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A Data Driven Retrospective Study for

Medication Strategy Analyses on Longitudinal

Prescription Records∗

Purnomo Husnul Khotimah

Abstract

As the number of people with chronic diseases increases significantly, electronic

medical records (EMR) has been accumulating big data of medication history. A

retrospective study uses existing data that have been recorded. With the in-

creasing attention on evidence based medical guideline, it is important to study

the medication strategy from EMR to maintain the patient condition in chronic

diseases, for example type 2 diabetes. The medication strategy may change over

time because of a newly found adverse drug reaction or a newly released drug.

Being able to understand these changes from a long-term medication history is

essential in longitudinal studies, which are useful for learning the relationship be-

tween risk factors and the development of disease, and the outcomes of treatments

over different lengths of time. Therefore, a clinical physician would benefit from

these studies to develop an evidence based medical guideline. However, with the

nature of big data, it will be difficult for clinical physician to conduct the study.

Data driven tools can be used to conduct a data driven retrospective study to

extract patterns of medication strategy out of the medication history.

One of prominent tools is frequent sequential pattern mining (FSPM). This

method is proven useful in many area, including medical field to extract useful

patterns. Our study focuses on analyses of medication strategy over a long-term

medication history by observing the medication transition events. Although this

study have been a long time interest for clinical physicians, previous clinical

studies mainly concern on certain treatment strategies which is usually known

knowledge using statistic methods. Using FSPM, previously unknown and useful

information may be explored. On clinical field, existing FSPM studies focus
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on short-term dataset. Therefore, those methods of short-term dataset analyses,

may consider only medication’s occurrences in the dataset. However, in long-term

analyses, we may have to consider the medication duration because physicians

need to wait for a certain period of time to see whether a medication is effective or

not. Hence, previous methods result may contain spurious patterns resulted from

short medication episode that have less meaningful for a clinical physician. We

adapt the notion of time error margin ε for constructing the medication episode

from prescriptions dataset which is provided by Kyoto University Hospital. Using

14 days as the ε value, we are able to compress the search space into 23.83%

compared to the raw dataset.

Moreover, existing methods in medication history analyses using FSPM based

their algorithm on Apriori, which features non-consecutive sequence and subset

of itemset for candidate generation. These features may lead to a huge number

of frequent patterns that inhibit clinical physicians to explore the result set.

Furthermore, the patterns may have less meaning because clinical physician may

not understand clearly about the medication strategy, such as which medication

is stopped, or switched. Our mining methods named singleton mining and its

extensions enable clinical physicians to get a finer grain result set compared the

conventional method; for example, clinical physicians are able to understand with

the way of diminishing of Sulfonylurea (SU) usage in the subpopulation with the

monotheraphy of SU. Based on our result, after 2010, the replacement medication

for SU in the subpopulation of patient previously having monotheraphy SU is

DPP4-inhibitor (DPP4-i), whereas, in patients previously having any medication

combination with SU, the replacement medication is not exclusively DPP4-i.

Biguanide is also preferred by physician as medication replacement of SU in this

subpopulation.

Furthermore, clinical physicians need a tool to explore the result set of med-

ication strategy effectively. Conventional methods to present the result set is

in tabular view based on certain ranking functions. In actual effort to present

the result set, tabular view does not help much the clinical physician to get in-

sight from the result. Using our mediation transition graph, clinical physicians

are able to identify unfamiliar pattern compared with the recommendation from

the medical guideline of type 2 diabetes treatment that is even though the pa-

tient condition is in ideal state the physician change the previous medication to

medication combination using DPP4-i.
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We have addressed several issues on medication strategy analyses from a long-

term chronic medication history as the following identification of longer duration

of medication episodes, observing medication transition events, generating a fine

grain pattern that covers deeper clinical research questions and medication strat-

egy visualization. Current proposed methods are applicable in a more general

chronic condition where clinical physician needs to answer research question us-

ing a long-term medication history.

The following are several social-informatics impacts of enabling long-term med-

ication history analyses by our method:

1. Improved health care. In practical side, our proposed method enables clin-

ical physicians to analyze, long-term medication transition events, which

hold important information such as the relationship between risk factors,

health outcomes, or even adverse drug reaction. Therefore, the proposed

method allows the advancement of medical knowledge and development of

new treatments for chronic health problems.

2. Availability of new dataset. Our proposed method provide health care pro-

fessionals with a new dataset in the form of medication episodes. This new

dataset provide many usable information that could drive wider synthesis

and analyses of data when connected with other dataset such as patient

test result or medical billing.

3. Enhanced analyses to big data. Our proposes method enables more fo-

cus studies. A finer grained pattern enables analysts to investigate certain

sub-populations of the entity in the dataset. This ability allows an individ-

ual profile to be compared with the sub population profile. Such kind of

information is essential in personalized applications.

In summary, our proposed methods will not only impact clinical communities

such as epidemiology societies, but also the entire field in health to benefit from

comprehensive research studies.

Keywords: medication strategy, longitudinal analyses, chronic medication

history, frequent sequential pattern mining
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CHAPTER 1

Introduction

1.1 Background

Chronic diseases are health conditions that last long duration and generally slow

progression [7]. Based on WHO documentation on noncommunicable diseases

(NDC), the burden of chronic diseases is rapidly increasing worldwide [40]. In

addition, the proportion of the burden is expected to increase to 57% by 2020.

Furthermore, the chronic disease problem is far from being limited to the devel-

oped regions of the world. Contrary to widely held beliefs, developing countries

are increasingly suffering from high levels of public health problems related to

chronic diseases. Furthermore, $7 trillion is an estimated loss of productivity and

price of health care without taking action over the next 20 years [41]. Therefore,

chronic diseases pose a public challenge that undermines social and economic

development of both developed and developing countries.

One serious, costly, and increasingly common chronic disease is diabetes. Di-

abetes is a condition characterized by chronic hyperglycemia due to deficiency

of insulin action [51] The condition causes the increase of glucose in the blood.

One of the prominent indicators is A1c level. The A1c level reflects the mean

blood glucose level of during one to two months before the time when the blood

sample was taken. The normal value of subjects with normal glucose tolerance

is between 4.6% and 6.2%. People diagnosed with diabetes is indicated with the
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1. Introduction

A1c value of 6.5%.

Diabetes is also a progressive disease. It may lead to increasing risk factors for

other conditions, such as heart disease, amputation, and kidney failure. Hence,

diagnosing and treating the disease timely and appropriately reduces serious and

costly complications and death. Currently, medical societies publish evidence

based medical guidelines [51][50][38] in order to improve the healthcare quality

and to give a comprehensive information about the disease, especially for physi-

cians and patients. The effort, to find supporting clinical evidences, is requiring a

clinician to conduct a retrospective study by investigating the previous treatment.

Furthermore, because diabetes prevalence number is high and increased highly

each year, Electronic Medical Records (EMR) has accumulates big data of type

2 diabetes patients medication history. Therefore, to analyze such a long-term

and big data will be an exhaustive task. Hence, data driven longitudinal analyses

play a key role in retrospective studies.

1.2 Motivation

Opportunities In Type 2 diabetes, the glucose metabolism disorder may worsen

over time. Physicians are required to adjust the medication in order to manage

the patients condition. Adjustments of medications in the prescription represent

the physicians strategy and the patients pathway. In addition, the medication

may cause adverse drug reactions (i.e., is an unwanted or harmful reaction experi-

enced following the administration of a medication or combination of medication

under normal conditions of use and is suspected to be related to the drug). For

example, long term of Sulfonylurea (SU) medication may cause hypoglycemia in

aged patients [34]. In this condition, physicians would modify the medication

to minimize the reaction. Other case that may cause physicians to change the

medication is the new released drug [26]. With the increasing attention on evi-

denced based treatment, understanding these adjustments over long term period

will provide insights about medication strategies toward chronic conditions.

Pharmacotherapy in Diabetes Type 2 Diabetes medical guidelines provide

information for general practitioners and people with diabetes about the diseases,

patient condition management, and the standard treatment care, including the

pharmacotherapy. However, the way medical guideline present the recommen-

dation may differ from one and the other. For example, the guideline of Japan

2



1. Introduction

does not give a particular recommendation with which pharmacotherapy should

start a certain treatment [51]. By contrast, guideline of America gives recom-

mendation that the treatment should start with metformin [50]. Due to such

conditions, longitudinal analysis of medication history can be used to capture the

typical medication pattern of medical societies that use guideline with a more

general recommendation and detect the outliers on the one that use guideline

with a more comprehensive recommendation.

Moreover, one of diabetes treatment characteristic is that a physician needs to

wait three months to find whether the medication is effective or not [51]. There-

fore, in the case of longitudinal analysis, short term medication (less than three

months) may represent noises where physicians still adjust the medication that

may be irrelevant for long term medication strategy. Hence, we need to be able

to identify medications with longer duration that associated with patient able to

attain the ideal condition. We later, in section 2.1, refer this period of physicians

waiting period as the 3 months rule. Furthermore, the medication history is avail-

able in the form of prescriptions. The prescription nature are sometimes available

in short duration due to the regulation. There are also gap and overlaps between

the prescription durations. Therefore, an appropriate strategy is necessary for

the data driven analysis to be able to mine the proven effective medications.

Physicians Adherence Towards Medical Guidelines Despite the medical

guideline, the physician may follow the guideline recommendation or give alter-

native medication or treatment based on the patient condition and the physician

experience. One of prominent study to investigate the doctor adherence is done

by [53]. [53] analyzed the national guidelines for the management of type 2 di-

abetes to identify clinical conditions that are not covered or those for which the

guidelines do not provide recommendations using data driven tools. [53] use C5.0

decision-tree learning algorithm to analyze patient records corresponding to each

clinical condition from a database of type 2 diabetic patients treated at a hospital.

The results shows that there are clinical conditions that do not have any recom-

mendation in the previous medical guideline. However, those clinical conditions

are in later medical guideline. From the study, we are able to say that there are

rooms for medical guidelines to be improved. It is because a new medicine can

be released or a new strategy towards patient condition can be developed.

The shortcoming of previous methods in studying medication history

Several studies have used Frequent Sequence Pattern mining (FSPM) to conduct

3



1. Introduction

investigations on diabetes patients medication history. However, these studies

used short-term data, which only include information on when the patient is

hospitalized [5][14] and used the medication history as they are that is no prepro-

cessing was done towards the raw data (after cleaning) [22][55]. These methods

may only consider the occurrences of the medication. However, our study em-

phasis on analyses using long-term dataset. One advantage in using long-term

data is that we are able to learn the medication strategies to maintain the patient

conditions over a long period of time, which is a prerequisite. Such studies have

been a long time interest for clinical physicians. However, previous clinical studies

mainly concern on certain treatment strategies which is usually known knowledge

using statistic methods [17] [16]. Furthermore, in a long-term medication strat-

egy analyses, a characteristic in the pharamacotheraphy recommendation, such

as the 3 months rule should be considered. Moreover, previous studies used only

monotherapy data [55]. By contrast, the diabetes type 2 pharmacotherapy varies

from monotherapy to multitherapy. Hence, the scope of previous study is limited

only for certain subpopulation of the diabetes patients.

To this end, we attempt to develop a practical strategy for data driven retro-

spective study of medical strategy analyses using long-term medication history

in the form of prescription records.

1.3 Research Problem and Main Contributions

As mentioned in previous section, that electronic medical records (EMR) has been

accumulating a big data which harbors insight and knowledge for a retrospective

study towards the development of evidence-based medical guidelines. With the

increasing attention towards evidence based treatment, a clinical physician is

required to conduct retrospective study towards past treatments. Longitudinal

analyses use long term medication history. These analyses benefit the clinical

physician by giving information particularly about evaluation of the relationship

between risk factors and the development of disease, and the outcomes of treat-

ments over different lengths of time [12]. As we have mentioned in section 1.2

that most of previous study used short term dataset, which usally in the form of

hospitalization dataset [53][5][22][55].

We are interested in studying the physician strategy in managing the patient

with type 2 diabetes in a long-term. To conduct this longitudinal analysis, it

4



1. Introduction

is possible to use outpatient dataset, which medication (treatments) is being

collected and patient condition (the outcome) is being monitored over long period

of time. However, as mentioned in section 1.2 that the nature of this study is not

appropriate for direct use. Therefore, preprocessing task is needed. In addition,

we need to consider also chronic characteristic treatment, for example in type 2

diabetes, it is recommended to be stepwise and medication combination selection

should adjusted with the patient condition. Thus, the order of the treatment

and medication combinations are essential information for the clinical physician.

This condition should be considered in modeling the pattern which should be

extracted. Moreover, visualization of the result set should also be considered

in order to provide an effective analysis by the clinical physician towards the

medication strategy. Hence, we divide the task of our study into three parts, that

is, preprocessing, mining activity, and visualization.

First, we list the limitation of our study as follows:

• The dataset at hand is in the form of prescriptions records of outpatients

with diabetes. The prescriptions can be medication in the form of monother-

apy to multitherapy.

• Unlike methods to study medication exposure that focus their studies to find

out the medication duration, our prescription dataset contain the duration

information. Therefore, we do not conduct an exposure duration estimation

study.

• The medications used are varied from oral medicine to injection medicine.

We exclude the injection type of medicine which require natural language

processing.

• The dataset is limited only from one provider healthcare and not an integra-

tion from more than one healthcare provider. Therefore, the results in this

study only represent Kyoto University Hospital’s treatment characteristics.

• The variable values used in the experiments are respected with the type 2

diabetes diseases characteristics and the clinical pratice of Kyoto University

Hospital.

• Tasks covered in this thesis are divided into three areas that is preprocessing,

mining activity, and visualization.

5



1. Introduction

And the following, we list main contributions of our study in longitudinal anal-

yses of chronic medication strategy.

• A framework for constructing medication episode from medica-

tion history. In chronic longitudinal analyses, short term medication may

represent noises that may represent a period of time when a physician tries

to adjust the medication towards the patient condition. Therefore, we need

to be able to reconstruct the medication history which originally in the

form of short and repetitive prescriptions into a longer form of medication

episodes (ME) (i.e., a period of time where a physician do not change the

medication). The reason is that so we could identify which of the medica-

tion transition events that are useful for the analyses. In the medication

history reconstruction, the previous method focused on the construction

of a treatment episode (TE) (i.e., a series of temporally contiguous health

care services related to treatment of a given spell of illness or provided in

response to a specific request by the patient or other relevant entity [47]),

to investigate drug utilization in relation to various drug taking related

outcomes such as estimation of prevalence/incidence, compliance, and per-

sistence [18]. This focus is different with our task, where in constructing

TEs, adjacent prescriptions with different medications may assemble a TE.

While in constructing ME, only adjacent prescriptions with same medica-

tions may assemble an ME. In addition, the previous method only consider

mainly the gap duration for assigning adjacent prescriptions belongs to one

TE. For our proposed method, we consider also the overlap duration in

MEs construction. Our framework is able to transform the prescription

dataset into medication episode that enables the observation on medication

transition events and the identification of long term medication over a more

compact dataset, which is a significant feature in data driven analyses.

• The notion of singleton/full itemset in frequent pattern model. In

the case of chronic clinical condition, medications are given continuously

over the patient’s life time to maintain the quality of life. In order to adjust

the medications, physicians consider the previous prescribed medications as

one of the consideration besides the patient condition. Therefore, transi-

tion patterns between adjacent medications contain interesting information

about the medication strategy, such as, which medication is added, stopped,

6
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or switched. One of prominent data driven tools to extract patterns from

big data is frequent sequence pattern mining (FSPM). The conventional

method of FSPM originally to solve market basket case that is to find out

which items are frequently bought together [1]. Therefore, the method fea-

tures non-consecutive sequence and subset of itemset in generating the fre-

quent sequence candidate. These features result the frequent patterns does

not contain a clear information whether itemsets (medication combination)

in the patterns are adjacent to each other or not and whether a medication

is not used or whether a medication is stopped or switched when an item

is not in the itemset. Several constraint based FSPM was proposed to give

additional criteria for the candidate generation such as the distance between

the itemsets and the absence of item(s) from the itemset [44][33]. However,

even using constraints, the conventional method unable to address the re-

quirement for the information of the actual medication combinations. Our

proposed notion of singleton/full itemset tackle this requirement. Moreover

with incorporating this notion and the conventional method, our method

enables a finer grain of frequent pattern result compared to the original

conventional method.

• Visualization of medication strategy. In order to do longitudinal anal-

yses, clinical physician needs to be able to explore the result set of the

medication strategy. A medication strategy consists of clinical condition(s)

that represent the physicians reasoning and medication transition event(s)

the represent the physician’s actions. Previous method in visual analytics

focus their visualization to show the temporal relations between interval

based events, such as A overlapping B or A followed by B [28]. This is

different with the required information by the clinical physician. We de-

veloped two directed graph based visualizations. The first visualization is

to show medication transition events combined with the patient conditions

prior the transitions. This visualization method allows clinical physician to

explore the k-top result set and derive conclusion about the reasoning of

the medication transition events. On the second visualization, we provide

a medication progression graph from monotheraphy to multitheraphy. The

current visualization enables physician to understand the adding medication

strategy.
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1. Introduction

1.4 Thesis structure

The structure of this thesis will be organized with respect to common steps in

data mining that is data preparation, mining activity, and result presentation.

Therefore, the rest of this thesis is organized as follows:

• Chapter 2

This chapter describes the pre-processing step that is the medication episode

construction framework. We introduce the adaptation of time error margin

(ε) to construct medication episode from prescription dataset and propose

the notion of duration threshold (δ) to identify stable periods (i.e., a period

of time where a physician do not change the medication).

• Chapter 3

This chapter explains about the mining method and introduced our pro-

posed method that is named singleton mining method. Methods-comparison

study and confirmatory experiment are conducted to highlight the strong

points of the proposed method.

• Chapter 4

This chapter describes the visualization methods developed to illustrate the

medication strategy as the result of the mining method.

• Chapter 5

The final chapter lists conclusions reach so far from the study conducted so

far and some final remarks about a future work plan.
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CHAPTER 2

Medication Episode

Construction

2.1 Motivation

Prescription registries not only show a patient’s medical history but can also be

used as the information sources for drug utilization and pharmacoepidemiology

analyses [49]. Many of the studies using prescription registries require the con-

struction of treatment episodes [18]. One important aspect in treatment episode

construction is determining which prescriptions are considered to belong to the

same episode [45]. The process of medical history reconstruction from prescrip-

tions into other forms, such as treatment episode, needs to be considered carefully.

It is because once the process is complete, the outcomes of the later activities

will be based on the extracted data. However, previous study relating to the

usage of prescriptions datasets discussed only briefly about the medical history

reconstruction. Other studies discussed the treatment episode construction focus

on the drug exposure estimation because their datasets do not include duration

information. Hence, a standard framework for performing medical history recon-

struction out of prescription datasets is still lacking.

For chronic diseases, clinicians often require to perform longitudinal analyses

of medical histories over the years. For example, one of the common chronic
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2. Medication Episode Construction

diseases is type 2 diabetes. The treatment characteristic is recommended to

be patient-centered, that is, respectful of and responsive to individual patient

preferences, needs, and values [54]. In addition, the treatment spans over the

years throughout the patient’s life. Therefore, a physician is required to develop

a strategy to provide the best outcome not only for the short term but also

for the long term [51]. Hence, for chronic diseases, it is necessary to assess the

physician’s long-term strategy. Our research specifically focuses on observing the

medication transition events, that is, when the medication treatment changes

from one medication to the next. Medication transitions are important not only

to show the physicians’ actions toward the disease progress (the patient condition

changes), but also to demonstrate the treatment development as new medicines

or techniques released over the years [43].

A framework for medical history reconstruction is required for enabling obser-

vation of the medication transitions from hospital prescriptions. This is because

there are several issues in the nature of the prescription dataset. First, the periods

of two consecutive prescriptions are sometimes unconnected and overlap with each

other because a patient may come earlier or later than the appointment. Second,

prescriptions generally have short duration due to some regulations, hospitaliza-

tion or simply because of physician behavior. Third, many prescriptions are a

continuation from previous medication when the patient achieved the target con-

trol assigned by the physician. Thus, we have to be able to express fragmented

prescriptions into an aligned medication episodes (i.e., a period of time when

a doctor prescribes the same medication continuously). Therefore, we can ob-

serve the medication transitions precisely only after constructing the medication

episode.

Our next concern in prescription reconstruction is the prescription relations. As

we previously mentioned, prescriptions may be unconnected (have a gap between

each other), overlap or meet each other (connected). These are the possibili-

ties when the dataset only includes monotherapy. This condition is because, in

monotherapy datasets, patients having more than one medications at a time is

excluded. However in a multitherapy dataset, there can be more than one pre-

scriptions at one time which can have different medication with the currently

taken by the patient. As a result, the prescriptions can have more possible tem-

poral relations. For example, when a prescription has not been finished, a patient

may visit a physician and received a new short-duration of prescription that does

10



2. Medication Episode Construction

not last as long as the previous on-going prescription. This event will lead to

previous prescription containing the new prescription. Hence in a multitherapy

dataset, there are more prescription relations that need to be addressed.

A previous study by [18] attempted to construct treatment episode of an an-

tidepressant treatment. The study proposed two treatment episode construction

methods using a prescription time gap parameter. The first method does not add

overlap duration of the successive prescription at the end time of the treatment

episode, whereas the second method adds the overlap duration if the successive

prescriptions belong to the same Anatomical Therapeutic Chemical Code (ATC).

A treatment episode constructed by both methods in [18] is a period of time con-

sists of connected prescriptions, which are previously separated by small gaps.

Thus, in one treatment episode, there can be no changes in the medication (i.e.,

one treatment episode has the same medication) or there can be changes in the

medications(i.e., one treatment episode has more than one medication). This is

different with our goal of reconstructing the medical history that is to construct

medication episodes out of prescription dataset. In addition, [18] only considered

monotherapy by excluding patients who are prescribed more than one medicine at

one time. This situation is in contrast with the nature of chronic medication that

includes multitherapy prescriptions. In our study, the proposed method takes

multitherapy dataset into account by using possible temporal relations between

consecutive events that had been defined by Allen in [3] to address more possible

prescription relations available in the multitherapy datasets.In addition, the con-

cept of time error margin (ε) is employed to provide flexibility in assigning the

temporal relation. As we will show in a later section, this variable is important

for the medication episode construction in chronic disease analyses.

Furthermore, for the case of diabetes treatment, the physician often needs

to wait three months to evaluate the effectiveness of the medication [51]. The

recommended waiting time is 3 months which we refer to as the 3 months rule.

Based on the 3 months rule, we hypothesis that medication episodes that have

a duration at least 3 months and those with longer duration have more essential

meaning for longitudinal analyses. This hypothesis is because longer duration

medication indicates that the patient condition is reaching the control target

assigned by the physician. Thus, we need to be able to observe the medication

transition events between these type of medication episode, which later we refer

to this medication episode as a stable period. Hence in addition, our proposed
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2. Medication Episode Construction

medication episode reconstruction is to enable the identification of such stable

periods which has not been discussed in previous related studies.

This chapter will focus on the medication episode construction framework for

chronic diseases which will be applied on a multitherapy hospital prescription

dataset of T2DM patients. Specifically, we emphasize the usage of Allen’s tem-

poral relation and the time error margin in the framework, and the stable period

generation.

2.2 Related Works

2.2.1 Time Interval Based Model Evolution

Our proposed framework in constructing medication episode is closely related

with temporal relations between interval based events. The first one to address

this topic is Allen in [3]. [3] introduced seven temporal relations (before, meets,

overlaps, is−finished−by, contains, starts, and equal ) with their inverses (13

relations in total) as shown in Figure 2.1. Temporal relations between interval

based events enable the capturing or extraction of temporal knowledge out of

natural language or relative information. For example, increasing medicine dosage

after the rising of A1c value.

Figure 2.1: Allen’s temporal relations with time constraints.

Allen’s temporal relations has been used and developed widely. [25] added end

time points (start and end time) of the interval to define the intervals constraint

relations. Figure 2.1 displays the time constraints for each temporal relations.

In [25], only seven temporal relations (the left part from Figure 2.1) are used so

that one event is represented by only one temporal relations to avoid confusion.
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2. Medication Episode Construction

[20] used temporal relation matrix to capture all possible relations in multivari-

ate series datasets. The size of the matrix grew with the number of observed

intervals. [42] introduced the notion of time error margin (ε) to define more flex-

ible matchings between two interval based events. Hence, the temporal relations,

which previously strictly constrained by start time and end time, have a more

flexible relation by ignoring small differences in accordance with the ε value. For

example, there are two instants of incident: event A has no gap from event B and

event C has 1 day gap from event D. Hence, with using ε value of 5 days, both

incidents have the relation of meets. This result is because the time constraint

of the meets relation is relaxed by ±ε (i.e., t1.e = t2.s± ε).
This temporal relation model has been applied and developed for analyzing

clinical data. However, the studies mainly focus on the temporal relation as the

final objective of the study. For example, [32] used Karma Lego algorithm to find

temporal interval relations pattern between the A1C and defined daily dosage

(DDD) of diabetes medicine. In our case, we use the temporal relations as a tool

in the medication episode construction to assign which rule should be applied for

different prescription relations.

Furthermore, our framework also related with Moerchen’s time series knowl-

edge representation (TSKR) model, which was proposed in [31]. [31] showed that

Allen’s relations are not robust for noisy time series, ambiguous for one relation-

ship may represent different conditions, and not easily comprehensible for one

condition may be represented by different relationship [31]. TSKR was proposed

to mine multivariate time series data by transforming the time series into interval

symbolic series and finding the coincide intervals. Moerchen proposed the inter-

val series as tones (i.e., observed parameters) and the interval coincide series as

chords. In Figure 2.2, we are able to see three tones (A,B,and D). The three

tones are resulting into four chords (A,AB,B,BD and B). Temporal relations of

the chords will be represented as A → AB → B → BD → B. Such a representa-

tion is suitable, particularly for studies that observed more than two parameters

because the number of all possible Allen’s temporal relations will increase highly

as the number of observed parameters multiplies. Hence, to observe medica-

tion transition events, chords model can be used to represent the overlapping

prescriptions prescribed by the physicians as the medication episode.
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2. Medication Episode Construction

Figure 2.2: Moerchen’s chords.

2.2.2 Prescription Reconstruction

In pharmacoepidemiology and drug analyses studies, patient’s drug episodes are

often assessed. The prescription registry as a data source often omits out du-

ration. The available information generally includes the date of redeeming the

prescription and the dispensed amount. Hence, approximating patients’ actual

drug use is needed. Several methods to estimate the duration of each prescription

have been discussed in [19][37][36][18][45].

The first method consists of using the ratio of prevalence and incidence rate

relationship and using this ratio as a constant period for each prescription. This

is performed by assuming a constant use of dose (e.g., defined daily dose) or

assuming other fixed amounts [19]. However, this method has been reported to

have several caveats [19]. The second method is by using waiting time distribu-

tion [19][45]. The waiting time distribution (WTD) is a frequency distribution of

first occurrence of drug use within a time window. In this second method, com-

pensation for overlap and grace period are not considered because the duration is

estimated from the maximum interval between prescriptions.The third method is

by filling gaps between prescriptions[37][36][18]. By using the date of redemption

and the dispensed amount, it is possible to define episodes of drug use. However,

it is difficult to be sure if and when the dispensed are used.

Thus far, the aforementioned methods focused on the duration estimation

rather than the prescription reconstruction. However, as mentioned in the previ-

ous section, our main idea in connecting prescriptions is the most similar with [18],

which concatenated prescriptions to construct treatment episodes (i.e., prescrip-

tions that are dispensed within the allowed gap that elapses after the expected

end date of a prior prescription). Two methods of treatment episode construc-

tion based on the maximal gap were introduced, as shown in Figure 2.3. The

first method on Figure 2.3.(a) does not add the overlap duration in the end of the

14



2. Medication Episode Construction

expected end time of the treatment episode, whereas the second method adds the

overlap duration when medication belongs to the same ATC group because the

patient may come earlier as in Figure 2.3.(b). Hence, the second method affects

the original gap to become shorter. Both methods introduced in [18] were applied

for monotherapy dataset, which as the consequence prescriptions considered were

prescriptions that next to each other either have a gaps or not, and overlaps to

each other. In addition, the [18] study focused on comparing the effect of maximal

gap variation on both methods.

Figure 2.3: Two methods introduced in [18].

This is different with our study case, we are using a multitherapy dataset.

Hence, there are more possible temporal relations between consecutive prescrip-

tions compare to monotherapy dataset. Moreover, we consider the fact that a

patient may come earlier or later than the appointment scheduled, which means

successive prescriptions with short gap or short overlap should be connected as

if the prescription were connected. By using this assumption, we use the con-

cept of time error margin (±ε) for not only to identify short gaps from longer

gaps, but also to identify short overlaps from longer overlaps. Compared to two

methods introduced by [18], our method seems to similar with the second method

[18](the one that adds the overlap duration). In the second method [18], the suc-

cessive prescriptions are considered overlapping regardless the overlap interval is

(whether it is short or long overlaps). However, in our method, the prescription

relations between two successive prescription are relaxed by ±ε. Hence, the suc-

cessive prescriptions considered overlapping when the overlap duration is more

than ε. Furthermore, our study focus is different from [18] that emphasize the

study of comparing two construction methods (not adding overlap and adding

overlap). Our study is focus on the ε variation in the generation of stable periods

to enable observing the medication transition events. To summarize, Table 2.1
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shows the property comparison between [18] and our study.

Table 2.1: Properties in our study compared with [18].

Property Related previous study [18] Our Study

Dataset Monotherapy Multitherapy

Parameter used Maximal allowed gap Time error margin (ε)

Allen’s temporal

relations

Fixed Relaxed

Considered tem-

poral relation

before, meets, overlaps before, meets, overlaps,

is − finished − by, contains,

start, equal

Successive pre-

scriptions turned

into a meets

relation

Prescriptions with a gap that

is not more than predefined

parameter value

Prescriptions with a gap or

overlaps that is not more than

predefined parameter value

Final result Treatment episode construc-

tion

Stable period identification

Observed data

behavior

median length of treatment

episode, the number of pa-

tients’ proportion based on

their length of treatment

episode

The generation of short and

longer stable periods, the

number of stable period se-

quence, and the number of

medication transition events

2.3 Methodology

In this section, we describe the proposed framework of the medication episode

construction for enabling the medication transition events between stable period.

The description include the input (the prescriptions), the method (medication

episode construction), and output (the stable period identification).

Diabetes medicine is classified into several types of medicines based on how

they work. Table 2.2 shows medicine types with their medicine names.

Definition 2.1 Medicine name medName is the proprietary name of the medicine.

Each medicine name belongs to a single medicine type medType (i.e., medicine

classification based on how the medicine works).
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Table 2.2: Medication types.

No Medication Type Medicine Names

1 Sulfonylurea (SU) Rastinon, Euglocon, Daonil,

Glimicron, Glimicron HA,

Amaryl

2 Rapid-acting insulin secreta-

gogues (RaIS)

Starsis, Fastic, Glufast, Surepost

3 α-Glucosidase inhibitors Glucobay, Glucobay OD, Basen,

Basen OD, seibule

4 Biguanides Glycoran, Medet, Metgluco, Di-

betos, Dibeton S, Melbin

5 Thiazolidinediones Actos, Actos OD

6 DPP-4 inhibitors Glactive, Januvia, Equa, Nesina,

Tranzenta, Tenelia, Suiny

7 Combination Glubes

8 Insulin Novorapid, Apidora, Novolin, In-

nolet, Lantus, Treshiba, Levemir

9 GLP1 RA Victoza, Byetta, Byudereon

10 SGLT2 Inhibitors Suglat, Forxiga, Lusefi, Deberza,

Apleway, Canaglu

Definition 2.2 A full prescription P (pid, did, s, e,m[], d[]) is a tuple of pid pa-

tient id, did doctor id, s starting time, e end time, m[] array of medicine name,

and d[] array of medicine dosages w.r.t. the medicine label. A prescription dataset

is a sequence of prescriptions [P1, P2, ..., Pn], where prescriptions are ordered by

the starting time and duration. However, because we do not consider the switch

of doctor events in further analyses, we also simplify the full prescription defini-

tion into a tuple of P (pid, s, e,m[], d[]). This simpler definition is used for further

analyses.

Table 2.3 presents an example of a prescription dataset for a patient from day

1 until day 1070. This example represents a progressive medication model of a

patient from the actual dataset provided by Kyoto University Hospital.
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Table 2.3: Full prescription dataset.

Pn pid did s e m[] d[]

P1 7 1 1 56 A da

P2 7 1 64 134 A da

P3 7 1 191 256 A da

P4 7 1 257 340 A da

P5 7 1 347 375 A da

P6 7 1 376 390 B db

P7 7 1 397 407 A db

P8 7 1 406 420 A da

P9 7 1 406 435 B db

P10 7 1 421 443 A da

P11 7 1 436 443 A da

P12 7 1 450 481 A,B da,db

P13 7 2 482 570 A,B da,db

P14 7 2 630 690 A,B da,db

P15 7 2 691 778 A,B da,db

P16 7 3 749 820 C dc

P17 7 2 779 840 A,B da,db

P18 7 3 821 900 C dc

P19 7 4 841 900 A,B da,db

P20 7 4 901 998 A,B da,db

P21 7 4 901 998 C dc

P22 7 4 950 960 A,B,C da,db,dc

P23 7 4 955 967 D dd

P24 7 4 968 975 A,B,D da,db,dd

P25 7 5 976 998 D dd

P26 7 5 1005 1070 A,B,D da,db,dd

2.3.1 Prescription Relation

The prescription relation represents the temporal relation between prescriptions

in a time line. Figure 2.4 shows the possibility of temporal relations between

consecutive prescriptions. For example, P1 before P2, P8 starts P9, and P9

overlaps P10.
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Figure 2.4: Allens temporal relations in aligned prescription sequence.

From Figure 2.4, event a and event b have the same relation (before). How-

ever, the gap on event a is very small compared to that on event b. It is similar

with event c and event d (i.e., the overlap duration on event c is considerably

smaller than on event d). In medication episode construction, such conditions

may require different treatment. For example, the fact that a patient may come

earlier or later than the appointment may cause short gaps and overlaps and

should be treated as a meets prescription. Meanwhile, a longer gap and over-

lap should be treated as it is. However, the maximal gap for medication episode

construction will only influence prescription with gap (before relation). For over-

lapping prescriptions, irrespective of how small the overlaps are, the duration will

be treated as overlaps. In this circumstance, the time error margin (ε) is suitable

for assigning the prescription relation.

Definition 2.3 Epsilon, ε, is user-specified threshold. Using epsilon, the time

point relations of equal “=” and less than “<” become more flexible by ±ε.
Given that t1 and t2 are two time points, the following equations are true :

t1 =ε t2 ↔ | t1 - t2 | ≤ ε

t1 <ε t2 ↔ 0 < t2 - t1 > ε

Example 2.1 Based on Figure 2.5, if we use the notion of ε, then the prescrip-

tion relations in Figure 2.5(a) and (c), which were previously A before B and

A overlaps B, will be A meets B. For Figure 2.5 (b) and (d), the prescription

relation will remain the same.

To demonstrate the prescription relations from the raw data, Figure 2.6 shows

the prescription diagram of Table 2.3. To simplify, we do not display the dosage
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Figure 2.5: Time error margin (ε).

information in the prescription diagram. The x-axis shows the time per 30 days.

Figure 2.6(a) shows the aligned prescriptions duration based on their start time,

end time and medicine label. As shown in Figure 2.6(a), a prescription can

have a short duration, and it occasionally overlaps another prescription or has

a gap. As previously mentioned, this situation may occur because a patient

may come earlier or later than the appointment with the physician. Another

event that we observe is that many of the prescriptions continue the previous

medication. Furthermore, the prescriptions begin overlapping each other when

the prescription is modified by the physician. For example, with the transition

from medicine A to dual therapy AB around time = 13, we have overlapping

prescription between medicines A and B. Another example is shown when the

medication modified from dual therapy AB to ABC around time = 24 and when

the medication is switched from ABC to ABD around time = 32.

Example 2.2 Using P1, P2, and P3 from Table I and ε = 14 days, we have two

prescription relations, as follows :

|P2.s− P1.e| < ε⇒ P1 meets P2

|P3.s− P2.e| > ε⇒ P3 before P2

2.3.2 Medication Episode

To reconstruct a continuous medication episode as in Figure 2.6(b), we use Allen’s

temporal relations relaxed by the notion of ε, as shown in Figure 2.1. Our main
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Figure 2.6: Physician’s prescription diagram as listed in Table 2.3.

idea is to concatenate the same prescriptions with a meets relation to assemble a

medication episode. Moreover, for any two prescriptions Pi and Pj , we aggregate

types of relations, Pi is−finished−by Pj , Pi contains Pj , and Pj starts Pi ; we

denote them as Pi contains Pj. The contains relation in clinical condition may

occur during hospitalization conditions, where a patient should take the medicine

from the hospital, and in such cases, the physician is adjusting the medications

based on the patient’s condition. For equal prescription, that is, prescription with

the same start time and end time, we merge the prescriptions. A more detail on

the rules of medication episode construction explained in the previous publication

[26].

Definition 2.4 A medication episode ME is a concatenation of meets prescrip-

tions that have the same medicine label and dosage. ME shows the period of time

when the physician does not change the prescription. The ME dataset is ME =

{ ME1,ME2,..,MEn }, where n is the total number of ME in the patient medical

history and MEn is ordered based on the starting time and end time.

Example 2.3 From Table 2.3, P1 meets P2, P1.m[] = P2.m[], and P1.d[] =

P2.d[]. Hence, P1 and P2 are concatenated into a single ME.

Recalling Figure 2.6(b), we have nine medication episodes after reconstructing

the prescriptions. By using the reconstruction results, we are able to distinguish

the medication episode types and identify the stable periods as shown in 2.6(c).

An unstable period represents short medication changes that may occur when the
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physician attempts to adjust the medication or because of hospitalization. Thus,

to find the effective medication pattern in the long term, we consider a stable

period to be essential for further analysis.

Definition 2.5 Threshold δ is the minimum period, in days, for the physician

to see the medications effectiveness.

Definition 2.6 A stable period SP is a medication episode in which the duration

is at least equal to δ days. It is defined as SP = {SP ∈ME|SP.e− SP.s ≥ δ}.

In addition, we define several other periods of time as the following.

Definition 2.7 A trial/short period TP is a medication episode whose duration

is less than the threshold δ days. It is defined as TP = {TP ∈ME|TP.e−TP.s <
δ}.

Definition 2.8 An Unstable period UP, is a single TP or an aggregation of con-

secutive TPs.

Definition 2.9 A Blank period BP, is a period of time when there was no med-

ication recorded in the medical history after ε days.

2.3.3 Medication Transition Events

After the stable period identification, we attain the SP sequence. From Figure

2.6(c), we have an SP sequence of A → A → AB → AB → ABC → ABD.

Medication transition events occurred in the point between A → AB, AB →
ABC, and ABC → ABD. We list five medication transition events as follows:

- Add, is when new medicine(s) added to the previous medication.

- Stop, is when previous medicine(s) stopped from the previous medication.

- Switch, is when new medicine(s) added and previous medicine(s) stopped.

- Increasing, is when the dosage of medicine(s) increased.

- Decreasing, is when the dosage of medicine(s) decreased.

In addition, we consider events, such as A → A and AB → AB, as continue

events.

Example 2.4 Based on Figure 2.6(c), we consider A → AB and AB → ABC

as add events and ABC → ABD as switch event.
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2.3.4 Rules of Construction

In this section, we give the detail rules of construction along with the appropriate

assumptions. In this study, we consider five rules construction. However, the

constructions are not limited to these rules and can be easily customized depends

on the assumptions used on how handling the prescriptions relation.

The prescription relation described in Section 2.3.1 is then utilized for assigning

the rules of construction. Each of these prescription relations will have specific

treatment. In this section, we will list the rules of reconstruction and use Figure

2.7 to illustrate the implementation of the rules. The construction rules are de-

veloped based on the clinical assumption on drug exposure of diabetes treatment.

Figure 2.7: Implementation of the construction rules.

Rule of filling the gap/connecting the dots. We consider meets pre-

scriptions to be connected to one time point. For this case, we assume that it is

possible that a patient came to the physician earlier or later than the reserved

schedule. Figure 2.7 shows prescriptions that have small gap with different med-

ications. The end time of the first prescription and the start time of the next

prescription will be connected at one point.

Rule of concatenation. For prescriptions that continue the previous med-

ication and have a meets relation, we concatenate them to form a medication

episode. As illustrated in Figure 2.7, the end time will shift to the end time of

the next prescription.

Rule of shortening the end time. When the medicine is changed and

creates an overlap condition, we assumed that the patient will take the current

prescriptions. Therefore, we shorten the previous prescription’s end time, as

shown in Figure 2.7. This rule applies for changing the medicine regardless of the

medicine types.

Rule of pruning irregularity. As demonstrated in Figure 2.7 for contains

relation, we consider pruning the contained medicine that has the same medicine

23



2. Medication Episode Construction

type. This is because from a medical point of view, it is uncommon for physicians

to prescribe different medicines that have the same type in contains relation.

However if the contained medicine belongs to another type of medicine, we leave

it as it is.

Rule of merging. Occasionally, as the patient’s condition progresses, the

physician will attempt to adjust the medicine, which will lead to a contain rela-

tion. Another possibility for a contain relation is hospitalization. The merging

rule will add the dosage of the same medicine and merge medicines of differ-

ent types. However, different medicines of the same type will be pruned. The

merging rule is also applied in the overlaps duration of overlapping prescriptions

and equal prescriptions. We do not add the overlap duration at the end of the

subsequent prescription as suggested by the second method of [18] to avoid a

ripple effect. This ripple effect can be clearly seen in Figure 2.8. Using ε value of

14 days, originally A” and A”’ has before relation. Because of the ripple effect,

this relation is changed to meets relation. Hence, the second method introduced

by [18] is not an option for our case.

Figure 2.8: Ripple effect.

2.4 Experiment

The investigation in this section focuses on three aspects which support our main

contributions, as follows: the nature of multitherapy dataset, the significance of ε

in connecting successive prescription, and the stable periods generation influenced

by ε value variation.
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2.4.1 Dataset

We use an anonymized dataset provided by Kyoto University Hospital along with

the approval from The Ethics Review Board of The Medical School of Kyoto

University. The dataset is the prescription registry of T2DM patient’s hospital

prescription. The prescription is extracted between September 2000 and August

2015 for the medicines listed in Table 2.2.

We exclude patients with medicine types 8 and 9 because there is no information

about the duration. We are left with 227,269 records(154,598 prescriptions out

of 6,573 patients).

2.4.2 Result

First, to show the nature of multitherapy dataset, we extracted the numbers of

prescription relations based on Allen’s relation. Figure 2.9 shows the number of

each prescription relation: before, meets, overlaps, is − finished − by (isfby),

contains, starts, and equal. Figure 2.9 shows that the meets relation domi-

nates the number of prescription relations followed by before, overlaps, starts,

contains, is− finished− by and equal. Equal prescriptions represent prescrip-

tions with the same time range given by a different physician as defined in the

full prescription.

Figure 2.9: Number of each prescription relation extracted based on the fixed

Allen’s relation.
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Second, to be able to observe how much of the before and overlaps portions

that are influence by ε, we investigated the numbers of prescriptions with before

and overlaps relations that has a gap and overlap ≤ than ε value variation. In

this investigation we varied the ε value to 7, 14, and 21 days. This choice is based

on our initial assumptions that a patient may come earlier or later than the

appointment, and it is presented in Figure 2.10 and Figure 2.11. From the Figure

2.10, we are able to observe that it is more than 30% of the before prescriptions

were influenced using the smallest value of ε (7 days). And the numbers of

influenced prescriptions is increasing as the ε value increased. From Figure 2.11,

more than 80% of the overlaps prescriptions are influenced by the ε value.

Figure 2.10: Prescription number with before relations.

Figure 2.11: Prescription number with overlaps relations.
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We also investigated the number of generated stable period that have certain

duration upon variation in the value of ε value variation, as presented in Figure

2.12. The lines display the accumulated number of stable periods. The x-axis

represents the duration per 90 days. The blue line represents the number of

stable periods generated by the construction without ε (ε=0). The red, orange,

and green lines are generated by the construction with ε value of 7 days, 14 days,

and 21 days respectively. From the figure, we are able to observe that the number

of stable periods with duration less than 200 days is sharply decreasing when we

use the notion of ε (blue, red, and yellow lines). The blue line has higher number

of short stable periods compared to other lines (under 200 days). However, the

production of longer duration stable period without ε decreases (+- above 300

days).

To be able to observe the discrepancy from each line for duration more than

300 days, we also generated the log scale of Figure 2.12, which is displayed on

Figure 2.13. Figure 2.13 shows that the blue line falls (construction without ε)

under the other lines for stable periods with a duration of more than 300 days.

Another observation from both figures is that the stable periods generated using

ε have only slight differences.

Figure 2.12: Number of stable periods with length duration.

A deeper observation on the number of stable period sequence from the con-

structed medication episode is demonstrated in Figure 2.14. In this figure, the

disparity between the ε value selection is clearly observable. The number of stable

period sequence is decreasing with higher ε value. Further observation between

the number of continue pattern and transition events in the stable period sequence
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Figure 2.13: Log scale from Figure 2.12.

is shown in Figure 2.15. Figure 2.15 shows that the number of continue events

are significantly decreased with the increased of ε value. In contrast, the number

of transition events available to observed is increased as the ε value increased. To

be noted, that the total number between continue events and transition events is

not the same as the number of stable period sequence. This differences is because

in one transition point there can be more than one transition events.

Figure 2.14: Number of stable period sequence based on the ε value.
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Figure 2.15: Number of continue event and transition event based on the ε value.

2.5 Discussion

In this section, we would like to discuss the results from the previous section. As

shown in Figure 2.9, the prescriptions relations in a multitherapy dataset cover all

Allen’s relations. The high number of the meets relation shows that it is common

for chronics patients prescriptions to be connected to each other caused by either

the patient behavior (to come on schedule) or the patient condition that required

the physician to customized the medication in series of connected prescriptions.

When the meets prescriptions are having the same medication, they will be con-

catenated and form longer medication episode. Hence, the medication episode

construction is still able to generate longer medication episode even without using

ε. However, the numbers of before and overlaps relations are also significant in

a multitherapy dataset. Hence, the incidents that patients come earlier or later

than the schedule is also common. This patient behavior of coming earlier than

the schedule may occur when a patient is unable to come on time because of other

reasons and then decided to come earlier to renew the prescription. In this condi-

tion, the overlapping duration is considered short. However, in chronic patients,

it is possible for patients to have changes of conditions which cause them to come

earlier than the schedule. This condition may have longer overlapping duration.

As for the patient behavior of coming later than the schedule may occur when

a patient decided to come later because the patient unable to come on schedule.

In this condition, the gap duration is usually short duration because for chronic

patients it is important for them to take the medication. Another condition may
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cause the gaps, that is because the patient come to visit private clinic or other

health care provider. This condition is usually caused longer gap. Hence, we need

to be able to identify which of these before and overlaps prescriptions have short

gap or overlap duration. Thus, we need to take consideration for such incidents

in the construction and to develop the rules for the medication episode.

As shown in the results in Figure 2.10 and Figure 2.11, the proportion of

prescriptions with before and overlaps relations that were influenced by ε are

significant. Using the notion of ε, the construction of medication episode were

able to identify prescriptions with short before and overlaps relations from the

longer ones, and then transformed them as prescriptions with meets relation.

Compared to previous method in [18] that used maximal allowed gap, the method

only influenced prescriptions with a before relation while the prescriptions with

overlaps relation remained having the same relation despite their short overlaps

duration. From Figure 2.11, we are able to observe that there are prescriptions

with short and longer overlaps duration. If using the method in [18], the size

variation of overlaps will not be addressed because it used the fixed temporal

relation. In this case, short overlap duration will not be identified, and then

treated as overlap and merged in case of the medications from both successive

prescriptions are different, which later will produced more short unstable periods.

In addition, there are considerably low numbers of is−finished−by, contains,

starts and equal relations from Figure 2.9. Even though the low numbers, these

prescription relations have significant meaning because they represent chronic

patient’s incidents that occasionally occur when there are temporarily abrupt

changes in patient’s condition or when the disease is progressing and needs to

be managed by the physician. These incidents are reflected in the observa-

tion from previous example (Figure 2.6), which is when the patient’s condition

changes, medication transition events occur with prescriptions with a contains

(is−finished−by, starts, contains) relation. Therefore, to retain the medication

transitions information, we need to address those temporal relations.

Regarding other technical aspects of the medication episode construction, [18]

addressed the effect of adding or not adding the duration of overlaps at the end of

the predicted episode on the median length and the patient proportion number

based on the length of the episode with a variation value in the value of the

maximal allowed gap. As an addition to the discussion of our study, we would

like to add that using the notion of ε (ε > 0) also has an effect on the number of
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stable periods. This is shown in Figure 2.12. Without ε, the medication episode

construction still generated stable periods. The stable periods generated without

ε were produced in a very significant number for durations of less than 200 days.

These results is in contrast with stable periods generated with using ε, which is

shown with the large gap between the blue line and other lines in shorter duration

(less than 200 days). This data behavior may be cause by many of stable periods

generated without ε are merely a continuation of the previous stable periods but

separated by a short blank period (gap). The short blank periods are created

because the construction without ε will not be able to identify short gaps, which

may be caused by the patient come a little later than the schedule. Therefore,

the usage of ε is significant to avoid such condition. Moreover, based on the

generated stable periods as shown in Figure 2.13, the higher ε value selection will

have more performance in producing stable periods with longer durations (more

than 300 days). This result is because the construction using ε will be able to

connect prescriptions separated by short gaps, which will produce stable periods

with longer duration. Hence, ε is essential for producing longer expression out of

prescriptions. Furthermore, this result shows that the number of stable period

transition available for further analysis (search space) is affected by the selection

of ε value, and the search space size influence the cost of data driven analysis [1].

Moreover, from Figure 2.14, we are able to observe that the selection of ε value

also influences the number of stable period sequence in each patient. Further

observation presented in Figure 2.15 shows that the number continue event in

the stable period sequence is sharply decreased. This result confirm the previous

statement that many of stable periods are merely continuation from the previous

one, which are then concatenated by the ε. In contrast, the number of transition

events are increasing which shows that there are Unstable Periods connected by

ε which then construct a stable period and more medication transition events

able to observe. Regarding to this result, a study by [32] introduced a horizontal

support value, which is the number of instances of the pattern found in an entity

(e.g., a single patient medical record). Hence, in analyses based on the horizontal

support value, the frequency outcome will show a high frequency with a lower ε

value for continue events. Conversely, a lower frequency will be the outcome for

higher ε values.

From a medical perspective, currently, clinicians asses the chronic diseases med-

ication from the medication history in the form of prescription datasets, which
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are difficult to use particularly for longitudinal analysis because of their natures

(e.g., short durations, fragmented and repetitive). Medication episode construc-

tion that enables expressing longer durations of medication history will provide

a new means for obtaining long term clinical finding. As in diabetes, medication

effect is commonly assessed in longer duration observation windows. Hence, a

longer duration of stable periods is more relevant in drug utilization or pharma-

coepidemiology studies compared to short prescriptions. For example, in studies

that takes duration as an essential factor to investigate: the drug exposure and

drug survival analyses (i.e., studies which assumes that a drug surviving longer

in treatment will be one that is safer and/or more effective).

Finally, the dataset is originated from patients who went to Kyoto Univer-

sity Hospital (not an integrated dataset from multiple hospitals). Therefore, we

would like to add more annotation about the complexity of longitudinal and mul-

titherapy prescription analyses on our dataset. Considering multitherapy, there

are equal, overlaps or contains prescriptions. We cannot be sure whether the

physician is attempting to enhance or change the medicine dosage or even if there

was hospitalization because in the case of hospitalization, the patient is taking

medicine provided by the hospital only. The current assumption used in our rules

is that coinciding medication will be merge (i.e., different medicines with same

medicine type will be pruned as defined in the rule of merging). However, such

conditions happen usually in a short time (less than 3 months). Hence, for lon-

gitudinal analyses, we concerned with the medication transition events between

stable periods rather than the unstable period.

2.6 Conclusion

This chapter studies the data preparation for retrospective database analysis

for observing medication transition events. Best to our knowledge, there has

no framework of medication episode construction that incorporated all possible

Allens temporal relation for multitherapy dataset. By accommodating Allen’s

relation in the ruled based construction, we are able to preserve prescriptions

information in a multitherapy dataset which will be missing otherwise. Fur-

thermore, the usage of ε in expressing Allen’s relations is significant in reducing

repetitive medication episode, constructing higher numbers of longer medication

episodes and enabling more medication transition events available to be observed.
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This is important for the longitudinal analysis of chronic diseases, particularly

to observe the strategic actions by the physician to achieve ideal condition for

the patients. Compared to a previous study, [18] emphasized the discussion on

the gap influence on the median length of the episode and patient number. In

addition, we completed the discussion from a technical perspective that selection

of the epsilon value influences the generation of stable periods not only with re-

spect to the duration but also the number of continue events and the medication

transition events. Hence, our investigation of the selection of the ε affects the

measurement of further analysis results significance.

33



CHAPTER 3

Singleton Mining of Medication

Strategy

3.1 Motivation

Frequent sequential pattern (FSP) mining was developed for application to solve

the market basket, that is to study customer behavior [1]. FSP mining utilizes

a sequence database of customer transactions to look for frequent sequences of

itemset pattern that have a support value greater than a threshold value defined

by the user. The support value is counted based on the occurrences of the pattern

in the sequence database.

FSP approach is a practical method of finding frequent sequence events and

has been applied in many fields. For example in the medical field, in the area

of postcare, [6] reports an application regarding patients in the follow-up of liver

transplantation, [5] reports a study on the ICU patients to detect recent events,

and in the field of pharmacovigilance, [21] presents an investigation of adverse

drug reaction using FSP mining.

Recently, in the area of chronic diseases such as type 2 diabetes, the FSP

approach is also used to mine electronic medical records (EMR). Diabetes type

2 is a typical chronic disease associated with its high numbers of risk factors

and parameters that affect the therapy. FSP mining enables users to yield new
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insights from existing therapy data regarding the medication trend or guideline

adherence. In [53], new clinical condition of diabetes type 2 patients were found

compared to the medical guidelines and [55] uses FSP mining to predict the next

prescribed medicine in monotherapeutically medicated diabetes type 2 patients.

Our interest is in observing the medication transition events to learn about

physician’s strategy in managing the illness. Current method demonstrate FSP

mining on monotherapy [55], whereas in reality, physician’s prescriptions may

vary from monotherapy to multitherapy. Furthermore, in the case of diabetes,

the selection of pharmacotherapy is considered essential [51]. The appropriate

combination of medications should be selected in accordance with the patient

conditions. Thus, using Apriori [1] as it is may result in patterns that do not

represent the actual medications. This is because Apriori-based FSP mining

finds frequent sequence of items set that can be a partial item sets. In addition,

Apriori-based algorithm considers sequences that may not occur consecutively.

By contrast, we consider the consecutive order of the sequence.

In order to solve the type of problem considered here, we introduced sin-

gleton mining in [26]. The difference between singleton mining and Apriori-

based FSP mining is as shown as follows: In Apriori algorithm, the sequence of

〈Sulfonylurea〉 → 〈DPP4− inhibitor〉 is contained in 〈Sulfonylurea, αGI〉 →
〈αGI, Thiazolidinediones〉 → 〈αGI,DPP4 − inhibitor〉; whereas in singleton

mining, it is not considered as an instance of sequence.

In this section, we present a methods-comparison study between singleton min-

ing and Apriori-based FSP mining to investigate the pattern results produced by

both methods, in order to survey the characteristic of both methods’ results. In

addition, we conduct a confirmatory experiment to answer the clinical physicians

research question. As recently increased hypoglycemia in aged patients, physi-

cians try to diminish Sulfonylurea (SU) usage. However, once a treatment is

start with SU, it is hard to replace the medication with other medication. The

clinical physician want to understand whether the new released medication has

impact towards the doctor behavior in diminishing the usage of SU. Therefore,

we conduct a confirmatory experiment to investigate the underlying impression

of the clinical physician toward the new released drug.
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3.2 Related Works

3.2.1 Frequent Sequence Pattern Mining

Our work is a case specific extension of frequent sequence pattern mining, first

introduced by [1]. The problem of frequent pattern mining could be explained as

follows [29]. Let I = {i1, i2, ..., im} be a set of m distinct items. Items are ordered

by a total order on I. An event (also called itemset) of size L is a non empty set

of L items from I, which is sorted in increasing order. A sequence α of length

n is an ordered list of n events α1, α2..., αn denoted as α1 → α2 → ... → αn,

which is ordered based on the timestamp. A sequence database D is composed of

sequences, where each sequence has a unique sequence identifier (sid). A sequence

sa = α1 → α2 → ...→ αn is contained in (subsequence of) another sequence sb =

β1 → β2 → ...→ βm if and only if there exist integers 1 ≤ i1 < i2 < ... < in ≤ m

such that α1 ⊆ βi1 , α2 ⊆ βi2 , ..., αn ⊆ βin . We consider medication types in Table

2.2 as the list of items and Table 3.1 as the sequence database. The patient id pid

as the sequence id. An event is a medication episode, which shows a combination

of medication(s) that is given to the patient in a period of time. A sequence is a

set of ordered medication episodes based on their timestamps.

Example 3.1 Table 3.1 presents the medication type transitions of the stable pe-

riods from six patients’ medical record. The characters inside the bracket denote

the medicine type(s) and the arrow represents the transition. From Table 3.1, for

patient id 2, we have five medication episodes that are the combination of med-

ication type as follow: 〈αGI,Big〉, 〈αGI, THZ〉, 〈SU, αGI, THZ〉, 〈SU,Big〉,
and 〈SU,Big,DPP4i〉. The sequence 〈αGI,Big〉 → 〈αGI〉 → 〈SU,Big〉 is con-

tained in patient id 2 sequence. because 〈αGI,Big〉 ⊆ 〈αGI,Big〉, 〈αGI〉 ⊆
〈αGI, THZ〉 and 〈SU,Big〉 ⊆ 〈SU,Big〉. However, the sequence 〈SU〉 → 〈Big〉
is not contained in 〈SU,Big〉.

The task in frequent sequential pattern mining is to find all sequence patterns

p, which are frequent in a database D if p is contained in at least a certain

percentage (support) of sequences of D. The problem in frequent sequential

pattern mining is that the number of possible pattern candidate is exponential.

Therefore, to explore all the possibility could consume a high computation cost.

Apriori principle is used to solve the problem. Apriori principle, which is that
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Table 3.1: An example of a sequence dataset of medication type transition.

pid medType Transition

1 〈SU, αGI〉 → 〈αGI, THZ〉 → 〈αGI,DPP4i〉
2 〈αGI,Big〉 → 〈αGI, THZ〉 → 〈SU, αGI, THZ〉 → 〈SU,Big〉 →

〈SU,Big,DPP4i〉
3 〈SU〉 → 〈SU,Big〉 → 〈SU,Big,DPP4i〉 → 〈Big,DPP4i〉
4 〈SU〉 → 〈SU,Big〉 → 〈Big,DPP4i〉
5 〈THZ〉 → 〈Big, THZ〉 → 〈Big〉
6 〈SU〉 → 〈SU,Big〉 → 〈SU, αGI,Big〉 → 〈SU,Big,DPP4i〉

if a sequence is frequent then the itemsets, which constructed it, must be also

frequent. Using the Apriori principle, itemsets that are not frequent and their

super sequences (i.e., sequences that contain the itemset) will be pruned.

3.2.2 Negative Pattern Mining

Pattern mining described in previous section were developed to discover positive

sequential patterns from the database. Positive sequential patterns consider only

the occurrences of itemsets in a sequence. However, in practice, the absence of

an itemset in a sequence may imply valuable information [30]. For example, a

clinician may want to understand how a certain medication is diminished to use.

As mentioned in previous section that Sulfonylurea (SU) may increase the risk

of hypoglycemia in aged patients. And since then, clinicians try to avoid to start

the medication using SU. Hence, negative pattern mining has potential to give

valuable information about this phenomenon.

Negative pattern mining task is to find frequent pattern with a constraint that

the itemset not containing certain item. A positive sequence is denoted by 〈α1 →
α2 → ... → αn〉 and a negative sequence is denoted by 〈α1 → α2 → ... → ¬αn〉,
where ¬αn represents the absence of itemset αn.

Example 3.2 From Table 3.1, for patient id 1, we have three medication episodes

as follow: 〈SU, αGI〉, 〈αGI, THZ〉, and 〈αGI,DPP4i〉. The sequence 〈SU, αGI〉 →
〈αGI, THZ〉 → 〈αGI,DPP4i〉 is considered to support a negative pattern with

the following pattern : 〈SU〉 → 〈¬SU〉.
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3.2.3 Similarity Measurement

To compare the result set of our proposed method and the conventional method,

we use similarity measurement for comparing both result ranked lists. In this

section, we discuss two methods for comparing ranked lists.

1. Overlap: A common similarity function is proposed to compute the ratio

between the number of rules from one rule set that occur in another rule

set [4]. Suppose that there are two rule sets R1 and R2. The overlapping of

rules between sets is a basic measure to investigate the common properties

of rule sets. The overlapping ratio as similarity function between a pair of

rule sets is typically defined as the following [4]:

Overlap(R1, R2) = |R1 ∩R2|/|R1 ∪R2|

2. Kendall’s Tau coefficient. This quantity is a statistic used to measure rank

correlation (i.e., the similarity of the orderings of the data when ranked by

each of two quantities[8]). Kendall’s Tau represents the difference between

the probability that the observed data will appear in the same order versus

the probability that the observed data will not appear in the same order

[52].

The equation of Kendall’s Tau is the ratio between of the difference and

the sum of the numbers of the concordant pairs (C) and the discordant

pairs(D), τ = (C − D)/(C + D)[35]. A concordant pair is when the rank

of the second variable is greater that the rank of the former variable. As

a discordant pair is when the rank is equal to or less that the rank of the

first variable [39].

3.3 Methodology

3.3.1 Singleton Mining

As stated in the previous section, we are interested in investigating the transition

events between stable periods (SPs). Hence, we focus on itemset changes that are

located next to each other. Before we describe the medication pattern definition,

first herewith is the terms used in the following section: A full itemset is an

itemset that is contained equally in at least one itemset of the sequence data. As
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for a partial itemset is an itemset that is a partial subset of itemset in at least

one itemset of the sequence data. Consider a sequence 〈x〉 → 〈xy〉. According to

the definition here, 〈x〉 is a full itemset and a partial itemset.

Example 3.3 Using Table 3.1, an itemset of 〈SU, αGI〉 is a full itemset because

it is contained equally with the itemset of patient id 1 sequence data. An itemset

of 〈αGI〉 is a partial itemset because it is a partial subset in the itemset of patient

id 1s sequence data. However, an itemset 〈SU〉 is not a partial itemset, because

it is a full itemset based on the sequences of patient id 3,4, and 6.

Further, we define a frequent medication pattern as repeated medication events

found in the sequence data set with the cardinality equal to or greater than the

minimum support value. We consider two types of medication pattern, as follows

:

1. A singleton pattern is a pattern of a full itemset of SP. The singleton pattern

may be stated based on the medicine name, medicine type, or medicine

label. In the case of diabetes, it may take the form of monotherapy, dual

therapy, triple therapy or more.

2. n-sequence pattern is a sequence pattern consisting n+1 adjacent singletons.

The support of the pattern p is calculated as the ratio of number of patients who

exhibit the pattern, at least once in their longitudinal medical history, to the total

number of patients, Support(p) = number of patient with p/number of patient.

Example 3.4 For example, the patient with pid 1 has medication transition from

dual therapy with SU and αGI to dual therapy with medicine types SU and THZ

and then followed by the subsequent transition to dual therapy with medicines

types αGI and DPP4i. Hence, from Table 3.1, with a minimum support value of

0.2, we can find four singleton pattern as follows: 〈SU〉, 〈SU,Big〉, 〈αGI, THZ〉,
and 〈SU,Big,DPP4i〉. The 1-sequence patterns are as follows : 〈SU〉〈SU,Big〉,
and 〈SU,Big〉〈SU,Big,DPP4i〉.

This pattern definition is different from that used to generate Apriori-based

FSP results. In Apriori, it considers that the occurrences of a subset of the

singleton support the frequent sequence and the even though the sequence does

not in a consecutive manner it will add the cardinality of the pattern.
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Example 3.5 For the data in Table 3.1 and a minimum support value of 0.2,

Apriori-based FSP mining will indicate 〈Big,DPP4i〉 as a frequent pattern with

support value of 0.5 and 〈Big,DPP4i〉 → 〈SU,Big,DPP4i〉 as another frequent

pattern with a support value of 0.5. By contrast, when singleton mining is applied,

〈Big,DPP4i〉 is not considered as a frequent pattern because it is not a full item-

set, where as for 〈SU,Big〉 → 〈SU,Big,DPP4i〉 pattern, the calculated support

value is only 0.33 because the patient with pid 6 is not counted as supporting the

pattern support.

3.3.2 Singleton Pattern Mining with Flexible distance

First, we develop singleton mining to understand the physicians reasoning in

changing the medication. However, clinician may also want to understand, for

example, for treatments that start with certain medication, what kind of medica-

tion combination the patient will be having in the future. Therefore, we extend

the singleton mining to have a more flexible distance. If singleton pattern is

denoted as 〈α1 → α2 → ... → αn〉, singleton pattern with flexible distance is

denoted by adding “+” as denoted 〈α1 →+ α2 →+ ...→+ αn〉. The “+” symbol

denotes that the sequence(steps) can be one or more.

Example 3.6 Using Table 3.1, 〈SU,Big〉 → 〈SU,Big,DPP4i〉 is a singleton

pattern with support value of 0.33, while 〈SU,Big〉 →+ 〈SU,Big,DPP4i〉 is

a singleton pattern with flexible distance with support value of 0.5 because the

patient with pid 6 is counted to be supporting the pattern.

3.3.3 Hybrid Pattern Mining

The next requirement to give better understanding in learning the physician strat-

egy is function to identify medication that is absence of certain medication. A

clinical physician may want to understand if a treatment start with certain medi-

cation, what type of medication combination will the patient having in the future.

This medication combination in question include the inclusion or the absence of

certain medication. Hence, in addition, we combine the singleton pattern mining

with the conventional pattern mining with constraint, in particular the negative

pattern. We refer this hybrid pattern mining that is when we mine pattern that
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incorporate the notion of singleton (full itemset), subset (partial itemset) denoted

by adding “*” in the itemset, and negative pattern.

Example 3.7 〈SU〉 →+ 〈¬SU〉∗, is a pattern that its antecedent (the left side)

is a singleton of SU and the consequent (the right side) is a negative subset that

may contain any medication but SU. In addition, the distance is flexible. Using

Table 3.1, the pattern 〈SU〉 →+ 〈¬SU〉∗ is supported by value of 0.33

3.4 Experiment

We conduct two types of experiment. The first one is a methods-comparison

experiment and the second one is a confirmatory experiment. The compara-

tive experiment aims to find frequent sequence patterns out of the data set us-

ing R-arulessequences library [10], which is the implementation of Apriori-based

cSPADE algorithm [56], and our own method of singleton mining. Afterward,

we inspect the result and compared the patterns set. As for the confirmatory ex-

periment, we conduct experiment to investigate the clinical physician assumption

towards the new released drug on the physician behavior in selecting medication

for prescription.

3.4.1 The Dataset

We applied our methods on to a medical history of patients with diabetes, which

is provided by Kyoto University Hospital along with the approval from the Ethics

Review Board of The Medical School of Kyoto University. The dataset consists

of prescription of diabetes type 2 outpatients from September 2000 until Au-

gust 2015. First, we applied the medication episode construction framework and

identified the stable periods from each patients. Then, we attain stable period

sequences of 2461 patients in total. Table 3.2 shows the description of the stud-

ied population. The parameter age0 is patient’s age at the start date of the first

stable period and agen is patient’s age at the end date of the last stable period.

For the paramenter Duration, it is calculated by subtracting the start date of

the first stable period with the end date of the last stable period and 1y is equal

to 365 days. Furthermore, we divided the dataset into two parts that is before

2010 (10 years of dataset, 1781 patients) and after 2010 (5 years of dataset, 1898

patients). This partition is for the confirmatory experiment. The year of 2010 is
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Table 3.2: Description of the studied population.

Variable Condition Number of Patients Number of Patients

Age age0 agen

< 30 20 14

30-40 63 32

40-50 178 111

50-60 507 238

60-70 852 657

> 70 841 1415

Duration

≤ 1y 112

1y - 3y 560

3y - 5y 553

5y - 10y 788

> 10y 448

Gender

M 1508

F 953

chosen because in that particular year, there was a new drug release. Table 3.3

shows the description of each population set.

3.4.2 Methods-comparison Experiment

The intention of the first experiment is to compare the result set of singleton

mining and conventional mining. Figure 3.1 summarizes the experimental setting.

In this experiment, we conduct a similarity measurement between two ranking

lists of our proposed method result set (FPsingleton) and the results of cSPADE

(FPcspade). However, this similarity function is not appropriate for measuring

the similarity between the mining results of the methods considered here. This

condition is because the Apriori algorithm does not require consecutive order

of sequence or full itemset, the results of cSPADE (FPcspade) will be a superset

of the singleton mining results (FPsingleton). Moreover, because FPsingleton ⊂
FPcspade. Therefore, the overlap score between FPsingleton and FPcspade will be:

Overlap|FPsingleton, FPcspade| = |FPsingleton|/|FPsingleton ∪ FPcspade|. Hence, the
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Table 3.3: Description of the population set (before and after 2010).

Variable Condition Before 2010 After 2010

Duration

≤ 1y 186 113

1y - 3y 489 440

3y - 5y 418 543

5y - 10y 623 793

> 10y 65 9

Gender

M 1072 1167

F 709 731

Figure 3.1: Experiment setting.

overlap score will always be the ratio of FPsingleton and FPcspade. We obtain value

of 0.203 for the ratio value of FPsingleton and FPcspade.

Other similarity measure can be calculated using the Kendal rank correlation

coefficient, commonly referred to as Kendall’s Tau. Because Kendall’s Tau is

used to measure the order similarity between two rank sets of the same data but

FPsingleton and FPcspade differ in numbers as FPsingleton ⊂ FPcspade, there exist

FPsingleton\FPcspade = {x ∈ FPcspade∧x /∈ FPsingleton}. For this case, we propose
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Figure 3.2: Kendall’s Tau solution.

an alternative solution as follows. Prior to the calculating of the Kendall’s Tau, we

prune out the result members of FPcspade that are the complement of FPsingleton,

such that FP ′cspade = FPcspade ∩ Rsingleton. In this way, we obtain two rank sets

which have the same members (FPsingleton = FP ′cspade). Figure 3.2 illustrates the

pruning of FPcspade.

3.4.3 Results

Table 3.4 shows the top 20 results with the highest support values among the

patterns identified by the singleton mining algorithm and the Apriori-based min-

ing algorithm. From Table 3.4, we can observe that three patterns have the same

rank, such as pattern no 1,2, and 5. However, the rankings of other patterns

are jumbled. Some patterns appear in the same order in both sets of results; for

example, the set of {〈SU〉, 〈SU〉 → 〈SU〉, 〈SU,Big〉, 〈SU,Big〉 → 〈SU,Big〉} has

the same order in both FPsingleton and FPcspade. By contrast, the pattern 〈αGI〉
comes after pattern 〈SU,Big〉 in FPsingleton, where as in FPcspade, the ordering of

these patterns is the opposite. Furthermore, patterns with the same base stem

(antecedent) and consequent may have different ranks when ordered based on the

base stem. For example the pattern with the base stem 〈SU,Big〉 and consequent

〈SU,Big〉 is ranked first in FPsingleton but third in FPcspade after 〈SU,Big〉 → 〈SU〉
and 〈SU,Big〉 → 〈Big〉.

We also consider the difference in the support values, as shown in Table 3.5.

From Table 3.5, we observe that Apriori-based algorithm produces higher support
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Table 3.4: Top 20 most frequent pattern sets identified through singleton mining

and apriori-based mining.

No FPsingleton FPcspade

1 〈SU〉 〈SU〉
2 〈SU〉 → 〈SU〉 〈SU〉 → 〈SU〉
3 〈SU,Big〉 〈DPP4i〉
4 〈SU,αGI〉 〈Big〉
5 〈αGI〉 〈αGI〉
6 〈SU,Big〉 → 〈SU,Big〉 〈Big〉 → 〈Big〉
7 〈Big〉 〈SU〉 → 〈DPP4i〉
8 〈SU,DPP4i〉 〈αGI〉 → 〈αGI〉
9 〈RaIS〉 〈DPP4i〉 → 〈DPP4i〉
10 〈DPP4i〉 〈SU〉 → 〈Big〉
11 〈SU〉 → 〈SU,Big〉 〈SU,Big〉
12 〈α GI〉 → 〈α GI〉 〈Big〉 → 〈SU〉
13 〈SU,α GI〉 → 〈SU,α GI〉 〈SU〉 → 〈SU,Big〉
14 〈SU,Big,DPP4i〉 〈SU,DPP4i〉
15 〈Big〉 → 〈Big〉 〈SU,Big〉 → 〈SU〉
16 〈SU,DPP4i〉 → 〈SU,DPP4i〉 〈SU,Big〉 → 〈Big〉
17 〈SU,α GI,Big〉 〈Big〉 → 〈SU,Big〉
18 〈RaIS〉 → 〈RaIS〉 〈SU〉 → 〈SU,DPP4i〉
19 〈Big,DPP4i〉 〈SU,Big〉 → 〈SU,Big〉
20 〈SU〉 → 〈SU,DPP4i〉 〈α GI〉 → 〈SU〉

value than singleton mining and that there are 13 patterns have support difference

> 0.1 out of 20 patterns.

Furthermore, we make a selection to the singleton mining and the Apriori-

based mining with a criteria as follows : antecedent (the left side) is not equal

to consequence and support is higher or equal to 0.005 and confidence (the right

side) higher or equal to 0.01 and lift higher or equal to 1 and ordered by confidence

in descending manner∗. The results are ranked based on the confidence value and

∗A confidence measure is a conditional probability of some event Y, given the occurrence

of some other event X, Confidence(p : X → Y ) = number of patient with p/number of

patient with event X. In addition, a lift measure is a correlation measure that shows the rate

of possibility of pattern that start with a certain event X will likely to change in to another
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Table 3.5: Support value deviations for the 20 most frequent patterns in the

singleton mining set that intersect Apriori-based mining set.

no Pattern supcspade − supsingleton
1 〈SU〉 0.220864

2 〈SU〉 → 〈SU〉 0.284434

3 〈SU,Big〉 0.088019

4 〈SU,α GI〉 0.069275

5 〈α GI〉 0.244499

6 〈SU,Big〉 〈SU,Big〉 0.10106

7 〈Big〉 0.312959

8 〈SU,DPP4i〉 0.13692

9 〈RaIS〉 0.072535

10 〈DPP4i〉 0.344744

11 〈SU〉 → 〈SU,Big〉 0.167075

12 〈αGI〉 → 〈αGI〉 0.229829

13 〈SU,α GI〉 → 〈SU,α GI〉 0.080685

14 〈SU, Big, DPP4i〉 0.022819

15 〈Big〉 → 〈Big〉 0.318663

16 〈SU, DPP4i〉 → 〈SU, DPP4i〉 0.114914

17 〈SU, αGI, Big〉 0.015485

18 〈RaIS〉 → 〈RaIS〉 0.067644

19 〈Big,DPP4i〉 0.123064

20 〈SU〉 → 〈SU,DPP4i〉 0.199674

Table 3.6 shows the Top 20 member on both result sets.

3.4.4 Confirmatory Experiment

The next experiment is driven by the clinical physician question on whether the

new released medication has impact towards the doctor behavior in diminishing

the usage of Sulfonylurea (SU). This question is because it is known that SU

usage for long term will increase the risk of hypoglycemia in old age. In addition,

hypoglycemia can cause dementia. Furthermore, with a new drug released in

certain event Y, lift(p : X → Y ) = number of patient with p/Support(X) ∗ Support(Y ).
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Table 3.6: Top 20 most frequent patterns (FP) identified through singleton mining

and coventional mining with a selection criteria.

No FPsingleton FPcspade

1 〈SU, αGI,Big, THZ〉 →
〈SU, αGI,Big〉

〈Big, THZ〉 → 〈Big〉

2 〈SU,Big, THZ〉 → 〈SU,Big〉 〈SU, αGI,Big〉 → 〈SU〉
3 〈Big, THZ〉 → 〈Big〉 〈SU,Big, THZ〉 → 〈SU,Big〉
4 〈RaIS,Big〉 → 〈SU,Big〉 〈αGI,Big, THZ〉 → 〈αGI,Big〉
5 〈SU〉 → 〈SU,Big〉 〈SU,Big〉 → 〈SU〉
6 〈SU,Big〉 → 〈SU,Big,DPP4i〉 〈SU, αGI,Big, THZ〉 →

〈SU, αGI,Big〉
7 〈SU, αGI, THZ〉 → 〈SU, THZ〉 〈SU, THZ〉 → 〈SU〉
8 〈SU, αGI,Big〉 →
〈SU, αGI,Big,DPP4i〉

〈RaIS, αGI〉 → 〈αGI〉

9 〈RaIS, αGI〉 → 〈RaIS, αGI,Big〉 〈RaIS,Big〉 → 〈Big〉
10 〈RaIS, αGI〉 → 〈αGI〉 〈SU, αGI〉 → 〈SU〉
11 〈Big〉 → 〈Big,DPP4i〉 〈αGI,Big〉 → 〈αGI〉
12 〈αGI,Big〉 → 〈Bi〉 〈SU,Big〉 → 〈Big〉
13 〈Big,DPP4i〉 →

〈SU,Big,DPP4i〉
〈αGI,Big〉 → 〈Big〉

14 〈SU,Big, THZ〉 →
〈SU,Big, THZ,DPP4i〉

〈αGI, THZ〉 → 〈αGI〉

15 〈SU, αGI〉 → 〈SU, αGI,Big〉 〈SU, αGI,Big〉 → 〈SU,Big〉
16 〈SU, THZ〉 → 〈SU,Big, THZ〉 〈SU, αGI,Big〉 → 〈SU, αGI〉
17 〈αGI〉 → 〈DPP4i〉 〈SU, αGI, THZ〉 → 〈SU, αGI〉
18 〈αGI,Big〉 → 〈αGI,Big,DPP4i〉 〈SU, αGI〉 → 〈αGI〉
19 〈THZ〉 → 〈DPP4i〉 〈SU, THZ〉 → 〈THZ〉
20 〈SU,Big〉 → 〈SU, αGI,Big〉 〈RaIS, αGI,Big〉 → 〈αGI,Big〉
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2010, the clinical physician would like to understand the impact of the event onto

the physician behavior. Towards these question, the clinical physician has an

underlying assumption that the released new drug impact the diminishing usage

of SU and physicians behavior. In order to clarify the assumption, we performed

experiments to answer the following three questions onto both datasets (before

and after 2010):

Question No. 1. Is there any transition(s) from medication that previously

contain SU into medication without SU?

Question No. 2. If there were such pattern stated in No. 1, how many of

patient having such pattern?

Question No. 3. If there is such pattern stated in No. 1, what is the medicine

that replace SU?

We use a pattern model of singleton with flexible distance 〈X →+ Y 〉 to answer

Question No.1 so that we could show medication transitions from using SU to

not using SU in the future. The result for Question No. 1 is shown in Table 3.7,

which lists top 20 of singleton pattern based on the support value with flexible

distance. The results show that there are pattern medication transition from

using SU to not using SU in both datasets (before and after 2010 dataset). From

pattern before 2010, Biguanide is used in 15 out of 20 top pattern. This result

is higher compared to other medication type that are as follows: RaIS, αGI, and

THZ are used respectively in 8, 10, and 6 out of 20 top pattern. Additional

result is that medication that previously contain Biguanide is maintained in the

next medication as shown in row 4, 9, 11-15, and 17-20. Results in pattern after

2010, DPP4i is used in 16 out of 20 top pattern. This number is significantly

higher than other medication types, which are as follows: RaIS, α GI, Biguanide,

and THZ are used respectively in 5, 4, 9, and 0 out of 20 top pattern. Unlike

pattern before 2010, in pattern after 2010 medication containing Biguanide was

not always maintained, such as in row 13.

For Question No. 2, we first use a hybrid pattern model to reveal pattern that

start with monotherapy SU to any medication not using SU (X →+ (¬X)∗). This

pattern is to show the subpopulation of patient that may start the treatment with

a monotherapy of SU. The general notion that once the treatment was started

with SU, it will be hard to ceased using SU, makes the pattern is interesting to

investigate. A conventional pattern model is also used to give a general overview

of the patient number with any medication using SU changing to any medication
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Table 3.7: Top 20 of singleton pattern with flexible distance with constraints as

follows: antecedent must contain medication type 1 (SU) and consequence must

be absence from medication type 1.

No Pattern before 2010 Pattern after 2010

1 〈SU〉 →+ 〈RaIS〉 〈SU〉 →+ 〈DPP4i〉
2 〈SU〉 →+ 〈Big〉 〈SU,Big〉 →+ 〈Big,DPP4i〉
3 〈SU, αGI〉 →+ 〈GI〉 〈SU,DPP4i〉 →+ 〈DPP4i〉
4 〈SU,Big〉 →+ 〈Big〉 〈SU, αGI〉 →+ 〈DPP4i〉
5 〈SU〉 →+ 〈αGI〉 〈SU,Big〉 →+ 〈Big〉
6 〈SU〉 →+ 〈RaIS,Big〉 〈SU,Big,DPP4i〉 →+

〈Big,DPP4i〉
7 〈SU〉 →+ 〈αGI,Big〉 〈SU〉 →+ 〈Big,DPP4i〉
8 〈SU〉 →+ 〈THZ〉 〈SU,Big,DPP4i〉 →+

〈RaIS,Big,DPP4i〉
9 〈SU,Big〉 →+ 〈RaIS,Big〉 〈SU〉 →+ 〈Big〉
10 〈SU, αGI〉 →+ 〈αGI,Big〉 〈SU, αGI〉 →+ 〈αGI,DPP4i〉
11 〈SU,Big〉 →+ 〈Big, THZ〉 〈SU, THZ〉 →+ 〈DPP4i〉
12 〈SU,Big〉 →+ 〈αGI,Big〉 〈SU,DPP4i〉 →+ 〈RaIS,DPP4i〉
13 〈SU, αGI,Big〉 →+ 〈αGI,Big〉 〈SU,Big〉 →+ 〈DPP4i〉
14 〈SU, αGI〉 →+ 〈Big, THZ〉 〈SU〉 →+ 〈RaIS〉
15 〈SU,GI,Bi〉 →+ 〈<

RaIS, αGI,Big〉
〈SαGI〉 →+ 〈αGI〉

16 〈SU〉 →+ 〈RaIS, αGI〉 〈SU, αGI,Big,DPP4i〉 →+

〈αGI,Big,DPP4i〉
17 〈SU,Big, THZ〉 →+ 〈Big, THZ〉 〈SU,Big〉 →+ 〈RaIS,Big,DPP4i〉
18 〈SU,Big〉 →+ 〈RaIS,Big, THZ〉 〈SU〉 →+ 〈αGI,DPP4i〉
19 〈SU,Big〉 →+ 〈RaIS, αGI,Big〉 〈SU,Big, THZg〉 →+

〈Big,DPP4i〉
20 〈SU,Big〉 →+

〈RaIS, αGI,Big, THZ〉
〈SU〉 →+ 〈RaIS,DPP4i〉
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Table 3.8: Results for Question No 2: Is there any transition from medication

that previously contain SU into medication without SU?

Pattern before 2010 (2000-2009)

X →+ Y Num Support Confidence

SU →+ (¬SU)∗ 88 0.04941 0.21256

SU∗ →+ (¬SU)∗ 142 0.07973 0.24232

Pattern after 2010 (2010-2015)

X →+ Y Num Support Confidence

SU →+ (¬SU)∗ 109 0.057428 0.343848

SU∗ →+ (¬SU)∗ 257 0.135405 0.329910

without SU (X∗ →+ (¬X)∗). Table 3.8 shows the results for Question No 2.

The results shows that the number of patient having a monotherapy of SU and

then not having SU in the future increased by 25%. However, the confidence is

increased significantly by 61%. In addition, the patient number that previously

having any medication using SU and then not having SU in the future, is almost

doubled from 142 patients to 257 patients and the confidence is increased by

36%. This increase happens only in 5 year after 2010, which means that such

medication transition events occurred more frequently after 2010.

And for Question No. 3, the results is shown in Table 3.9 and Table 3.10.

With the same reason, we investigate patients previously having a monotherapy

of SU and then change to any medication without SU to show the sub populations

characteristics. Table 3.9 shows results using for hybrid pattern model and Table

3.10 shows results using conventional pattern model. Comparing the results of

before 2010 and after 2010 dataset, similar results are shown on both Table 3.9

and Table 3.10 that is DPP4i is mainly use in any medication combination to

cease using SU on after 2010 dataset. For before 2010 dataset, other medications

are used fairly, which means that there is no significant differences in support and

confidence values. In addition, Biguanide becomes the strong alternative beside

DPP4i from Table 3.10. However, for patients previously having monotherapy of

SU, DPP4i is the main medication used as shown in 3.9.
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Table 3.9: Results for Question No. 3 - Hybrid model: If there is such pattern

stated in No. 1, what is the medicine that replace SU?

Pattern before 2010 (2000-2009)

X →+ Y (¬SU)∗ Num Support Confidence

SU →+ RaIS(¬SU)∗ 49 0.02751 0.11835

SU →+ Big(¬SU)∗ 37 0.02077 0.08937

SU →+ αGI(¬SU)∗ 25 0.01404 0.06038

SU →+ THZ(SU)∗ 17 0.00955 0.04106

Pattern after 2010 (2010-2015)

X →+ Y (¬SU)∗ Num Support Confidence

SU →+ DPP4i(¬SU)∗ 92 0.04847 0.29022

SU →+ Big(¬SU)∗ 22 0.01159 0.06940

SU →+ RaIS(¬SU)∗ 12 0.00632 0.03785

SU →+ αGI(SU)∗ 9 0.00474 0.02839

SU →+ HZ(SU)∗ 4 0.00211 0.01261

Table 3.10: Results for Question No. 3 - Conventional model: If there is such

pattern stated in No. 1, what is the medicine that replace SU?

Pattern before 2010 (2000-2009)

X∗ →+ Y (¬SU)∗ Num Support Confidence

SU∗ →+ Big(¬SU)∗ 71 0.03987 0.12116

SU∗ →+ RaIS(¬SU)∗ 66 0.03706 0.11262

SU∗ →+ αGI(¬SU)∗ 60 0.03369 0.10238

SU∗ →+ THZ(¬SU)∗ 37 0.02077 0.06313

Pattern after 2010 (2010-2015)

X∗ →+ Y (¬SU)∗ Num Support Confidence

SU∗ →+ DPP4i(¬SU)∗ 220 0.11591 0.28241

SU∗ →+ Big(¬SU)∗ 101 0.05321 0.12965

SU∗ →+ αGI(¬SU)∗ 48 0.02529 0.06161

SU∗ →+ RaIS(¬SU)∗ 45 0.02371 0.05776

SU∗ →+ THZ(¬SU)∗ 16 0.00843 0.02053
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3.5 Discussion

3.5.1 Pattern Models Interpretation

For the rank similarity analysis, Kendall’s Tau takes values between minus one

and plus one, with plus 1 meaning the two rankings are identical and -1 mean-

ing one is in reverse of the other [11]. The Kendall’s Tau score for FPcspade

and FFsingleton is 0.42, which means that although FPcspade and FPsingleton do

have a positive correlation (both rankings have linear correlation), however this

correlation is moderately low.

In addition to general characteristic of both result sets, we are able to yield a

finding from the medical point of view. Our finding is that by inspecting Table

3.4, the domain expert identify that the transition from Sulfonylurea (SU) to

DPP4-inhibitor (DPP4i), as shown in row 7 of FPcspade, is unlikely to happen in

high frequency. In the case of the characteristics of Kyoto University Hospital,

a physician usually used medication which is the first medication prescribed to

the patient as a basic medication. Moreover, when the medication progress, the

physician will use the basic medication and combine it with other medication.

This behavior is demonstrated by FPsingleton pattern in row 11 (〈SU〉 → 〈SU,Big〉)
and row 20 (〈SU〉 → 〈SU,DPP4i〉) where SU are changed into a dual therapy of

〈SU〉 → 〈SU,*〉.
The support value of 〈SU〉 → 〈DPP4i〉 pattern yields a high number in FPcspade

set. It is because Apriori algorithm permits partial itemsets and not consecutive

order of sequences to support the pattern. Thus, the sequence 〈*,SU,*〉* →+

〈*,SU,*〉 supports 〈SU〉 → 〈DPP4i〉 pattern. Considering this fact, to make use

of FPcspade set, as it is, for a suggestion application based on the support rank

value may lead to biased interpretation. For example, in the case of pattern

〈SU〉 → 〈DPP4i〉 in FPcspade, the user may infer that there are medication tran-

sition with high frequency from medication SU to DPP4i, whereas in contrast,

it has much lower frequency as recorded in the patient medical history. Com-

pared to FPsingleton set, the support value difference of the transition is 0.320293

(supcspade − supsingleton).

Furthermore, based on the result of the first experiment on Table 3.6, we

found similar phenomena. This phenomena is demonstrated by FPsingleton in

row 5 〈SU〉 → 〈SU,Big〉. This result is in contrast the conventional method
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result that pattern 〈SU,Big〉 → 〈SU〉 is in row 5 of FPcspade, which in FPsingleton

pattern 〈SU,Big〉 → 〈SU〉 has a negative correlation (lift < 1) that means the

usage of medication pattern 〈SU,Big〉 does not increase the possibility of the use

medication pattern 〈SU〉.
Having the same result in two case of experiment, we are able to understand

that the result set of conventional method should not be interpreted that a cer-

tain medication will progress to certain medication combination. However, we

could interpret the conventional pattern as a medication combination in the an-

tecedent (the left side) may have a high possibility that in the future it will

progress to a medication combination in the consequent (the right side). For

example, from Table 3.6 No. 1 (〈Big, THZ〉∗ →+ 〈Big〉∗), this conventional

pattern may be interpreted that a medication combination of 〈Big, THZ〉 has a

high possibility the next medication will still using 〈Big〉. This kind of interpre-

tation has a valuable meaning for the clinical physician. However, we are still

unable to know for sure whether a medication is stopped from the conventional

result set. From the transition 〈Big, THZ〉∗ →+ 〈Big〉∗, we can not know for

sure whether medication ”THZ” will be stopped in the future. Such information

is also important for clinical physicians and we are able to attain that kind of

information from singleton pattern. A singleton pattern, from Table 3.6 No. 1

(〈SU, αGI,Big, THZ〉 →+ 〈SU, αGI,Big〉), can be interpreted that a medica-

tion combination of 〈SU, αGI,Big, THZ〉 have a high possibility that it will be

continued by medication combination 〈SU, αGI,Big〉. In this pattern, we are

able to understand that after medication 〈SU, αGI,Big, THZ〉, it has high pos-

sibility that the medication ”THZ” will be stopped. In our proposed method,

the time reference is clear (each sequence has a distance by 1 sequence). Hence,

the causality is more certain compared to conventional mining. This particular

features may benefit the following two possible cases:

Case 1. Identification of adverse drug reaction.

In adverse drug reaction, a medication may cause another disease as reaction

of medication combination. In other cases of adverse drug reaction, certain med-

ication may cause different illness. Hence, if the patient’s condition progressing

in the increasing number of medication combination, then we could capture the

adverse drug reaction events.

Case 2. Drug repositioning.

Drug repositioning is an effort to identify whether a certain drug can cure
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other condition, which is different from its original purpose, by using brute force

method. In this case, if the patient condition is diminishing with an addition

of certain medication, it is possible that the condition is cured by the added

medication.

3.5.2 Principal Finding

From the confirmatory experiments, we are able to reveal the way of physician

ceased to use Sulfonylurea (SU). In addition, the released of the drug of DPP4i has

an impact on the medication strategy of the physician in selecting the medication

to replace SU.

Results from Table 3.7 answer the Question No. 1. The result show that

there are frequent patterns of transition from medication using SU to medication

without SU. Despite RaIS is the medication type ranked first as a replacement

of SU in before 2010 dataset, Biguanide is frequently used in combination with

other medication. In addition, RaIS is ranked 14th in after 2010 dataset. In after

2010 dataset, the first rank and the most used medication in any combination is

singleton DPP4i. As for Question No. 2, it is answered with the results shown

in Table 3.8. The results demonstrate the trend of diminishing usage of SU

that the number of medication transition from any medication containing SU

to any medication without SU increased significantly. Moreover in a close up,

the frequency of monotherapy SU replaced by any medication without SU also

increased after 2010.

Furthermore, based on Question No. 3 answers in Table 3.9 and Table3.10, the

following insights are attained: Before 2010, there are patterns that replacing SU

with other medication types. However the number is fair between those other

medication types. Even though, Biguanide and RaIS have high support value,

but the numbers only slightly different with other medication type used as a

replacement for SU. This is in contrast with way of physician diminishing the

use of SU in after 2010. The difference is that DPP4i is most preferable to be

used in replacing SU. In addition, the number is significantly different compared

to other medication type usage. Other medication type that becomes a strong

alternative to replace SU in any medication combination is Biguanide. These

results are fit the prior impression from the domain expert. However, in the

subpopulation that previously having monotherapy of SU, DPP4i dominate the
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usage of medication for in any medication combination in replacing SU. Another

highlight of the results is based on Table 3.9, which is, there are many cases of

medication transition that is from SU to any medication using RAIS. In addition,

any medication containing RAIS replacing SU is higher compared to Biguanide in

before 2010 dataset. This result is unexpected by the clinical physician. However,

it is understandable because RAIS function is similar with SU that is to control

the secretion of insulin in the metabolism.

Based on the results, the domain expert is able to confirm the impression of

the new released medicines impacts towards the physician behavior to diminish

the usage of SU. The impacts are that the way of replacing SU is changing and

it is highly dominated by the new released drug (DPP4i). This method can be

applied in a wider area of clinical situation, for example, to examine a medication

strategy that start with certain medication.

3.6 Conclusion

We proposed new notion of full itemset named singleton into frequent sequen-

tial pattern mining method. By incorporating the conventional mining features

(flexible distance and subset itemset) into the singleton mining method, the in-

corporation enables us to obtain fine-grained patterns, which is useful to show a

more clear view of the medication strategy in certain subpopulation. Our method

enables many physician to understand the changing of using drugs in many area,

when launching new drugs. This phenomena is difficult for physician to ana-

lyze because of the nature of the long term medication history dataset. Clinical

physicians should be benefited with this method.
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CHAPTER 4

Medication Strategy

Visualization

4.1 Motivation

Effective analysis of time-oriented multivariate clinical data, with the objective

of investigating processes and predicting their course, as is important in the case

of diabetes, requires the combined use of multiple approaches, including mining

the longitudinal clinical data to automatically discover within it meaningful pat-

terns, and enabling the analyst to explore the result [28]. Conventional methods

presents result sets of mining activity in tabular manner based on ranking func-

tions. However, this method may discourage an analyst to explore the result set

because the frequent patterns may be in a great number. As found in [27], when

given the results in the a tabular manner, an analyst will only give a high atten-

tion on the first hundred of results and the bottom results. Visual analytic (VA)

methods attempt to bridge this requirement of analyzing the result in effectively

manner.

The first attempt of visual exploration systems in medical domains focused

mostly on the visualization of raw longitudinal data for individual or multiple

patient records. Common goal of previous studies are development of innova-

tive interfaces, graphical metaphors, and exploration capabilities, rather than on
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the discovery of actual new knowledge [2]. Recent visual exploration systems in-

clude additional capabilities for sophisticated interactive exploration of multiple

patients data for cohort studies. However, most VA systems focus on raw data,

such as a time series of laboratory test results, rather than on its interpretations.

They include neither an underlying domain-specific knowledge base that formally

represents the explored concepts and the relationships among them.

Our study similar is with [28] that is to analyze longitudinal datasets. [28]

developed Visual Temporal Analysis Laboratory (ViTA-Lab). It is a framework

that combines data-driven temporal data mining techniques, with interactive,

query-driven, visual analytical capabilities, to support, in an integrated fashion,

an iterative investigation of time oriented clinical data and of patterns discovered

in them. However, the focus of their study is temporal relationship patterns as

described by [3]. This is different with our study, which emphasize on medication

strategy marked by medication transition events listed in Section 2.3.3. A medi-

cation strategy represents not only systematic actions by the physician but also

the reasoning behind them that includes the prior condition and the objective of

the actions. Our aim in VA is to provide visualization that enables physician to

examine the medication strategy from the mining activity result set.

We focus our study in the usage of directed graph to develop visualization

that represent the medication strategy. Graph has been used to visualize varying

datasets, ranging from social network[48], web structure[9], traffic and molecular

communication [24]. Graph is a collection of nodes (vertices) and edges (i.e., links

that connect the nodes) [15]. Nodes and edges are used to visualize the data. In

our case, the nodes are the medication combination and edges are the medication

transition events. In this chapter, two type of graph visualizations is discussed.

4.2 Related Works

4.2.1 Medication Strategy in Type 2 Diabetes

Type 2 Diabetes is a common chronic disease with the highest prevalence num-

ber based on WHO documentation. In the case of diabetes, the selection of

pharmacotherapy is considered essential [51]. The appropriate combination of

medications should be selected in accordance with the patient conditions.

Our study consider medication transition events are essential because they are
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marker when the patients condition changes and the physician needs to modify

the treatment. As listed in Chapter 2, medication transition events may be in

the form of adding, stopping, switching, and continuing medications. In addition,

the transition can also be in the form of decreasing or increasing the dosage. As

for the patient’s condition, there are several patients indicator used by physician

to decide which strategy use. Two indicators discussed in this study is A1c value

and eGFR.

The A1c measures an average blood glucose for the past 2 to 3 months. Dia-

betes is diagnosed at an A1C of greater than or equal to 6.5. GFR is Glomerular

Filtration Rate and it is a key indicator of renal function of the kidney. At the on-

set of diabetes, the kidney grows large and the GFR becomes disturbed. eGFR is

estimated GFR and is a mathematically derived entity based on a patients serum

creatinine level, age, sex and race.

4.2.2 Visualization using Graph

Definitions used in a graph theory is given as the following [13]: A graph is a set

V together with a relation on V . A graph G = (V,E) is a pair of sets, V is a

set of nodes (vertices), E is a set of edges (arcs or links). An edge e(u, v), with,

e ∈ E and u,v ∈ V , is a pair of vertices. If the relation on V induced by E is

symmetric; we call such a graph undirected. If the pair of vertices in an edge

is ordered, G is denotes as directed graph or digraph. Direction is denoted by

saying, with respect to a node, that an edge is incoming or outgoing. A graph

is weighted if each of its edges is associated with a real number. An unweighted

graph is equivalent to a weighted graph whose edges all have a weight of 1. A

graph is complete if there exists an edge for every pair of vertices. If it has n

vertices, then a complete graph has n(n − 1)/2 edges. A loop is an edge with

u = v. A path is a list of successively adjacent, distinct edges. Let < e1, ..., ek >

be a sequence of edges in a graph. This sequence is called a path if there are

vertices < v1, ..., vk > such that e1 = (vi−1, vi) for i = 2, ..., k. A path is cyclic

if a node appears more than once in its corresponding list of edges. A graph is

cyclic if any path in the graph is cyclic and acyclic if there are no cyclic path in

the graph. A tree is a graph in which any two nodes are connected by exactly

one path. Trees are thus acyclic connected graphs. Trees may be directed or

undirected. A tree with one node labeled root is a rooted tree.

58



4. Medication Strategy Visualization

Figure 4.1: A sample of pattern representation.

4.3 Methodology

4.3.1 Medication Theraphy Transition Graph

As mentioned in Section 4.1 (Motivation), one of our aims is to learn about the

underlying reasoning behind the physician behavior in changing the medication.

We are interested in the top n with the highest support patterns. The mining

result is shown in the form of directed graph (using GaphViz 2.38.0). Figure 4.1

displays a sample of pattern representation. The nodes represent the singleton

patterns. Circle nodes (node 1 and node 2) show that treatment patterns is

among top n patterns with the highest support. The larger the circle means the

higher the support value. Oval node (node 3) means that the treatment pattern

is not among the top n patterns. The arrows represent the 1-sequence patterns.

The thicker the arrows the higher the support value of the sequence pattern.

In order to learn the underlying reason of the physician, patient clinical indi-

cators are used, that is the A1c and creatinin serum results. We transformed the

creatinine serum value into the eGFR value, which the physician uses to under-

stand the patient’s renal function condition [23]. The clinical indicator values

used are lab results indicated in Figure 4.2. In addition, we abstracted the A1c

lab test results into three categories: ltr: lower than the range ( < 7), ir: within

the range ( ≥ 7 ∧ ≤ 8), and gtr: greater than the range ( > 8). We abstracted

the eGFR into two categories as follows: ltr: lower than the level ( ≤ 60) and ir:

within range ( > 60). The coloring assignment of pair variation beetwen A1c and

eGFR vales is shown in Table 4.1.
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Figure 4.2: Lab test Result used in the data mining.

Table 4.1: The coloring assignmentof pair variation between A1c and eGFR.

〈A1c,eGFR〉 Color Annotation

〈ltr,ir〉 green A1c < 7 and eGFR > 60

〈gtr,ir〉 blue A1c > 8 and eGFR > 60

〈ir,ir〉 orange 7 ≤ A1c ≤ 8 and eGFR > 60

〈ltr,ltr〉 purple A1c < 8 and eGFR ≤ 60

〈gtr,ltr〉 red A1c > 8 and eGFR ≤ 60

〈ir,ltr〉 purple 7 ≤ A1c ≤ 8 and eGFR ≤ 60

4.3.2 Medication Trajectory Graph

From a longitudinal dataset, medication strategy can also show medication path-

ways. This information is important for clinical physicians to understand not only

long term strategy but also the patient condition’s pathways. We are interested

in developing a medication trajectory graph from 1-sequence patterns produced

by singleton mining.

The requirements of the medication trajectory graph are as the following:

1. The graph should be an acyclic-rooted tree graph with left to right direction.

2. Nodes and edges are frequent patterns in the form of singleton and 1-

sequence pattern produced by singleton mining

3. A node is a singleton, which represents combination of medication and an

edge is a sequence of adjacent singletons, which represents a medication

transition event. The node and edge are associated with the support of the

pattern.

4. The root should be a monotherapy and then, propagate into dual therapy,

triple therapy and so on.

An example of medication trajectory model is shown in Figure 4.3. Figure 4.3

shows a three levels of tree graph. The first level is the root (monotherapy),
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the second level should be dual therapies, and the third level should be triple

therapies. And as demonstrated by Figure 4.3, there are no loops in the graph

(i.e., incoming edge from node in the later level).

Figure 4.3: An example of medication trajectory model.

To enable dynamic visualization, we develop the graph using PHP, which is a

general-purpose scripting language [17], and Vis.js, which is a javascript library for

dynamic, browser based visualization [18]. The algorithm is shown in Algorithm

1. The weight retrieval is not described in the algorithm. However, it can be easily

retrieve along with the singleton and 1-sequence patterns retrieval respectively

are pushed into N and E hash respectively to the nodes and edges.

4.4 Experiments and Discussion

In this section, two experiments are conducted to show each visualization strong

points. The first experiment is to display Top-k medication transition pattern

and the second experiment is to display two medication trajectory of two period

of time partitioned from the main dataset.

4.4.1 Displaying Top-K Medication Transition Pattern

We analyzed Type 2 diabetes patient EMR provided by Kyoto University Hospi-

tal. The medical history spans September 2000 - April 2015. We are interested

in finding the medication pattern with the highest support value. We exclude the

injection medicine (insulin and GLP1-Receptor Agonist). After the exclusion, we

have a raw data set that covers 6,573 patients with a total of 224,269 records.

Our analysis method is displayed in Figure 4.4. The mining process consists of

three sub-procedures (medical episode reconstruction, lab test result abstraction,
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Algorithm 1 Build Medication Trajectory Graph (MTC)

Input: a set of singletons S and 1-sequence patterns T

Output: trajectory model

1: procedure Build MTC

2: Select a monotherapy root from S and maximum combination number

maxLevel from T

3: Initialize previous level node prevAnt = root

4: Initialize nodes N and edges E as hashes

5: for level = 2; level ≤ maxLevel; level + + do

select 1-sequence pattern(s) e, destination node(s) con(s) from T having

source node(s) ant(s) equal to prevAnt(s) and con(s) is not the same with

the prevAnt(s) from T

6: if con is not in N then

push con into N

7: end if

8: push e into E

9: end for

10: build directed graph with N, E data

11: endProcedure

and sequential mining). Using the medication reconstruction to identify the stable

period, we are able to compress the search space into 53,444 records (23.83%

compared to the raw data).

The results of our analysis are presented in Figure 4.5 (by using an ε value

of 14 days and δ value of 90 days). One highlight of the results shown in the

enlargement of monotherapy-cluster of Figure 4.5. There are four parts of the

pie chart with the color of Node 6 (DPP4-i) in Node 1(SU). It means that there

are four edges that come out from Node 1 (SU) to Node 6 (DPP4-i) (1-sequence

pattern of 〈SU〉 → 〈DPP4-i〉). There are 2 purple edges (7 patients with com-

bination 〈ltr,ltr〉 and 12 patients with combination 〈ir,ltr〉), one orange edge (8

patients with combination 〈ir,gtr〉) and one green edge (8 patients with combina-

tion 〈ltr,gtr〉).
As shown in Figure 4.5, showing the mining results as they are can be over-

whelming because many of the transitions are actually acceptable. Therefore,

we added a transition filter, as shown in Figure 4.4. One of the filter condition
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Figure 4.4: Analysis method.

is that patient condition in ideal state should continue the medication. Using

this condition, a clinical physician can observer some green edges. For example,

one green edge comes out from singleton 1 (SU) towards singleton 6 (DPP4i), as

indicated by the red arrow in Figure 4.5. This green edge means that therapy

transitions occurred, though both the patient conditions were ideal conditions

(A1c < 7) and the renal functions were good (eGFR > 60). This green edge is an

unfamiliar transition because based on the medical guidelines, it is recommended

that the medication be continued if the target control is achieved. In [51], the

recommended target control is less than 7.0%. This event insinuates that the

medication transition may not only be caused by the patient condition and that

one possible driver of this decision could be the newly released DPP4-i medicine.

4.4.2 Comparing Two Periods of the dataset using Med-

ication Trajectory Graph

As explained in section 4.3.2, clinical physicians are also interested in understand-

ing the medication pathways that is medication transitions from monotherapy to

multitherapy. This visualization hold a valuable information about the long term

strategy as the patient condition progressing. We use stable period sequences of

Type 2 diabetes patients, which are identified from medication episodes construc-
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Figure 4.5: Medication therapy transition graph of top 75 support value for

patient start before 2010.

tion framework on medical history provided by Kyoto University Hospital along

with the approval from the Ethics Review Board of The Medical School of Ky-

oto University. Figure 4.6 shows the framework for constructing the medication

trajectory graph.

In this experiment, we conduct two visualizations by partitioning the dataset

into two parts: dataset prior 2010 and after 2010. The reason for partitioning

on that particular year is because there was a release of new diabetes medicine

(DPP4i medication type number 6) in 2010. We would like to investigate

the physician strategy before and after the release of DPP4i. Prior 2010, we

have stable period sequences from 1781 patients, while after 2010, we have 1898

patients. In addition, the nodes and edges are patterns having minimum support

of 0.001.

The results of the visualisation prior 2010 and after 2010 are shown by Figure

4.7 and Figure 4.8, respectively. As described in section 4.3.2, the root is the

monotherapy, the second level is the dual therapies, the third level is the tripple

therapies, and the fourth level is therapies with 4 medications. The label inside
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Figure 4.6: Framework for constructing the medication trajectory graph for the

experiment.

the nodes shows the medication combination and the number of patient having

the pattern.

Figure 4.7: Medication trajectory graph for prior 2010.

From Figure 4.7 in root node, the medication combination is medication type

1 that is Sulfonylurea (SU) and there are 833 patients prescribed with SU. The

edge from 1 to 14 is a transition event from medication type 1 (SU) to medication
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Figure 4.8: Medication trajectory graph for after 2010.

combination of type 1 (SU) and 4 (Biguanides). This transition pattern is occured

in 91 patients.

Visualizations of patterns from dataset prior 2010 and dataset after 2010 show

that there is a significant difference in number of nodes in each level. In retrospect

of a medical doctor from Kyoto University Hospital, the condition shown by

Figure 4.8 reflects that physicians strategy was activated by the new released

medicine. Medication combinations used by physicians after 2010 vary more

compared to prior 2010. Medication type no. 6 is greatly used in new combination

medications in each level. Furthermore, comparing the transition from the root

node to the second level, node 14 has the highest number of occurrences in Figure

4.7 (circled by red color). In contrast, that number is decreased sharply in Figure

4.8. This situation resembles the physicians choice of medication at the time prior

and after the new medicine released that is prior 2010, physicians who started

with medication type 1 (SU), when changed the medication into dual therapy

was likely to use combination of medication type 1 (SU) and type 4 (DPP4-i) as

shown in Figure 4.7. As for after 2010, the medication combination that is likely

to use by the physician is combination of medication type 1 (SU) and 6 (DPP4i).

The transition from SU to SU and medication combination of Type 1(SU) and 6

(DPP4-i) becomes the highest as shown in Figure 4.8 (circled by red color).

Based on the result, the clinical physician is able to understand the physicians
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activities before and after the new drug was released. In addition, the advantage

of this method is that we are able to show a medication trajectory from monother-

apy to multitherapy, which shows the physician preference in medication selection

as the patient condition progress.

4.5 Conclusion

We proposed visualization methods to present the result set that is frequent med-

ication strategy patterns. Using medication transition graph, patient’s clinical

condition is used to understand some extent of physician reasoning. Medication

trajectory graph shows strategic pathway taken physicians when patient condition

progressing. Our results show that using graph visualization made the clinical

physician easier to examine the result set of medication strategy compared to the

tabular presentation. This is different with market basket case that mainly used

ranking list in tabular manner for domain analyst to examine the result set.
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CHAPTER 5

Conclusions and Future

Directions

In this thesis, we presented a practical way to conduct a retrospective analyses

on long-term medication history in the form of prescription records. This ret-

rospective longitudinal studies have been attracting a high interest from clinical

physicians, especially in epidemiology communities. Many benefits are offered by

these type of studies, for example to learn the relationship between risk factors,

the development of diseases and the outcomes of treatments over different period

of time. In addition, the increasing volume of medication history accumulated

by the health care provider has provided an new opportunity to conduct retro-

spective longitudinal analyses using data driven tools. This data driven study on

clinical setting has unique issues compared to common market basket cases. Cur-

rently, we have addressed several issues on medication strategy analyses from a

long-term medication history. The main contributions are summarized as follow:

1. We presented data construction framework from long-term multitherapy

prescription records for retrospective database analysis for observing med-

ication transition events. This framework adapts the notions of time error

margin ε to assign a more flexible Allen’s temporal relation [3] between

neighbouring prescriptions. Based on the temporal relation assignment,

the framework treats adjacent prescriptions according to the construction
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rules that we developed with regarding treatment characteristics of the dis-

ease and patient’s behavior in clinical setting. We define a longer form of

reconstructed prescriptions as a medication episode and a stable period as

a medication episode having longer duration than a period of time for a

physicians to see whether a medication is effective or not. We showed that

our framework named medication episode construction framework allows to

reducing repetitive medication episode while preserving prescriptions infor-

mation in a multitherapy dataset. This is important for the longitudinal

analysis of chronic diseases, particularly to observe the strategic actions by

physicians to achieve ideal condition for the patients.

2. We presented a novel notion of a frequent pattern model that is a single-

ton pattern. A singleton pattern is defined as a pattern of a full itemset,

which is an itemset that is contained equally in at least one itemset of

the sequence data. In addition, we define singleton pattern mining task to

extract full adjacent itemsets. This method eases the causality analyses be-

tween itemsets in the frequent sequence pattern result set compared to the

conventional pattern mining method [1] that features partial/subset item-

set and non-consecutive sequence are able to support the frequent pattern

candidate. Furthermore, by incorporating the conventional mining features

(subset itemset and flexible distance) into the singleton mining method, we

demonstrated that finer-grained patterns are obtained, which is useful to

allow a clinical physician answers deeper research questions.

3. We presented directed graph based visualizations named medication ther-

apy transition graph and meedication trajectory graph. The first graph pro-

vides information of existing transition between medication therapy inside

the dataset and patient condition prior the transition. Using this informa-

tion, a clinical physician is able to infer physicians reasoning in adjusting

the medication and medication strategy as the disease progress. The second

graph provide information of medication strategy as the diseases progress.

This graph provide valuable information when used as a mean to compare

medication strategy between different periods of time. Information pre-

sented in our visualization differs with [32] that focuses to provide temporal

relation information of the observed parameter.

Current proposed methods are applicable in a more general chronic condition
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where clinical physician needs to answer research question using long-term med-

ication history. The study onto long-term medication history is essential to start

comprehensive researches for the improvement and development of health care.

There are however some limitations of our construction framework and pattern

mining techniques, which our proposed methods inherit.

1. Information preserved by the construction framework are as stated by the

prescription records. In our case, we only use a dataset from a single hos-

pital. And a patient may go to other clinic because one and other reasons.

This condition could produce blank periods that we defined as a period of

time when we do not have the information. And with the existence of the

blank period, it may required additional consideration in further analyses,

such as stated in [46].

2. As other frequent pattern methods, our method suffers the same disadvan-

tage that is the possibility of producing a great number of frequent patterns.

This condition may happen when observed items are large. However, in real

clinical condition, the number of medicine related to a health condition may

not varied much. Especially, with the publication of medical guidelines, rec-

ommended treatments are limited in number. Therefore, some modification

may be needed when applied in other application, such as item abstraction

for frequently found together items as proposed by [29].

We now outline some related open questions and research opportunities.

1. Analyses with granularity. The current medication episode framework

is able to preserve information from the prescription records, such as medi-

cation type, medication name, duration and dosage. However, the analyses’

example conducted in this thesis are still limited to the usage of medication

types. Extending the data usage in the analyses will provide analyses with

levels of detail that is needed by clinical physicians.

2. Frequent pattern mining with precission. As we have shown in Chap-

ter 3, that with its features, conventional mining method provides a general

view. Applications, such as identification of adverse drug rection and drug

repositioning, require a higher degree of precission. Singleton mining ex-

tracts full itemsets out of the dataset. This feature shows a potential to be

used in these application to identify patient condition changes, such as an
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additional/progressed health condition when certain medication is added in

adverse drug and a decreased/stopped health condition in applying certain

medication in drug repositioning. The deployment of our proposed method

in these application will also provide opportunity to answer an important

question that is to investigate the implementation of our proposed method

in larger observed parameters.

3. Knowledge based visual analytics. The current visual analytic in Chap-

ter 4 provides means for analysts to effectively explore the result set. It will

provide to enhancement of the analyses ability by allowing usage of the ob-

tained knowledge by the analyst from the current visualization as a query

to analyze other datasets. Deployment of intelligent visual based analyses

promises a good research future direction.

4. Data interoperability. With the current development in personal health

application, it is not only health care provider that records health condition

and medication intake. Benefit can be harness from these applications by

ensuring data interoperability between health care provider’s data center

and personal application. Data from personal application can be used to

complement unknown information as presented in the case of blank period.

The same problem may arise in effort to collect dataset from multi health

care provider. Other issues needed to be dealt in this case are data privacy

and security.
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