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Abstract

Purified myelin membranes (PMMs) are the starting material for biochemical analyses such

as the isolation of detergent-insoluble glycosphingolipid-rich domains (DIGs), which are

believed to be representatives of functional lipid rafts. The normal DIGs isolation protocol

involves the extraction of lipids under moderate cooling. Here, we thus address the influence

of cooling on the structure of PMMs and its sub-fractions. Thermodynamic and structural

aspects of periodic, multilamellar PMMs are examined between 4˚C and 45˚C and in various

biologically relevant aqueous solutions. The phase behavior is investigated by small-angle

X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Complementary neu-

tron diffraction (ND) experiments with solid-supported myelin multilayers confirm that the

phase behavior is unaffected by planar confinement. SAXS and ND consistently show that

multilamellar PMMs in pure water become heterogeneous when cooled by more than 10–

15˚C below physiological temperature, as during the DIGs isolation procedure. The hetero-

geneous state of PMMs is stabilized in physiological solution, where phase coexistence per-

sists up to near the physiological temperature. This result supports the general view that

membranes under physiological conditions are close to critical points for phase separation.

In presence of elevated Ca2+ concentrations (> 10 mM), phase coexistence is found even

far above physiological temperatures. The relative fractions of the two phases, and thus pre-

sumably also their compositions, are found to vary with temperature. Depending on the con-

ditions, an “expanded” phase with larger lamellar period or a “compacted” phase with

smaller lamellar period coexists with the native phase. Both expanded and compacted peri-

ods are also observed in DIGs under the respective conditions. The observed subtle tem-

perature-dependence of the phase behavior of PMMs suggests that the composition of

DIGs is sensitive to the details of the isolation protocol.
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Introduction

Myelin is the membrane system wrapped around neuronal axons that provides neurons with

fast signal transmission. Several neurological disorders like Multiple Sclerosis or leukodystro-

phies are caused by dysfunctional myelin. It is commonly assumed that myelin membranes

under physiological conditions contain functional lipid rafts in the form of transiently phase-

separated ordered membrane domains [1]. In general, such lipid rafts in membranes emerge

at the border of phase coexistence [2–4], and micrographs of monolayers of whole myelin and

its purified lipid fraction exhibit stripes and irregular fluctuating shapes, resembling fluctua-

tions near the critical point [5, 6]. For most biochemical-topological studies, for instance on

enzyme activity, membrane protein topology, etc., purified myelin membranes (PMMs) are

used. PMMs are also the starting material for the isolation of detergent-resistant membrane

(DRMs) fractions or detergent-insoluble glycosphingolipid (DIGs) fractions, which are com-

monly believed to resemble physiological lipid rafts [7–9]. The normal protocols for DIGs iso-

lation involve a step of moderate cooling down to 4˚C.

The structure of myelin has been investigated intensively, mainly with X-rays and neutrons

[10, 11]. Most of the work has been performed at room temperature or at very low tempera-

tures (below water freezing) to confirm membrane structure preservation in presence of cryo-

protectants [12] as well under electron microscopy sample preparation protocols [13]. How-

ever, the behavior of myelin under conditions of moderate cooling (4–15˚C) has remained

vastly unexplored [14, 15], despite its great relevance for DIGs and DRMs isolation, at those

temperatures. A few studies on nerve myelin dealt with the effect of heating [16, 17]. In a study

on the effect of cooling, wide-angle X-ray scattering (WAXS) measurements revealed that

myelin lipid acyl chains remain in a disordered state down to low temperatures, as long as the

hydration water is still liquid (above -10˚C), and chain crystalline ordering is only observed

under conditions of frozen hydration water [18]. No phase coexistence was inferred from

those measurements, except for the WAXS work of Chia et al. [19] which suggested a gel-fluid

coexistence but could not be reproduced by any other group [18]. To our knowledge there are

only two studies about the effect of moderately cooling (up to 4˚C) on intact myelin from

homeothermic animals [14, 15] and they were both performed with nerve myelin. Regarding

PMMs, which are the starting material for DIGs and DRMs isolation, there is much less work

[20–22] and studies on the effect of moderate cooling are entirely lacking.

The objective of this work is thus to determine the thermal behavior of PMMs in a wide

temperature range covering both physiological and lipid raft isolation temperatures. Small-

angle X-ray scattering (SAXS) and neutron diffraction (ND) are used to identify different

membrane phases from their characteristic lamellar periods [23–25] assumed in various bio-

logically relevant aqueous solutions that differently stabilize membrane domains [26, 27]. Cer-

tain conditions of cooling or of elevated Ca2+ levels are found to promote phase separation.

The structural results are complemented with differential scanning calorimetry (DSC) mea-

surements, which reveal the thermodynamics of membrane phase transitions. Finally, isolated

DIGs are shown to mimic the non-native phase spacings found in the whole myelin in quanti-

tative terms, thus suggesting the similarity of DIGs and the non-native phases of PMMs

induced under the respective conditions.

Materials and methods

Preparation of PMMs

PMMs were prepared from bovine spinal cord according to Haley et al [28] and it was a gift

from Bustos y Beltrán S.A. abattoir (Córdoba, Argentina) under the supervision of the
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veterinary of sanity authority. Briefly, the purification protocol consists of several osmotic

shocks and direct as well inverse sucrose gradient centrifugations to discard gray matter con-

stituents according to density. After 3 final rinsing steps in water the myelin membranes were

lyophilized and stored at -20 or -70˚C. Chemicals were of analytical degree, purchased from

Merck (Germany), and used without further purification.

PMMs retain myelin biochemical composition [29] as well as TEM patterns (S1 and S2

Figs) of isolated myelin [30, 31]. PMMs also show an electron density profile (S3 Fig) close to

that of myelin and purified myelin [21].

Isolation of detergent-insoluble glycosphingolipid-rich microdomains

(DIGs)

The detergent extraction protocol has been described previously [7]. Briefly, 50 mg of PMMs

were hydrated, thawed and extracted with 250 ml of 1% TX-100 in TNE buffer (25 mM Tris-

HCl/0.15 M NaCl/5 mM EDTA) at 4˚C for 30 min with occasional mixing. The TX-100

extracts were centrifuged (13,000 g, 4˚C, 10 min) to separate them into detergent-insoluble

pellet and detergent-soluble supernatant fractions.

DIGs are enriched in cholesterol, galactocerebroside, cerebroside sulphate, and with low

amount of phospholipids. Phosphatidylethanolamine is almost equipartitioned with the solu-

ble supernatant. The major internodal proteins (Folch´s Proteolipid and Myelin Basic Protein)

are not found in the DIGs; the paranodal CNPase is also mainly partitioned out of DIGs [7, 8].

S4 Fig in supporting material shows a TEM of DIGs with a pattern different from the one of

PMMs.

Small-angle X-ray scattering (SAXS)

SAXS was measured to determine the lamellar periodicity of PMMs and DIGs multilayers

under various conditions.

For PMMs sample preparation, 2–3 mg of lyophilized PMMs were introduced in quartz

capillaries (Hilgensberg, Malsfeld, Germany) of 1 mm diameter, and 10 μl of aqueous solutions

were added. The solutions were: A) pure (bi-distilled) water, B) physiological Ringer´s solution

(145 mM NaCl, 6 mM KCl, 2 mM CaCl2, pH 7,4 with 1.5 mM NaHCO3/NaH2PO4 buffer),

and C) 25 mM CaCl2 in Ringer´s solution. The capillaries were flame sealed and subsequently

centrifuged to facilitate the sample hydration. They were then subject to four thawing and

cooling cycles (4 to 40˚C) and then stored at 4˚C.

For DIGs sample preparation, lyophilized DIGs were suspended at 25 mg/ml, warmed up

to 45˚C to ensure equilibration and filled into the sample holder between two mica plates. A

150 mM NaCl solution was used in replacement to the Ringer’s solution and 25 mM CaCl2

was employed to induce compaction. The difference in the solutions used for PMMs and DIGs

has negligible effect.

SAXS experiments were carried out at the beamline A2 at Hasylab (DESY, Hamburg, Ger-

many) and at the DO2A:SAXS2 beamline at LNLS (Campinas, Brazil), at fixed wavelength of

λ = 1.5 Å. Scattering signals were recorded either using a linear position-sensitive detector

(built by André Gabriel from ILL, EMBL) [32], or a 2D detector (MARCCD 165). In the latter

case, radial integration of the Debye-Scherrer rings was performed with the free software

Fit2D V12.077 by Andy Hammersley of European Synchrotron Radiation Facility [33]. SAXS

intensities are presented as a function of the magnitude of the scattering vector,

q ¼
4p

l
sin

y

2

� �

ð1Þ
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where θ is the scattering angle with respect to the incident beam. The corresponding lamellar

periodicities d then follow from the Bragg equation as

d ¼ 2ph=q ð2Þ

where h = 1, 2, . . ., is the peak order.

The number n of periodically correlated bilayers under various conditions was obtained by

applying the Scherrer equation to the Bragg peak full width at half maximum (w) of a Lorent-

zian curve:

n ¼
2p� 0:88

d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � r2
p ð3Þ

where r is the instrumental resolution (r� 0.04 nm-1).

The diffracting power of native phase was defined [34] by the origin peak of Patterson func-

tion:

Pnat ¼
X

h

hInatðhÞ
d2

� �

ð4Þ

where hInat(h)/d is the Lorentz-corrected intensity of the reflection of order h. The integrated

Inat(h) was estimated from the areas under the associated Bragg peaks. The fraction of myelin

in native phase is expressed as the ratio of the diffracting power Pnative to the initial amount

(Pnative + Pnon-native).

The values of SAXS periodicities (d), number of correlated bilayers (n) and Relative Dif-

fracting Power correspond to the mean of two independent determinations.

Neutron diffraction (ND) from solid supported membrane multilayers

The ND measurements were performed at the Institute Laue-Langevin (Grenoble) at the

beamline D16, with wavelength λ = 4.54 Å. Lyophilized PMMs (1 mg) were suspended in 1 ml

of bi-distilled water. A 0.5 mL portion of solution/suspension was deposited onto a rectangular

(55 x 25 mm2) Si(100) substrate with native oxide (Si-Mat, Landsberg/Lech, Germany), which

was cleaned by a modified RCA method—ultrasonication in acetone, ethanol, and methanol

and subsequent immersing in a solution of 1:1:5 (v/v/v) H2O2(30%)/NH4OH(30%)/water at

60˚C for 30 min—[35]. During the process of water evaporation, the amphiphilic molecules

self-assemble into planar membrane stacks, aligned parallel with the substrate surface. The

PMM-coated wafers were then confined in a sandwich-like liquid cell described elsewhere

[36], which brings the multilayers in contact with a thin layer of bulk aqueous medium. The

liquid cell, in turn, was inserted into a climate chamber for temperature control. Two different

buffers were used: A) 5 mM Hepes + 100 mM NaCl at pH 7.4 and B) the same buffer addition-

ally loaded with 20 mM CaCl2. Buffers were based on D2O, to enhance the neutron scattering

contrast with the hydrogenous PMMs material. Since the membrane multilayers are aligned

parallel to the solid support and thus oriented with respect to the incident neutron beam, the

measurements involve angular rocking scans, as described earlier for membranes composed of

synthetic phospho- and glycolipids [36, 37]. The scattering wave vector component perpendic-

ular to the membrane plane, qz, assumes the role of q in the SAXS experiments (see previous

section) and is given as

qz ¼
4p

l
sinðyÞ ð5Þ
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where θ is the incident angle. The lamellar periodicity is then calculated by replacing q with qz

in Eq 2.

Differential scanning calorimetry (DSC)

A VP-DSC from Microcal, LLC was used with a scan rate of 20˚C/h. Generally, several heating

and cooling scans (typically from 4 to 46˚C) were performed to exclude any influence of ther-

mal history. The concentration of PMMs was 20 mg/ml in all the aqueous suspensions: A) bi-

distilled water, B) NaCl 100 mM in water and C) CaCl2 33 mM in water.

Results and discussion

PMMs phase behavior

The phase behavior of PMMs was investigated for various temperatures (4–45˚C) and aqueous

solutions. SAXS measurements (see Methods section) were carried out to determine the num-

ber of coexisting phases under given conditions, as well as their respective lamellar periodici-

ties d, the amounts of myelin in the native and non-native phases, perpendicular thermal

expansivity α┴ (K-1), and membrane correlation numbers n. Fig 1 shows scattering intensities

from PMMs in physiological Ringer’s solution as recorded with the 2D-detector, featuring

Debye-Scherrer rings corresponding to isotropically-oriented multilamellar samples. The

intensity patterns obtained at each temperature are reproducible and independent of the ther-

mal history. The appearance of double-rings at low temperatures is characteristic of the coexis-

tence of two membrane phases with different lamellar periodicities.

Fig 2(A) and 2(B) shows radially integrated SAXS intensities plotted vs. q for PMMs in bi-

distilled water (A) and physiological Ringer’s solution (B) for various temperatures. At high

temperature (> 37˚C), the scattering intensities exhibit only two major peaks, at q� 0.8 nm-1

and q� 1.6 nm-1, respectively, according to the nomenclature by Kirschner [23] correspond-

ing to the peak orders h = 2 and h = 4 of a double myelin bilayer with lamellar periodicity of

d� 7.9 nm per bilayer. As the temperature decreases, in both solutions the weak peak of order

h = 1 becomes increasingly stronger at q� 0.4 nm-1, which is half the value of the h = 2 peak

and corresponds to d� 15.8 nm, the periodicity of the well-known repeating cell unit of native

myelin accommodating two 7.9 nm membranes. Further cooling leads to the splitting of the

h = 2 and h = 4 peaks, associated with the emergence of additional peaks, termed h = II and

h = IV, corresponding to the formation of an additional phase with larger, “expanded” period-

icity. The expanded phase appears to have a repeating unit consisting of a single bilayer

according to the fact that no h = I peak is observed. Its periodicity further expands upon cool-

ing, to 8.2< d< 10 nm as seen from the shift in the h = II and h = IV peak positions to lower q
values. Comparison of Fig 2A and 2B reveals that the phase separation occurs already close to

the physiological temperature (25–30˚C) in Ringer’s solution, while in water a similar splitting

Fig 1. X-ray diffraction pattern of isolated myelin as a function of temperature in Ringer’s solution. At high temperature (37–46˚C)

two single rings Peaks 2 and 4 are observed. At 30˚C the faint smallest peak (1) is observed near the beamstop. At 25˚C beam splitting is

more easily observed in the peak 4 and IV which is also evident in peaks 2 and II at 10˚C.

https://doi.org/10.1371/journal.pone.0184881.g001
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Fig 2. Integrated signals of myelin at different temperatures and in different aqueous conditions. Bi-

distilled water (A), Ringer’s solution (B) and CaCl2 25 mM in Ringer’s solution (C). In the case of water

dominates a simple pattern and only at low temperature the Bragg peaks splits and shifts to lower q. The

same happens in the case of Ringer’s solution but at higher temperature. On the other hand, the response to

Ca2+ goes in the opposite direction in q and it is as a jump (all or nothing) instead of a shift.

https://doi.org/10.1371/journal.pone.0184881.g002
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of peaks is observed at 20–25˚C. As shown in Fig 2C, elevated Ca2+ concentration leads to

splitting of the h = 2 and h = 4 peaks for all studied temperatures. The h = II and h = IV peaks

are, however, shifted to higher q values, corresponding to the emergence of a “compacted”,

lipid-enriched phase with 5.5 < d< 6.5 nm, as described in the literature on PMMs and nerve

myelin [26, 38]. The native myelin double bilayer of 15.8 nm anyway persists at low T.

The relative fraction of each phase in dependence of the temperature was estimated from

the ratio of the diffracting power of each phase to the initial amount [34]. As shown in Fig 3,

when starting from low temperatures heating in all studied aqueous solutions induce growth

of the native phase at the expense of the non-native phase. Depending on the composition of

the aqueous medium, the non-native phase either disappears above a certain temperature (20–

25˚C in bi-distilled water,� 25–30˚C in physiological Ringer’s solution) or remains partially

present in the covered temperature range (at elevated Ca2+ concentration).

The thermodynamics of the phase transitions was investigated by DSC. Thermal scans of

PMMs are shown in Fig 4. For both bi-distilled water and physiological aqueous solution, the

heat capacity Cp exhibits a very broad, endothermic maximum centered at� 26–27˚C, near

the phase separation temperature. Upon reaching physiological temperature, where only the

native phase remains present, Cp reaches a constant value, indicating the completion of the

endothermic transition. This result is consistent with earlier work in similar myelin systems

and experimental conditions [39–41]. In contrast, at elevated Ca2+ concentration a monotonic

increase in Cp with temperature is observed in the entire temperature range, possibly suggest-

ing an ongoing transition. This behavior parallels the variation of Cp when the myelin is het-

erogeneous in water and physiological conditions and we speculate that this is due to the

redistribution of components as inferred from phase amounts (Fig 3). Although the curves

Fig 3. Quantification of the phases as a function of temperature in different conditions. Bi-distilled

water (black line), Ringer’s solution (red line) and CaCl2 25 mM in Ringer’s solution (blue line). Data is

extracted from the ratio of diffracting power of the native phase to the total amount. Clearly, cooling (as in lipid

raft isolation protocol) induces a decay of the native phase fraction and a concomitant increment of the non-

native phase (not plotted).

https://doi.org/10.1371/journal.pone.0184881.g003
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display only small Cp variations, they are very reproducible. Earlier calorimetry work on

PMMs [39, 41] show a broad endothermic peak at 20–30˚C, which has been ascribed to the

enthalpies involved in lipid/protein interactions with myelin basic protein (MBP) or Folch´s

proteolipid (PLP). In the present work on PMMs we ascribe the broad maxima in Cp to the

membrane phase transitions seen by SAXS. These poorly-defined maxima are probably associ-

ated with a phase transition of rather low cooperativity. However, the redistribution of compo-

nents seems to lead to a change in the heat capacity of the system.

To identify protein-rich and lipid-rich phases, the thermal response of the bilayer thickness

was analyzed. For the range of temperatures studied, lamellar periodicities d changed linearly

with temperature. The perpendicular thermal expansivity (α┴) of the membrane array was

determined from the slopes of the linear functions used to fit the different data, divided by the

lamellar periodicities (α┴ = [@d/@T]/d) [42]. In general, protein-rich domains are thicker and

less responsive than lipid-rich domains, which are thinner and more responsive [23, 42, 43].

The q position of the Bragg peaks associated with the Ca2+-induced compacted phase has a

response to temperature that is quantitatively accounted for by the well-known negative per-

pendicular thermal expansivity of lipids undergoing changes in the trans-gauche configuration

state, [42, 43] (Table 1). This agrees with the fact that this phase is depleted of intramembrane

particles [38]. The same trend is observed in the native phase, but to a lesser extent due to its

higher protein fraction [23]. On the other hand, the response of the expanded phase is very

strong and cannot be accounted for in terms of perpendicular thermal expansion. Instead, it

must be attributed mainly to an increase in the thickness of the interlamellar water layer due to

a change in membrane interactions [44].

Periodicity values decay with increments of temperature for all the phases. The expansivi-

ties were calculated from the slopes of d versus temperature. The linear fit includes all the

Fig 4. DSC thermograms of myelin (20 Mm) under different aqueous media. In the cases where

homogenization takes place–bi-distilled water (black line) and near physiological medium (red line)–a

maximum is reached after which a stabilization of the Cp is observed near physiological temperature. In the

case of high [Ca2+] (blue line), a continuous variation of Cp according to a phase redistribution of components

is observed.

https://doi.org/10.1371/journal.pone.0184881.g004
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periodicity values from each phase (native, compacted and expanded), regardless of the ionic

conditions.

Neutron diffraction on planar geometry array

We have previously reported that Langmuir monolayers derived from PMMs at the air/water

interface exhibit phase behavior which is qualitatively like that of spontaneously curved PMMs

in aqueous suspensions [26]. To elucidate whether the quantitative differences nonetheless

observed are related to the absence of one monolayer or rather to the absence of curvature, we

investigate planar, i.e., non-curved, PMMs multilayers on macroscopic solid supports.

As a check of the quality of the orientation on the planar support, the mosaicity for the

native phase at 37˚C (Ca2+ free) was 0.17˚. After addition of Ca2+ the compacted phase had a

mosaicity of 0.26˚. Both values show a reasonable orientation for hydrated samples [45].

Fig 5 shows neutron diffraction intensities as a function of qz for planar PMMs multilayers

in physiological buffer at two temperatures, 37˚C and 5˚C. As observed in the SAXS experi-

ments on suspended PMMs (see previous section), the single native phase present at 37˚C

upon cooling splits up into two phases, one of which keeps the native periodicity, d� 8.2 nm,

while the other one is expanded to d� 11.0 nm. The addition of an elevated Ca2+ concentration

Table 1. Perpendicular thermal expansivity of the different phases in myelin.

Myelin phase α┴ (K-1)

Native -7.2 x 10−4

Non-native (expanded) -5.5 x 10−3

Non-native (compacted) -1.3 x 10−3

https://doi.org/10.1371/journal.pone.0184881.t001

Fig 5. Neutron diffraction signals of multilamellar planar arrays in different media and temperature.

The black curve is close to physiological condition. The red curve is the same sample after cooling at 5˚C. Two

phases are observed with expansion of the spacing. The blue curve is in the presence of high (Ca2+) at 37˚C;

a phase separation takes place in the opposite direction with a compaction.

https://doi.org/10.1371/journal.pone.0184881.g005
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to the physiological buffer again leads to the emergence of a compacted phase, with d� 6.4

nm, coexisting with the native phase even at 37˚C in agreement with the SAXS results on sus-

pended PMMs (see Table 2).

Therefore, as a general conclusion; SAXS, ND and Langmuir monolayers [26] measure-

ments agree in qualitative terms, regarding the kind of phase that is generated in particular

conditions. The planar geometry appears to allow further separation to the expanded phase in

quantitative terms, as compared to the more self-sealed and curved PMMs. Langmuir mono-

layers cannot be compared in this regard.

Neutron Diffraction data follows the same trend as SAXS data, displaying analogous behav-

ior. The planar systems display periodicities about 0.2 nm longer; except for the expanded

phase in which this effect is maximum reaching a difference of 1.6 nm and a more complete

transformation of the native myelin in expanded phase (the native Bragg peak is almost

residual).

Phase behavior of DIGs

DIGs were investigated by SAXS at isolation conditions (at 4˚C) to compare their periodic-

ity with those of the non-native phases of PMMs. The scattering intensities as a function of

q are shown in Fig 6. DIGs in physiological ionic strength (5 mM Tris + 150 mM NaCl,

Fig 6A), whose periodicity, d = 9.5 nm, is close to the d = 9.4 nm of the PMMs expanded

phase under these conditions. In the presence of elevated Ca2+ concentration (Fig 6B) the

periodicity of the DIGs fraction is d = 6.6 nm, very close to that of the PMMs compacted

phase under similar conditions (d = 6.4 nm). Thus, we show that the same DIGs fraction

can behave as a compacted and as an expanded phase, depending on the ionic milieu

conditions.

The similarity of DIGs and the non-native phases of PMMs also manifest in the collective

behavior of the membrane multilayers. Namely, as shown in Fig 7, the number n of correlated

DIGs bilayers, as extracted from the width of the Bragg peaks (see Material and methods),

agrees well with the corresponding number for the PMMs non-native phases under the same

conditions. For the compacted PMMs phase, n� 14–24 showing the highest correlation. The

expanded PMMs phase, comprising a thick water layer, is poorly correlated (n� 4–6 irrespec-

tive of the temperature). Only for the native phase of PMMs n exhibits significant temperature-

dependence, changing from n� 5–6 to n� 15–19 upon heating from 10˚C to physiological

temperature and above. These results agree in general terms with observations of similar mye-

lin systems [14, 21, 38].

There are arguments to think that the presence of detergents modifies the phase diagram of

membranes creating or promoting liquid ordered phases [46]. The good point of our approach

is that we can detect DIG-like phases in PMMs even in the absence of the detergent. Still there

is a possibility that DIGs and non-native phases are not exactly the same [46].

Table 2. Neutron diffraction (planar system) periodicities compared to SAXS on equivalent

conditions.

d (nm)—Native phase d (nm)—Compacted

phase

d (nm)—Expanded

phase

SAXS ND SAXS ND SAXS ND

37˚C–Ca2+-loaded 7,64±0.07 7.9 6.18±0.02 6.4 - -

37˚C–Ca2+-free 7.6±0.1 8.2 - - - -

4/5˚C–Ca2+-free 7.83±0.07 8.1 - - 8.9±0.4 11.0

https://doi.org/10.1371/journal.pone.0184881.t002
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Conclusion

Classical work pictured nerve myelin as a uniform membrane, phase separation only being

obtained after relatively harsh treatments involving osmotic shocks or dehydration [23, 27].

While the expanded and compacted non-native phases of nerve myelin have been identified

long ago [38], they were not discussed in the context of putative myelin lipid rafts.

Our group previously demonstrated phase coexistence also in Langmuir monolayers of

lipid/protein mixtures derived from PMMs [47, 48]. Nevertheless, the monolayers can also get

homogeneous according to lateral packing and ionic media [26] and unexplored variables

(temperature, for instance). Therefore, explorations in other systems are mandatory in order

to approach new experimental situations. In this sense, PMMs tend to mimic the behavior of

nerve myelin in general terms regarding TEM appearance, native spacing, electron density

profile and expansion-contraction in response to environmental conditions. [21, 26, 49].

Fig 6. SAXS of DIGs in different ionic conditions at T = 4˚C. In the presence of a physiological buffer (A)

the first order peaks for DIGs (red dots) and non-native phase from PMMs (black dots) are respectively at 0.66

and 0.67 nm-1 indicating lamellar spacings of 9.5 nm and 9.4 (expanded phase). In the presence of CaCl2 25

mM (B) the first order peaks for DIGs (blue dots) and non-native phase from PMMs (black dots) are

respectively at 0.96 and 0.98 nm-1 indicating lamellar spacings of 6.6 and 6.4 nm (compacted phase).

https://doi.org/10.1371/journal.pone.0184881.g006
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In this work, we clearly show that the cooling of PMMs by about 10–20˚C below 37˚C

induces the phase separation, in a way that is not collectively detectable in nerve myelin. Nev-

ertheless, precursors of phase separation are observed by EM as regions of detachment

between the membranes at the extracellular space upon cooling (arrows of Fig 7 in [14]). The

presence of phase transitions in nerve membranes at about 25˚C was discussed to be related to

electromechanical pulse propagation in nerves [50].

The striking similarities in terms of structure and collective behavior of the DIGs and the

non-native phases of PMMs at the extraction temperature strongly indicate that the two mem-

branes have very similar constitution. Conversely, this notion implies that the expanded and

compacted non-native phases of PMMs are virtually identical [51] and basically differ only

with respect to their transverse (interlamellar) interactions under different conditions (see

Fig 6). In view of the significant temperature-dependence of fractional weight and, thus, com-

position of native and non-native PMMs phases, their similarity to DIGs further indicates that

the composition of the isolated DIGs significantly depends on the extraction temperature and

must therefore be expected to deviate from that of putative rafts transiently forming in myelin

at physiological temperature.

Our own studies in Langmuir monolayers strongly support this view [26] of a simple lateral

phase separation but with different transverse interlamellar interactions according to the ionic

media. Further work in this direction is currently carried out.

The phases shown here are detectable under non-physiological conditions, and one of those

conditions (low T) is employed to isolate DIGs, that represent lipid rafts in vivo according to

some authors. We identify the DIGs as the PMMs non-native phase induced by cooling. Low

T is employed during DIGs or raft isolation, not to avoid growth of microorganisms or

Fig 7. Number (n) of correlated membranes for the different phases as a function of temperature for

whole myelin (empty) and DIGs (filled). In black is marked the n for the native period, in red for the

expanded period and in blue for the compact period. In the presence of physiological (diamonds) and high

[Ca2+] (circles) media.

https://doi.org/10.1371/journal.pone.0184881.g007
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degradation of the membrane. Rather, cooling alters the membranes and stabilizes DIGs. If

DIGs isolation protocol is performed at 37˚C, almost no rafts or DIGs are obtained. Low T is

used in order to operationally obtain DIGs, but our own results put in question (although not

discard) its existence and/or identity at physiological temperature.

Supporting information

S1 Fig. Full field TEM of PMMs at low magnification (60.000x). Pellets of PMMs and DIGs

were fixed overnight in 2.5% glutaraldehyde buffered with 0.5 M cacodylate, rinsed three times

in distilled water and postfixed in 1% osmium tetroxide buffered with 0.5 M cacodylate at

pH = 7. After rinsing, samples were stained in 0.5% uranyl acetate overnight, dehydrated

through a graded series of acetone and embedded in epoxy resin. Finally, the thin sections

were stained with lead citrate at pH = 12 for 15 minutes. Samples were examined in a JEOL

1220 EXII electron microscope. The micrograph shows a typical pattern of isolated myelin

(Kartigashan and Kirschner, 1988; Larocca and Norton 2006). The sample was reconstituted

by rehydration of lyophilized PMMs of bovine spinal cord myelin. The characteristic stack of

membranes is clearly seen in the image, as well as the rounded shape of some of the stacks.

(TIF)

S2 Fig. TEM of PMMs viewed at high magnification (300.000x). The alternation of major

dense and intraperiod lines is observed. The major dense lines period is around 13 nm, a little

shrink from the normal period as usual, due to artefacts of preparation (Hollingshead and

Kirschner 1979).

(TIF)

S3 Fig. Electron density profile of PMMs in water at 25˚C. The sample was reconstituted

from lyophilized myelin powder. The characteristic pattern of myelin consisting in two asym-

metric bilayers is observed. Phases are shown in the inset.

(EPS)

S4 Fig. TEM of DIGs viewed at high magnification (400.000x). The aspect of the membranes

does not match the original one of S1 and S2 Figs.

(TIF)

S1 File. Primary data.

(RAR)
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