possibly

profits) could be attained in a grid with higher penetration of intermittent renew-

able energy, demonstrating strong synergies existing between SAEVs and renewable

energy. In the case of the isolated microgrid, SAEVs with V2G decrease cost by

16% and cut carbon emissions by half. This demonstrates the potential of SAEV to

promote the integration of intermittent renewable energy while reducing total costs

for the system.

This is an early work on the integration of SAEV with renewable energy, and

several other aspects could be investigated in future work. Real-time grid carbon

intensity could be used to extend the cost function to include carbon pricing to

reduce vehicles’ emissions. Also, an estimate of the life-cycle carbon emissions of the

systems studied would allow to assess more realistically the impact of this technology.

A more detailed model of dispatchable generation costs could be used to investigate

more realistically the effect of increasing penetration of renewable energy in the grid

and the potential for vehicles to provide grid storage. Moreover, the provision by

vehicles of high revenue grid services such as frequency control or operating reserves

could be included in the optimization.

86



Chapter 4

A novel approach to SAEV

simulation: two-layer transport

and charging optimization

4.1 Introduction

In Chapter 2 a model of SAEV charging was proposed. However, optimized vehicle

relocation was not considered. This is a central problem in the operation of SAEV,

and it is necessary to develop a charging optimization framework that can also

incorporate intelligent vehicle relocation.

The difference in time scales for charging optimization and transport scheduling

poses significant challenges for the simultaneous optimization of SAEV’s transport

and charging aspects. While the rebalancing of vehicles is generally optimized with

a horizon of 15-30 minutes [36, 26], electric vehicle charging is typically optimized

over several hours. The longer time frame for charging optimization is due to several

reasons. Firstly, charging is relatively slow. Even with fast-charging it may take over

one hour to fully charge a battery [88]. Charging for a relatively long time once a

vehicle is connected is also more efficient, as it avoids the time wasted in continuous

connection and disconnection. The most important consideration however is related

to the challenges and opportunities that these vehicles offer to the grid as mentioned
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before. In order to avoid grid congestion and provide useful service to the grid, the

charge scheduling algorithm needs to optimize over the time frame of variability

of electricity demand and intermittent renewable energy sources such as wind and

solar, which can be several hours.

In this chapter, charge optimization based on electricity price is integrated into

model predictive control (MPC) of a shared autonomous electric vehicle (SAEV) sys-

tem based on the work by Zhang et al. [36]. The complexity and the computational

time of the optimization increase more than linearly with longer time horizons, and

optimizing the charge over several hours is impractical. The novel model therefore

deals with the different time frames at which transport service and charging have to

be optimized with a MPC routine which is run in parallel at two different time scales.

Vehicle charging is optimized over longer time scales to minimize electricity costs.

Vehicle routing and rebalancing for transport service is optimized at shorter time-

scales to minimize waiting times for passengers, taking as constraints the results of

the long-time-scale optimization. This approach allows the efficient optimization of

both aspects of SAEV operation.

4.2 Methodology

The present chapter is based on the article by Zhang et al. [36] where an MPC was

developed to find optimal management strategies for rebalancing of autonomous

mobility-on-demand systems (shared autonomous vehicles). Although the work also

proposed a version with charging constraints, the charging was not optimized and

the vehicles would charge at maximum power as soon as they connect to charging

stations.

4.2.1 Transport model from literature

The rebalancing problem is formulated as a MILP. The problem formulation ensures

that the system always optimizes the rebalancing of the vehicles within the opti-

mization horizon. However, the computational complexity of the MILP optimization
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limits the feasibility to relatively small systems (in the order of a few tens of nodes).

Nevertheless, the results of this model can be useful to estimate the performance in

comparison to other systems.

Nomenclature

A. State variables

di,j(t) waiting passengers at node i with destination j

uki (t) vehicle k waiting at i

Tpki (t) moving vehicles

qk(t) state of charge

B. Control variables

vki,j(t) vehicle k transporting passengers between i and j

wki,j(t) vehicle k rebalancing empty between i and j

ek(t) energy charged

gk(t) energy discharged with V2G

C. Exogenous simulation variables

ci,j(t) passenger arrivals at node i with destination j

f(h) relative number of trips departing at hour h

m(t) price of electricity

pi,j(t) probability of a trip from i to j at time step t

rwx, rtx, rox, rdx weight, hour of departure, origin node, and destination node of trip

x from survey.

λ(t) rate of trips arrival at time t

D. Parameters and constants

Jx, Ju, Jm, Js cost of moving, rebalancing, charging, and final SOC

qmin, qmax minimum and maximum SOC

thor optimization horizon

αc, αv2g, αd charge, V2G discharge, and consumption rate

β temporal ratio between the 2 layers

ρ1, ρ2, ρ3 weights of rebalancing, charging and final SOC secondary objectives
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η V2G efficiency

In this work, Zhang’s model is extended to include electricity price-based charge

scheduling and vehicle-to-grid discharge in the global optimization.

The general formulation of the model evolution is:

x(t+ 1) = Ax(t) +Bu(t) + c(t) (4.1)

where x(t) is the state of the system at time t, u(t) is the set of control variables

and c(t) represents new passenger arrivals at nodes.

x(t) =


d(t)

p(t)

u(t)

q(t)

 (4.2)

u(t) =


v(t)

w(t)

e(t)

g(t)

 (4.3)

These variables are described as follows.

The controls for the optimization are encoded into binary variables. vkij(t) = 1

when vehicle k is transporting passengers between i and j and wkij(t) is the equivalent

for rebalancing trips (empty trips). dij(t) and cij(t) are, respectively, the number of

passengers waiting and arriving at node i with destination j at time t. dij(t) evolves

as:

dij(t+ 1) = dij(t) + cij(t)−
∑
k

vkij(t) (4.4)

Another variable is used to keep track of vehicles in movement: Tipki (t) = 1 when

vehicle k is at distance Ti from its destination i at time t. This evolves as:
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Tipki (t+ 1)

=


Ti+1pki (t) +

∑
j:tji−1=Ti

(vkij(t) + wkij(t)) Ti < Tmax,i∑
j:tji−1=Ti

(vkij(t) + wkij(t)) Ti = Tmax,i

(4.5)

The binary variable uki (t) represents waiting vehicles at nodes. uki (t) = 1 when

vehicle k is waiting at node i at time t. The variable evolves as:

uki (t+ 1) = uki (t) +0 pki (t)−
∑
k

(vkij(t) + wkij(t)) (4.6)

Vehicles can either be waiting or moving:

∑
i

uki (t) +
∑
i,Ti

Tipki (t) = 1 (4.7)

Also, vehicles can only do one action at each time step:

∑
i

(
uki (t) +

∑
j

vkij(t) +
∑
j

wkij(t)
)
≤ 1 (4.8)

and vehicles cannot transport more passengers than are waiting at stations:

∑
k

vkij(t) ≤ dij(t) + cij(t) (4.9)

Another constraint is associated with vehicles’ charge state. The state of charge

(SOC) of vehicles is encoded into a real variable qk(t) ∈ {0, 1} and qmin ≤ qk(t) ≤

qmax. Vehicles need to have enough charge to be assigned a trip:

qk(t) ≥ vkij(t)αdtij + qmin (4.10)

qk(t) ≥ wkij(t)αdtij + qmin (4.11)

αd is the energy consumption per time step, and tij is the number of time steps

for the trip from i to j.

The cost functions to minimize are related to the waiting time for passengers

and the rebalancing costs:
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Jx(x(t)) =
∑
i,j

dij(t) (4.12)

Ju(u(t)) =
∑
k

∑
i,j

tijw
k
ij(t) (4.13)

For a more detailed description of the model, refer to [36].

As noted previously, in the original work the charging of vehicles was not a

control variable, and vehicles would charge at a fixed rate when not moving until

reaching a full state of charge or a movement was requested.

4.2.2 Charge scheduling

In this work the charging was added to the control vector, thus becoming part of

the optimization. The state of charge (SOC) of vehicles qk(t) evolves as:

qk(t+ 1) = qk(t) + ek(t)− gk(t) (4.14)

where ek(t) and gk(t) are, respectively, the energy charged and discharged to the

grid in time step t, both non-negative.

The constraints for the charging rates are:

ek(t) ≤ αc
∑
i

uki (4.15)

gk(t) ≤ αv2g

∑
i

uki (4.16)

where αc and αv2g are the maximum charging and V2G discharging rates, re-

spectively.

To take into account the charging rate in the optimization, a further cost function

is added. This is stated as:

Jm(u(t)) =
∑
k∈V

(
(ek(t)− ηgk(t))m(t) + ωgk(t)

)
(4.17)

where m(t) is the price of electricity, η is the V2G efficiency, and ω is the extra

cost of cycling the battery incurred when supplying power to the grid. The system
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is considered a price taker, therefore the electricity price is not affected by charging.

It should be noted that since η < 1 and ω > 0, the optimization would never

charge and discharge at the same time. Cost function Jm is added as a further

objective to the cost functions relative to the waiting time for passengers Jx and the

redistribution trips for vehicles Ju.

Another cost function is added to put a premium on higher state of charge at

the end of the optimization period:

Js = −
∑
k∈V

qk(t+ thor − 1) (4.18)

This is to avoid vehicles reaching a minimum SOC at the end of the optimization

horizon, and to account for future transport demand that is necessarily not repre-

sented in the optimization. The overall objective is therefore (the variables for each

function have been omitted for compactness and clarity):

minimize
u(t),..,u(t+thor−1)

∑
t

(
Jx + ρ1Ju + ρ2Jm

)
+ ρ3Js (4.19)

ρ1, ρ2, and ρ3 in (4.19) are the relative weights assigned to each secondary ob-

jective.

4.2.3 Two-layer optimization

As mentioned in the introduction, vehicles rebalancing and charging optimization

require very different optimization time frames. Rebalancing is generally optimized

within an horizon of half an hour or less, while it would be preferable to have a longer

horizon for charging optimization in order to take into account the availability of

intermittent renewable energy sources and variability of electricity demand.

In order to optimize both transport and charging, a two-layers model predictive

control optimization was implemented. In model predictive control (or receding

horizon control), at each time step the optimization is performed over a time horizon

and only the first control action is executed. This ensures that at each time step the
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Upper layer (long-term charging optimization)

Main layer (short-term transport optimization)

τ+τhor-1

Figure 4.1: Schematic diagram of the two-layers MPC optimization model

control uses all the information available up to the future prediction horizon when

taking the present action.

In this 2-layer MPC, a higher ‘coarse’ MPC layer optimizes for charging over

longer time frames taking into account the requirements of transport service. The

main layer optimizes transport service over short time frames, taking as constraints

the optimal charging controls found by the higher layer. Both layers are based on

the model presented in the previous sections.

The two layers are related by a step length ratio β that determines the relative

length of a time step between the two layers. At the beginning of the simulation,

the higher coarse layer determines the optimal charging schedule by optimizing over

its own time frame. The results are passed down to the main layer as constraints

on charging during each step. After β time steps in the main layer, the higher layer

optimizes again over its own time frame, passing down the next charging constraints

to the main layer for the next β time steps. A schematic diagram of the two-layers

model is presented in Figure 4.1.

4.2.4 Upper layer and constraint assignment

In this section, the integration of the two layers is discussed. The upper layer

simulation variables are denoted with Greek letters, so that d, p, u, q, t, e, c are

respectively δ, π, µ, φ, τ , ε, κ. T ki is also defined as the distance from node i of

vehicle k if moving, and T ki = 0 if the vehicle is waiting at node i. The upper layer’s

objective function has secondary weights that are related to the main one by division
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by a factor β, to reflect the fact that a waiting passenger waits β times longer in

the upper simulation for each time step, as the time step is longer. The arrivals at

nodes is defined as:

κij(τ) =

τβ∑
t=(τ−1)β+1

cij(t) (4.20)

At the start of an upper layer simulation at (main) time t′, the situation at the

main layer is assigned to the upper layer:

δij(τ) = dij(t
′) (4.21)

[Tk
i /β]πki (τ) = 1 if T ki > 0 (4.22)

µki (τ) = uki (t
′) (4.23)

φk(τ) = qk(t′) (4.24)

The charging controls resulting from the upper layer optimization are assigned

back to the main layer as constraints on charging and on movement. For vehicles

moving, the constraints are assigned only after arrival.

ek(t) =

ε
k(τ ′)/β t > t′ + T ki

0 t ≤ t′ + T ki

(4.25)

uki (t) =

1 t > t′ + T ki

0 t ≤ t′ + T ki

(4.26)

where τ ′ in (4.25) such that (τ − 1)β < t′ − t ≤ τβ.
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4.3 Numerical data

The model was implemented in MATLABTM and solved as a mixed integer linear

optimization with the built-in MATLABTM function intlinprog. To evaluate the

performance of the model, several simulations were conducted using data from the

transport survey in Tokyo.

4.3.1 Transport data

The Tokyo Person Trip Survey 2008 was used to test the model. More details about

the survey analysis and trip generation methodology can be found in Section A.1.

Only trips by car or taxi with origin and destination in a central 5x5 km area of

Tokyo were considered. These were considered the trips with characteristics more

likely to be similar to trips done with the SAEV system. This area was divided into

10 regions by grouping nodes with k-means clustering. The cluster’s centroid for

each area was considered as a discretized model of the origin/destination of trips in

each area.

4.3.2 Secondary weights determination

Deciding the value of secondary weights is an important problem for multi-objective

optimization models. The first weight in (4.19), ρ1, is the easiest to set, as there is

an optimal rebalancing that can always be achieved. If set low enough (0.01 in this

work), the rebalancing will be optimized without influencing the main objective.

Further decrease of rebalancing cost is impossible under this optimized rebalancing

cost (this optimized distance is the same distance found with the Earth Mover’s

Distance calculation in Chapter 3). Determination of ρ2 and ρ3 is less straightfor-

ward. These two secondary objectives represent the cost of energy, not the ‘waiting

cost’ like the main objective. Therefore, setting these objectives depend on the rel-

ative importance of minimizing monetary costs over minimizing the waiting times

for passengers. This trade-off need to be decided by policy or by user preference. A

sensitivity analysis was conducted to understand the influence of this parameter on

96



CHAPTER 4. A NOVEL APPROACH TO SAEV SIMULATION: TWO-LAYER
TRANSPORT AND CHARGING OPTIMIZATION

the cost and wait times. The results of the sensitivity analysis are shown in Figure

4.2. Each data point represents the median values over 10 simulations of the model.

Total system costs increase and waiting time decrease with decreasing ρ2. However,

a plateau is reached for both values, as there is a charge schedule that ensures min-

imum waiting time while minimizing as much as possible the charging costs. This

is reached for ρ2 ' 0.1 in the simulations of Figure 4.2. In this work, ρ2 was set to

0.001 to ensure the simulations are within the plateau region, as minimizing wait

times is considered a priority over marginally lower charging costs. The objective for

final SOC was set as ρ3 = ρ2mmedian where mmedian is the median price of electricity.

This is equivalent to compensate for lower SOC by buying electricity at the median

price up to 100% SOC.
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Figure 4.2: Costs and moving average (MA) peak waiting times sensitivity to secondary

weight ρ2

4.3.3 Electricity prices and scenario reduction

In order to investigate the influence of different electricity price profiles on the

results, real electricity market price profiles were used in the simulations. Due

to the computational time required for each simulation, studying an entire year of

electricity prices would be extremely time consuming. A scenario reduction approach

was therefore used to reduce the number of required simulations while assessing the

behavior of the model in all the possible situations.

In this work, a scenario is defined as the electricity price profile during a single
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Figure 4.3: (a) Day-ahead price profiles for the Tokyo region in the JEPX wholesale

electricity market selected with scenario reduction. (b) Generated scenarios from a gamma

distribution to test the model with high variability prices.

day. In the scenario reduction approach a subset of all possible scenario (daily price

profiles) is selected to represent the entire spectrum of possible scenarios, i.e., all

the historical daily electricity profiles. Only the most representative scenarios are

kept, and similar scenarios are discarded. The probability of the selected scenarios is

updated with the sum of the probability of all the discarded scenarios most similar

to the ones kept. To assess the similarity of different price profiles, the Kantorovich

distance was used, which is the most common measure of distance between proba-

bility distribution used in stochastic programming [89]. All the price profiles were

normalized to calculate the distance.

The forward selection algorithm described in [89] was used to select the scenar-

ios. The day-ahead wholesale electricity market prices for the Tokyo region on the

Japanese Electric Power Exchange (JEPX) in financial year 2016 (April 2016 to

March 2017) were used [90]. 10 scenarios were selected (Figure 4.3a). Each scenario

was associated with a weight (probability) proportional to the number of days with

a profile closest to the selected one.

The Tokyo region has relatively low penetration of renewable electricity, and the

wholesale market is still relatively small as the electricity market is still in the process
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of being completely liberalized. In order to test the model with price profiles with

higher variability, 10 more scenarios were generated from a gamma distribution with

shape parameter 2 and scale parameter 10, giving an average price of 20 yen/kWh.

Figure 4.3 shows the price profiles selected in the case of JEPX historical market

prices and the generated gamma distribution scenarios.
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Figure 4.4: Peak wait times and total costs for the random price profiles generated from

a Gamma distribution. The 4 cases represent the unscheduled model, the 1-layer model,

the 2-layer model, and the 2-layer with V2G, respectively.

4.4 Results and discussion

The simulations were run with 30 vehicles, and an average trip rate of 1500 trips

per day. The speed of vehicles was set at 20 km/h, the reported average road speed

in central Tokyo at peak time [53].

Time step for the main layer is 2 minutes, with a 15 time steps horizon (30

minutes). The ratio between the two layers is β = 15, so that the higher layer

has a time step of 30 minutes. The time step horizon for the higher layer is set at
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Figure 4.5: Peak wait times and total costs for the simulation with real prices on the

Japan Power exchange in 2017.

10, giving an optimization time horizon for charging of 5 hours. Vehicles battery

size was set at 50 kWh and the state of charge was limited between 0.2 and 0.9 to

increase battery life.

Different models were compared to evaluate the performance of the proposed

charge scheduling algorithm in terms of waiting times and charging costs:

1. no charge scheduling

2. 1-layer charge scheduling

3. 2-layer charge scheduling

4. 2-layer charge scheduling with V2G

Case 1 represent the model from the literature, where vehicles charge as much as

possible as soon as they are idle. Different results may have different levels of SOC

at the end of the simulation. To be able to compare different results the difference
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Figure 4.6: (a) Aggregated charging power and electricity price for case 1 (unscheduled).

The price profile is taken from a Gamma distribution. (b) Aggregated charging power and

electricity price for case 2 (1-layer scheduling). There is almost no difference between

case 1 and 2, as the charge scheduling optimization horizon is too short to be effective.

(c) Aggregated charging power and electricity price for case 3 (2-layer scheduling) (d)

Aggregated charging power and electricity price for case 4 (2-layer scheduling with V2G)
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Figure 4.7: (a) State of charge (SOC) of vehicles for case 3 (2-layer scheduling) (b)

State of charge (SOC) of vehicles for the case with V2G. The steep drop in SOC around

4 am is correlated with a high electricity price and resulting V2G discharge (compare with

Figure 4.6d).

between the final SOC and the initial SOC was valued at the median price of the

day.

The peak waiting times and the total costs for the simulations are presented in

Figure 4.4 and Figure 4.5 for the case with random price profiles and with price

profiles taken from JEPX, respectively. The model proposed with 2-layer optimiza-

tion decreases total charging costs significantly when compared to the unscheduled

model or the 1-layer model. The effect is much larger with the random price profile,

due to the much higher variability that gives the charge optimized model a clearer

advantage over the unscheduled model.

For the case with historical price profiles in Tokyo, the effect is smaller. As

mentioned previously, this is due to the relatively low penetration of renewable

energy sources in the Tokyo grid and the nascent state of the Japan wholesale

electricity market, with both factors contributing to relatively static price profiles.

Moreover, when peaks exist, they generally correspond to transport demand peaks

(Figure 4.3a), rendering the model less effective since transport is always a priority

in the optimization. Table 4.2 reports the results for the JEPX prices weighted
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Figure 4.8: (a) Aggregated charging power and electricity price for case 3 (2-layer

scheduling) for one of the real price profiles in the Tokyo wholesale electricity market

in 2017 (b) Aggregated charging power and electricity price for case 4 (2-layer scheduling

with V2G) for one of the real price profiles in the Tokyo wholesale electricity market in

2017.

with the probability of each scenario tested. Costs decrease by about 10% with the

proposed model.

While the model with V2G has a significant advantage over the one without in

the high variability random profiles (Figure 4.4b), the results for the two models are

practically indistinguishable for the JEPX profiles (see Figure 4.5b and table 4.2).

This is due to the relatively low price differentials in the JEPX profiles, which are

generally not enough to overcome the costs of V2G in terms of battery degradation

and opportunity cost.

It should be noted that there is not much difference between the unscheduled

model and the 1-layer model in terms of costs. This shows that the 1-layer model

is unable to effectively optimize charging due to the limited optimization horizon.

This is evident from Figure 4.6a and Figure 4.6b, showing aggregated charging

power for the 2 models. The results are almost indistinguishable. This is in contrast

with Figure 4.6c and Figure 4.6d, where the charging optimization is evident as the

aggregate charging peaks are correlated with lows in the electricity price profile.
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Figure 4.9: 10 minutes moving average wait times: (a) case 1; (b) case 2; (c) case 3;

(d) case 4.
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Table 4.2: Wait times and charging costs for the 4 models with the selected scenarios for

the Japan Electric Power Exchange in 2017 and with the randomly generated electricity

price profiles. MA is moving average.

1 2 3 4

JEPX price profiles

peak wait time (minutes) 14 18 21 31

10-min MA peak wait (min.) 3:37 3:23 4:02 4:12

total electricity cost (yen) 10493 10538 9393 9282

gamma-distributed price profiles

peak wait time (minutes) 14 18 25 21

10-min MA peak wait (min.) 3:37 3:32 4:27 4:23

total electricity cost (yen) 25868 25218 18542 14684

The state of charge of vehicles during the simulation is shown in Figure 4.7a and

Figure 4.7b.

Figure 4.8a and Figure 4.8 report aggregate charging levels for a JEPX price

profile. Results shown are for the most representative day of the 10 selected, rep-

resenting a equivalent probability of 68%. It is evident that the price profile is

extremely flat, with a maximum price differential of about 2 yen/kWh. This limits

the effectiveness of the charge scheduling algorithm, especially since its priority is

transport service. The 10-minutes moving average waiting times for new arrivals for

the 4 models is shown in Figure 4.9 for the same price profile. The results show new

peaks in waiting times corresponding to a low electricity price around noon, since

some of the vehicles have been scheduled to charge and avoid the afternoon price

peak.

The median computation time for a time step of the 2-layer model on a quad-

core 3 GHz Intel Core i5 processor with 32GB of RAM was about 20 seconds for

the upper layer and 1.5 seconds for the main layer. The average overall was 29.4

seconds per time step (5 hours 53 minutes per simulation).
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4.5 Conclusions and future work

An extension of the model in [36] was developed to incorporate electricity price

information for optimizing vehicle charging. A 2-layer optimization was used to

optimize both charging and transport service at different time scales. The proposed

model was applied to the case study of Tokyo, using transport survey data and

historical electricity prices from the wholesale electricity market.

The results show that the optimization can reduce the costs of charging for the

system by 10% when using historical price profiles from the Japan Electric Power

Exchange. Much larger cost savings could be obtained with price profiles with higher

variability. With prices sampled from a gamma distribution the savings compared

to the unscheduled model are 43% and 28% for the case with and without V2G,

respectively. The 2-layer model is shown to be superior to the 1-layer model, with

the latter being effectively same as the unscheduled model due to the limited time

horizon.

Waiting times are not excessively affected by the charging optimization, with 10-

minutes moving average wait times peak increasing for the model with V2G by 16%

and 21% for the real electricity prices and the generated price profiles, respectively,

compared to the unscheduled model.

The work in this chapter shows the potential of SAEVs to offer effective energy

storage to the grid and avoid grid congestion thanks to dynamic pricing, while

effectively optimizing vehicles’ rebalancing and minimizing waiting times. Several

other aspects are open to investigation in future work. An important extension of

the model could be the possibility of selection of which nodes are charging stations

and which charging stations are available at any given time, for example due to

grid constraints or vehicle congestion. In this work only wholesale electricity market

participation was considered. However, other ancillary services such as operating

reserve and frequency regulation could also be provided by the system. These are

generally better remunerated and suitable for batteries, thus they are likely more

attractive for SAEVs. The potential for the system to provide these services could

be investigated by including them in the global optimization.
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Chapter 5

Conclusions and future work

5.1 Conclusions

This work has addressed the problem of the integration of shared autonomous elec-

tric vehicles in the electric grid. The challenge arises from the transformation

in progress in the electricity sector, with increasing penetration of renewable en-

ergy, and the transport sector, with the future shift from private transportation

to transport-as-a-service models. If managed together, these transformations can

offer significant synergies, making transport service cheaper and more convenient,

while making available to the grid a large amount of storage and extremely flexible

generation.

Simulation models and optimization algorithms were proposed for the scheduling

of vehicles charge in the wholesale electricity market, the provision of ancillary

services, and the optimization of renewable energy storage. The city of Tokyo was

taken as a case study throughout the work, with passenger data based on the most

recent transport survey.

In Chapter 2, a novel simulation model was developed to study the feasibility

of a SAEV transport system and its integration with the electricity grid. A SAEV

fleet serving passengers and charging at designated charging stations was simulated

using a charge scheduling algorithm based on electricity prices. The model incor-

porated a operating reserve request model to quantitatively estimate the potential
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for SAEVs to provide operating reserve to the grid. The results show that every

SAEV in Tokyo could replace 7 to 10 private cars, depending on the trade-off be-

tween waiting time and cost of the system. The system’s break-even price per km

is much lower than the fare of traditional taxis, and comparable to the average cost

of car ownership and public transport. The proposed charge scheduling algorithm

can further lower the cost of transport by providing load shifting and storage for the

grid. The results for the operating reserve model show that the amount of operating

reserve power available depends strongly on the time of day and the allowed delay.

Even at the worst time, the system can provide large amount of power without

significant disruption of transport service. In a scenario of a wide implementation

of this system, the model suggest that SAEVs could provide significant grid-scale

storage and spinning reserves.

In Chapter 3, the possibility of integrating SAEVs with renewable energy was

studied in the context of a grid-connected Virtual Power Plant (VPP) and an isolated

microgrid. An optimization methodology was developed for the charge and discharge

of the aggregated SAEV fleet to minimize costs for the system taking into account

the necessary vehicle relocation. This is the first work that considers the integration

of SAEVs with renewable energy. The fleet was sized using results from the previous

part of the work. The model was tested stochastically with several scenarios in the

Tokyo case study using generated weather profiles. The results show that SAEVs

with the optimized charging are effective at decreasing the overall costs both in the

VPP and in the isolated microgrid. In the microgrid case, SAEV can effectively

replace peaker generators also significantly decreasing carbon emissions. It was also

shown that the positive effects increase with increasing penetration of renewable

energy in the grid, demonstrating the potential of SAEVs to promote the shift to

sustainable energy.

In Chapter 4, a more systematic, detailed, and flexible multi-objective opti-

mization framework was developed for the charging and relocation of SAEVs. An

extension of the model in [36] was developed to incorporate electricity price informa-

tion from the grid. This is the first multi-objective optimization framework for the
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charging and relocation of SAEVs. The difference in time scales between transport

and energy optimization horizons was overcome by developing a 2-layer optimization

approach functioning at two different time scales. The proposed model was applied

to the case study of Tokyo, showing promising results in terms of lower electricity

expenditures even with low-variability price profiles and with acceptable marginal

increases in wait times.

This thesis has shown the potential of SAEVs to contribute to a changing electric-

ity sector by offering effective energy storage services, ancillary services, and avoid-

ing grid congestion thanks to responsive charging without compromising transport

service. This work represents one of the first investigation of the charge scheduling

potential of SAEV, and presents one of the first algorithms that take into account ve-

hicles’ relocation and time-varying electricity price-based multi-objective optimiza-

tion. While the current work has used Tokyo as a case study, the methodology

presented is completely general and can be applied to any case for which enough

data is available.

5.2 Additional findings

Additional findings of this work are summarized as follows. The simulation results

show that service quality, fleet size, and cost of SAEVs are highly dependent on

the area served (distance of trips and density of passenger requests). This was also

confirmed by recently published literature. The performance of the system would

be therefore highly dependent on the system boundary.

Another key finding of this study is that transport service is much higher value

than electricity in the current markets. Simulations with data from the wholesale

day-ahead electricity market show that current prices are too low and not variable

enough to justify V2G. Higher prices would be needed to have meaningful incentives

for demand response and storage. This reflects the fact that the electricity system is

still far from the level of renewable energy penetration when the storage availability

becomes a constraint. The Japanese electricity system is still dominated by fossil
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fuels, especially gas, that keep prices relatively low at all times thanks to their dis-

patchability. However, in order to phase out fossil fuels and avoid the worst outcomes

of climate change, the penetration of renewable energy and less dispatchable sources

such as nuclear power will need to increase up to 100% of electricity generation. The

current plans for decarbonization of the electricity sector up to mid-century by the

Japanese government and by other countries seem overly conservative, and the shift

to renewable energy will need to happen orders of magnitude faster to keep Japan

and most countries from becoming deserts due to changing climate.

The cost analysis showed that SAEVs have very low cost even with conservative

estimates of uncertainty in future technology. Because of this, SAEVs have the

potential to disrupt today’s transport system, and in the near future this technology

could potentially replace car ownership in densely populated areas. Perhaps, one

day private cars may become illegal to drive in cities and lighter, lower speed and

more efficient SAEVs could offer taxi services within these areas.

5.3 Future work

The work presented here is a first approach to the problem of SAEVs and grid

integration. Much work is still needed to address many aspects that were not subject

of the present work or found in the literature.

One of the main simplifying assumption that this work and most of the rest of

the literature use is that of static transport patterns. This may be sufficient for an

initial investigation, but is highly likely that transport patterns would change with

the introduction of this new transport mode. Some work (reviewed in Section 1.3.1)

addressed this problem. However, a comprehensive model that takes into account

both dynamic transport patterns and electricity is still needed. This is especially

important in the context of ancillary services, which are highly sensitive to the

availability of vehicles.

Another simplification found in this work and in most of the literature is that

of uniform vehicles fleets. Vehicles are generally assumed to be all of the same
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size and characteristics. However, one of the important advantages of SAEVs is

the possibility of selecting the most appropriate vehicle for the specific task. For

example, a single passenger would be assigned a one-person vehicle instead of a

full-size car, while a larger group would use a larger vehicle. This is expected to

be the main driver of decreased energy consumption of SAEVs compared to private

vehicles or taxis [9]. The non-uniformity of vehicle fleets (and presumably battery

sizes) add a further level of complexity in the optimization of the relocation, trip

assignment, and charging of vehicles, which would need to be addressed in future

work.

Another possible future subject of investigation is the integration of a realistic

model of the electricity transmission network to account for transmission constraints.

Although this point is probably less critical for SAEVs than for private EVs (thanks

to the fact that charging stations can be easily controlled and connected to high

voltage transmission), this has not been quantitatively verified yet.

An interesting future direction of research could be focused on the transport-

side demand response aspect of the system. Using a dynamic transport demand

model, dynamic pricing of vehicles could be introduced not only to account for

varying level of congestion in the transport network, but also depending on the

price of electricity. Analysis done during this work however show that the effect of

electricity pricing on the transport costs is likely extremely low, unless there is a

significant increase in electricity prices and price variability. This however cannot

be completely discarded due to the changing electricity system with ever increasing

penetration of non-controllable energy sources.
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Appendix A

Data

A.1 Transport survey data

The case study used throughout this work is based on the Tokyo Person Trip Survey

2008 [1], a survey of around 2 million trips in the Tokyo metropolitan area. The 2008

survey is the latest available survey released for Tokyo. Although somewhat old, the

demographics and infrastructure of Tokyo has remained stable and it is expected

that this importantly implies a relatively stable demand pattern when compared

to 2008. Infrastructure and ridership of all major railways are shown to be mostly

unchanged between 2008 and 2015, and in the same period, the length of roads in

Tokyo city changed by less than 1% [91].

Most of the trips in the survey are by public transport. However, for the purpose

of this study, only trips by car or taxi were considered. These are the trips with

characteristics more likely to be similar to trips done with the SAEV system. These

trips represent about 20% of the total trips in the survey. Trips by car or taxi in the

selected area are a total of 73,000, or 3.8% of the total trips in the survey. Of these,

only about 70,000 are found to have a reported trip starting time. These are the

trips that were used in this work. Although this is a small proportion of the total

trips, it should be noted that the aim of the system is not to cover 100% of trips,

but rather enough of them for the system to be sustainable. Further work could

consider the migration of bus or train-based trips onto the SAEV service, but that
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is not the focus of the current study.

Each trip in the survey also has a starting time and a weight. The weight is

used to indicate the relative significance of that specific trip and to normalize the

survey results over the total demographics of Tokyo. Although trip starting time is

specified by hour and minute, it was found that most trips start at minute 0 of each

hour. The minute information was therefore judged to be unreliable and was not

considered in this work.

Each selected trip k is then defined with four values [rwk, rtk, rok, rdk] to indicate

respectively associated weight, hour of departure (0-23), origin node, and destination

node. The probability pi,j(t) was found as:

pi,j(t) =

∑
k′ rwk′∑
k rwk

, k : rtk = t′, k′ : rtk′ = t′, rok′ = i, rdk′ = j (A.1)

where t′ = b((t · `− 1) mod 1440)/60c is the hour of the day corresponding to

time step t.

The relative number of trips departing at hour h from the survey is:

f(h) =

∑
k′ rwk′∑
k rwk

, k′ : rtk′ = h (A.2)

At each time step t (at hour of the day h), the rate of the Poisson process in

(2.2) is then:

λ(t) = TPH · 24 · f(t′) · `/60 (A.3)

where TPH is the average rate of trips per hour.

A.1.1 Geocoding

The survey associates the origins and destinations of trips to zones, corresponding

to specific addresses in Tokyo. These geographical zones were used in the model as

the reference nodes. The geographic coordinates of the zones were found from the

addresses reported in the survey using the Google Maps Geocoding API [92]. The
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Figure A.1: (a) A figure representing all the nodes found in the survey (b) Map of Tokyo

created by tracing lines for each origin/destination pair for trips done by car in the survey.

Brighter colors correspond to more vehicles passing in that point.

approximate area of the zones was also found and was used as the area associated

with the node.

Figure A.1a shows the map of all the nodes found in the survey by associating

coordinates to reported addresses in Tokyo and neighbouring areas with the method

detailed in Section A.1. Relative normalized coordinates are used. Tokyo Bay is

clearly visible in the figure. Figure A.1b shows a map of Tokyo created by tracing

lines for each origin/destination pair for trips done by car in the survey. This is

roughly equivalent to a pollution map of Tokyo, since necessarily vehicles need to

pass through the locations between origin and destination.

A.1.2 Tortuosity factor of roads

The ratio of trip distance to Euclidean distance (tortuosity factor) was determined

by testing random trips within the selected area and averaging the value of effective

distance to Euclidean distance between the coordinates. Only coordinates associated

with an address in the immediate vicinity were considered, thus excluding unoccu-

pied areas. The associated addresses and the actual travel distance was found with
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the Google Maps Geocoding API [92]. 1298 origin-destination pairs were tested,

with a resulting average β = 1.48, which was used in the simulations. It was also

confirmed that the value of β is not significantly correlated with any trip character-

istic, such as travel distance or geographic area, so that the use of a single average

value can be considered acceptable.
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[19] C. Fernandes, P. Fŕıas, and J. M. Latorre, “Impact of vehicle-to-grid on power

system operation costs: The Spanish case study,” Applied Energy, vol. 96, pp.

194–202, Aug. 2012.

[20] B. Tarroja, B. Shaffer, and S. Samuelsen, “The importance of grid integra-

tion for achievable greenhouse gas emissions reductions from alternative vehicle

technologies,” Energy, vol. 87, pp. 504–519, Jul. 2015.

[21] J. D. K. Bishop, C. J. Axon, D. Bonilla, and D. Banister, “Estimating the

grid payments necessary to compensate additional costs to prospective electric

vehicle owners who provide vehicle-to-grid ancillary services,” Energy, vol. 94,

pp. 715–727, Jan. 2016.

[22] Burns, Jordan, and Scarborough, “Transforming Personal Mobility,” Tech.

Rep., 2013.

[23] S. Hörl, “Implementation of an autonomous taxi service in a multi-

modal traffic simulation using MATSim,” 2016. [Online]. Available:

http://studentarbeten.chalmers.se

119

https://econpapers.repec.org/article/eeerensus/v_3a16_3ay_3a2012_3ai_3a5_3ap_3a3370-3382.htm
https://econpapers.repec.org/article/eeerensus/v_3a16_3ay_3a2012_3ai_3a5_3ap_3a3370-3382.htm
http://studentarbeten.chalmers.se


REFERENCES

[24] J. Liu, K. M. Kockelman, P. M. Boesch, and F. Ciari, “Tracking a system of

shared autonomous vehicles across the Austin, Texas network using agent-based

simulation,” Transportation, vol. 44, no. 6, pp. 1261–1278, Nov. 2017.

[25] W. Zhang, S. Guhathakurta, J. Fang, and G. Zhang, “Exploring the impact of

shared autonomous vehicles on urban parking demand: An agent-based simu-

lation approach,” Sustainable Cities and Society, vol. 19, pp. 34–45, Dec. 2015.

[26] K. Spieser, K. Treleaven, R. Zhang, E. Frazzoli, D. Morton, and M. Pavone,

“Toward a Systematic Approach to the Design and Evaluation of Automated

Mobility-on-Demand Systems: A Case Study in Singapore,” in Road Vehicle

Automation, G. Meyer and S. Beiker, Eds. Cham: Springer International

Publishing, 2014, pp. 229–245.

[27] M. W. Levin, K. M. Kockelman, S. D. Boyles, and T. Li, “A general frame-

work for modeling shared autonomous vehicles with dynamic network-loading

and dynamic ride-sharing application,” Computers, Environment and Urban

Systems, vol. 64, pp. 373–383, Jul. 2017.

[28] M. Pavone, S. L. Smith, E. Frazzoli, and D. Rus, “Robotic load balancing for

mobility-on-demand systems,” The International Journal of Robotics Research,

vol. 31, no. 7, pp. 839–854, Jun. 2012.

[29] M. Volkov, J. Aslam, and D. Rus, “Markov-based redistribution policy model

for future urban mobility networks,” in Intelligent Transportation Systems

(ITSC), 2012 15th International IEEE Conference on. IEEE, 2012, pp. 1906–

1911.

[30] F. Acquaviva, D. D. Paola, and A. Rizzo, “A novel formulation for the dis-

tributed solution of load balancing problems in mobility on-demand systems,”

in 2014 International Conference on Connected Vehicles and Expo (ICCVE),

Nov. 2014, pp. 906–911.

[31] E. S. Rigas, S. D. Ramchurn, and N. Bassiliades, “Algorithms for Electric

Vehicle Scheduling in Mobility-on-Demand Schemes,” in 2015 IEEE 18th In-

120



REFERENCES

ternational Conference on Intelligent Transportation Systems, Sep. 2015, pp.

1339–1344.

[32] E. Biondi, C. Boldrini, and R. Bruno, “The impact of regulated electric fleets

on the power grid: The car sharing case,” in 2016 IEEE 2nd International

Forum on Research and Technologies for Society and Industry Leveraging a

better tomorrow (RTSI), Sep. 2016, pp. 1–6.

[33] S. Pourazarm, C. G. Cassandras, and T. Wang, “Optimal routing and charging

of energy-limited vehicles in traffic networks: Optimal routing and charging

of energy-limited vehicles in traffic networks,” International Journal of Robust

and Nonlinear Control, vol. 26, no. 6, pp. 1325–1350, Apr. 2016.

[34] T. Chen, B. Zhang, H. Pourbabak, A. Kavousi-Fard, and W. Su, “Optimal

Routing and Charging of an Electric Vehicle Fleet for High-Efficiency Dynamic

Transit Systems,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3563–

3572, Jul. 2018.

[35] G. S. Bauer, J. B. Greenblatt, and B. F. Gerke, “Cost, Energy, and Environmen-

tal Impact of Automated Electric Taxi Fleets in Manhattan,” Environmental

Science & Technology, vol. 52, no. 8, pp. 4920–4928, Apr. 2018.

[36] R. Zhang, F. Rossi, and M. Pavone, “Model predictive control of autonomous

mobility-on-demand systems,” in 2016 IEEE International Conference on

Robotics and Automation (ICRA), May 2016, pp. 1382–1389.

[37] Z. Yi and M. Shirk, “Data-driven optimal charging decision making for con-

nected and automated electric vehicles: A personal usage scenario,” Trans-

portation Research Part C: Emerging Technologies, vol. 86, pp. 37–58, Jan.

2018.
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