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Abstract: Wind power has increased rapidly worldwide in recent years. For power system and
wind farm operators, it becomes important to understand the smoothing effects of aggregated
power, and the temporal and spatial scales at which smoothing is achieved. Here, we propose
a new smoothing index for wind power based on the so-called Koopman Mode Decomposition
(KMD). KMD decomposes spatio-temporal data on complex wind power into modes oscil-
lating with single frequencies. We show that the proposed smoothing index is regarded as a
generalization of a previously proposed index based on power spectral densities. We then look
at smoothing of wind power in Japan on a large-scale by incorporating highly-resolved wind
prediction data from the Cloud Resolving Storm Simulator (CReSS). In particular, we consider
six regions in northern Honshu (the largest island of Japan) as a test case. By applying the
proposed index to simulated wind power, we show how the smoothing improves by distribut-
ing wind farms over different regions. Our results indicate that by distributing wind farms
over only one to three regions, smoothing results vary considerably depending on the choice
of regions. However, as the number of considered regions increases, the smoothing improves,
and the particular choice of regions matters less for smoothing effects at the investigated time-
scales. This highlights the practical importance of deliberately selecting sites for large-scale
wind power production to more effectively smooth the aggregated power.
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1. Introduction
The continued increase of wind and solar power generation worldwide creates a necessity to understand
the characteristics of aggregated power and in particular the reduced variability or smoothing achieved
by dispersing the generation across a certain area. In this paper, we focus on wind power generation
due to the unexploited potential, in particular for offshore installation, for which a rapid increase
is expected within the next few years. Since wind is an intermittent and uncontrollable source of
energy, and only a limited amount of electrical energy can practically be stored, one way of reducing
variability in the aggregated power is to distribute the generation across a large area. The distribution
of wind power raises questions regarding the characteristics and correlation between wind speed or
power at different spatial and temporal scales, e.g. understanding the area size required to achieve
a certain degree of smoothing [1]. A better understanding of the smoothing characteristics, i.e.
reduction of fluctuations in the aggregated power, would intuitively facilitate smarter planning and
better utilization of equipment and natural energy resources, as well as greater reliability [2]. Thus,
when facing a future with a large share of wind and solar power in the commercial grid, a deliberate
distribution of generation would benefit the forthcoming smart-grid development incorporating large-
scale renewable energy generation.

In recent decades, smoothing effects of aggregated wind power have been addressed in numerous
studies. Predominantly, various correlation analyses have been carried out, and frequency domain
characteristics have been investigated via Power Spectral Density (PSD): see e.g. [3]. It was shown
in [4] how the PSD of the total Wind Farm (WF) output is estimated via the PSD of the output
of a single turbine, and the method showed good agreement with measurement data. Reduction
of fluctuations in the aggregated power on an hourly scale was demonstrated in [5] for wind power
dispersed over a large area (about 50×100 km in Germany) via second-order statistics and PSD. The
reduction of variability in the aggregated power for WFs dispersed over a large area in Europe was
also demonstrated in [1]. Based on a statistical analysis, it was concluded in [2] that the correlation
between aggregated wind power in different geographical areas is similar to the correlation between
WF outputs. In [6], wind power fluctuations were investigated by incorporating weather simulation
data. The results showed that the timescales at which smoothing effects are achieved vary considerably
between different geographical regions, and the authors concluded that regional wind characteristics
need to be assessed in detail to estimate the smoothing effects of inter-regional wind power. In
[7], correlations of hourly power variations in the Nordic countries (Sweden, Norway, Denmark, and
Finland) were studied on distances up to 2000 km. It was shown how the cross-correlations of
power depend on the time-averaging of the data, e.g. how correlation coefficients more drastically
decrease with distance for 5-minutes (simply 5-min) averaged data in comparison to 1 h. It was
shown in [8] that the PSD of wind power scales according to the so-called Kolmogorov spectrum
as S(f) ∼ f−5/3. In [9], this characteristic was exploited by looking at the deviation from the
Kolmogorov spectrum in the aggregated power as a measure of smoothing—since the non-aggregated
power has been shown to follow it. The authors of [9] demonstrated an 87% reduction in wind
power variability by interconnecting four WFs, and that interconnecting 16 more WFs only gave
8% additional reduction. In [10, 11], smoothing effects in a hypothetical WF and coherence between
distant turbines were investigated via PSD, by using real measurements of wind speeds in Japan. A
new index to quantify smoothing effects of wind power was proposed in [11], and the results from
applying it indicated non-significant smoothing effects for periods longer than 100 min, for WFs
located hundreds of kilometers apart.

This paper is a substantially enhanced version of our conference paper [12]. In the present paper, we
newly propose and demonstrate a smoothing index of wind power based on spectral analysis via the
so-called Koopman Mode Decomposition (KMD). KMD is a recently developed technique based on
theory of the Koopman operator [13, 14] that governs the evolution of observables under an iteration
of nonlinear dynamical systems. KMD and related methods have been applied successfully within the
fields of fluid dynamics [15], power systems [16], and thermal dynamics in buildings [17]. Essentially,
KMD derives a reduced system from dynamic data in terms of modes, i.e. spatial patterns oscillating
with single frequencies for all observables (wind powers at hypothetical WFs in this paper). By

343



utilizing the phase and amplitude information of each observable which characterize the participation
in each mode, we propose an averaged index of wind power smoothing via KMD, which follows
previous investigations of wind power smoothing in Japan [10, 11] via PSDs. The performance of the
proposed index is exemplified by incorporating large-scale weather simulation data from the Cloud
Resolving Storm Simulator (CReSS) [18] to study practical smoothing effects of wind power in Japan.
The used CReSS data have 1 h or 1 min temporal resolutions with 2 km spatial resolution. Smoothing
has not extensively been investigated on a nationwide scale in Japan except for in [10, 11]. Because
correlation of wind power has shown to vary significantly between geographical regions [1, 6], it is
important to study every region specifically to acquire accurate knowledge necessary for planning
purposes.

The contributions of this paper are twofold. First, based on the PSD-based smoothing index [11],
we propose an index which is regarded as its generalization without any assumption on the spectrum
of the data. We show through simple numerical examples that the proposed index indeed reproduces
the same smoothing results if the assumptions for the PSD-based index hold. If they do not hold,
the proposed index produces a slightly different result than the PSD-based one. Second, we utilize
weather simulation data from CReSS to demonstrate the effectiveness of the proposed index. Through
the use of CReSS data and the proposed index, we gain a new insight into the smoothing effects of
wind power in Japan. We look at a test case with hypothetical WFs around a few sites in Japan where
there are currently offshore wind power or construction projects exist. Considerable improvements in
smoothing of aggregated power are observed for the case where two to three regions are utilized instead
of a single one, whereas addition of more WF sites does not give significant additional improvement.
Note, however, that these effects depend on the time-scale as well as the distance between WF sites.

The remainder of the paper is organized as follows. Section 2 describes a smoothing index calcu-
lated via PSDs, used as a comparison to the KMD-based index presented in this paper. Section 3
explains KMD briefly and derives the KMD-based smoothing index which we propose in this paper.
In Section 4, we elaborate on the practical range of the smoothing index, and compare the KMD- and
PSD-based indexes via simple numerical examples. Section 5 first briefly describes the weather simu-
lation data from CReSS, and then presents the experimental results by applying the proposed index
to data on wind power in Japan. Finally, we conclude the paper in Section 6.

2. Conventional smoothing index via power spectral densities
Smoothing of wind power in the frequency domain has conventionally been described by means of
PSD [3, 5, 10]. This is a natural approach since integration of the PSD S(f) of a signal in the frequency
domain is equivalent to its variance σ2:

∫ ∞

0
S(f)df = σ2. (1)

Here, we are interested in quantifying the amount of smoothing achieved at a WF or in the aggregated
power of multiple WFs. Now, let us denote the output power of a turbine or farm i by Pi and its
PSD by Si(f). The aggregated power at a time t becomes Ptot(t) =

∑m
i=1 Pi(t), the normalized power

P n
tot(t) = Ptot(t)/m (n stands for normalized, and m is the number of WFs/turbines). Their PSDs are

denoted by Stot(f) and Sn
tot(f), respectively. In [12], the following smoothing index was considered:

si(f) :=
√
Sn

tot(f)/Si(f), (2)

where Si(f) represents the PSD of “a typical” turbine/WF, which e.g. can be thought of as the
turbine in a WF with a typical output. This is a measure of how much the total power fluctuates for
a certain frequency f compared to “a typical” turbine/WF. When output powers and locations vary
significantly, it becomes difficult to judge the correctness of such an index because of the difficulty
determining “the typical” turbine/WF. Thus, the following different index was proposed in [12]:

s(f) := tmean
i

(si(f)), (3)
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where tmean represents the 25% truncated mean over all indexes i = 1, . . . ,m, to disregard the
results of the most extreme spectra (outliers). We call this the mean smoothing index via PSDs, since
it involves the truncated mean operation.

In this paper, we look at another index as a comparison to the index that we will propose later in
this paper. First, the total power Stot is given in [11] as follows:

Stot(f) =
m∑

i=1

Si(f) +
m∑

i=1

m∑
j=1
j �=i

√
Si(f)Sj(f) · γij(f) cos(φij(f)), (4)

where γij(f) = |Sij(f)|/√Si(f)Sj(f) is the magnitude of coherence, and φij(f) = arg(Sij(f)) the
phase between i and j, where Sij(f) is the cross-spectral density between Pi and Pj . Thus, we
can understand that the amount of smoothing is highly dependent on the coherency, including the
phase differences between individual powers constituting the aggregated power. Then, the following
smoothing index is defined as in [11]:

cohPSD(f) =
1

m(m− 1)

m∑
i=1

m∑
j=1
j �=i

γij(f) cos(φij(f)), (5)

where it has been assumed that the PSDs of power at different locations are identical : see [11] for the
detailed derivation. We call this the averaged smoothing index via PSDs, since it sums the coherence
between any two locations, and then takes the average. With this index as a starting-point, we
propose a new index in the next section.

3. New smoothing index via Koopman modes
In this section, we will directly state the decomposition celled the Koopman Mode Decomposition
(KMD) without further theoretical elaborations. Derivations and theory can be found in numerous
papers, e.g. [13–16, 19]. Following the definition, we introduce two smoothing indexes, where the
one called the averaged smoothing index via KMD will be used later to evaluate smoothing effects of
wind power in northern Japan. The index is regarded as a generalization of the previously proposed
smoothing index calculated via PSDs.

3.1 Koopman mode decomposition
Consider N + 1 vector-valued temporal snapshots of wind power measurements in the per unit (p.u.)
system (power/(rated power)) collected at m locations: {P 0, . . . ,P N}, P k ∈ R

m, where k denotes a
specific time-instance. The sampled data are then decomposed into a finite sum via KMD:

P k =
N∑

i=1

λ̃k
i ṽi, k = 0, . . . , N − 1,

P N =
N∑

i=1

λ̃N
i ṽi + r.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6)

Above, they are computed via the Arnoldi-type algorithm [15] that outputs N pairs of the so-called
Ritz-values λ̃i ∈ C and Ritz-vectors ṽi ∈ C

m. The vector r is called the residual in [15], and if it is
assumed to be zero, (6) becomes

P k =
N∑

i=1

λ̃k
i ṽi, k = 0, . . . , N. (7)

Modal frequencies are calculated according to fi = Im(ln(λ̃i))/(2πTs), where Ts is the sampling
period. The vector ṽi = Ai∠αi := [Ai1∠αi1, Ai2∠αi2, . . . , Aim∠αim]� (� denotes the transpose
operation) is here called the Koopman Mode (KM) oscillating with the frequency fi and contains
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the magnitudes Aij and phases αij of power fluctuations corresponding to the m measurements; e.g.
outputs of m WFs. To identify lightly damped or undamped oscillations with large magnitude, all
N KMs are sorted by (λ̃i)N‖ṽi‖, where ‖ · ‖ denotes the euclidean norm, and higher ranked ones are
called dominant KMs, which are here used to evaluate smoothing effects.

3.2 New smoothing index
KMD will be applied to wind powers at m locations that represent hypothetical WFs. The total
(aggregated) power Ptot,k can be expressed using (7) as

Ptot,k = P�
k 1m =

N∑
i=1

λ̃k
i

m∑
j=1

[ṽi]j =:
N∑

i=1

λ̃k
i vi, (8)

where P k ∈ R
m contains the measured powers at time k, 1m is the m-length vector of ones, [ṽi]j

is the j-th component of ṽi, and vi ∈ C is the scalar KM of the total power. That is, a spectral
decomposition of the total power is achieved by applying KMD to individual outputs. Now, let
Ai = |vi| be the amplitude factor of the total power for the i-th KM, and analogously Aij be the
factor for the j-th output power. Then, following our previous work [12], we define

si :=
Ai

m · tmean(Ai)
, (9)

as a smoothing index, where Ai := [Ai1, . . . , Aim]�, and tmean is same as in (3). Note that m is
included in (9) to scale the total output to WF p.u. If the amplitude factor Ai of the total power is
smaller than the truncated mean of amplitudes for individual WFs contained in Ai, then (9) becomes
smaller than one, implying smoothing effect for the KM with frequency fi. We call this the mean
smoothing index via KMD . In addition to this index, we here introduce an index similar to (5):

cohi,KMD =
1

m(m− 1)

m∑
j=1

m∑
l=1
l �=j

ÂijÂil cos(Φi
jl), (10)

where Φi
jl := αij − αil, and Âij := Aij/max(Ai), i.e. components of Ai normalized by the largest

component: see Fig. 1 for an illustration. The subscript i refers to the i-th dominant KM oscillating
with the frequency fi. We call this the averaged smoothing index via KMD, and it can be regarded as
a generalization of a previously proposed index [11] which was shown to be effective for quantifying
smoothing effects in Japan. The index theoretically takes a value in [−1, 1], where ‘−1’ indicates
perfect smoothing and ‘1’ no smoothing; however, it approximately takes a value in [0, 1] for the
practical data in this paper. This is because, first of all, ‘−1’ is only achievable in the case of
two signals in antiphase, but here we consider outputs at multiple locations. When the number
of locations increases, the value indicating perfect smoothing approaches zero, which is shown in the

Fig. 1. Illustration of amplitudes and phases of KMs.
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following section. Secondly, perfect smoothing of wind power is achieved for a large number of outputs
with uncorrelated fluctuations or turbulence [3], whereas the number is not significantly large in this
paper. For these reasons, a maximum achievable value of smoothing close to zero can be expected.
Also, the proposed index (10) is not limited to the algorithm used to approximate KMD in this
paper and can be computed with any technique producing a decomposition of the same type as (6)
or (7). In fact, there are several different KMD algorithms proposed in literature: see e.g. [20, 21]. In
addition, the index takes the same form as (5), which follows naturally from the notion and definition
of coherency in KMs [19, 22], and does not rely on the assumptions used to derive (5). Thus, we
can state that the KMD-based index (10) is regarded as a generalization of the PSD-based index (5),
which is numerically demonstrated in the next section with simple examples.

4. Simple examples for comparison between smoothing indexes
Here, we first look at properties of the formula used to calculate the averaged smoothing via both
KMD and PSDs, and second look at two simple numerical examples to clarify the similarities and
differences between the two methods.

By dropping the index i in (10) and f in (5), and only considering a single frequency for simplicity,
we rewrite the average coherence on a common form:

coh =
1

m(m− 1)

m∑
j=1

m∑
l=1
l �=j

IjIl cos(θj − θl), m > 1, (11)

where Ij∠θj = Âj∠αj for KMD, or IjIl cos(θj − θl) = γjl cos(φjl) for PSDs. Now, we think Ii∠θi as
a phasor as shown in Fig. 1 for KMD. The value ‘−1’ on perfect smoothing is achieved when m = 2,
Ij = Il = 1, and (θj − θl) = zπ (z ∈ Z). Thus, we consider a case where m = 2n (n ∈ N > 1) and
Ii = 1 for all i, and we let θi = β (i = 1, . . . ,m/2) and θi = β ± π (i = m/2 + 1, . . . ,m), where β is
an arbitrary angle. This case implies two groups of unit-length phasors in anti-phase, hence perfect
smoothing is achieved. In this case, (11) is simplified as

coh = − m

m(m− 1)
= − 1

m− 1
, m > 1, (12)

which goes to zero as m approaches infinity. Note that when m is not even as in the previous example,
by letting e.g. θi = β (i = 1, . . . , floor(m/2)) and θi = β±π (i = floor(m/2)+1, . . . ,m), i.e. allowing
a difference of one between the number of anti- and in-phase phasors, (12) will closely approximate
the smoothing in particular for “large” m. Note that the floor function (here we use MATLAB)
takes the integer part of a value: e.g. floor(3/2) = 1. Still, we consider two groups of phasors of
unit lengths in anti-phase, denote the number of phasors in each group by m1 and m2 satisfying
m1 +m2 = m, and the imbalance Δm = |m1 −m2|. Then, (11) can be simplified as

coh = −m− (Δm)2

m(m− 1)
, 0 ≤ Δm ≤ m. (13)

Here, (13) is equivalent to (12) for Δm = 0 (perfect smoothing) and becomes one for Δm = m (i.e.
no smoothing for only in-phase phasors). In Fig. 2, we have evaluated (13) for different m and Δm.
The figure shows that for m as low as 10, values on smoothing close to zero are achieved for perfect
smoothing (Δm = 0.) However, results as ideal as in the case of two anti-phase groups of phasors of
equal lengths may be unrealistic for our practical data. Also, m is always larger than two for the wind
power data in this paper. Thus, we say that the index approximately takes a value in the interval
[0, 1], although small negative values are sometimes observed in this paper.

Now, we look at simple numerical examples to clarify the differences and similarities between the
KMD- and PSD-based averaged smoothing indexes. Let us consider the two signals given by

x1(t) = a1 · sin(2πf1t) + b1 · cos(2πf2t),

x2(t) = −
{
a2 · sin(2πf1t+ ϕ) + b2 · cos

(
2πf2t− π

3
+ ϕ

)}
,

(14)
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Fig. 2. Simplified smoothing index coh according to (13), evaluated for two
groups of phasors of unit length in anti-phase for different m and Δm.

Fig. 3. KMD- and PSD-based averaged smoothing indexes applied to (14)
under different phase shifts ϕ: For (a) Case 1; (b) Case 2.

where f1 = 2 Hz and f2 = 7 Hz. If a2 = a1 and b2 = b1, then perfect smoothing is achieved for
2 Hz if ϕ = n2π, and for 7 Hz if ϕ = π/3 + n2π, where n ∈ N. Now, we vary ϕ between 0 and
2π, let the temporal length be 8 s (N + 1 = 257), and the sampling frequency fs = 32 Hz. The
MATLAB functions cpsd (cross-spectral density) and mscohere (magnitude squared coherence) are
used to compute the PSD-based index (5) with no window overlap. The number of fft (fast Fourier
transform) points is set at 128, and no window function such as Hamming is used.

Smoothing via the proposed (10) and the PSD-based index (5) is first computed for a case (Case 1)
with a1 = a2 = 0.8, and b1 = b2 = 0.6. The results are shown in Fig. 3(a), and we see that the
results become virtually identical for the two indexes. For example, when ϕ = 0, perfect smoothing
is achieved for 2 Hz, which corresponds to a smoothing value of −1. In this case, the PSDs of x1(t)
and x2(t) should be identical, and thus the derivation leading to the smoothing index (5) holds.

Now, let us consider (14) with a1 = 0.8, b1 = 0.6, a2 = 0.3, and b2 = 1.1 (Case 2). The smoothing
results are given in Fig. 3(b). The PSD-based index here gives the same result as for Case 1, but
the KMD-based index generates a slightly different result. The PSD-based index fails to quantify the
smoothing correctly since it indicates perfect smoothing for a case where it is obviously impossible
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because the amplitudes are not equal (a1 �= a2, b1 �= b2); also resulting in PSDs of different magnitudes.
The proposed KMD-based index thus generalizes the PSD-based index for cases where the PSDs are
not equal, which may be the case for the wind power data considered in this paper.

5. Numerical test with large-scale wind prediction data

Here we apply the proposed smoothing index (10) to simulated wind power data estimated using wind
predictions with 1-h and 1-min time-resolutions. The 1-h data are from 36-h weather simulations,
and the 1-min data are from a 30-h weather simulation.

5.1 Wind prediction data from CReSS
Data from the CReSS weather model [18] have been acquired including wind speeds in latitude,
longitude and vertical directions; air pressure, and temperature for different heights z above sea level,
e.g. z = 10 and 150 m: see Fig. 4 with Δx = Δy = 2 km.

Megawatt-rated turbines are mounted on about 100 m tall towers due to their long blades required
to extract the energy. Because of this, the following equation is used to estimate wind speed at a
height z [23]:

vz =
u∗
kv

[
ln

(
z − d

z0

)
− ψ

]
, (15)

where kv is the von Karman constant, u∗ friction velocity, d displacement height, z0 roughness length,
and ψ a parameter taking the stability of the boundary layer into account, which here is assumed to
be neutrally stable, implying ψ = 0. The parameters d and z0 are dependent on the surface terrain,
and d is assumed to be small compared to z and omitted, and z0 is set to 2× 10−4, which is standard
for open sea. By using the simplified vz = (u∗/kv) ln (z/z0) and assuming equal friction velocities,
the wind speed at a height z2 from wind speed at z1 can be approximated by

vz2 = vz1

ln (z2/z0)
ln (z1/z0)

. (16)

In this paper, using (16), we scale wind speed data at 10 m height to 80 m. We only consider the lati-
tude and longitude components, and calculate the wind speed at 10 m height as v10 =

√
v2

x,10 + v2
y,10.

Two time series of wind speeds are shown in Figs. 5(a)–(b); one from the 1-h data and the other
one from 1-min data. PSDs of the time-series are shown in Fig. 5(c). The PSD of wind power have
been shown to follow the so-called Kolmogorov spectrum [8] according to S(f) ∼ f−5/3, and the
spectrum of wind speed is similar [24]. The dashed line in the figure represent c · f−5/3, where c is
a constant adjusted manually to match the PSDs. It is evident from these examples that the PSDs
of wind speeds from CReSS scale according to Kolmogorov’s theory, implying that wind speeds from
CReSS have spectra close to real measured data.

Fig. 4. Illustration of CReSS data.
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Fig. 5. Examples of (a) 1-h and, (b) 1-min wind speeds from CReSS, and
(c) their Power Spectral Density (PSD) compared to Kolmogorov’s spectrum.

5.2 Data sectioning and mean smoothing with KMD
For example, when applying the KMD-based smoothing index to 1-h sampled wind power predictions,
we have a matrix of input data containing temporal snapshots collected over a month’s period: Pin :=
[P 1, . . . ,P N1 ] ∈ R

m×N1 ; where m denotes the number of locations and N1 the number of temporal
snapshots. Here, we attempt to look at fluctuations of wind power on an hourly rather than daily
scale due to their impact on power system operation [5, 25]. Because of this, we arrange the input
data into sub-matrices Pi containing three days of wind speed data to have a reasonable amount of
temporal snapshots in each matrix, each time-shifted L (e.g. one day) from the previous one, and
define the input to KMD as

Pnew :=

⎡
⎢⎣

P1

...
Pp

⎤
⎥⎦ ∈ R

(p·m)×N2 , (17)

where N2 is the number of temporal snapshots in each sub-matrix Pi, and p the number of sub-
matrices: see Fig. 6. Each sub-matrix Pi := [P 1+(i−1)L, . . . ,P N2+(i−1)L] can be seen as a subsection
of data, and the observables, i.e. the m measurement locations are the same only time-shifted in
each section. When applying the KMD-based averaged smoothing index, the smoothing is calculated
for each section, and the total result is averaged over all sections. In this way, we obtain a result on
smoothing which has been averaged over a month’s duration. Long time-series of 1-min sampled wind
power data are also treated in the same way with this type of sectioning.
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Fig. 6. Illustration of data sectioning used with KMD.

Fig. 7. Set of wind speed measurement points outlining the coasts of Japan’s
main islands, indicated by black dots. Red crosses roughly mark six regions
in Northern Honshu, where there are WFs or project/plans: Mutsuogawara,
Noshiro, Sakata, Fukushima, Kashima, and Choshi.

5.3 Smoothing of wind power in northern Honshu
In this section, we demonstrate the proposed smoothing index via KMD. Two types of data are used
in the demonstration. The first type is daily wind predictions with 1-h time resolution which have
been obtained for a period of 3.5 years. However, there are temporal gaps in the data, and hence we
will look at months where data from many consecutive days are available. Here, we use data from
December 2012 (26 days), February 2015 (28 days), and July 2014 (30 days). The second type is
predictions with 1-min time-resolution and temporal length of 30 h, from January 2013.

We will look at wind power around six regions in Japan where there are offshore WFs, or ongoing
projects. The six considered regions are shown in Fig. 7: Mutsuogawara, Noshiro, Sakata, Fukushima,
Kashima, and Choshi. The WF outputs are approximated from wind speeds using a wind turbine
power curve: see Fig. A-1(b) in the appendix.

First, we look at correlations between predicted wind speeds. The decrease in wind speed and
wind power correlation with distance is similar and is often modeled by exponential functions [7,
26]. Figure 8 shows linear correlation coefficients of wind speeds along the coast of Honshu for both
1-h and minute time-resolution data. The 1-h data are from December 2012, but the results are
similar for all months considered in this paper. The correlations are computed with respect to a
reference point north of Noshiro (see Fig. 7), located along the Sea of Japan coast, close to the
northernmost point of Honshu. In Fig. 8, we highlight locations along the Sea of Japan coast and the
Pacific Coast in different colors. Significantly higher correlations are observed along the Sea of Japan
coast, whereas correlations are lower for locations along the Pacific Coast. This difference in correla-
tion is particularly apparent in Fig. 8(a) for the hourly data. A distinct outlier is noted, which may be
an effect of the location deep within an inlet. For correlations of minute time-resolution data shown in
Fig. 8(b), results for 10-min averages (from 1-min data) generally show increased correlation in com-
parison with 1-min data. The correlations decrease quickly towards zero and below (anti-correlation).
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Fig. 8. Correlation coefficients of wind speeds along the coast of Honshu for
(a) 1-h wind speeds; and (b) 1-min and 10-min averaged wind speeds.

The anti-correlations are likely an effect of the short time-period of the simulations (30 hours) and
the weather characteristics on that particular day, and such effects are likely to disappear for longer
time-series—since this is not observed with the hourly data which takes the macro-scale correlations
on longer timescales into account. Negative correlations are rare between WFs [2], and [1] reports
slightly negative correlations for long distances (1500–3000 km). The observed phenomenon should
therefore be examined with more simulation data and real measurements.

5.3.1 Improved smoothing by dispersing wind farms
Now, we look at smoothing effects of aggregated wind power by applying the proposed averaged
smoothing index via KMD. In Fig. 9(a), smoothing of aggregated wind power is shown for the
December data as the number of WFs around Fukushima (see Fig. 7) varies from 4 to 20 in steps
of 4. Initially, in Fig. 9(a), the smoothing improves when the number of WFs increases from 4 to 8.
However, after this, smoothing does not seem to improve as rapidly with more WFs. Now, using the
1-min data, smoothing results are shown in Fig. 9(b) for input data with temporal length of 14 h,
4 h long sections, and 2 h overlap. As for the 1-h data, a pronounced improvement in smoothing
is observed by increasing the number of WFs from 4 to 8, and after that only minor improvements
are observed. Here, it should be noted that the 1-h and 1-min data come from different datasets
with different dimensions and small differences in the geographical data, thus the positions are only
roughly the same. The maximum distances between any two WFs for the cases of 4, 8, and 12 WFs
for the 1-h data are 26, 62, and 94 km, and for the 1-min data they are 30, 66, and 105 km. The
marked increase in smoothing from 4 to 8 WFs mainly comes from doubling the maximum distance,
causing less coherence between WF outputs.

In Figs. 9(c)–(d), smoothing results for both 1-h and 1-min data are shown for the cases of placing
one or two WFs in each of the six regions. The results are compared to the cases of 6 or 12 WFs
around Fukushima. Figures 9(c) and (d) clearly show that the smoothing improves substantially when
distributing WFs around the six regions in comparison with just one (Fukushima). The smoothing in
the cases of 6 and 12 WFs become very similar when they are distributed equally between the regions.
However, the smoothing differs more for 6 or 12 WFs around only Fukushima. Intuitively, we can
expect this, because increasing the maximum distance between WFs from roughly 50 km for 6 WFs
around Fukushima to 100 km for 12 WFs, i.e. a twofold increase, should improve the smoothing due
to the decrease in correlation of wind speeds/powers. Nonetheless, even when increasing the number
of WFs to 30 (maximum distance 210 km), the smoothing effects are not as good (but almost) as
when utilizing six regions. Also, the addition of a second WF in each region a few kilometers away
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Fig. 9. Smoothing around Fukushima as the number of WFs vary from 4 to
24 for (a) 1-h wind prediction data from December 2012 as input and (b) 1-min
data. Smoothing for 6 or 12 WFs in Fukushima and WFs distributed over the
six regions (locations) shown in Fig. 7, for (c) 1-h wind prediction data from
December 2012 as input and (d) 1-min data.

from the first one, did not have as pronounced effect when looking at this temporal (1 h and 1 min)
and spatial (2 km) resolutions. Thus, the main origin of the observed improvement of smoothing
observed is the vast distribution of WFs across northern Japan, which substantially decreases the
correlation/coherence of wind power.

5.3.2 Smoothing dependence on the number and choice of regions
Here, we look at how smoothing depends on the number of geographical regions chosen among the ones
indicated in Fig. 7, by looking at all combinations of l regions of the set of n = 6 considered regions.
That is, we consider in total

∑n
l=1 n!/((n− l)!l!) = 63 cases. The total number of WFs is fixed at 12.

For example, in the case of l = 5, there will be 2 WFs in four regions and 4 WFs in one region. In all
other cases, the 12 WFs will be evenly distributed between the l regions. To quantify the smoothing
in each case c, we consider the smoothing integrated over frequency: Σc :=

∫ f∞
f=0 sc(f)df , calculated

with the trapezoidal method, where sc(f) (f ∈ [0, f∞,c]) represents the calculated smoothing from
the KMD-based averaged smoothing index, and f∞ := min([f∞,1, . . . , f∞,63]). Then, we look at the
normalized smoothing defined by Σ̂c := Σc/max([Σ1, . . . ,Σ63]), where the maximum Σc is naturally
achieved for a case where l = 1 (one region), where we anticipate less smoothing since the correlation
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Fig. 10. Normalized integrated smoothing vs.: (a) the number of regions for
1-h data, and the mean results; (b) distance; (c) aggregated regions where the
results have been averaged for each region; (d) number of regions for 1-min
data.

of wind powers within a region is likely higher than between regions.
Results from calculating this “normalized integrated smoothing” plotted vs. the number of regions

are shown in Fig. 10(a) for 1-h data of February, July, and December. Here, smaller improvements
in smoothing are observed for a larger number of regions l, while the smoothing varies more for
l = 1, 2, and 3. These results confirm the intuitive notion that the smoothing will depend highly
on the particular regional characteristics when looking at only one or a couple of regions, while
these characteristics tend to cancel out when looking at multiple regions. Note that the results for
all months become close, which is clearly seen by looking at the mean results. The smoothing vs.
maximum distance between WFs is shown in Fig. 10(b). A clear, exponential decrease in smoothing
is observed with increased distance for all months. Exponential decrease in correlation with increased
distance has been shown in numerous studies—see e.g. [2]—which is a likely cause of this. Our
results indicate that increasing the maximum distance up to about 200 km improves the smoothing
significantly, whereas further increments provide less noticeable improvements. Here, it should be
noted that when the distance reaches about 200 km, smoothing results for inter-regional distributions
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are included, such as WFs both at the west (Sea of Japan) and east (Pacific Ocean) coasts of Japan,
whereas distances below about 200 km only include one region, or multiple “close” regions such as
Kashima and Choshi. To more clearly illustrate the improvements in smoothing for inter-regional
distribution of WFs, we reduce the number of regions to three very rough (aggregated) regions as
follows: Mutsuogawara by itself in the north, Noshiro and Sakata along the Sea of Japan coast, and
Fukushima, Kashima, and Choshi along the Pacific Coast. As an example, if all WFs are located
around Noshiro and Sakata, the number of included aggregated regions only becomes one. In Fig. 10(c)
we have plotted the mean smoothing results (using the same data as in Fig. 10(a)) vs. the number
of aggregated regions. The results clearly indicate similar improvements for all months by dispersing
the generation inter-regionally over at least two regions. The cause of this can be attributed to the
different correlation characteristics that were discussed in Section 5.3.

The smoothing results for the 1-min data are shown in Fig. 10(d). These results differ significantly
from the results using the 1-h wind data, in that much larger smoothing effects are observed overall.
In fact, most of the cases yield smoothing close to zero, which indicates almost perfect smoothing.
The result suggests that the distance between WFs in one or two regions only is enough to make the
wind powers uncorrelated at this time-scale. The rapid decrease in correlation for smaller spatial and
temporal scales was demonstrated in Fig. 8, and has been shown in e.g. [7].

6. Conclusions
In this paper, we proposed a new smoothing index of wind power based on the KMD, which decom-
poses the complex spatio-temporal data on wind power into modes oscillating with single frequencies.
It was shown that the proposed smoothing index is regarded as a generalization of a previously pro-
posed index based on power spectral densities. Our results from applying our proposed index to wind
predictions from CReSS indicated that by distributing wind power across only one to three regions in
Northern Japan, smoothing can vary considerably; and, as the number of regions increases, the partic-
ular choice of regions matters less. In particular, our results demonstrated that a distribution of WFs
between the Sea of Japan coast and the Pacific Coast results in greater improvements in smoothing
than WFs placed along the same coast. This highlights the practical importance of deliberately select-
ing regions for large-scale wind power production to more effectively smooth the aggregated power.
Furthermore, an exponential-like improvement in smoothing with increasing distance was observed.

Several direct extensions of this work are possible. In this paper we mainly looked at 1-h data, while
data of higher temporal resolution may be highly interesting for studies on short-term power system
operation. It would also be important to cross-check the simulated wind speeds and power outputs
against real measurements around Japan to verify their correctness. Applying the proposed index to
real measured data is also of great practical importance. In the current paper, the applicability of
the CReSS was briefly demonstrated for wind power analysis in Japan, but many additional studies
incorporating CReSS-data are possible; to name a few: wind power prediction, economic dispatch
with high penetration of wind power, and detailed case studies to evaluate potential WF locations.
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Appendix

A. Wind power conversion model
The power extracted from wind is given in [27] as

Pw =
1
2
ρcp(λ, β)Arv

3
w, (A-1)

where ρ is the air density (here 1.225 kg/m3), cp the power coefficient which is a function of tip speed
ratio λ and pitch angle β (β ≥ 0◦), Ar = πr2 the area swept by the rotor blades with length r (m),
and vw wind speed (m/s). The power coefficient cp is modeled as in [27, 28]:

cp = c1

(
c2
λi

− c3β − c4β
c5 − c6

)
exp

(
−c7
λi

)
, (A-2)

with λi defined as
1
λi

=
1

λ+ c8β
− c9
β3 + 1

. (A-3)

The tip speed ratio is defined as λ := vbt/vw = (ωtr)/vw, where vbt is the speed of the turbine blades,
and ωt (rad/s) is the mechanical angular velocity of the turbine rotor.

An optimal relation between Pw and ωt, P ∗
w(ωt) is derived by tracking the maximum value of (A-1)

for different wind/rotor speeds, called maximum power point tracking: see Fig. A-1(a). P ∗
w(ωt) is

used to control the turbine at optimal power. The power curve Pw(vw) is now derived by solving

Pw(λ(vw, ωt)) − P ∗
w(ωt) = 0, (A-4)

for a number of wind speeds vw, and shown in Fig. A-1(b).

Fig. A-1. Optimal power vs. speed curve in (a) and derived power curve in
(b) utilized in this paper.
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