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This paper develops a method for modeling of in-room temperature distribution incorporated with
data collected by human sensors. This modeling is based on a standard two-dimensional heat diffu-
sion equation with an effective diffusion coefficient. The effective diffusion coefficient is nominally
identified from characteristics of air flow inside a room and its architectural design. For modeling
multiple time-scale influence of human occupancy on the in-room temperature distribution, two
independent parameters—the effective diffusion coefficient and human heat input—of the equation
are modulated with the human sensor data that capture spatio-temporal dynamics of the occupancy
in high resolution. The developed method is applied to a practical office space in commercial build-
ing in Japan so that its effectiveness is demonstrated by comparing numerical simulations of the
equation with measured data on temperature.
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I. INTRODUCTION

In-building energy dynamics occur on a wide range of
scales in both space and time. For their representation,
two different types of mathematical models have been
used in literature. First, lumped-parameter models are
used in order to predict and control coarse-scale thermal
dynamics: see e.g. [1]—ranges of more than lengths be-
tween rooms and hours. Second, distributed-parameter
models have been developed for fine-scale thermal dy-
namics inside a room. For example, Ren and Stewart [2]
proposed a mathematical model of temperature distri-
bution inside a building described by equations of tem-
perature and air flow volume in sub-zones into which a
room is divided. Zhang, et al. [3] represented the dis-
tribution of in-room temperature as a linear superposi-
tion of temperature changes caused by individual heat
sources or sinks, where the temperature changes were
identified with Computational Fluid Dynamics (CFD)
program. Osawa, et al. [4] proposed to incorporate a
lumped-parameter model, which represented coarse-scale
in-room thermal dynamics, with a fine-scale advective
transport term by the air flow close to ceiling.
The fine-scale modeling has two main advantages for

analysis and design of various HVAC systems. The first is
a better comprehension of undesirable phenomena of the
HVAC systems. One of the phenomena is the so-called
hunting behavior [5] in which an undesired oscillation of
in-room temperature field develops. This behavior is of-
ten observed in a building with dispersed multiple HVAC
units and is caused by not only their nonlinear character-
istics, an oscillatory response of thermal loads but also a
dynamic thermal interaction of neighboring HVAC units.
The fine-scale modeling effectively describes the thermal
interaction as a dynamic response of in-room tempera-
ture field driven by heat inputs from the HVAC units.

By using this description, it becomes possible to capture
the underlying mechanism of the hunting behavior and
eliminate it in design and operational stages of the HVAC
systems. The second is an effective design of the HVAC
management with taking human occupancy into account.
The consumption of energy for air conditioning can be
saved by setting the rates of ventilation based on human
occupancy. The idea is widely known as the demand-
controlled ventilation: see e.g. [6, 7]. Indeed, new man-
agement technologies of the HVAC systems are proposed
by using information on human occupancy collected by
sensors or predicted by models [8, 9]. The management
technologies contribute to local and precise control of in-
room temperature without any disturbance to human ac-
tivity. Here, the sort of control involves multiple HVAC
units that are operated in a coordinated manner. As
stated above, their coordination might cause the hunt-
ing behavior. Thus, in the coordination, it is required
to precisely regulate the in-room temperature while sup-
pressing the hunting behavior. A possible idea for this is
to nowcast (namely, predict in a very short-time horizon)
the time response of in-room temperature and to use it
for determining control efforts of the HVAC units. The
idea is realized by the fine-scale modeling via the so-called
model predictive control [10] that has been reported for
control of in-building thermal dynamics [11, 12].

In this paper, we focus on a room used for office space
with the following two features. First, the ceiling height
of room is about three meters and much smaller than
both its length and width. Thus, the thermal dynamics
in the vertical (height) direction are steady and simply
described, while the dynamics in the horizontal (length
and width) direction are modeled in detail. Second, hu-
man occupancy is measured in both space and time. The
measurement is feasible with infrared ray sensors [13],
whose resolutions are less than 2.6m in space and 1 s in
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time. The sensor technology is promising and makes it
possible to derive highly-resolved data on human occu-
pancy in remote. It is expected that the highly-resolved
data are used for local and energy-efficient control of the
HVAC systems: see as similar ideas [14, 15].
An important problem posed here is how the highly-

resolved data on human occupancy are exploited for es-
timating fine-scale temperature distribution in a room.
Generally speaking, it is difficult to directly derive highly-
resolved data on in-room temperature because of the fol-
lowing reasons. For the space-resolution, air temperature
can not be remotely measured, and dense spatial deploy-
ment of temperature sensors is feasible only in the stage
of architectural design. For the time-resolution, time con-
stants of temperature sensors are of order of minutes [16],
which are larger than the time constants of human sen-
sor mentioned above. Thus, it is impossible to sample
in-room thermal dynamics faster than the time constants
of temperature sensors. From these, it is necessary to ex-
plore the modeling of fine-scale temperature distribution
based on available measurement data.
The purpose of this paper is to develop a method

for fine-scale modeling of in-room temperature distribu-
tion incorporated with highly-resolved human occupancy
data. To do this, it is required to consider two prob-
lems unsolved in literature. The first problem is to eval-
uate beyond the CFD capacity how a complex air mo-
tion affects the temperature distribution. Normal CFD
is time-consuming and computationally burdening. It
has been widely acknowledged that CFD is not suitable
to real-time control and low-latency communication of
in-building devices. Moreover, CFD is not suitable to
capturing the underlying mechanism of the hunting be-
havior because CFD’s outputs, including all the turbu-
lent effects coupled with the complex air motion, are too
intricate to clearly quantify the dynamic interaction of
neighboring HVAC units. The second is to model how
the spatio-temporal dynamics of human occupancy af-
fect the in-room temperature distribution. Human occu-
pants work as not only rapidly mobile heat sources but
also obstacle objects. The dynamics of mobile occupants
affect the temperature distribution and possibly induce
the hunting behavior. However, CFD is unable to predict
the dynamic effect because mobile occupants determine
geometry and boundary conditions in a CFD simulation
that vary in space and time. That is to say, the mobile
occupants require a completely different CFD project at
every onset when one occupant moves in space. This is
a computationally impossible task in the case of a large
number of occupants. Thus, the local and precise control
of in-room temperature needs a novel idea in accurate
and simple modeling of the dynamic effect without CFD.
By considering these, in this paper we newly propose to
use a mathematical model of in-room thermal dynamics
without inclusion of CFD and to incorporate the model
with highly-resolved data on human occupancy. In par-
ticular, we describe the incorporation by applying it to a
practical office space in a commercial building, where the

human occupancy data are available. A preliminary ver-
sion of this work is published as our non-reviewed tech-
nical report [17].

The contributions of this paper are two-fold. First, we
treat the advective heat transfer in the office using a two-
dimensional, isotropic diffusion equation that accurately
and simply describes the air motion [18]. This treatment
is widely known in fluid mechanics as the effective diffu-
sion or eddy diffusion: see e.g. [19, 20]. It enables the
fast prediction of in-room temperature and provides a
simple description of the dynamic response of tempera-
ture field driven by a heat input. Second, we model the
influence of human occupancy on in-room temperature
as spatio-temporal modulations of the effective coefficient
and heat source term in the diffusion equation. The influ-
ence modeled here is multiscale in space and time: glob-
ally slow effect due to a human occupant as an external
heat source and locally fast effect due to an air motion
around the occupant. Our modulation idea is different
from the conventional one that the influence of station-
ary human occupants is quantified with CFD programs
[3, 21, 22]. The proposed description with the space- and
time-dependent coefficient is applicable to quantifying in-
room thermal dynamics driven by the so-called Variable
Air Volume (VAV) units [23]. A procedure of modulating
the effective coefficient and heat source term with human
occupancy data is investigated and established with the
Proper Orthonormal Decomposition (POD) [24] in order
to archive a physically relevant and computationally ef-
ficient description of the target dynamic phenomenon.

The rest of this paper is structured as follows. Sec. II
provides basic information on modeling target in the
commercial building. In Sec. III we propose a method for
modeling of in-room temperature distribution incorpo-
rated with measurement of human occupancy. A proce-
dure of how to numerically implement the proposed mod-
eling for the target office space is described in Sec. IV. In
Sec. V, we perform numerical simulations for the target
space and evaluate the proposed modeling by comparison
of numerical and measured data. Sec. VI is the conclu-
sion of this paper with a summary and future prospects.

II. MODELING TARGET IN COMMERCIAL
BUILDING

This paper focuses on a practically used office space in
a commercial building in order to delineate the modeling
idea. This room is located in the main building of OM-
RON Healthcare Co., Ltd. in Kyoto, Japan. This section
provides basic information on the room as the modeling
object: spatial arrangements and operational conditions
of HVAC units, and measurement of temperature and
human occupancy.

Figures 1(a) and (b) show a photograph and two-
dimensional geometry of the modeling object. The area
surrounded with the red broken lines in Fig. 1(b) rep-
resents the target space for the current modeling. The
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FIG. 1. (a) Photograph of modeling object. (b) Geometry of modeling object in the commercial building. The target space for
the current modeling corresponds to the area surrounded with the red broken lines. The blue lines stand for glass walls, the
black lines for normal walls, and the purple lines for outer walls with glass-windows. The green rectangular symbols stand for
the positions of task-units, and the black circle symbols for temperature sensors. Task-units are called W1 to W7 and E1 to E3,
and temperature sensors called TH1 and TH2. (c) Outlet and intake ducts of HVAC units in the office. The black rectangular
symbols stand for outlet ducts of task-units, the green rectangular for intake ducts of W1 to W7, and the cyan rectangular for
intake ducts of E1 to E3. The purple and brown rectangular symbols stand for outlet ducts of ambient-units. (d) Thermal
occupant detector sensors and their 144 detection areas in the target space. The dot symbols stand for the sensors. As shown
as the shaded areas, four rectangles around each sensor stand for its detection areas.

size of the space is approximately 40m (length: south-
to-north) × 10m (width: west-to-east) × 2.8m (height).
The eastern boundary of the space corresponds to the
outer walls of the building or the glass walls on booths,
denoted by the purple and blue solid lines, respectively.
The southern boundary is the glass wall next to a meet-
ing room. The southern part of the western boundary is
the wall separating the target space from a meeting room,
and its northern part is faced to the atrium. There is no
wall on the northern boundary faced to the other office
space.
Next, we review spatial arrangements and operational

conditions of HVAC units. The target space has two
types of HVAC units for conditioning locally and glob-
ally in space, called task -units and ambient-units, re-
spectively. The task-units are denoted by the green rect-
angular symbols in Fig. 1(b), and named W1 to W7 and

E1 to E3. The outlet ducts of task-units are denoted by
the black rectangular symbols in Fig. 1(c). The intake
ducts of W1 to W7 are placed on the ceiling, which are
denoted by the green rectangular symbols in Fig. 1(c).
The intake ducts of E1 to E3 are placed on the wall,
which are denoted by the cyan rectangular symbols in
Fig. 1(c). Also, the two ambient-units are placed in the
target space. These outlet ducts are denoted by the pur-
ple and brown rectangular symbols in Fig. 1(c). Table I
shows operational conditions of HVAC units. The HVAC
units run on a programmed schedule. Different reference
values of in-room temperature are set for the task- and
ambient-units. The setting values of outlet volume are
also different. Outlet temperature of ambient-units was
sampled, and that of task-units was not sampled.

Finally, we review the measurement system of temper-
ature and human occupancy in the target space. All the
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TABLE I. Operational conditions of HVAC units for the target office space.

Running period Temp. reference Outlet volume setting Outlet temp.

Task (W1 to W7) 8:00–22:00 28 ◦C 0.15m3/s Not measured

Task (E1 to E3) 8:00–22:00 28 ◦C 0.22m3/s Not measured

Ambient 7:30–17:35 26 ◦C 0.94m3/s Measured

temperature data were sampled by 0.1 ◦C every 10 min-
utes. Temperature sensors used for the sampling include
an NTC thermistor. In-room temperature was measured
in the intake ducts of task-units W1 to W7. Temperature
in the meeting room and booths was measured as well as
by W1 to W7. Besides, temperature sensors, which are
denoted by the circle symbols in Fig. 1(b), are placed
at the height 1.5m above the floor and measure temper-
ature near the atrium. Moreover, outdoor temperature
was also sampled. Human occupancy was sampled in 144
rectangles every 1 second by thermal occupant detector
sensors on the ceiling. The detector sensors in this space
include an infrared ray sensor module manufactured by
OMRON Corporation. Mechanism and performance of
the sensors are similar to [13]. The detection areas of
every sensor are shown in Fig. 1(d). The size of each
rectangle is 1.8m × 1.8m. If anyone stays in one of
four rectangles, then the corresponding sensor outputs
unity; otherwise, it outputs null. For the current fine-
scale modeling of temperature, we use data obtained by
highly-resolved measurement of human occupancy. The
data on coarse-scale measurement of in-room tempera-
ture are used for evaluating the current modeling and
determining a boundary condition of the equation de-
rived in the next section.

III. PROPOSED FRAMEWORK OF IN-ROOM
TEMPERATURE MODELING

This section contains the main idea of this paper and
proposes a method for modeling of in-room temperature
distribution based on the incorporation of heat diffusion
equation with measured data on human occupancy.

A. Mathematical modeling of heat diffusion

First of all, we introduce a mathematical model of in-
room temperature distribution based on fluid and ther-
mal physics. In the target space denoted by S ⊂ R3, the
dynamics of temperature T (r, t) at position r and time
t are represented by the following energy equation [1]:

∂

∂t
T (r, t) + u(r, t) ·∇rT (r, t) = D∆rT (r, t) +

P (r, t)

ρcp
,

r ∈ S ⊂ R3, t ∈ R, (1)

where D is the thermal molecular diffusion coefficient of
air, u(r, t) is the air velocity field in the target space,

∇r is the vector differential operator in Cartesian coor-
dinates r, ∆r = ∇r · ∇r is the Laplacian operator, ρ
and cp are the density and the specific heat at constant
pressure. Also, P (r, t) stands for the heat input per unit
time and volume from indoor and outdoor sources. The
second term of the left-hand side of Eq. (1) represents the
advective heat transfer. Note that the advective transfer
has been commonly analyzed by CFD programs: see e.g.
[3, 22].

As mentioned in Sec. I, in this paper we focus on two-
dimensional thermal dynamics in the horizontal direc-
tion. To do this explicitly, let us decompose the temper-
ature distribution T (r, t) into the two functions of length
x, width y, height z, and time t as follows:

T (r, t) = TH(x, y, t) + TV(z). (2)

The first function TH(x, y, t) represents the thermal dy-
namics in the horizontal direction and is modeled in the
next paragraph. The second function TV(z) represents
the steady temperature profile in the vertical (height) di-
rection. Eq. (2) is valid when the vertical distribution
of in-room temperature is uniform in the horizontal di-
rection and time. This assumption is widely adopted:
see e.g. [16, 25]. By considering the standard profile in
which air temperature increases with height (see Fig. 3
in detail), we simply formulate TV(z) as the following
linear function:

TV(z) = c

(
z − h

2

)
, z ∈ [0, h], (3)

where c is the coefficient characterizing the temperature
profile in height and will be determined from the mea-
surement in Sec. IVB. Also, h is the height of the target
space.

Now, we propose a simple representation of the advec-
tive heat transfer without CFD program and thereby for-
mulate the spatio-temporal evolution of TH(x, y, t). Let
Ω ⊂ R3 and I ⊂ R be closed domain and interval used
for coarse-graining of advective transfer phenomena in
a scalar field. We assume that the standard advection-
diffusion equation such as Eq. (1) satisfies the following
condition: ∫

Ω×I
u(r, t)dxdydzdt = 0. (4)

Then, it is shown in [18] that under this condition,
the advection-diffusion equation is approximated (coarse-
grained) by a diffusion equation on length- and time-
scales larger than the size of Ω × I. This provides a
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theoretical basis of our modeling, called the homoge-
nization [18]. The condition (4) suggests that the air
flow u changes on the scales smaller than the size of
Ω×I. This is valid in various indoor situations that are
well-conditioned and applicable to practically used office
space. In such a situation, the temperature gradient is
so small that the buoyancy-driven flow does not circulate
globally. Also, the Reynolds number is so large that the
time-varying component of the flow is rapidly damped
due to the air viscosity (see Sec. IVA in detail). Thus, it
is relevant to represent the heat transfer as the diffusion
phenomenon. By considering space- and time-fluctuation
of the flow’s state over the size of Ω× I, we introduce a
scalar function Deff on position (x, y) and time t in or-
der to describe the diffusion phenomenon. The function
Deff is called effective diffusion coefficient in this paper.
Note that we have assumed the diffusion phenomenon as
an isotropic one due to the outlet ducts symmetrically
located in length and width. Hence, the following partial
differential equation is derived for the two-dimensional
closed domain A of the target space S:

∂

∂t
TH(x, t) =Deff(x, t)∆TH(x, t) +

P (x, t)

ρcp
,

x := (x, y) ∈ A ⊂ R2, (5)

where ∆ stands for the Laplacian operator with respect
to x = (x, y). The heat input term P (x, t) is decomposed
with assuming their simple superposition as follows:

P (x, t) =PHVAC(x, t) + Pconv(x, t) + Prad(x, t)

+ Psolar(x, t) + Peqp(x, t) + Phuman(x, t), (6)

where PHVAC(x, t) stands for the heat input from the out-
let ducts, Pconv(x, t) for the convective heat transfer from
indoor walls, Prad(x, t) for the thermal radiation from
indoor walls, Psolar(x, t), Peqp(x, t), and Phuman(x, t) for
the heat inputs from solar radiation, office equipment,
and human occupants in the target space, respectively.
These heat sources are modeled as discretized forms in
Sec. IVC.
In addition to the thermal dynamics, we model the in-

fluence of human occupancy on temperature distribution.
A human occupant works as not only a heat source affect-
ing the thermal dynamics but also a mobile body affect-
ing the fluid motion in the office [26]. We call these effects
the thermal effect and fluid effect, respectively. These ef-
fects control the in-room temperature distribution in dif-
ferent time-scales: the thermal effect works more slowly
than the fluid effect because the time constant of convec-
tive heat transfer from a human occupant is larger than
that of human movement. Here, the fluid effect is a short
time-scale phenomenon and cannot be modeled by the
above homogenization on the target time-scale. Thus,
the effect needs the incorporation of time-dependency in
Deff (see Sec. IVA). In this paper, we represent the multi-
scale influence as spatio-temporal modulations of Phuman

and Deff controlled by human occupancy (see Sec. III B).
The occupancy is represented by a distribution function

N(x, t), which is obtained in a discretized manner from
measured data on human occupancy (see Sec. IVD).

Here, we note the difference between the two mod-
els (1) and (5) from the viewpoint of HVAC design and
operation. Eq. (1) fully describes the in-room thermal
dynamics coupled with micro- and macro-scale fluid mo-
tions. On the other hand, the proposed model (5) implies
a homogenization of the thermal dynamics modeled as a
macro-scale heat diffusion, thereby formulating the ther-
mal interaction of multiple HVAC units as the dynamic
response of temperature field T (x, t) driven by the heat
input P (x, t). Hence, Eq. (5) provides a simple descrip-
tion of the hunting behavior and is suitable to the coor-
dination design of multiple HVAC units.

B. Data-assisted modeling of human effects

This subsection introduces a data-assisted formulation
of Phuman andDeff for representation of both thermal and
fluid effects.

1. Input heat term Phuman

Suppose that a single human occupant works as a con-
stant heat source denoted by P0 at sensing duration.
Then, it is natural to describe Phuman(x, t) as the fol-
lowing function:

Phuman(x, t) := P0N(x, t). (7)

The coefficient P0 will be determined with discretization
for numerical implementation in Sec. IVC5.

2. Effective diffusion coefficient Deff

When no occupant in the target space, we assume that

Deff is a time-invariant function D
(0)
eff (x). This is valid

for the office space in Sec. II because the outlet volume
is set at a constant value and does not change drasti-
cally in time. Note that Deff becomes a time-varying
function when multiple VAV units are operated in an of-
fice space (see App. A). In the following, we consider two

mechanisms of spatio-temporal modulation of D
(0)
eff (x) by

N(x, t).
The first mechanism is related to non-zero volume of

human body. Consider a small decrease of volume around
position x and at time t, V − VhumanN(x, t), where V is
the original volume around x and Vhuman the averaged
volume of human body. By assuming that the human
body is encompassed by an adiabatic surface (or thermal
insulator) [3, 27], and by considering the heat balance
in the small volume, we approximately re-write the heat
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diffusion equation (5) as follows:

{V − VhumanN(x, t)} ∂

∂t
TH(x, t) =

V D
(0)
eff (x)∆TH(x, t)

+ {V − VhumanN(x, t)}P (x, t)

ρcp
, (8)

where the density of air is assumed to be constant. The
assumption is relevant when the volume Vhuman of human
body is much smaller than the original volume V . The
human-body effect is hence represented as the following

modulation Dvol of D
(0)
eff :

Dvol(x, t) :=
V

V − VhumanN(x, t)
D

(0)
eff (x) (9)

≃ {1 + εvolN(x, t)}D(0)
eff (x), (10)

where Eq. (10) corresponds to the first-order approxima-
tion of Eq. (9) and becomes valid for sufficiently small
εvol := Vhuman/V .
The second mechanism is related to convective flow

around a human body. Srebric, et al. [22] reported that
the velocity- and length-scales of the convective flow
around a human body are 0.1m/s and 0.6m. The small-
scale convective flow locally perturbs the velocity field u
inside the coarse-graining domain Ω× I. It has been re-
ported in [28] that the local perturbation induces phase
transition of the effective diffusion phenomenon; namely,
a mobile occupant discontinuously modulates the coeffi-

cient D
(0)
eff around itself. In this paper, for simplicity of

the current modeling, we represent the effect of pertur-

bation as the first-order modulation Dconv of D
(0)
eff :

Dconv(x, t) := {1 + εconvN(x, t)}D(0)
eff (x), (11)

where εconv is the parameter to quantify the perturba-
tion. Eq. (11) is valid when the kinetic energy of convec-
tive flow is smaller than that of nominal flow induced by
the air outlets.
Thus, by multiplying the coefficient terms in

Eqs. (10) and (11) and ignoring the second-order term
of εvol and εconv, the following definition of Deff is de-
rived:

Deff(x, t) = D
(0)
eff (x) {1 + εN(x, t)} , (12)

where ε := εvol+εconv is the control parameter of human

effects. The position-dependent function D
(0)
eff (x) is the

effective diffusion coefficient for no human occupancy, i.e.
N(x, t) = 0 for all x and t, and determined with both
structural and air characteristics of the target space: see
App. B and Sec. IVB. It should be noted that the mod-
ulation idea is effective even if the condition (4) does not
hold (see App. A).

IV. NUMERICAL IMPLEMENTATION

This section provides numerical implementation of the
proposed mathematical modeling in Sec. III to the com-
mercial office space in Sec. II: preliminary investiga-
tions of the office space (Sec. IVA); simulation methods
(Sec. IVB); discretized formulations of the heat source
term P (Sec. IVC); and processing of human occupancy
data (Sec. IVD) for the incorporation.

A. Preliminary investigations of modeling target

First of all, we preliminary investigate the air flow
and heat transfer in the target space in terms of char-
acteristic numbers and geometry. From the discussion in
Sec. III A, the current modeling is conducted to the two-
dimensional domain with 40m (south-to-north) × 10m
(west-to-east). Below, as familiar in fluid mechanics, we
decompose the air velocity u(r, t) into the time-invariant
component u0(r) and the time-varying one ũ(r, t): see
e.g. [20].

First, we discuss the relative importance of advection
and diffusion in thermal transport with the Péclet num-
ber Pe. In this paper, the thermal diffusion coefficient
D of air is set at 2.25 × 10−5 m2/s [29], the length-scale
L0 of the averaged flow u0 is set at 1.8m based on the
distance between outlet ducts of HVAC units, and the
velocity-scale U0 of u0 is set at 1.6m/s from the setting
of HVAC-outlet volume. The Péclet number for u0 is
calculated as Pe := L0U0/D = 1.3× 105. Therefore, the
thermal transport by u0 is mainly governed by advection
in the target space.

Second, we discuss the flow’s state in the target space
with the Reynolds number Re. For the kinematic vis-
cosity ν = 1.4 × 10−5 m2/s [29], the Reynolds number
Re is at least L0U0/ν = 2.1 × 105, implying that flow
is turbulent. This is relevant in the target space be-
cause many outlet ducts of HVAC exist on the ceiling
and cause the air flow to be well mixed. For the fully-
developed turbulent state ũ(r, t), it is well-known in [20]
that a wavenumber component ũk(t) with a wavenum-

ber vector k ∈ R3 vanishes in its lifespan τk [20]. The
maximum value of τk is calculated as L0/U0 = 1.1 s.
Thus, almost all the components of ũ are averaged to be
zero in the target time-interval (1 s) for the simulation
(see Sec. IVB). This is a quantitative evidence that the

time-average in Eq. (4) is approximately zero, and D
(0)
eff

is time-invariant.
Third, the symmetric and homogeneous arrangement

of outlet ducts in Fig. 1(c) suggests that the outlet air
exhibits both spatially-periodic structure of u0 and ho-
mogeneous turbulence of ũ. These preliminary investi-
gations show that the in-room thermal transport is rep-
resented as an isotropic diffusion phenomenon with the
effective diffusion coefficient Deff which we explained in
Sec. III A.
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FIG. 2. Spatial coordinates [i, j] fixed at the centers of the
detection areas as shown by the shaded domains. The circle
symbols denote the inside nodes [i, j] ∈ A◦.

Finally, we check the time constants of the thermal and
fluid effects quantitatively. We set the heat transfer coef-
ficient hc from a human body at 5.0W/m2K [21] and the
thickness Db of boundary layer around a human body at
0.11m [30]. Also, by setting ρ = 1.006 × 103 J/kgK and
cp = 1.165 kg/m3, the time constant τt of heat transfer
in the boundary layer, namely the thermal effect, is cal-
culated as τt = ρcpDb/hc = 26 s. On the other hand,
by setting the walking speed Uw of a human occupant
at 1m/s [26] and the target length-scale L at 1.8m (see
Sec. IVB), the time constant τf of the fluid effect is cal-
culated at L/Uw = 1.8 s. Therefore, it is clear that the
thermal effect is slower than the fluid effect in the tar-
get space, which we mentioned in the last paragraph of
Sec. IIIA. In addition, the small time constant τf = 1.8 s
implies that the fluid effect of human occupancy is not
fully modeled by the standard homogenization in the tar-
get interval of 1 s. Note that as mentioned in Sec. I, the
fluid effect requires a completely different CFD project
by the time-interval, and thus CFD is unable to predict
the effect.

B. Setting for numerical simulations of diffusion
equation

This subsection describes a setting for numerical simu-
lations used in this paper: discretization of the diffusion
equation (5), assimilation of measured data, and iden-
tification of parameters and boundary conditions of the
equation.
All numerical simulations of Eq. (5) were performed

with the forward-time centered-space method. The dis-
cretization step in space was homogeneously set at ∆x =
∆y = 1.8m, and the spatial coordinates [i, j] were fixed
at the centers of detection areas with human sensors as
shown in Fig. 2. Here, let us define the following two sub-
sets A◦ and ∂A to explicitly distinguish the inside and

boundary nodes:

A◦ :={[i, j] : i ∈ {1, . . . , 24}, j ∈ {1, . . . , 6}}, (13)

∂A :={[i, j] : i ∈ {1, . . . , 24}, j ∈ {0, 7}}
∪ {[i, j] : i ∈ {0, 25}, j ∈ {1, . . . , 6}}. (14)

The circle symbols shown in Fig. 2 denote the inside
nodes [i, j] ∈ A◦. The height z was fixed at 2.8m for com-
parison with temperature data measured by task-units
on the ceiling. Also, the time period for simulations was
set at 9:00 to 18:00 because the operational conditions
of HVAC units were fixed during this period. The dis-
cretization step in time was set at ∆t = 0.1 s. Here, let us
introduce a positive integer kcal to represent the discrete
time instant equally divided by the step ∆t:

t = t0 + kcal∆t, (15)

where t0 stands for initial time. In this paper we com-
pute the temperature distribution under ∆t = 0.1 s and
sample it uniformly in time by 1 s because of the simple
handling of data. The sampled temperature distribu-
tion is denoted as T [i, j, k] (without use of superscript of
H), where k = 1, . . . , 32400 represents the discrete time
instant equi-sampled by 1 s, and the number of time in-
stants corresponds to 9 hours for simulations.

In the current modeling, we incorporate measured data
into the diffusion equation model, namely, conduct data
assimilation. For the target office space, the data on hu-
man occupancy and on temperature of the atrium and
outdoor were measured under sampling of non-uniform
periods larger than the simulation step ∆t = 0.1 s. The
standard zero-order hold was used to construct sampled
data by 0.1 s from original ones, and thereby the mea-
sured data were incorporated into the diffusion equation
(5).

The diffusion equation (5) has many parameters deter-
mining the model performance. Below, we identify values
of the parameters except for those in P (x, t), which are
identified in Sec. IVC. The constants ρ and cp are set
at 1.006× 103 J/kgK and 1.165 kg/m3. For the effective
coefficient, if we do not consider its position-dependence,
its value is nominally calculated as 1.2m2/s: see App. B.
However, since the outlet ducts in the target office space
are not placed in a homogeneous manner, it is necessary
to consider the position dependence of the effective co-
efficient. At the inside nodes i = 1 or j = 1, 6 faced to
the walls or atrium, there is no outlet duct on the side
of the walls or atrium. Thus, the thermal transport is
induced only by air outlet from the in-room ducts, and
the number of ducts governing the thermal transport is
half of that for any internal node. For these reasons, we
regard the amount of transported heat flux at the nodes
as a half of the nominal one:

D
(0)
eff [i, j] =

{
0.6m2/s (i = 1 or j = 1, 6),

1.2m2/s (otherwise).
(16)

Moreover, we fix the control parameter ε at 1.0 in order to
simply perform simulations. The parameter indeed con-
trols the fluid effect on in-room temperature distribution
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FIG. 3. Measured temperature profile in the height direction
of the target office on August 2, 2014 (Saturday: non-working
day). The large red and green points indicate the averaged
values of temperature data in terms of length, width, and
time.

(see [17] in detail). To determine ε in a relevant man-
ner poses a challenging subject and remains to be solved
in literature. Note that in [28] the authors investigate a
time-periodic perturbation of incompressible fluid flows,
related to the advective contribution εconv in ε.
Next, we identify the coefficient c of the temperature

profile (3) in height z. For this, let us compute the spatio-
temporal average of Eq. (2) in the horizontal (namely,
length x and width y) direction and time t:

1

|A||I|

∫
A×I

T (x, y, z, t)dxdydt =

1

|A||I|

∫
A×I

TH(x, y, t)dxdydt+ c

(
z − h

2

)
, (17)

where |A| stands for the total area of A and I for a fi-
nite time interval with length |I|. The height z appears
linearly on the right-hand side of Eq. (17), and thus it
is possible to identify the slope c by using temperature
data measured at different heights. Since it is not feasible
to densely deploy temperature sensors in the practically
used office space, we use the temperature data measured
at two heights. Figure 3 shows measured temperature
profile in the height direction on August 2, 2014 (Sat.).
The red points stand for the temperature data measured
by W1 to W6 (height 2.8m) and the green ones for TH1
and TH2 (height 1.5m). The large red point in the fig-
ure represents the value of spatio-temporal average of
data denoted by all the small red points and the large
green point for the average value of the green points. The
solid line corresponds to the linear function (17) identi-
fied by the data on the above day, where c is calculated
at 0.557 ◦C/m. Since on this non-working day there were
few people in the target space, the measured data are ex-
pected to capture the nominal profile of air temperature

in the height direction. Thus, we set the coefficient c at
0.557 ◦C/m in the following simulation.

Finally, we make the boundary conditions of Eq. (5)
for numerical simulations. The boundary conditions at
[i, j] ∈ ∂A were determined by using the data on temper-
ature measured at the outside of the target space. For
the boundary on a wall, the Neumann-type boundary
condition was adopted. In this condition, the convective
heat input Pconv from the wall was modeled in Sec. IVC.
For no wall on the boundary, the Dirichlet-type bound-
ary condition was adopted. The boundary conditions and
measurement data used there are summarized in Tab. II,
where ∂A is decomposed into the seven subsets.

C. Discretized formulations of heat source P

The heat source P (x, t) is decomposed into the six
terms as in Eq. (6). In this subsection, we model the
heat source terms as discretized forms that are directly
implemented for numerical simulations.

1. PHVAC and Psolar

In this paper, we formulate the sum of inputs PHVAC+
Psolar and do not consider the input Psolar solely. The
HVAC in the target space manages to suppress the tem-
perature change due to oscillatory solar radiation. The
suppression is hard to model in the target space be-
cause no information on the HVAC management is avail-
able. See App. D for sole formulation of Psolar based
on information of solar radiation. Here, the heat in-
put PHVAC + Psolar can take a non-zero value at ev-
ery node with outlet duct; otherwise, it is identically
0W/m3. Based on the formula known as bulk convec-
tion [1], PHVAC + Psolar is given as follows:

PHVAC[i, j, k] + Psolar[i, j, k] =

ρcpV [i, j, k](THVAC[i, j, k]− T [i, j, k])

h∆x2Nduct[i, j]
, (18)

where V [i, j, k] stands for the outlet volume per unit time
at node [i, j] and time k, THVAC[i, j, k] for the air tem-
perature at the outlet, h = 2.8m for the height of the
target space, and Nduct[i, j] for the number of ducts con-
nected with the HVAC unit that supplies air at the node
[i, j] in Fig. 1(c). Assuming that the outlet volume V
does not change in time, we use the nominal values of
outlet volume shown in Tab. I for V [i, j]. Also, the
measured data on outlet temperature of ambient-units
are used as THVAC. However, the outlet temperature of
task-units is not measured. For simplicity of the current
modeling, we set the temperature THVAC of task-units to
be constant shown in Tab. III. These values—20 ◦C and
21 ◦C—were determined with the data on outlet temper-
ature of ambient-units on July 31 and August 2, 2014.
Note that the cooling input is partly canceled by Pconv
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TABLE II. Settings of boundary conditions at [i, j] ∈ ∂A. Types of the boundary conditions, data used for the conditions, and
overall heat transfer coefficient U of each boundary wall are shown.

Boundary Node [i, j] Type Used data U [W/m2K]

∂AE1 {1, . . . , 4, 9, . . . , 12, 17, . . . , 20} × {0} Neumann Outdoor 1.6

∂AE2 {5, 6, 13, . . . , 16, 21, 22} × {0} Neumann Outdoor 1.0

∂AE3 {7, 8, 23, 24} × {0} Neumann Booth 2.0

∂AS {0} × {1 . . . 6} Neumann Meeting room 2.0

∂AN {25} × {1 . . . 6} Dirichlet Office —

∂AW1 {1 . . . 8} × {7} Neumann — 0.0

∂AW2 {9 . . . 24} × {7} Dirichlet Atrium —

TABLE III. Settings of temperature parameter THVAC.

July 31, 2014 August 2, 2014

Task-unit 20 ◦C 21 ◦C

Ambient-unit Measured data Measured data

(see App. C), and thus the simulated and measured in-
room temperatures become higher than the outlet one
(see Figs. 3, 7, and 8).

2. Pconv

We model the convective heat transfer Pconv as the
Neumann-type boundary conditions of Eq. (5) and do
not hence explicitly include this term in Eq. (6). In
the boundary conditions, the temperature T [ib, jb, k] at
boundary node [ib, jb] ∈ ∂A and time k is set as follows:

T [ib, jb, k]− T [i, j, k]

∆x
=

Kconv[ib, jb, k](Text[k]− T [i, j, k]), (19)

where [i, j] ∈ A◦ stands for the node next to [ib, jb]. The
parameter Kconv[ib, jb, k] represents the coefficient to de-
scribe the effect of convective heat flow and Text[k] the
measured data of external temperature. The data were
sampled in a meeting room, booth, and outdoor. Eq. (19)
expresses the heat flow from the outside through walls,
namely overall heat transfer [1], for the assumption of
uniform distribution of in-wall temperature. The con-
vection coefficient Kconv[ib, jb, k] is estimated as follows:

Kconv[ib, jb, k] =
U [ib, jb]

ρcpDeff[i, j, k]
, (20)

where U [ib, jb] is the overall heat transfer coefficient
shown in Tab. II. The estimation of Kconv is given in
App. E.

3. Prad

Thermal radiation appears through the eastern glass
windows faced to the outdoor. In this paper, we model
the radiation heat transfer by linear thermal resistance
[1]. More specifically, we make the following three as-
sumptions on the modeling of thermal radiation:

(A1) Temperature of glass wall is the same as outdoor
temperature;

(A2) Transient change in temperature on surfaces of in-
door walls is negligible;

(A3) Temperature on surfaces of indoor walls and view
factors between the walls are spatially uniform.

The first assumption is reasonable because glass wall has
a high thermal conductivity. The second one is also rea-
sonable if the outdoor temperature changes slowly. The
third one is used in the existing approach similar to Mean
Radiant Temperature (MRT) method [1]. Thus, by using
series connection of thermal resistances, the following for-
mula of Prad is derived:

Prad[i, j, k] = Krad[i, j](Tout[k]− T [i, j, k]), (21)

where Tout[k] stands for the measured data on out-
door temperature. The parameter Krad at internal node
[i, j] ∈ A◦ is determined with thermal radiation and con-
vection resistances in the following manner:

Krad[i, j] =



2/h

Rceil +Rconv
+

1/∆x

Rwest +Rconv
,

if i ∈ {2, . . . , 8}, j = 6,

2/h

Rceil +Rconv
+

1/∆x

Rsouth +Rconv
,

else if i = 1, j ∈ {1, . . . , 5},

2/h

Rceil +Rconv
+

1/∆x

Rsouth +Rconv

+
1/∆x

Rwest +Rconv
, else if i = 1, j = 6,

2/h

Rceil +Rconv
, else.

(22)

As shown in Fig. 4, Rceil, Rwest, and Rsouth stand for the
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FIG. 4. Thermal resistances of radiation from the eastern
glass-wall (a) to the western and southern walls and (b) to
the ceiling and floor.

TABLE IV. Values of thermal resistances Rceil, Rwest, Rsouth,
and Rconv [m2K/W].

Rceil Rwest Rsouth Rconv

0.143 0.155 0.185 0.500

thermal resistances of long-wave radiation from the east-
ern glass-wall to the ceiling (or floor), western wall, and
southern wall, respectively. These resistances are calcu-
lated as the radiation coefficient in the MRT method [1].
Also, Rconv stands for the thermal resistance of convec-
tion from each surface. In this paper, Rconv is regarded
as the same value for every wall. Table IV shows the val-
ues of thermal resistances used in the rest of this paper.

4. Peqp

For simplicity of the current modeling, we assume that
the heat input Peqp from office equipment is spatially
uniform in the target space. By referring to practical
values of power consumption by office equipment [1], Peqp

is set as follows:

Peqp = 7.2W/m3. (23)

5. Phuman

The heat input Phuman from human occupants is de-
rived as Eq. (7). By regarding a single human occupant
as a heat source of 75W [1], the coefficient P0 in Eq. (7)
is defined as follows:

P0 =
75W

h∆x2
, (24)

where the denominator corresponds to the fixed volume
of one node in the current space-discretization.

D. Processing of human sensor data for
incorporation

The main idea in the current paper is to incorporate
human occupancy data into the diffusion equation model.
In this subsection, we consider how to process the data for
the incorporation. As mentioned in Sec. III B, the human
occupancy influences in-room thermal dynamics in a mul-
tiscale manner. For effectively modeling the influence,
we extract a dominant spatio-temporal mode embedded
in the data and incorporate it into the equation via the
two parameters Phuman and Deff. Below, let us represent
measured data on human occupancy with a sequence of
vectors N [k] labeled by discrete time k = 0, 1, . . . that
corresponds to a spatially discretized form of N(x, t).
The dimension of N [k] is equal to the number of nodes
[i, j].

There are many existing methods for extracting a
spatio-temporal mode from data. In this paper, we
use the POD (Proper Orthonormal Decomposition) [24]
for the extraction from one-day data on human occu-
pancy. POD provides the most efficient way of captur-
ing a mode oscillating with (possibly) multiple frequen-
cies in the energy (precisely L2) sense and is hence suit-
able for the current thermal modeling. Consider finite
measurement data on human occupancy, {N0[k] ∈ Rng}
(k = 0, . . . , ns − 1), where ng is the number of all grid
nodes and ns is the number of samples: ng = 144 and
ns = 86400 for the target office space and available data.
The data are represented by

N0[k] =

ng∑
m=1

am[k]V m. (25)

The time-invariant basis vectors {V m ∈ Rng} (m =
1, . . . , ng) are required to be orthonormal and closest in
energy norm to the data, called the POD modes. The
time-varying coefficients am (m = 1, . . . , ng) hold the fol-
lowing correlation property: ⟨aman⟩ = ⟨a2m⟩ (if m = n)
or 0 (else), where ⟨·⟩ represents the time-average of scalar-
valued signal. The notation ⟨a2m⟩ implies the energy con-
tained in them-th POD mode. POD modes are generally
ordered in the contained energy by ⟨a2m⟩ ≥ ⟨a2m+1⟩.

Figure 5(a) shows the proportion of ⟨a2m⟩ to all the
energy in the first ten POD modes obtained for the hu-
man sensor data on July 31, 2014. In this figure, the first
POD mode has the largest percentage (about 40%) of all
the energy. This clearly shows that the first POD mode
is dominant in the spatio-temporal dynamics of human
occupancy. Here, the residual energy is widely dispersed
among the higher-order modes am[k]V m (m ≥ 2), imply-
ing that any linear combination of multiple higher-order
modes fails to provide a good approximation of the dy-
namics. Figures 5(b) and 5(c) show the spatial shape
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FIG. 5. Modal information extracted by POD from human
sensor data on July 31, 2014: (a) proportion of energy ⟨a2

m⟩
of the m-th POD mode; (b) spatial shape of the first POD
mode V 1; and (c) time-varying coefficient a1.

of the first POD mode V 1 and its corresponding time-
varying coefficient a1. The spatial shape in Fig. 5(b)
almost coincides with the spatial distribution of sitting
workers observed in the target office space. This is con-
firmed with the fact that the components of V 1 take
smaller values along the edges (namely, nodes labeled by
i = 1 or j = 1) corresponding to the aisle of the target
office.
Here, let us compare the POD mode with the original

data. For the current comparison, we calculate time-
averages of the original data N0[k] and of the sequen-
tial data a1[k]V 1 with respect to the first POD mode.
The time-averaging technique is used in [31] for com-
paring long-term behaviors of dynamical system models.
Figure 6 shows the spatial shapes of the time-averages
⟨N0⟩ and ⟨a1⟩V 1. The similarity of the spatial shapes
implies that the first POD mode captures well the long-
term trend in the dynamics of human occupancy, in other
words, the time-averaged or bias component—the ther-
mal effect discussed later. Also, as shown in Fig. 5(c),
the time-varying coefficient a1[k] clearly contains multi-
ple frequencies, and thus the first POD mode is expected
to capture a short-term variation in the occupancy dy-
namics causing the fluid effect. Based on these observa-
tions, we will perform numerical simulations of the target
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FIG. 6. Spatial shapes of the time-averages of human occu-
pancy on July 31, 2014: (a) ⟨N0⟩ of N0[k] and (b) ⟨a1⟩V 1

of a1[k]V 1.

TABLE V. Incorporation of human occupancy data into the
diffusion equation (5). The function of human occupancy is
represented by N(x, t), and its discretized form for data pro-
cessing and simulations is denoted as N [k]. For the origi-
nal measured data N0[k], the product of time-varying coeffi-
cient and spatial shape of the first POD mode is denoted as
a1[k]V 1. The constant P0 is the heat value of a single human

occupant in Eq. (24), D
(0)

eff (x) the stationary effective diffu-
sion coefficient in Eq. (16), and ε the control parameter for
the fluid effect in Eq. (12).

Case N [k] Phuman(x, t) Deff(x, t)

0 0 0 D
(0)

eff (x)

1-a N0[k] P0N(x, t) D
(0)

eff (x)

1-b a1[k]V 1 P0N(x, t) D
(0)

eff (x)

2-a N0[k] 0 D
(0)

eff (x) {1 + εN(x, t)}
2-b a1[k]V 1 0 D

(0)

eff (x) {1 + εN(x, t)}
3 N0[k] P0N(x, t) D

(0)

eff (x) {1 + εN(x, t)}

office space with N0[k] and a1[k]V 1 as discretized forms
of N(x, t). The simple description based on the single
dominant mode a1[k]V 1 provides an efficient way of sav-
ing computational resources; for example, memory and
storage devices used for the human occupancy data.

Finally, based on the above data processing and anal-
ysis, we describe a concrete scheme for incorporating hu-
man occupancy data in the diffusion equation. The con-
crete scheme used in numerical simulations of the next
section is summarized in Tab. V. In Case:0, no data
on human occupancy are utilized and the simulation re-
sults are compared with the other cases. In Case:1-a
and Case:1-b, only the heat source Phuman is incorpo-
rated. Thus, the thermal effect due to human occupancy
is investigated in the two cases. Also, the effective diffu-
sion coefficient Deff for the fluid effect is incorporated in
Case:2-a and Case:2-b. Finally, both the heat source and
effective diffusion coefficient are incorporated in Case:3
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FIG. 7. Simulation results of in-room temperature of the target office on August 2, 2014 (Sat.; non-working day) in Case:0.

towards the goal of the current modeling.

V. NUMERICAL SIMULATIONS AND
DISCUSSION

A. Simulation results

This subsection presents a collection of numerical sim-
ulations of in-room temperature for the target office space
in Fig. 1. The simulations are conducted by incorporat-
ing the diffusion equation model (5) with measured data
on human occupancy based on the scheme summarized
in Tab. V. First of all, we present simulated time-series
for Case:0 on a non-working day, namely, without in-
corporation of human occupancy data. Then, we show
simulation results for both Case:1 and Case:2 on a work-
ing day and point out the multiscale influence of human
occupancy on in-room temperature in time. Spatial dis-
tributions of the simulation results are also shown so that
the multiscale features are pointed out in space. From the
fact that the temperature was measured at the air ducts,
namely on the ceiling, all the simulated temperature in-
cludes the steady vertical component TV(h).
Figure 7 shows a simulation result of temperature at

the locations of task-units W1, W3, and W6 on August
2, 2014 (Sat.). The result was obtained for Case:0 in
Tab. V, namely, without incorporation of human occu-
pancy data. This day was a non-working day for this
building and hence suitable to verifying the ability of the
diffusion equation (5) for nominal thermal dynamics not
influenced by human occupancy. Measurement indeed
shows that there were very few occupants in the target
office space on this day. In Fig. 7, we see that the simu-
lated time-series denoted as solid curves exhibit tempo-
ral variations close to the measured data. The proposed
modeling captures the temporal variation of the nomi-
nal thermal dynamics in the target space without any
inclusion of air motion. Here, we see at W1 and W3

in Fig. 7 that the time-averaged (bias) components in
the measured and simulated data are slightly different.
This is partly because the amount of heat input Peqp is
position-dependent, namely non-uniform, although the
amount is assumed to be uniform in the current model-
ing of Eq. (23).

Figures 8(a)–(c) show simulation results on July 31,
2014 (Thu.), where human occupancy data are incorpo-
rated via the scheme summarized in Tab. V. First of
all, we describe how the data incorporation appears in
the temperature simulations. In Fig. 8(a), the simulated
temperature in Case:1 is higher than Case:0, more pre-
cisely, the bias component increases by incorporating the
data into the input heat term Phuman. In Fig. 8(b), the
oscillatory amplitude of temperature in Case:2 is larger
than Case:0, that is to say, the deviation of tempera-
ture from the bias component increases by incorporat-
ing the data into the effective diffusion coefficient Deff.
In Fig. 8(c), by the incorporation into both Phuman and
Deff, the bias and deviation components become large
compared with Case:0. Also, by the data incorporation,
the temporal behaviors in Case:1 to Case:3 become close
to the measured one. It should be noted that these ob-
servations hold in simulations on another day (see the
supplemental figures in detail).

Figure 9(a) shows spatial shapes of the simulated tem-
perature distributions at discrete time k = 15600 on
July 31, 2014 (Thu.). The shapes in Case:1, Case:2, and
Case:3 are different from Case:0, implying that the ther-
mal and fluid effects spatially work on the in-room tem-
perature distribution. For detailed investigation of these
effects, we calculate the derivative of simulated temper-
ature with respect to that in Case:0, denoted as △nc for
nc ∈ {1-a, 1-b, 2-a, 2-b, 3}:

△nc [i, j, k] := Tnc [i, j, k]− T0[i, j, k], (26)

where Tnc stands for the simulation result in Case:nc

and T0 for Case:0. Figures 9(b) and (c) show the spatial
shapes of T0 (first row) and △nc (second to sixth rows) at
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k = 15600 and k = 15900, respectively. The derivatives
in Case:1 take non-zero values globally, and their spatial
shapes do not change from k = 15600 to 15900. On the
other hand, the derivatives in Case:2 become non-zero
in several local domains, and these domains temporally
move from the center to the left of the figures: see the
domains encompassed by the white lines in Case:2-a (see
also the supplemental movie). These observations are
consistent in Case:3, and both effects appear in the spa-
tial shapes of temperature. The snapshots of the temper-

ature derivatives show that the thermal and fluid effects,
which are modeled via Phuman and Deff, are globally slow
and locally fast effects on the in-room temperature dis-
tribution.

Finally, we report the computational efficiency of the
modeling. It took about 7.3 s in every case to simulate
9-hour time-series shown in Figs. 7 and 8, where we uti-
lized a general-purpose computer including 4 core CPU
driven at 3.40GHz and 8MB cache. This clearly shows
the potential of the proposed modeling for real-time con-
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FIG. 9. Spatial shape of simulated temperature distribution and its derivative: (a) simulated distribution at k = 15600;
(b) simulated distribution in Case:0 and derivative △nc in the other cases at k = 15600; and (c) simulated distribution in
Case:0 and derivative △nc in the other cases at k = 15900. In Case:2-a, the derivatives are non-zero especially in the domains
encompassed by the white lines, and these domains move in time.

trol of in-room temperature. Such a fast simulation of
in-room temperature is not possible with CFD because
of its computational burden for the dynamic fluid effect.

B. Quantifying thermal and fluid effects

The snapshots in Fig. 9 provided an evidence that
the data-incorporated modeling involved the thermal and
fluid effects. Now, we conduct detailed analyses of the
simulated temperature distributions in order to quantify
how these effects appear in the simulations and how sim-
ilar the simulated and measured behaviors are.
Figure 10(a) shows the spatial dependence of the time-

averages (bias components) ⟨T ⟩[i, j] of the simulation re-
sults T [i, j, k]. In the right domain of the figure (a), the
time-averages do not change in all the cases. This is
mainly because the heat input from the atrium placed at
the right top of each figure is strong and overwhelms (in
average) the heat input from human occupants. In con-
trast, the left domain has no dominant influence by the
atrium, and hence the time-averages are dependent on
the cases, namely the scheme of data incorporation. Fig-

ure 10(b) shows the time-averages ⟨T ⟩ and ⟨Tm⟩ at W1,
W3, and W6, where Tm[i, j, km] stands for the measured
data with time instant km = 1, . . . , 54. The time-averages
⟨T ⟩ in Case:1 and Case:3 become higher than Case:0 and
approach to that of the measured data. Here, the time-
averages ⟨T ⟩ in Case:0 and Case:2 are almost same. The
averaging results quantitatively prove that the data in-
corporation into Phuman represents the thermal effect by
human occupancy and contributes to the accurate model-
ing. Also, in Fig. 10(a), the distributions of time-averages
of the simulated temperatures in Case:1-a and Case:1-b
are quantitatively similar. This implies that the ther-
mal effect by human occupancy is captured well with the
POD mode which represents the long-term trend in the
dynamics of human occupancy. Thus, it is quantified
by using the time-average how human occupancy works
on the in-room temperature distribution via the thermal
effect.

Next, we consider the deviations of temperature from
the time-averages (bias components) discussed in the
above paragraph. Figures 11(a) and (b) show the devia-

tions T̃ [i, j, k] and T̃m[i, j, km] of the simulated and mea-
sured temperatures at W1, W3, and W6. The position-
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FIG. 10. Time-averages ⟨T ⟩[i, j] and ⟨Tm⟩[i, j] of the simulated temperatures T [i, j, k] and the measured data Tm[i, j, k] on July
31, 2014 (Thu.: working day): (a) spatial dependence of ⟨T ⟩[i, j] and (b) values of ⟨T ⟩[i, j] and ⟨Tm⟩[i, j] at W1, W3, and W6.

dependent deviations T̃ [i, j, k] and T̃m[i, j, km] are defined
as

T̃ [i, j, k] := T [i, j, k]− ⟨T ⟩[i, j], (27)

T̃m[i, j, km] := Tm[i, j, km]− ⟨Tm⟩[i, j]. (28)

The figures (a) and (b) show that the temporal deviations
in Case:1 to Case:3 are different from that in Case:0,
namely, they change by incorporating the data on hu-
man occupancy. In particular, the changes of temporal
deviations clearly appear in Case:2 and Case:3 and be-
come similar to that of the measured one: see the en-
larged temporal shapes at W1 in Fig. 11(a) and (b). In
order to quantify the similarity, in Fig. 11(c) we show

the distance d̃[i, j] between the deviations T̃ [i, j, k] and

T̃m[i, j, km] at W1, W3, and W6, that is to say, a metric
between two different scalar-valued signals. The distance
d̃[i, j] is based on the standard L2 norm of scalar-valued
signal space and defined as follows:

d̃[i, j] :=

{
54∑

km=1

∣∣T̃ [i, j, 600km]− T̃m[i, j, km]
∣∣2 × (1 s)

}1/2

.

(29)

The values of distance in Case:0 and Case:1 are almost
the same for every location. But, the values in Case:2

and Case:3 are smaller than Case:0. The distance results
quantitatively prove that the data incorporation intoDeff

models the fluid effect by human occupancy. Also, the
distance in Case:2-b using the dominant POD mode is
smaller than Case:2-a using the original data set. This is
possibly due to a sub-side effect of the POD-based data
processing. Any sensor data contain inevitable measure-
ment error: in this work, it corresponds to a compo-
nent not related to the real human movement. Since the
POD captures a dominant trend of the human occupancy
movement in energy norm, the energy-less error compo-
nent is captured in higher-order modes and does not af-
fect the incorporation in Case:2-b. Thus, the substantial
component to reproduce the fluid effect is extracted by
the POD-based processing and results in a better consis-
tency of the simulated and measured data on tempera-
ture. Hence, by using the distance defined in Eq. (29), it
is quantified how the fluid effect is modeled for accurate
modeling of in-room temperature.

Finally, we comment on the combined thermal and
fluid effects on in-room temperature distribution ob-
served in Case:3. Figures 10 and 11 show that the time-
averages ⟨T ⟩ and deviations T̃ in Case:3 are different
from Case:0. These prove that the data incorporation
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into Phuman and Deff expresses both of thermal and fluid
effects. However, as shown in Figs. 10 and 11, the time-
averages ⟨T ⟩ and deviations T̃ in Case:3 are different from
Case:1 and Case:2. In particular, the time-average ⟨T ⟩
in Case:3 is smaller than Case:1. This phenomenon is
newly observed with the current treatment in which the
time-dependency of air motion is included via Deff. Note
that in many conventional analyses assisted by CFD pro-
gram, the air motion in Eq. (1) does not change in time,
and hence the effective diffusion in Eq. (5) becomes time-
invariant. Even if ones prepare CFD-based sub-models
for respective dynamic effects on in-room temperature
due to buoyancy, mobile occupants, and so on, any su-

perposition of these sub-models does not capture the dy-
namic effect by mobile occupants because of the time-
dependency of air motion. The current modeling sug-
gests for the first time that the time-dependent diffusion
is crucial to understanding the spatio-temporal effects of
human occupancy on in-room temperature distribution.

VI. CONCLUSION

This paper developed a method for modeling of in-
room temperature distribution incorporated with human
sensor data. The in-room thermal dynamics were simply
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modeled via a two-dimensional diffusion equation with ef-
fective coefficient. By incorporating human sensor data
into the two terms Deff(x, t)∆T (x, t) and Phuman(x, t)
of the equation, the so-called thermal and fluid effects by
human occupancy were described. The modeling was ap-
plied to a practical office space in commercial building in
Japan where human occupancy was measured in high res-
olution. Numerical simulations of the office space show
that the modeling well reproduces the temporal changes
of measured temperature without any consideration of
air motion and captures the multiscale influence of hu-
man occupancy on in-room temperature distribution—
the thermal and fluid effects. The computing time for
the simulations also proves that the modeling realizes the
fast prediction of the multiscale influence, which is not
possible with CFD. Thus, we establish the effectiveness
of the in-room temperature modeling that is computa-
tionally simple and physically accurate.
The modeling procedure is general and applicable to

another office space where thermal dynamics in the hor-
izontal (length and width) direction are dominant. Also,
it is possible to quantify the thermal and fluid effects by
other in-room heat sources and obstacle objects such as
office equipment. That is, the modulating idea of Deff is
applicable to various indoor situations even if the condi-
tion (4) does not necessarily hold (see also App. A). Fur-
thermore, the modeling procedure provides a new frame-
work of the HVAC design and operation. One of the most
relevant applications is the operational design of VAV
systems. The VAV system includes two basic components
[23]: central Air Handling Units (AHU) for heating or

cooling and dispersed VAV units for air supply. The op-
eration of a VAV unit changes Deff and hence has an abil-
ity of controlling the multiscale effect reported in this pa-
per. Here, for an office space where a VAV unit operates,
the proposed model (5) becomes a nonlinear diffusion
equation because the coefficient Deff(x, t) depends on the
temperature T (x, t), denoted as Deff(x, t, T ). Thus, the
nonlinear model is still simple compared with an ordi-
nal CFD model and enables quantification of how the
VAV operation dynamically responds to a change of the
temperature distribution, thereby contributing to its op-
erational design. In addition to the design, we contend
that the modeling is applicable to real-time control of
in-room temperature distribution with taking human oc-
cupancy into account. Conventional demand-controlled
ventilation is based on information on human occupancy
[6, 7] and has not used direct in-room temperature distri-
bution for management of HVAC systems. The current
model makes it possible to identify a dynamic response of
fine-scale temperature driven by human occupancy and
HVAC operation. Thus, as stated in Sec. I, by using the
model output as a feedback signal, it becomes possible
to design the HVAC management for local and precise
regulation of the temperature T (x, t) to a reference dis-
tribution Tref(x, t, N) that is a function of the human
occupancy N(x, t).

Finally, we conclude that the proposed modeling con-
tributes to a dynamics-oriented approach to the HVAC
design and operation, in contrast to the CFD analysis
that mainly investigates detailed but steady thermal en-
vironment.
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Appendix A: Extension of modeling in

time-invariant coefficient D
(0)
eff

This section shows the possibility to extend the mod-

eling in the time-invariant coefficient D
(0)
eff , which is es-

tablished under the condition (4), to more general situ-
ations. If the temporal average in Eq. (4) is not zero,
then the diffusion coefficient becomes time-varying, de-

noted as D
(0)
eff (x, t). This situation may occur when mul-

tiple VAV units are operated in an office space and pro-
duce a local, non-advective flow. Also, if the spatial av-
erage in Eq. (4) is not zero, then the homogenization-
based equation (5) includes the advection term. Here,

the modulation idea of D
(0)
eff is effective in the above two

situations. In the former, the VAV units would change
the total energy of the fully-developed turbulent flow in
Ω, namely its energy spectrum. Simultaneously, the en-
ergy spectrum is changed by the local effect by a mobile
occupant. Both the changes are approximately repre-
sented by an extension of the modulation formula like

D
(0)
eff (x, t){1 + εN(x, t)}. Also, in the latter situation,

the local effect does not influence the emergent advective
flow over Ω because of the well-established phenomenol-
ogy of energy cascade. Thus, the modulation formula

D
(0)
eff (x){1 + εN(x, t)} is enough to the latter situation.

Appendix B: Derivation and identification of D
(0)

eff

This section explains formula and value of the nomi-

nal effective diffusion coefficient D
(0)
eff from a velocity pro-

file of air motion. They are based on the two following
physical mechanisms: eddy diffusion behavior under a
homogeneous turbulent flow [20] and effective diffusion
behavior under a homogeneous large-scale flow [19, 32].

First, we derive the formula of eddy diffusivity Deddy

under the homogeneous turbulent flow. Now, we use
L0 to represent the length-scale of the averaged velocity
u0. It is thus known that the time-varying component
ũ contains small-eddy components whose length-scales
are smaller than L0. Heat transfer by these small-eddy
components is often modeled as isotropic diffusion, called
eddy diffusion. This idea is widely known in large eddy
simulation: see e.g. [20, 33]. In particular, Yoshida, et
al. [34] addressed the fluid components with length-scales
smaller than a cut-off scale Lc and modeled its contribu-
tion to the heat transfer as the eddy diffusivity Deddy.
The formula of Deddy is presented in [34] as follows:

Deddy =

(
U3
0

L0

)1/3

L4/3
c , (B1)

where U0 stands for the characteristic scale of the aver-
aged velocity u0. It is shown in [34] that Eq. (B1) is valid
if Lc is smaller than the half of the target length-scale L
of heat transfer of interest.

Next, we look at the contribution of u0 and of the
residual large-scale components of ũ which length-scales
are larger than Lc. Ceiling air outlet generates spatially-
symmetric convection cells with respect to an outlet duct
[4, 35]. Thus, when the outlet ducts are homogeneously
located, u0 is expected to exhibit a spatially-periodic
flow structure similar to the Rayleigh-Bénard convection.
Because of the spatial-periodicity of u0 and homogene-
ity of ũ, the contribution is represented as a diffusion
term described by a second-order, skew-symmetric, and
spatially-periodic tensor, called diffusion tensor. The
tensor is then homogenized into an isotropic effective dif-
fusion term [19, 32]. The homogenization is described in
the next paragraph. Now, let us introduce a constant
coefficient Dlarge to quantify the pure-contribution of the
components with length-scales in the interval [Lc, L0],
which does not include contribution of the small-eddy
components. The coefficient Dlarge is written via dimen-
sional analysis as follows:

Dlarge = LlargeUlarge, (B2)

where Llarge and Ularge are the characteristic length and
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FIG. 12. Outdoor temperature data Tout measured on July
31 and August 2, 2014 (Thu. and Sat.).

velocity of the diffusive contribution given as

Llarge =
2

1/L0 + 1/Lc
, (B3)

Ularge =

(
U3
0

L0

)1/3
√∫ 1/Lc

1/L0

k−5/3dk, (B4)

where k is the wavenumber of flow. Eq. (B3) implies
that the averaged wavenumber 1/Llarge in the interval
[1/L0, 1/Lc] is adopted as the characteristic wavenumber
of the target heat transfer. Also, Eq. (B4) is derived
with the kinetic energy contained in the interval [Lc, L0]
under the assumption that the spectrum of kinetic energy
obeys the Kolmogorov’s minus five-thirds law [20]. The
square root in Eq. (B4) is introduced to associate the
kinetic energy with the velocity in terms of dimensional
consistency.

Finally, we construct the formula of D
(0)
eff by combin-

ing the contributions of Deddy and Dlarge to heat trans-
fer. The constant Deddy corresponds to the diagonal
elements of diffusion tensor, which contribute the heat
transfer on small scale, and Dlarge to the non-diagonal el-
ements, which contribute the heat transfer on large scale.
The tensor is homogenized into diagonal effective ten-
sor through the standard asymptotic expansion, and the
bounds of elements of the homogenized tensor are given
as geometric average of elements of the diffusion tensor
[19, 32]. Note that the effective tensor is isotropic in the
target space because of the two reasons. First, the outlet
ducts of HVAC units are homogeneously located along
both length and width of the target space (see Fig. 1(c));
Second, the outlet volume per one duct is almost uniform
(see Fig. 1(c) and Tab. I). Therefore, we formulate the

nominal coefficient D
(0)
eff as follows:

D
(0)
eff =

√
DeddyDlarge. (B5)

In this paper, the length-scale L of heat transfer is
set at ∆x = ∆y = 1.8m, and the cut-off scale Lc at

L/2 = 0.9m for validity of Eq. (B1). By substituting
the values of L, Lc, L0, and U0 into Eqs. (B1)–(B5), the

nominal value of D
(0)
eff is calculated as 1.2m2/s.

Appendix C: Outdoor temperature data Tout

Figure 12 shows the outdoor temperature data Tout on
July 31 and August 2, 2014 (Thu. and Sat.). For the
target period 9:00 to 18:00, the temperature is higher
than the outlet one of HVAC units (see Tab. III). The
high temperature enhances the thermal load Pconv and
then cancels the cooling input from HVAC units. This
is a quantitative evidence that the in-room temperature
shown in Figs. 3, 7, and 8 is higher than the outlet one.

Appendix D: Discretized formulation of Psolar

This section provides a formulation of the heat input
Psolar from solar radiation in the target space. The heat
input Psolar is assumed to be spatially uniform in the
target office space and given in [1] as follows:

Psolar[k] = Ksolar
Pm[k]Swind

144h∆x2
, (D1)

where Pm stands for the solar radiation through windows
per unit area and time, and Swind = 44.8m2 for the total
area of the eastern windows. The denominator of right-
hand side of Eq. (D1) coincides with the total volume
of the target three-dimensional object. The coefficient
Ksolar is introduced to represent the solar shading by
louvers and blinds, and its practical value is 5.1 × 10−2

[1].

Appendix E: Estimation of Kconv[ib, jb, k]

By using the so-called overall heat transfer coefficient
U shown in Tab. II, we provide an estimation of the con-
vection coefficient Kconv[ib, jb, k]. Here, the overall heat
transfer per volume at boundary node [ib, jb] ∈ ∂A is
represented as follows:

U [ib, jb]
Text[k]− T [i, j, k]

∆x

= U [ib, jb]
T [ib, jb, k]− T [i, j, k]

Kconv[ib, jb, k]∆x2
(E1)

= ρcpDeff[i, j, k]
T [ib, jb, k]− T [i, j, k]

∆x2
, (E2)

where we used Eq. (19) for deriving the right-hand side
of Eq. (E1) and also used a discretized diffusion term of
Eq. (5) at node [i, j] for deriving the right-hand side of
Eq. (E2). The right-hand sides of Eqs. (E1) and (E2)
lead to the formula of Kconv in Eq. (20).


