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Abstract Natural systems are often complex and dynamic
(i.e. nonlinear), making them difficult to understand
using linear statistical approaches. Linear approaches are
fundamentally based on correlation. Thus, they are ill-
posed for dynamical systems, where correlation can oc-
cur without causation, and causation may also occur in
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the absence of correlation. ““Mirage correlation” (i.e., the
sign and magnitude of the correlation change with time)
is a hallmark of nonlinear systems that results from state
dependency. State dependency means that the relation-
ships among interacting variables change with different
states of the system. In recent decades, nonlinear meth-
ods that acknowledge state dependence have been
developed. These nonlinear statistical methods are roo-
ted in state space reconstruction, i.e. lagged coordinate
embedding of time series data. These methods do not
assume any set of equations governing the system but
recover the dynamics from time series data, thus called
empirical dynamic modeling (EDM). EDM bears a
variety of utilities to investigating dynamical systems.
Here, we provide a step-by-step tutorial for EDM
applications with rEDM, a free software package written
in the R language. Using model examples, we aim to
guide users through several basic applications of EDM,
including (1) determining the complexity (dimensional-
ity) of a system, (2) distinguishing nonlinear dynamical
systems from linear stochastic systems, and quantifying
the nonlinearity (i.e. state dependence), (3) determining
causal variables, (4) forecasting, (5) tracking the strength
and sign of interaction, and (6) exploring the scenario of
external perturbation. These methods and applications
can be used to provide a mechanistic understanding of
dynamical systems.

Keywords Embedding - State space reconstruction -
State dependence - Forecast - Interaction

Introduction

TR, BRI, ~K , 08 © HidTam . A fa-
mous old Chinese saying: “A halo around the moon
indicates the rising of wind; the damp on a plinth is a sign
of approaching rain” is believed to be written by Xun Su
(approximated to appear in 1069AD in the Sung Dy-
nasty of China). However, a halo does not cause wind;
wind does not cause the halo, either! Two things appear
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Fig. 1 Model examples demonstrating a confusing conclusion
based on linear correlation analysis. The first model is a two-
species adult (N)-recruitment (R) fishery model (a). Both species are
driven by a shared environmental driver (V). Although no
interaction exists between species Ny and N,, their dynamics show
a strong positive correlation (b), driven by the shared environmen-

to be highly correlated, but there is no causal relation-
ship between them. That is, correlation does not imply
causation. This can be demonstrated using a simple
model of two independent populations driven by the
same external forcing (Fig. 1a, b). As can be seen from
the model, two species show strong correlation, al-
though they do not interact. This strong correlation is
simply driven by a third, shared component (e.g., the
environment). This is analogous to the well-known
Moran effect (Moran 1953).

Even more counter-intuitively, a lack of correlation
does not imply lack of causation. This can be demon-
strated using a two-species competition model (Fig. 1c).
The two species exhibit a mirage correlation (Fig. 1d):
positive correlation for a period of time, negative cor-
relation for another period of time, and then no corre-
lation in yet another period of time. If one uses
correlation to infer causality, one may erroneously
conclude that the two species have no causal interaction.
Such a “mirage correlation” is a hallmark of nonlinear
dynamical systems (Sugihara et al. 2012).

Mirage correlations result from a fundamental
property of nonlinear dynamical systems known as state
dependency (Sugihara et al. 2012; Ye et al. 2015a). State
dependency means that the relationships among inter-
acting variables change with different states of the
dynamical system (Ye et al. 2015a). For example, the
sign of the correlation between two variables may

tal force. The second model is a two-species competition model (M
and M,), demonstrating mirage correlation (c¢). Although M, and
M, have a fixed negative interaction, the sign of correlation
between their dynamics changes over time (d). In a, ¢, the arrow
indicates causal interaction, with the cause pointing to the effect.
The model examples are modified from Sugihara et al. (2012)

change with different system states, and therefore ap-
pears to change with time (i.e., mirage correlation;
Fig. 1d). State dependent behavior is clearly demon-
strated in the Lorenz butterfly attractor (Lorenz 1963),
in which two variables exhibit opposite correlations
when they are on different lobes of the butterfly attrac-
tor, i.e., different system states depending on the state of
a third variable. (For an illustration, see animation:
https://www.youtube.com/watch?v=8DikuwwPWsY).
Importantly, for a dynamical system, variables are
interdependent and cannot be analyzed separately
(Sugihara et al. 2012). Such kind of state-dependent
behavior cannot be studied by linear approaches (such
as regression or structural equation modeling), because
linear approaches are fundamentally based on correla-
tion and assume that the systems are additive (Sugihara
et al. 2012). Thus, from a methodological viewpoint, the
study of nonlinear dynamical systems requires nonlinear
methods that acknowledge state dependency, whereas
linear methods should be applied for linear stochastic
systems.

To study dynamical systems, nonlinear time series
analytical methods have been developed over recent
decades (e.g. Sugihara and May 1990; Anderson et al.
2008; Glaser et al. 2014; Ye et al. 2015a). These non-
linear statistical methods are rooted in state space
reconstruction (SSR), i.e. lagged coordinate embedding
of time series data (Takens 1981). The basic idea of SSR
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is illustrated in the animation: http://deepeco.ucsd.edu/
video-animations. These methods do not assume any set
of equations governing the system but recover the
dynamics from time series data, thus called empirical
dynamic modeling. Essentially, dynamical systems can
be described as the evolution of a set of states over time
based on some rules governing the movement of states in
a high dimensional state space (i.e. a manifold). Motion
on the manifold can be projected onto a coordinate axis,
forming a time series. More generally, any set of
sequential observations of the system state (i.e. a func-
tion that maps the state onto the real number line) is a
time series. For example, when we collect time series
data, we actually design and apply an observation
function. Conversely, time series (observations) can be
plotted in a multidimensional state space to recover the
dynamics, known as attractor reconstruction (Packard
et al. 1980).

For example, if we know that the dynamics of zoo-
plankton are affected by phytoplankton and fish, we can
reconstruct the system by plotting time series of phyto-
plankton, zooplankton, and fish along the x, y, and
z axis, respectively, in a state space, and view the evo-
lution of the system over time. However, in practice, we
may lack the phytoplankton and fish data needed to
reconstruct the dynamics; or, in a more general situa-
tion, we may not even know all the critical variables for
the system. To overcome these difficulties, Takens (1981)
offered a solution by demonstrating that a shadow ver-
sion of the attractor (motion vectors or phase space)
governing the original process can be reconstructed from
time series observations on a single variable in the pro-
cess (for example, the time series of zooplankton abun-
dance) using lagged coordinate embedding. To embed
such a series of scalar measurements (with an equal
sampling interval), vectors in the putative phase space
are formed from time-delayed values of the scalar
measurements, {x, X,_1¢, X;—2¢ ... X,—(g—1)}, Where E is
the embedding dimension (i.e., the dimension or number
of time-delayed coordinates required for the attractor
reconstruction), and t is the lag (see Sugihara and May
1990) for the choices of E and 7). Takens’ theorem states
that the shadow version of the dynamics reconstructed
by such an embedding preserves the essential features of
the true dynamics (so-called “topological invariance™).
That is, if enough lags are taken, this form of recon-
struction is generically a diffeomorphism and preserves
essential mathematical properties of the original system.
In other words, local neighborhoods (and their trajec-
tories) in the reconstruction map to local neighborhoods
(and their trajectories) of the original system. Thus, in
our plankton example, even if the fish and phytoplank-
ton abundances over time are not measured, we can still
reconstruct a shadow that accounts for these missing
variables by taking the E prior values from just the
zooplankton time series as a coordinate in E-dimen-
sional space. Based on the concept of attractor recon-
struction, EDM can be used to study nonlinear
dynamical systems.
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As time series data accumulate, EDM is gaining sig-
nificant attention. To a large extent, this is a result of the
powerful free software package rEDM, which is written
in the R language (Ye et al. 2016). However, for non-
specialists, there is often a steep learning curve toward
the effective use of this package. Our objective here is
not to explain the theory and algorithm of EDM, which
requires a deep understanding of the theory of dynam-
ical systems, but to guide EDM novices through several
basic applications. Nevertheless, an introductory-level
understanding of dynamical systems is required before
using the methods; we recommend some textbooks (e.g.
Nicolis and Prigogine 1989; Alligood et al. 1996). Here,
we provide model examples for which the exact answers
are known. We demonstrate the functions in the rEDM
package to analyze the model time series data step by
step, and then explain the output and statistics and
provide the ecological interpretation of the results. All
the example model data and R codes are included in the
Electronic Supplementary Material (ESM), allowing
readers to reproduce the results. We then briefly touch
upon some technical issues concerning data require-
ments and processing. We conclude by pointing readers
to useful references for more advanced applications of
the EDM framework.

Applications of EDM

EDM bears a variety of utilities to investigating
dynamical systems: (1) determining the complexity (di-
mensionality) of the system (Sugihara and May 1990;
Hsieh et al. 2005), (2) distinguishing nonlinear dynami-
cal systems from linear stochastic systems (Sugihara
1994) and quantifying the nonlinearity (i.e. state
dependence) (Anderson et al. 2008; Sugihara et al. 2011),
(3) determining causal variables (Sugihara et al. 2012),
(4) forecasting (Sugihara and May 1990; Dixon et al.
1999; Ye et al. 2015a; Ye and Sugihara 2016), (5)
tracking the strength and sign of interaction (Deyle et al.
2016b), and (6) exploring the scenario of external per-
turbation (Deyle et al. 2013). These methods and
applications can be used to give a mechanistic under-
standing of dynamical systems and provide effective
policy and management recommendations on ecosys-
tem, climate, epidemiology, financial regulation, medical
diagnosis, and much else. Below, we provide examples
for some basic applications of EDM. In ESMs, we
provide a step-by-step guideline for each analysis using
the R language (ESM1).

Determining the complexity of system

The complexity of a system can be practically defined as
the number of independent variables needed to recon-
struct the attractor (i.e. dimensionality of the system).
Based on Takens’ Theorem, the dynamics of the system
can be reconstructed from the time lags of a single time
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series, €.8., {X;, X,_17, X;—2¢ ... X,—(g—1)c}. For simplicity,
throughout this manuscript we set the time lag ¢ = 1 for
demonstration. Here, E is the embedding dimension
(note that the practical embedding dimension E is not
necessarily equal to the true dimension of the system D).
Moreover, E is not necessarily equal to the number of
interacting components (e.g., the number of species or
the number of coupled equations). Nevertheless, it is
proved that £ < 2D + 1 (Whitney 1936); that is, E has
an upper bound. In most real-world cases, E is not
known a priori, and needs to be estimated. Determining
embedding dimension £ is a fundamental first step in all
EDM analyses.

The dimensionality of a dynamical system can be
determined by simplex projection (Sugihara and May
1990; Hsieh et al. 2005). When using simplex projection,
a time series is typically divided into two halves, where
one half (X) is used as the library set for out-of-sample
forecasting of the reserved other half, the prediction set
(Y). Note that the prediction set is not used in the model
construction, and thus the prediction is made out of
sample. Simplex projection is a nonparametric analysis
in state space. The forecast for a predictee Y(#) = {
Y(to), Y(t—1), ..., Y(tx—E + 1)} is given by the pro-
jections of its neighbors in the state space in the library
set, {X(l), X(z), . X(E+1)}, where HX(I) — Y(l‘k)H =
min(||X — Y(#)Il) for all X # Y, Xz is the second-
nearest neighbor, and so on. All £ + 1 neighboring
points from the library set form a minimal polygon (i.e.,
simplex) enclosing the predictee under embedding
dimension E. The one-step forward prediction Y(z, +

1) can then be determined by averaging the one-step
forward projections of the neighbors {X(f; + 1),
X(z)([2 + 1), ceey X(E+l)(t(E+l) + 1)} By carrying out
simplex projection using different values of E, the opti-
mal embedding dimension E can be determined
according to the predictive skill. There are several ways
to evaluate the predictive skill of simplex projection,
such as the correlation coefficient (p) or the mean
absolute error (MAE) between the observations and the
forecast results (i.e., comparing Y(#, + 1) with Y(z +

1)). Statistical issues concerning whether to use p or
MAE with empirical data are discussed by Hsieh and
Ohman (2006). Note that, in the case where the time
series is rather short, leave-one-out cross-validation can
be performed instead of dividing the time series into
halves (Sugihara et al. 1996; Glaser et al. 2014).

Here, we demonstrate an example comparing two
systems: linear stochastic red noise and a nonlinear
logistic map (Fig. 2a, b; ESM2). By trial-and-error
using different values of E for simplex projection, we
determine that the best embedding dimension for red
noise is £ = 7 whereas that for the simple nonlinear
logistic map is £ = 2. In this example, the optimal E is
selected based on the criterion that maximizes the
predictive skill by evaluating the correlation coefficients
(p) between the forecasts and observations (Fig. 2c, d).
The results indicated that, although both time series
show large fluctuations, the dimensionality (or com-

plexity) of the logistic map is much smaller than that of
the red noise.

Distinguishing nonlinear dynamical systems from linear
stochastic systems and quantifying the nonlinearity

The ability to distinguishing nonlinear dynamical sys-
tems from linear stochastic systems is a critical concern,
because “‘nonlinearity” is formally associated with the
ideas of nonlinear amplification, multiple stable states,
hysteresis and fold catastrophe (Scheffer et al. 2001;
Hsieh et al. 2005). Moreover, if a system is nonlinear (i.e.
driven mainly by low-dimensional, deterministic pro-
cesses), then in principle it should be possible to con-
struct a reasonable mechanistic model that captures this
behavior with much better forecast skill (Sugihara 1994;
Hsieh et al. 2008). In contrast, it is impossible to con-
struct a mechanistic model for linear stochastic systems.
One should also understand that it is impossible to
distinguish high-dimensional nonlinear systems from
linear stochastic systems given time series data (Sugihara
1994).

As mentioned above, nonlinearity is formally de-
fined as the state dependency of a nonlinear dynamical
system. In other words, the degree of state dependency
reflects the nonlinearity of a dynamical system. State
dependency (nonlinearity) can be quantified by S-map
analysis (S-map stands for “‘sequential locally weighted
global linear map” (Sugihara 1994)). Similar to simplex
projection, S-map also provides forecasts in state space.
However, instead of using only neighboring points
surrounding the predictee, S-map makes forecasts using
the whole library of points with certain weights (hence
the name, locally weighted global linear map). In fact,
S-map analysis is a locally weighted linear regression
performed under the state space associated with a
weighting function in the form of an exponential decay
kernel, w(d) = exp(—0d/d,,). Here, d is the distance
between the predictee and each library point, and d,,, is
the mean distance of all paired library points. The
parameter 0 controls the degree of state dependency. If
0 = 0, all library points have the same weight
regardless of the local state of the predictee; mathe-
matically, this model reduces to linear autoregressive
model. In contrast, if & > 0, the forecast given by the
S-map depends on the local state of the predictee, and
thus produces locally different fittings. Therefore, by
comparing the performance of equivalent linear
(0 = 0) and nonlinear (0 > 0) S-map models, one can
distinguish nonlinear dynamical systems from linear
stochastic systems.

Moreover, state dependency (nonlinearity) can be
examined using the improvement in forecasting skill of
the nonlinear model over the linear model as Ap =
max(pg — pg—o): the maximum difference between the
correlation py at each 0 to the correlation py— o found for
0 = 0. If the Ap is significantly different from the
expectation of the null model, the system is deemed
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Fig. 2 Model examples comparing a linear stochastic red noise and
b a nonlinear logistic map. By simplex projection, we determine the
best embedding dimension (E) for ¢ red noise and d the logistic
map. In this study, we use the maximal predictive skill, p, as the
criterion for selecting E. With the optimal E, we then use S-map to
quantify the nonlinearity of red noise and the logistic map. For
linear red noise (e), increasing the state dependency parameter 0
does not improve the predictive skill (i.e. the optimal 6 = 0). In

nonlinear (see details in Hsieh et al. 2005; Deyle et al.
2013).

In a practical sense, we quantify state dependence by
analyzing time series data of the system. It is necessary
to emphasize that we do not derive or fit equations using
data for the system, because such equations are generally
unknown and fitting equations is unreliable for mathe-
matical reasons (Perretti et al. 2013). Moreover, even
when the equations are known or can be hypothesized,
one cannot determine the nonlinearity of a system sim-
ply by asking whether the underlying equations are lin-
ear or nonlinear. In fact, nonlinear equations do not
necessarily always exhibit nonlinear dynamic properties
(e.g. chaos). Depending on the parameters, nonlinear
equations can actually exhibit simple linear behaviors,
such as equilibria and periodic cycles. Failure to make
this distinction often causes confusion in the literature
concerning the definition of nonlinearity.

As a demonstration, we analyze the aforementioned
linear (red noise) and nonlinear (logistic map) systems

contrast, the predictive skill is maximized at 0 = 2 for the
nonlinear logistic map (f). The improvement in forecasting skill
of the nonlinear over the linear model, Ap = max(pg — pg—o): the
maximum difference between the forecasting skill p, at each 6 to
the skill pg—( found for 6 = 0, is used to quantify the nonlinearity
(state dependency). If the Ap is significantly different from that
expected in the null model, the system is deemed nonlinear

using S-map (Fig. 2e, f; ESM2). Nonlinearity can be
evaluated by examining the relationship between the
predictive skill p and the state-dependency parameter 0
(Fig. 2e, f). The linear stochastic red noise does not ex-
hibit any state dependency, as the S-map performance is
optimized at 0 = 0. In contrast, the nonlinear logistic
map reaches the optimal predictive skill at some 0 > 0,
indicating the improved S-map forecast ability accom-
panied with increasing state-dependency (i.e. nonlinear-
ity).

Determining causal variables

EDM can be used to reveal causation between variables.
Two variables are causally linked if they interact in the
same dynamical system. Following Takens’ theorem, the
system manifold reconstructed from univariate embed-
ding (SSR using a single variable) gives a 1-1 map to the
original system, i.e., topologically invariance. Because
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all manifolds reconstructed from univariates give 1-1
maps to the original manifold, it is not surprising that all
the reconstructed manifolds result in 1-1 mappings if
they are causally linked. Based on this idea, Sugihara
et al. (2012) developed a cross-mapping algorithm to test
the causation between a pair of variables in dynamical
systems. This algorithm predicts the current quantity of
one variable M using the time lags of another variable
M, and vice versa. If M| and M, belong to the same
dynamical system (i.e., they are causally linked), the
cross-mapping between them shall be ‘‘convergent.”
Convergence means that the cross-mapping skill (p)
improves with increasing library size. This is because
more data in the library makes the reconstructed man-
ifold denser, and the highly resolved attractor improves
the accuracy of prediction based on neighboring points
(i.e., simplex projection). Sugihara et al. (2012) stated
that convergence is a practical criterion to test causation,
and called this phenomenon convergent cross-mapping
(CCM). To evaluate convergence in cross-mapping, the
state space is reconstructed using different library
lengths (L) subsampled randomly from time series.
Here, L; starts from the minimal library length, L,
which is equal to the embedding dimension, to the
maximal library length, L,,,., which equal to the whole
length of the time series. To test the convergence of
CCM, two approaches are widely used. First, the con-
vergence can be tested by investigating how the cross-
mapping skill changes with respect to the library size
(e.g., trend or increment). For example, one can consider
the following two statistical criteria: (1) testing the
existence of a significant monotonic increasing trend in
p(L) using Kendall’s 7 test, and (2) testing the signifi-
cance of the improvement in p(L) by Fisher’s Ap Z test,
which checks whether the cross-mapping skill obtained
under the maximal library length (p(L,,..)) is signifi-
cantly higher than that obtained using the minimal li-
brary length (p(Ly)). The convergence of CCM is
deemed significant when both Kendall’s 7 test and
Fisher’s Ap Z test are significant. Second, the conver-
gence and the significance of cross-mapping skill can be
tested by comparison with the null model expectation
generated using surrogate time series (van Nes et al.
2015). However, there is no consensus on the optimal
approach or null model.

Note that, the direction of cross-mapping is oppo-
site to the direction of cause-effect. That is, a con-
vergent cross-mapping from M,(¢) to My(¢) indicates
that M, causes M,. This is because M, as a causal
variable driving M,, has left its footprints on Mj(?).
The footprints of M, are transcribed on the past
history of M,, and thus M, is able to predict the
current value of M.

We revisit the two model examples of the Moran ef-
fect and mirage correlation (Fig. 1), and compare the
results of CCM and linear correlation analysis at iden-
tifying causation. In the Moran effect model (ESM3),
the cross-mapping between the two variables does not
converge at all, even though their linear correlation is

(a)
1.0

— N, xmap N,

0.8 —
— N, xmap N,

0.6
Linear correlation r = 0.452

0.0+

(b)
1.0

Predictive skill (p)

00" Linear correlation r = 0.089
I I I I I I
0 200 400 600 800 1000
Library size

Fig. 3 Model examples demonstrating convergent cross mapping
(CCM) to identify causality. In the Moran effect model (Fig. 1b),
although the overall correlation is significant (dotted line
r = 0.452), CCM does not exhibit any convergence with increasing
library size, indicating no causation between the two populations
(a). In contrast, although the overall correlation is very weak
(dotted line r = 0.089) due to the mirage correlation (Fig. 1d),
CCM exhibits strong convergence with increasing library size,
indicating bidirectional causation between two competing popula-
tions (b). The solid line represents the median of predictive skill for
each library size, and the dash lines represent the Ist and 3rd
quantiles of the predictive skills from randomly subsampled library
sets

significantly high (Fig. 3a). In contrast, the mirage cor-
relation model (Fig. 3b) demonstrates clear convergence
in CCM, although no significant correlation is found
between the two populations. On the one hand, CCM
avoids the wrong conclusion being drawn for the Moran
effect (in contrast to the significant correlation con-
cluded by the linear analysis) (Fig. 3a). On the other
hand, CCM successfully detects the mutual causality in
the competition model (ESM4) that is otherwise masked
by the lack of significant correlation due to the mirage
correlation (Fig. 3b) in nonlinear systems. A recent
study indicates that CCM is generally robust even when
the interaction coefficient 1is time-varying (Bo-
zorgMagham et al. 2015).

Forecasting: univariate, multivariate, and multiview
embedding

Because vectors that are close in state space evolve
similarly in time, the future value at one time point can
be predicted based on the behavior of its nearest
neighbors in the reconstructed state space. EDM uses
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Fig. 4 Conceptual explanation of univariate, multivariate, and
multi-view embedding, using the Lorenz attractor (L(¢), Ly(¢), and
Ls(1)). The original attractor (a) is approximated using state space
reconstruction by univariate (b), multivariate (c¢), and multi-view
embedding (d). Under a univariate embedding (b), only one
variable (L, in this example) is used based on lagged time series

the information on historical trajectories to forecast
future values rather than specific equations that assume
a mechanistic relationship between variables. Simplex
projection (Sugihara and May 1990) and S-map (Sugi-
hara 1994) (as explained in previous sections) enable
forecasting for dynamical systems using information in
the reconstructed state space.

As simplex projection and S-map are applied in a
reconstructed state space, the method of reconstructing
the state space is a critical issue for forecasting. In the
framework of EDM, three different methods have been
proposed so far (Fig. 4): (1) univariate embedding
(Takens 1981; Sugihara and May 1990), (2) multivariate
embedding (Dixon et al. 1999; Deyle and Sugihara
2011), and (3) multi-view embedding (Ye and Sugihara
2016). In this section, we demonstrate these three fore-
casting methods using time series generated from a re-
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(d) Multi-view embedding
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7
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Forecasting

Other embeddings

(Ly(1), Ly(t — 1), and Ly(t — 21)). In the multivariate embedding
(c), multiple variables (L, and L3 in this example) are used based on
a combination of more than one lagged time series (L,(¢), Ly(t — 1),
and Ls(7)). Moreover, the attractor can be reconstructed by multi-
view embedding (d), that is, combinations of various multiple
embeddings

source—consumer—predator model (Fig. 5; ESM5). The
details of this model are described by Deyle et al.
(2016D).

The univariate embedding uses time-lagged values of
a single variable to reconstruct the state space. Suppose
we are interested in forecasting the population dynamics
of Consumer 1 (C;). We can use univariate embedding
to reconstruct the state space using only information
(history) encoded in C;. The results of simplex projec-
tion indicate that the best embedding dimension of C is
E = 3, so the state space is reconstructed using {C;(?),
Ci(t — 1), Ci(t — 2)}. The forecasting skill (i.e., corre-
lation coefficient between observed and predicted values)
is 0.970 in this case (Fig. 6a).

Multivariate embedding uses multiple variables to
reconstruct the state space. In the resource—consumer—
predator model, Resource (R) and Predator 1 (P;)
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Fig. 5 Model example of five-species resource-consumer—predator
interaction. Resource, Consumer 1, Consumer 2, Predator 1, and
Predator 2 are represented by R, C,, C,, Py, and P», respectively

interact directly with C;. Thus, information in R and P,
is useful for forecasting the population dynamics of Cj.
In this case, the state space is reconstructed using {R(?),
Pi(1), Ci(0)} (i.e., native multivariate embedding without
using lagged values). The forecasting skill is 0.987
(Fig. 6b). Note that, in this case, {R(¢), P(?), Ci()} is
sufficient to recover the dynamics of C(7), because the
best embedding dimension of C(z) is £ = 3. However,
if the best embedding dimension of C,(z) were E >4,
additional time-lagged values (e.g., C1(¢ — 1)) may be
added to sufficiently recover the dynamics of C;(¢).
Multi-view embedding leverages information by
combining many possible embeddings (Ye and Sugihara
2016). According to embedding theory (Takens 1981;
Deyle and Sugihara 2011), many valid embeddings are
possible even if there are only a few variables in a sys-
tem. Given / lags for each of n variables, the number of

E-dimensional variable combination is
m = ’g - n(lbj 1)) Although all variable com-

binations are valid embeddings, the system dynamics
may not be resolved equally well with limited data.
Therefore, only the top-k reconstructions, as ranked by
in-sample forecasting skill, are used in the multi-view
embedding, with the heuristic value of k = \/m applied
in the original paper (Ye and Sugihara 2016). The values
predicted from the top-k reconstructions are then aver-
aged, and a single predicted value is calculated. For
example, the Lorenz attractor contains three variables,

(a). In a, the arrow indicates energy flow. Example time series are
shown for R (b), C; (¢), C, (d), Py (e), and P, (f)

L(t), Ly(?), and Ls(¢). If we allow a time-lag of up to two
steps, then the number of possible three-dimensional
combinations (three-dimensional embeddings), m, is

(3>3<2) _ (3>< (g_l)> =19 (Fig. 4d). The top-k

reconstructions, that is /19 (in practice, the top-4 or -5
reconstructions), are used to make predictions. We ap-
plied the multi-view embedding to the resource—con-
sumer—predator model, and forecast C;. The forecasting
skill of multi-view embedding is 0.989 for C, (Fig. 6¢).

In general, the forecasting skill runs in the following
order: multi-view embedding > multivariate embed-
ding > univariate embedding (Fig. 6d). That is, given
limited-length time series, richer information results in
better forecasting skill. In some applications, one may
wish to estimate the uncertainty of a forecast. One
potential solution is to consider error propagation (Ye
et al. 2015a). However, other approaches may apply,
and this topic remains an open question.

Tracking strength and sign of interactions

Interspecific interactions are of particular interest
among ecologists, because they are thought to drive the
dynamics (e.g., local stability) of an ecological commu-
nity (e.g. May 1972; Mougi and Kondoh 2012). The
S-map method enables partial derivatives to be calcu-
lated in a multivariate state space at each time point, and
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the partial derivatives give a good approximation of
interspecific interactions, capturing the time-varying
dynamics of the interaction strengths (Deyle et al.
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Interaction strength

100
Time
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Fig. 7 Time-varying interspecific interaction strengths estimated by
the S-map method as partial derivatives (i.e. S-map coefficients).
The blue, red, and green lines represent dC;/dR, dC1/0C,, and 9C/
dPy, respectively. In this example, dC1/dR, dC,/dC,, and dC;/oP;
can be regarded as bottom-up, competition, and top-down effects,
respectively (color figure online)

2016b). For example, dC;/dR represents the influence of
R on C; in the resource—consumer—predator model.
Note that it is important to distinguish time-varying
(realized) interaction strengths from interaction coeffi-
cients (which are often constant in differential or dif-
ference equations) (Hernandez 2009; Deyle et al. 2016b).

Using time series data from the resource—consumer—
predator model (ESMS5), we can calculate the interaction
strengths from R, C,, and P, to C,. First, the state space
is reconstructed using C;(7), R(t), C»(¢), and P;(f). Sec-
ond, the best weighting parameter (0) used in the S-map
is determined by trial-and-error (see the previous sec-
tion). Third, the partial derivatives at each time point are
calculated using the multivariate S-map method. The
partial derivatives dC;/dR, dC;/dC>, and dC;/dP; can be
regarded as the bottom-up, competition, and top-down
effect, respectively. The results indicate that the inter-
action strengths do indeed fluctuate in the model system,
and that the bottom-up effects are larger than the
competition and top-down effects (Fig. 7).

Scenario exploration of external perturbation

Ecological systems are often affected by an external
force, e.g., temperature, and predicting what may hap-
pen in the system if the external force increases or de-
creases is a pressing concern. EDM facilitates the
forecasting of the potential outcome of changes in an
external force in the dynamics of a system (scenario
exploration). For example, Deyle et al. (2013) used
multivariate simplex projection to predict responses in
the Pacific sardine population under a scenario of cli-
mate (temperature) changes.

In scenario exploration, we first need to determine
which variables are included in SSR. In the demon-
stration, we again use the resource—consumer—predator
model (Fig. 5; ESMY). In the model time series, we focus
on predicting the influences of changes in R on C;. First,
we reconstruct the state space using univariate embed-
ding. As the best embedding dimension of C; is 3, the
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Fig. 8 Scenario exploration focusing on Consumer 1 (C;) under
increased/decreased Resource (R) situations. The solid line, black
filled-circles, red triangles, and blue triangles represent the observed
Cy, predicted C, with original data, predicted C, under increased
R situation, and predicted C, under decreased R situation,
respectively. Note that an increase in R does not always result in
increased C;. This is because the effect of R on C; also depends on

the condition of other species, a phenomenon known as state-
dependent behavior in dynamical systems (color figure online)

state space is reconstructed as {C(¢), Ci(t — 1), Cy(¢
2)}. To predict the consequences of changes in R, we
add R(¢) as an additional coordinate in the reconstructed
state space. Thus, the final version of reconstructed state
space is {C(7), C1(t — 1), Ci(t — 2), R(?)}. In the state
space, 50% of the standard deviation (o) of R is
added/subtracted to/from a target vector, and the future
behavior of the modified vector ((Ci(zr), Ci(t — 1),
Ci(t — 2), R(t) + 0.50 ) or (Cy(1), C1(t — 1), Cy(t — 2),
R(t) — 0.50 )) is predicted by simplex projection. This
scenario exploration suggests that changes in R result in
changes in C; (Fig. 8). Note that the influence of R is not
constant; that is, an increase in R results in increased C,
at some time points, but decreased C; at other points
(Fig. 8). Because the resource—consumer—predator
model is a nonlinear dynamical system, the system
behavior is state-dependent, and interactions between
variables fluctuate over time. Thus, the effect of per-
turbation in R on C; changes depending on the state of
the system. Again, this example demonstrates that EDM
acknowledges state-dependence, and is therefore a
powerful tool for analyzing and predicting nonlinear
dynamical systems.

Data issues

One should bear in mind that EDM can only be applied
to time series data of fixed, equal sampling intervals.
Given a long, high-frequency time series, one can cer-
tainly bin the data into different time scales (i.e., dividing
the sampling frequency). Nevertheless, analyses at dif-
ferent scales (e.g. daily or annual) reveal different
dynamics, because the behavior of a dynamical system is
scale dependent (Hsieh and Ohman 2006). In addition,
the time series data needs to be stationary, as required
by all time series analyses (Box et al. 1994).

As in any statistical method, errors can undermine
the efficacy of EDM. Two types of error are often
encountered: measurement (observational) and process
error. Measurement error arises because of uncertainties
in the measurements or observations; process error re-
sults from some processes that are not observed with the
observation function (Sugihara 1994). For example, in
an ecosystem, we cannot model all species; similarly, in a
simple logistic growth model, the growth rate parameter
is not fixed but randomly perturbed by environmental
variation. The un-modeled part is considered the process
error. An interesting phenomenon is that process error
can drive a deterministic system from equilibrium to
stochastic chaos (for mathematical account on this to-
pic, see Sugihara 1994). For example, in a system of
differential equations, even though the mean value(s) of
the parameter(s) indicates that the system should reach
equilibrium or stable cycle, the increasing variance(s) of
the parameter(s) can drive the system to exhibit non-
linear behavior. This phenomenon is not well appreci-
ated, but should actually be expected to appear very
often in nature (Anderson et al. 2008; Sugihara et al.
2011) and warrants further study. EDM has been shown
to be robust against moderate levels of measurement or
process error (Hsieh et al. 2008; BozorgMagham et al.
2015); however, this is likely to be system-specific.

One critical concern is the number of data points
needed for EDM to be applicable. Given the error in
empirical systems, there is no theoretical justification for
the minimal time series length. Generally, the required
length of the time series increases with increasing com-
plexity (embedding dimension) of the system. Sugihara
et al. (2012) suggested that 35-40 data points are re-
quired for EDM. Nevertheless, data leveraging ap-
proaches have been developed to combine dynamically
similar replicates (i.e., dynamic equivalence class) in
cases where each individual time series is too short. For
example, time series from different species that have the
same dynamics can be concatenated to form a longer
time series known as dewdrop regression (Hsieh et al.
2008). Spatial data from dynamic equivalence classes
can be combined for analyses (Clark et al. 2015), and
different combinations of time series data from inter-
acting components can form a multivariate embedding,
i.e., multi-view embedding (Ye and Sugihara 2016).

Another difficult issue is that many time series have
missing data. Missing data (coded as NA in R) are
automatically ignored in rEDM. Note that, as embed-
ding is a necessary step in SSR, any vector (embedding)
involved missing data is also omitted during computa-
tion. Therefore, missing data impart an unavoidably
negative influence on the performance of EDM.

Data processing

Finally, we make a few suggestions on data processing
prior to using EDM. First, the time series of variables



should always be normalized to zero mean and unit
variance to ensure all variables have the same level of
magnitude for comparison and to avoid constructing a
distorted state space. Second, linear trends should be
removed, either by simple regression or taking the first
difference, to make the time series stationary. Third,
unless there is strong mechanistic reason, we recommend
that the time series data are not passed through a linear
filter (e.g., smoothing or moving average), because
smoothers can destroy the dynamics and make the signal
linear. Finally, we caution that strong cyclic behavior or
seasonality may mask the efficacy of EDM; data stan-
dardization methods (Ye et al. 2015a) or surrogate data
tests to account for seasonality (Deyle et al. 2016a) have
been developed to overcome these problems, although
further methodological development is still underway.

Advanced applications

In addition to the examples given in this introductory
paper, EDM has a wide variety of applications. For
example, time-delayed causal interactions estimated
from CCM may be used to infer direct versus indirect
interaction (Ye et al. 2015b). Elevated nonlinearity, as
quantified by S-map, is a useful early warning signal for
anticipating critical transitions in dynamical systems
(Dakos et al. 2017). EDM has been used to investigate
scale-dependent system behavior (Hsieh and Ohman
2006; Jian et al. 2016). The prediction horizon (i.e. how
quickly the predictive skill decays with time steps into
future) of EDM can provide a guideline for fisheries
management (Glaser et al. 2014). EDM has also been
used to classify systems; this is because systems
belonging to the same dynamic behavior can predict
each other (Hsieh et al. 2008; Liu et al. 2012).

Final remark

This casual review is by no means comprehensive. To
apply EDM, some basic knowledge of statistics and
dynamical systems is essential to prevent the misuse of
the software or the misinterpretation of results. EDM is
a rapidly developing field and is a powerful tool for
understanding nature. However, EDM tools can only be
applied when sufficient time series data are available.
Thus, we encourage long-term monitoring programs to
be established and maintained, and recommend that
time series data are shared.
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