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Abstract

We aimed to describe the development of an inference model for computer-aided diagnosis

of lung nodules that could provide valid reasoning for any inferences, thereby improving the

interpretability and performance of the system. An automatic construction method was used

that considered explanation adequacy and inference accuracy. In addition, we evaluated

the usefulness of prior experts’ (radiologists’) knowledge while constructing the models. In

total, 179 patients with lung nodules were included and divided into 79 and 100 cases for

training and test data, respectively. F-measure and accuracy were used to assess explana-

tion adequacy and inference accuracy, respectively. For F-measure, reasons were defined

as proper subsets of Evidence that had a strong influence on the inference result. The infer-

ence models were automatically constructed using the Bayesian network and Markov chain

Monte Carlo methods, selecting only those models that met the predefined criteria. During

model constructions, we examined the effect of including radiologist’s knowledge in the ini-

tial Bayesian network models. Performance of the best models in terms of F-measure, accu-

racy, and evaluation metric were as follows: 0.411, 72.0%, and 0.566, respectively, with

prior knowledge, and 0.274, 65.0%, and 0.462, respectively, without prior knowledge. The

best models with prior knowledge were then subjectively and independently evaluated by

two radiologists using a 5-point scale, with 5, 3, and 1 representing beneficial, appropriate,

and detrimental, respectively. The average scores by the two radiologists were 3.97 and

3.76 for the test data, indicating that the proposed computer-aided diagnosis system was

acceptable to them. In conclusion, the proposed method incorporating radiologists’ knowl-

edge could help in eliminating radiologists’ distrust of computer-aided diagnosis and improv-

ing its performance.
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Introduction

Advances in imaging modalities have made it possible to acquire large amounts of medical

image data for radiologists to assess, increasing their workload. Computer-aided diagnosis

(CAD) has been developed to decrease the workload and categorized into two types [1]: com-

puter-aided detection (CADe), which supports lesion detection [2–4], and computer-aided

diagnosis (CADx), which supports differential diagnosis [5–7]. CAD systems, particularly

CADx systems, employ an inference model to present suggestions to radiologists based on the

data input (e.g., imaging findings).

Several studies have reported the usefulness of CAD for lung nodules [8–12]. Shiraishi et al.

proposed a system that calculated the possibility of the presence of a malignant lung nodule

from two clinical parameters and 75 imaging features, using linear distinct analysis in chest

radiographs [8]; they showed that radiologists’ performance significantly improved with the

use of CADx. In addition, Chen et al. proposed a CADx system that estimated nodule type

based on 15 image features, using an ensemble model of artificial neural network with chest

computed tomography (CT) [9]. Notably, their system showed performance comparable to

that of senior radiologists while classifying the nodule type. Nevertheless, CADx systems are

rarely used in clinical practices, possibly because radiologists distrust the suggestions of the

CAD system because they do not provide explanations for the decisions. Supporting this,

Kawamoto et al. suggested that CAD should at least provide adequate details about the reason-

ing for any inference results [13]. Accordingly, we believe that the barriers to its use could dis-

appear, or at least diminish, if the CAD system could provide justifications for its suggestions.

Remarkably, few systems offer reasons behind their suggestions. Green et al. proposed such

a system based on sensitivity analysis with electrocardiogram interpretation [14], whereas

Kawagishi et al. proposed a system that disclosed the reasoning based on the influence on the

inference result in chest CT [15]. Although their inference models showed high accuracy of

the inferences and high adequacy of the reasons, the reports did not describe the model con-

struction. However, it can be challenging to manually construct an inference model with high

accuracy and high adequacy because the number of possible models is vast. Although various

automatic construction methods have been proposed [16–19], they have only considered infer-

ence accuracy as a performance metric and not explanation adequacy or subjective

interpretability.

In our study, we have proposed a method for automatically constructing inference models

using a metric that considers explanation adequacy and inference accuracy. Moreover, we

have evaluated the usefulness of radiologists’ knowledge while constructing these models.

Materials and methods

This retrospective study was approved by the Ethics Committee of Kyoto University Hospital

(Kyoto, Japan), which waived the requirement of informed consent. The notations used in this

paper are shown in Table 1.

Dataset

We used thin-slice chest CT images and clinical information of 179 patients treated at Kyoto

University Hospital. Each case had 1–5 pulmonary nodules, ranging in size from 10 to 30 mm,

with the clinical diagnosis confirmed pathologically, clinically, or radiologically as primary

lung cancer, lung metastasis, or benign lung nodule. Of note, we used 79 cases as training data

for constructing the inference model and the remaining 100 cases as test data for evaluating

the performance of the model.
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Without the knowledge of the clinical diagnosis, two radiologists (A and B) analyzed a rep-

resentative nodule for each case and recorded 49 types of imaging findings as ordinal or nomi-

nal data. In addition, 37 clinical data types, including laboratory data and patient history of

malignancies, were collected from patients’ electronic medical records; these data were used as

the input information for the inference models (see Supporting information, S1 File). The clin-

ical diagnosis data were used as reference for evaluating inference accuracy; based on these

diagnoses, two other radiologists (C and D) selected a set of 1–7 imaging findings and/or clini-

cal data as the reference explanations for diagnosis (e.g., “shape is polygon,” “diameter is small

and cavitation exists,” and “satellite lesion exists”).

Inference model

The inference computational model infers diagnosis (primary lung cancer, lung metastasis, or

benign lung nodule in our study) from the input image findings and clinical data. As the infer-

ence model, we employed a Bayesian network, a directed acyclic graphical model that includes

nodes and directed links. Fig 1 provides an example of a Bayesian network (directed acyclic

graphical model). Each node represents a random variable, and each directed link represents

relationship between variables.

In Fig 1, D denotes diagnosis as the inference target node, and Xj (j = 1, 2, . . ., N) denotes

the imaging findings (e.g., shape) and clinical data (e.g., tumor marker) as the other nodes.

Table 1. List of notations.

Notation Description Example

D “Diagnosis” as the inference target node (random

variable)

NA

di state of random variable D d1, primary lung cancer

Xj imaging findings and clinical data as the other

nodes (random variable)

shape, tumor marker

xjk state of random variable Xj x31, irregular

E Evidence, as a set of xjk {x11, x21}

p(di|E) posterior probability of di when E is given to the

inference model

NA

df inference diagnosis with the highest posterior

probability among p(di|E)

d1, primary lung cancer

Rc reason candidate (a proper subset of E) If x11 and x21 are given as E, then Rc can be {x11,

x21}, {x11}, {x21}.

|Rc| the number of elements of Rc If Rc is {x11, x21}, then |Rc| is 2.

Rct Rc with only one element {x11}

I(Rc) influence of Rc on the inference diagnosis df NA

p(df) prior probability of the inference diagnosis df NA

pd(Rc) difference between p(df|Rc) and p(df) for the

inference diagnosis df

NA

V(S) the performance metric of inference model S NA

Vr(S) explanation (reasoning) adequacy of inference

model S
NA

Vi(S) inference accuracy of inference model S NA

Rg Reference reasons (1–7 imaging findings and/or

clinical data chosen by radiologists)

“shape is polygon,” “diameter is small and

cavitation exists,” and “satellite lesion exists”

Rd Reasons derived by the inference system “shape is polygon” and “diameter is small and

cavitation exists”

Abbreviation: NA, not available

https://doi.org/10.1371/journal.pone.0207661.t001
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Each node can have a discriminate value of di or xjk; for example, D takes di (i = 1, 2, 3; e.g., d1:

primary lung cancer) and Xj takes xjk (e.g., for shape, k = 1, 2, . . ., 8 and j = 3, with x31 = irregu-

lar). Further, maximum value of k ranges from two to eight depending on Xj. Next, E denotes

Evidence [20] as a set of xjk used for information input in the inference models. The posterior

probability of di is denoted by p(di|E) when E is set in the inference model, and df indicates the

inference diagnosis with the highest posterior probability among p(di|E).

The inference result can be calculated based on the Bayesian network structure using a

probability propagation algorithm [20]. With a change in the Bayesian network structure

(graphical model), the probability propagation path is also changed, indicating that the struc-

ture of the graphical model affects the inference result. We obtained the prior probability dis-

tributions for each node from the training data and calculated the conditional probabilities for

each node based on links.

Reason derivation

Herein, we illustrate how the reasons are derived from Evidence (E) to justify the inference

results. First, the notation for deriving reasons and the examples of notation usage are

explained. E is given as a set of xjk, and Rc (reason candidate) is defined as a proper subset of E
that can be selected as a reason, e.g., when the graphical model comprises D (diagnosis), X1

(nodule size), and X2 (cavitation) as nodes, if x11 (diameter is small) and x21 (cavitation exists)

Fig 1. An example of a Bayesian network (directed acyclic graphical model). The Bayesian network has nodes (circles) and directed links (arrows).

Each node and directed link represent a random variable and relationship, respectively. Each node can have a discriminate value (state).

https://doi.org/10.1371/journal.pone.0207661.g001
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are specified as E, then Rc comprises only these two elements, and {{x11, x21}, {x11}, {x21}} repre-

sent all possible values of Rc. This notation allows the reasons to be derived from E. The influ-

ence, I(Rc), is defined as a quantitative measure to select Rc based on the graphical model. Its

calculation is summarized in S2 File; to summarize, it represents the influence of Rc on the

inference result (df): I(Rc)> 0 indicates a positive influence, whereas I(Rc)< 0 indicates a neg-

ative influence. I(Rc) is defined by the following equations:

IðRcÞ ¼
pdðRcÞ if jRcj ¼ 1

pdðRcÞ � f ðRcÞ otherwise:
ð1Þ

(

with pd(Rc) defined as

pdðRcÞ ¼ pðdf jRcÞ � pðdf Þ ð2Þ

In Eqs 1 and 2, p(df) denotes the prior probability of df, and |Rc| denotes the number of ele-

ments of Rc. As stated in the section detailing the inference model, p(df) is calculated from the

training data. Based on these equations, when Rc comprises only one element (i.e., |Rc| = 1), I
(Rc) equals pd(Rc) and is simply defined as the difference between p(df|Rc) and p(df). For |Rc|>

1, I(Rc) is calculated from pd(Rc) and an additional penalty term, f(Rc), introduced to consider

possible synergy among the multiple elements.

To explain the synergetic effect on I(Rc), we use the notation Rct (t = 1, 2, . . .) for the subset

of Rc, with only one element of Rc, e.g., when all possible values of Rc are {{x11, x21}, {x11},

{x21}}, then Rc1 = {x11} and Rc2 = {x21}. Note that Rct is also the reason candidate in this example

(|Rct| = 1). If pd(Rc = {x11}) and pd(Rc = {x21}) are comparatively higher than pd(Rc = {x11, x21}),

then f(Rc = {x11, x21}) is also high, and we regard that {x11} and {x21} are more adequate than

{x11, x21} as the reasons (e.g., “diameter is small” is more adequate than the combination of

“diameter is small” AND “cavitation exists”). By contrast, if pd(Rc = {x11}) and pd(Rc = {x21})

are comparatively lower than pd(Rc = {x11, x21}), then f(Rc = {x11, x21}) is also low, and the com-

bination of elements {x11, x21} is regarded as more adequate than {x11} and {x21} (e.g., the com-

bination of “diameter is small” AND “cavitation exists” is more adequate than “cavitation

exists”).

f(Rc) is defined as follows by calculating an element-wise total positive effect (fp) and a total

negative effect (fn):

f ðRcÞ ¼

0

sgnðfp � fnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfp � fnj

q

pdðRcÞ

if sgnðpdðRcÞÞ � sgnðfp � fnÞ < 0

if jpdðRcÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfp � fnj

q

otherwise

ð3Þ

8
>>>>><

>>>>>:

fp ¼
P
fpdðRctÞg

2 for 8 fRctjpdðRctÞ � 0g ð4Þ

fn ¼
P
fpdðRctÞg

2 for 8 fRctjpdðRctÞ < 0g ð5Þ

In Eq 3, sgn(�) denotes a sign function, and fp − fn can be considered a net effect of the non-

synergetic influence of each element in Rc. f(Rc), as a synergetic influence, is set to zero when

the sign of the element-wise influence fp—fn is different from pd(Rc). That is to say, f(Rc) can

work as penalty term when the sign of fp—fn is equal to that of pd(Rc). When the value of the

element-wise influence is larger than pd(Rc), the synergetic influence is considered negligible,

and f(Rc) is set to pd(Rc), providing an I(Rc) of zero. L2 regularization is frequently used as
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penalty term in machine learning algorithm (i.e., support vector machine [21]). The difference

between L2 regularization and Eqs (4)–(5) is the separation based on the sign. Therefore, it is

expected that effect of our penalty term is similar to that of L2 regularization. Based on Eqs 1

and 3, I(Rc) can then be rewritten as follows for |Rc|� 2:

IðRcÞ ¼

pdðRcÞ

pdðRcÞ � sgnðfp � fnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfp � fnj

q

0

if sgnðpdðRcÞÞ � sgnðfp � fnÞ < 0

if jpdðRcÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jfp � fnj

q

otherwise

ð6Þ

8
>>>>><

>>>>>:

The maximum number of elements in Rc (|Rc|) is set to two to reduce the computational

complexity. Further, I(Rc) is calculated for all possible candidates of Rc with |Rc| = 1 or 2. At

most, the best three reason candidates are selected as appropriate reasons for each model. If I
(Rc) is <0.05 � p(df), the reason is rejected.

Effect of model structure on deriving reasons

The structure of the graphical model, comprising nodes and directed links, affects both the infer-

ence result and reason derivation for the Bayesian network. Fig 2 shows an example of the

Fig 2. An example of probability propagation. Curved arrows represent the propagation direction, dotted curved arrow with an X indicates no propagation, and gray

circle (Xa) represents a node where Evidence is given. (a) Model A: Propagation does not occur from Xa to D. (b) Model B: Propagation occurs from Xa to D.

https://doi.org/10.1371/journal.pone.0207661.g002
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probability propagation for two different structures of the graphical models. These models have

three nodes (diagnosis node, D, and two other nodes, Xa and Xb). Model A has two directed links,

from Xa to Xb and from D to Xb. Similarly, model B has two directed links, from Xa to Xb and

from Xb to D. The direction of the link between Xb and D is different between the two models.

The results are different when Evidence is given to Xa in the networks; in model A, propagation

occurs from Xa to Xb but not from Xb to D, whereas in model B, propagation occurs in both direc-

tions. Thus, because Xa does not influence D in model A, it is not selected as a reason. In this way,

the model structure influences the probability propagation (inference result) and reasons.

Metric

To automatically construct the inference model, its performance has to be calculated. More-

over, because we regard the reasons as important for evaluating the inference results, we

require the performance measure to reflect explanation adequacy and inference accuracy. Sev-

eral studies have suggested a trade-off between explanation adequacy and inference accuracy

[22, 23]. Based on the consensus of the radiologists in our study, we used the following metric

to evaluate the inference models:

VðSÞ ¼
VrðSÞ þ ViðSÞ

2
: ð7Þ

Herein, S denotes an inference model, V(S) denotes the performance metric of S, Vr(S)

denotes the explanation adequacy of S, and Vi(S) denotes the inference accuracy of S. The

values of Vr(S), Vi(S), and V(S) range from zero to one. Remarkably, this metric considers

the explanation adequacy and inference accuracy of S. We also employ F-measure, which

is commonly used in information retrieval, as Vr(S), providing a harmonic mean of preci-

sion and recall (completeness). The relationships among F-measure, precision, and recall

are as follows:

F � measure ¼
2 � precision � recall
precisionþ recall

ð8Þ

precision ¼
P
jRg \ Rdj
P
jRdj

ð9Þ

recall ¼
P
jRg \ Rdj
P
jRg j

ð10Þ

Here, Rg denotes a reference set of standards for a case (i.e., 1–7 imaging findings and/or

clinical data selected by the two radiologists), Rd denotes a set of reasons derived by the infer-

ence system, and |�| denotes the number of elements of a set. Rg \ Rd denotes the intersection

between Rg and Rd. For this, Rd is obtained from Rc with I(Rc) up to three Rc. If there are>3

possible Rc, then Rd is obtained as follows:

Rd ¼ R1

c [ R2

c [ R3

c ; ð11Þ

where R1
c ;R

2
c ; and R3

c represents Rc with the highest, second highest, and third highest values

of I(Rc), respectively, and “[” denotes an operator of union.

The accuracy of the inference model, Vi(S), is defined as m / n, where m denotes the num-

ber of cases correctly inferred by the models, and n denotes the total number of cases.
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Automatic model construction

The number of possible Bayesian network structures dramatically increases as the number of

nodes increases; from these, structures with high performance must be effectively searched.

Therefore, we use the Markov chain Monte Carlo (MCMC) method [24] to construct the

model, S, and iteratively find the most appropriate model, i.e., with the maximum value of V
(S). We use the metric and MCMC method to automatically construct the Bayesian model as

follows:

1. Set an initial model to the current model (Scurrent), and initialize the iteration count

(M = 1).

2. Create a temporary model (Stemp) by updating Scurrent. The update action is probabilistically

selected as one of the following, with a probability based on the Scurrent structure: (1) delet-

ing a link, (2) reversing a link, or (3) creating a new link (see Fig 3). If the action is not

appropriate (e.g., Stemp has a cyclic loop in its structure), Step 2 is iterated.

3. Calculate V(Stemp) with 5-fold cross validation of the training data.

4. Probabilistically replace Scurrent with Stemp with the following probability (Pm):

Pm ¼

1 if VðStempÞ > VðScurrentÞ

exp �
VðScurrentÞ
VðStempÞ

�
1

b
ðM� 1Þ

 !

if VðStempÞ � VðScurrentÞ
ð12Þ

8
>><

>>:

where β represents the damping ratio (0< β< 1). Note that Pm is small (difficult to replace)

when V(Scurrent)> V(Stemp) or when M is large.

5. If M reaches the iteration limit (Ml) or Scurrent has not been replaced Mc times, then Scurrent

is output as the final model. If not, M = M + 1 is set, and the process returns to Step 2.

In Step 2, Stemp is created with a probability based on the current model Scurrent, enabling

setting a different Stemp at another trial even while using the same Scurrent.

In this process, we set the core values as follows: β = 0.999, Ml = 10000, and Mc = 2500. If

the inference accuracy Vi(S) of the final model is <0.70 for the training data, the model is dis-

carded because the low inference accuracy is expected to negatively influence the model’s

acceptability by the radiologists. For the same reason, if Vi(S) is <0.70, we set V(S) to Vi(S) and

Vr(S) to 0 in Step 3, which eliminates the time-consuming calculation of Vr(S). The number of

parent nodes is limited to no more than two because of limited computational resources.

Initial model with and without prior knowledge of radiologists

The final model depends on the initial model and metric V(S). To evaluate the effect of the initial

model on the performance of the final model, we examined initial models with and without the

radiologists’ expert knowledge. The radiologists’ knowledge is represented as links between the

diagnostic node and other nodes in the initial model. When no prior knowledge is included, no

link is present in the initial model. We conducted multiple trials of model construction with the

same initial model because each trial could experience different paths, as already described.

Subjective evaluation of inference model

The two radiologists (A and B, who did not set the reference standards) were asked to subjec-

tively evaluate the model with the best performance. Based on the clinical diagnosis, inference
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result, and derived reasons, a subjective rank was assigned to each case on a 5-point scale,

wherein ranks 5, 3, and 1 represented beneficial, appropriate, and detrimental, respectively.

Results

Finally, 13 models with prior knowledge and five without prior knowledge were constructed

after 37 trials. The remaining 19 models were discarded because they did not meet our prede-

fined criteria. Table 2 shows the performance of the best three models with and without prior

knowledge. S1 and S2 Tables show the performance of the other 10 and 2 models with and

without prior knowledge, respectively. Among the 13 models with prior knowledge, the per-

formance of the best model with the test data was as follows: F-measure (Vr) = 0.411, accuracy

(Vi) = 72.0%, and metric (V) = 0.566. Among the five models without prior knowledge, the

performance of the best model with the test data was as follows: F-measure (Vr) = 0.274, accu-

racy (Vi) = 65.0%, metric (V) = 0.462.

Fig 3. Three types of update to the graphical model. Delete denotes unlinking an existing link, reverse denotes reversing an existing link, and join denotes creating a

new link.

https://doi.org/10.1371/journal.pone.0207661.g003

Table 2. Performance of the best three inference models with and without prior knowledge.

Training data Test data

Prior knowledge Model F-measure (Vr) Accuracy (Vi) (%) Metric (V) F-measure (Vr) Accuracy (Vi) (%) Metric (V)

with Best 0.399 75.9 0.579 0.411 72.0 0.566

2nd 0.324 70.9 0.516 0.325 76.0 0.542

3rd 0.363 70.9 0.536 0.328 74.0 0.534

without Best 0.342 72.2 0.532 0.274 65.0 0.462

2nd 0.314 74.7 0.530 0.222 63.0 0.426

3rd 0.361 77.2 0.566 0.250 60.0 0.425

https://doi.org/10.1371/journal.pone.0207661.t002
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According to Table 2, although the accuracy of three models without prior knowledge was

comparable to that of three models with prior knowledge when applied to the training data,

their performance (F-measure, accuracy, and metric) without prior knowledge was worse than

that with prior knowledge when using the test data. Iteration numbers for the MCMC method

in the three best models with prior knowledge were 2934, 2948, and 3126, while the corre-

sponding numbers in those without knowledge were 2873, 5567, and 8642.

Based on Table 2, we selected the best model constructed with prior knowledge (met-

ric = 0.566) for the subjective evaluation. The average subjective ranks obtained from the two

radiologists were 3.97 and 3.76. Fig 4 shows the frequencies of ranks recorded by the two radi-

ologists, indicating that the mode of the ranks for each radiologist was 5. Rank 1 had the lowest

frequency for Radiologist A, whereas rank 3 was less frequent than rank 1 as per Radiologist B.

Fig 5 illustrates an example of misclassification by the inference system, in a case where a

benign lung nodule was classified as a metastasis, and the three reasons for this were “shape is

round,” “contour is smooth,” and “patient was diagnosed with malignancy during the past five

years.” Both radiologists gave this a rank of 1.

To compare our Bayesian-network-based method, inference and reasoning of lung nodules

were performed using gradient tree boosting (xgboost) [25,26]. Please refer to the Supporting

information (S3 File) for the comparison.

Fig 4. Frequencies of subjective ranks recoded by two radiologists. Note: Ranks 5, 3, and 1 in the 5-point scale represent beneficial, appropriate, and detrimental,

respectively.

https://doi.org/10.1371/journal.pone.0207661.g004
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Discussion

We proposed a method for the automatic construction of a CADx system that could provide

justification for its inference results. By incorporating radiologists’ knowledge into the model

construction, we found that explanation adequacy and inference accuracy improved. To the

best of our knowledge, few studies in radiology have sought to develop a CADx system that

can provide valid reasoning for its inference results. Indeed, Langlotz et al. suggested that phy-

sicians not only based their trust in an inference system on good prediction performance but

also on whether they understood the reasoning behind the predictions [27]. However,

although Green et al. proposed an inference system for electrocardiogram that presented its

reasoning [14], the same has not been proposed for radiology. Accordingly, our CADx system

for lung nodules was capable of providing valid reasons for its inferences, with high explana-

tion adequacy and high inference accuracy.

As shown in Table 2, the models with prior knowledge from radiologists were more robust

and superior to those without prior knowledge. Because the accuracies of the models without

prior knowledge were comparable to those with prior knowledge in the training data, we spec-

ulate that the models without prior knowledge overfitted the training data. In effect, the radiol-

ogists’ knowledge prevented overfitting and improved the generalizability of the system.

Consistent with this, a previous study showed that the Bayesian network performance in

assessing mammograms was improved by incorporating experts’ knowledge [28].

The present study gained other benefits from expert involvement, e.g., the iteration num-

bers for the MCMC method were smaller in the models with prior knowledge than in those

without prior knowledge. In addition to improving the model robustness, prior knowledge

boosted the convergence speed of our inference models.

Fig 5. An example of misclassification and inadequate reasoning by the inference system. A benign lung nodule (arrow) was classified as metastasis.

https://doi.org/10.1371/journal.pone.0207661.g005
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The two radiologists (A and B) subjectively evaluated the model we constructed, giving an

average rank more than 3. A large controlled study in the non-medical domain [29] has shown

that providing reasoning and trace explanations for context-aware applications could improve

user understanding and trust in the system. In line with this finding and the acceptability of

our method to the radiologists participating in the present study, we expect that our CADx sys-

tem could, at least, diminish an important barrier to the uptake of CADx systems.

Several methods for automatic model construction were proposed in previous studies.

These methods can be divided into two types [20,30]: (i) constraint-based methods

[16,20,30,31] and (ii) search-and-score methods [19,20,30,32]. In constraint-based methods,

relationship between nodes, such as conditional independency [31] or mutual information

[16], are used to construct Bayesian network structure automatically. That is to say, if condi-

tional independency is indicated or values of mutual information meet predefined criteria,

existence of the links between the nodes are judged. For example, PC algorithm utilizes condi-

tional independency for judging whether links are deleted or connected in Bayesian network

structure [31]. Because constraint-based methods evaluate the relationship between nodes

using training data, efficiency of entire Bayesian network structure is not assured when using

the constraint-based methods. In search-and-score methods, Bayesian network structure is

evaluated by score such as Bayesian score function, BIC, MDL, and MML (Vr, Vi, and V in our

study). Based on the scores obtained from entire Bayesian network structures, better structure

is searched or selected. MCMC is used for searching Bayesian network structure in our

method and the previous study [19], and greedy algorithm is used in K2 algorithm [32]. In

general, greedy algorithm, such as K2 algorithm, frequently sticks in local minimum/maxi-

mum, and cannot reach global minimum/maximum [19]. MCMC can break out of this local

minimum/maximum and obtain better score [19]. As shown, our proposed method is classi-

fied as search-and-score methods. It is possible to use hybrid method of constraint-based

methods and search-and-score methods. For example, in MCMC step of our method, the links

between two nodes where conditional independency is indicated can be ignored when updat-

ing Bayesian network structure, which will make convergence speed of our proposed method

faster.

In conventional methods of structure learning, inference accuracy is mainly optimized, and

explanation adequacy is frequently ignored. We focused on both inference accuracy and expla-

nation adequacy in our study. In addition, our proposed method can speculate reasoning for

prediction of one particular lung nodule. These two points are the major differences between

our proposed method and conventional methods of Bayesian network structure learning/con-

ventional CAD.

There are several limitations in the current study. First, the number of parent nodes for the

Bayesian network is limited to no more than two. In the case of a directed graph, such as

Bayesian network, the number of possible structures can reach 3B (where B = NC2 and N is the

number of nodes). By limiting the number of parent nodes, it is possible to decrease computa-

tional cost for model construction, but this might have been at the expense of missing the opti-

mal model. Second, despite restricting the number of model structures, the number of model

candidates is still huge. Consequently, the automatic model construction in the MCMC pro-

cess can reach the local minimum. Although our inference models converged to a reasonable

model for the radiologists, this might not have been the optimal model. Third, the computa-

tional cost of model construction is large, with one trial requiring 30–40 hours to complete,

making it difficult to construct models with different random seeds. Finally, the two radiolo-

gists only evaluated the best model. In future research, it will be preferable to perform subjec-

tive evaluation of more inference models.
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Conclusions

In conclusion, we have proposed a method of automatic model construction for CADx of lung

nodules that had high explanation adequacy and high inference accuracy. Notably, not only

were the models constructed with prior knowledge from radiologists superior to those con-

structed without prior knowledge but the radiologists also considered the reasons provided for

the inference results to be acceptable. Overall, these results suggest that our proposed CADx

system might be acceptable in clinical practice and could eliminate the usual distrust of such

systems among radiologists. We will perform further observational studies using our CAD

system.
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