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Abstract: A structural relaxation study has been carried out on Lix(Ni0.874Co0.090Al0.036)O2 after the
electrochemical lithium was extraction down to x = 0.12. These relaxation analyses have been carried
out using X-ray diffraction coupled with the Rietveld analysis, assuming two phases (H2 and H3)
and co-existence with R3m symmetry. The mole fraction of the H3 phase seemed not to vary largely
during the relaxation time. As for the lattice constants, both H2 and H3 phases gradually increased
the a-axis with the relaxation time. On the other hand, H2 and H3 phases increased and decreased
the c-axis, respectively. The results are compared with that of previously reported Ni-rich NCA.
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1. Introduction

Lithium ion secondary batteries have high performance such as high energy density, good cycle
performance, and are now widely used for the power supply of automobiles or renewable power
sources [1–4]. LixNiO2, one of the major cathode materials, has advantages for high energy and power
densities as well as cost due to the employment of inexpensive Ni instead of Co, although it has a
shortage in cycle performance and thermal stability [5–9]. Ohzuku et al. [10] have reported the phase
variation during the charge/discharge processes, i.e., hexagonal phase (H1) for 1 > x > 0.75, monoclinic
phase (M) for 0.75 ≥ x ≥ 0.45, hexagonal phase (H2) for 0.45 > x ≥ 0.25, and showed two hexagonal
phases (H2 + H3) co-exist in the region 0.25 > x. In this region, relatively larger differences in the c-axis
between the H2 and H3 phases would restrict the reversible reactions to fail the high density and
better cycle performance. On the other hand, NCA (Li(Ni,Co,Al)O2; Co and Al doped LiNiO2) exhibits
good high-temperature stability and cycle performance [11–17] despite the of co-existence of H2 and
H3 phases at the higher potential region as LiNiO2 [15]. To achieve larger capacity, it is necessary
to investigate the charge/discharge process and structural stability in this higher voltage region.
We have previously investigated the structural variability for Li(Ni0.933Co0.031Al0.036)O2 (Ni-rich NCA)
by means of relaxation analysis using X-ray diffraction accompanied by the Rietveld analysis, revealing
that small amounts of cobalt substitution such as 0.031 in the formula improve lithium diffusion in the
structure [18].

During the lithium-charged or discharged states, electrode materials possess the kinetically
preferred structure, which is sometimes different from the thermodynamically stable structure. We have
investigated structural variation of electrode materials after the termination of charging or discharging
to evaluate the structural variability. We named this analysis technique “relaxation analysis” and
applied it to various electrode materials [18–27].
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Concerning the widely studied composition of NCA has been LiNi0.8Co0.15Al0.05O2 to meet
safety criteria, an intermediate composition between LiNi0.8Co0.15Al0.05O2 and Ni-rich NCA should be
studied for actual applications. In the former system, structural change at the highly lithium extracted
region has been already investigated [11,15–17] and it is known that lithium extraction would lead
to decreases in the c-length of LiNi0.8Co0.15Al0.05O2 [11]. In comparison with LiNi0.8Co0.15Al0.05O2,
the previously studied one possesses a much larger amount of Ni, which has an advantage in cost due
to the smaller amount of expensive Co. In the present study, we employed the composition of NCA as
Li(Ni0.874Co0.090Al0.036)O2 to study the contribution of cobalt to structural variation during relaxation
by comparing with the previous results. In this paper, the lithium extracted composition as x = 0.12
was investigated for Lix(NCA)O2.

2. Materials and Methods

2.1. Electrochemical Lithium Extraction

Cathode materials of Li(Ni0.874Co0.090Al0.036)O2 have been supplied from Sumitomo Metal Mining
Co., Ltd. (Tokyo, Japan). A working electrode was prepared by mixing the cathode material with
Acetylene Black (AB) and PVdF power with a weight ratio of 80:10:10, followed by spreading the
mixture on Al foil with a small amount of NMP. We used lithium foil as counter electrode and
1 mol·dm−3 LiPF6 in EC/DMC (ethylene carbonate/dimethyl carbonate; 2:1 v/v, Kishida Chemical
Co., Ltd., Osaka, Japan) as electrolyte to construct a two electrode cell (Hohsen Co., Osaka, Japan).
We extracted lithium ion from the sample at a constant current of 0.01 C to x = 0.12. After the termination
of lithium extraction, we immediately took the working electrode out of the cell in an Ar-filled glove
box to avoid the local cell reaction between the electrode material and the current collector via the
electrolyte [28]. Thereafter we washed the working electrode in EC/DMC (2:1 v/v, Kishida Chemical
Corp., Ltd.) and DMC (Kishida Chemical Corp., Ltd.) and then dried in Ar atmosphere.

2.2. X-ray Diffraction and the Rietveld Analysis

The sample was set in a sealed holder (Rigaku Corp., Ltd., Tokyo, Japan) with beryllium window
in an argon-filled glove box and mounted on a XRD diffractometer (Ultima-lV, Rigaku Corp., Ltd.).
XRD experiments were carried out from 15◦ to 75◦ in 2θ at a rate of 2◦·min−1 with 0.04◦ step
width by using CuKα radiation. The X-ray tube voltage and current were set to 40 kV and 40 mA,
respectively. The six continuously collected XRD data sets were merged to improve the S/N ratio for
the Rietveld refinement.

The XRD profiles were analyzed by the Rietveld method using RIEVEC code [29]. The refinements
were made assuming the two phases were co-existing, both of which belong to R3m symmetry. For the
structure refinement, nickel ion was placed at the 3b site and oxide ion at the 6c site in the hexagonal
axis, and the contribution of lithium was ignored. The mole fraction of each phase was calculated from
the scale factors.

3. Results and Discussion

For the preparation of the electrochemically lithium-extracted sample, the cell was charged to
achieve the amount of lithium as x = 0.12 of LixNi0.874Co0.090Al0.036O2 at a constant current density
of 0.01 C. The charge curve is represented in Figure 1, where a small gradient is observed at x = 0.12.
X-ray diffraction patterns for Li0.12Ni0.874Co0.090Al0.036O2 after the termination of lithium extraction
are shown in Figure 2. The 003 peaks are enlarged in the inset. They shift toward the lower 2θ

direction with the relaxation time. The measured and the Rietveld-fitted diffraction profiles with 30 h
of relaxation, as exemplified in Figure 3, provide fairly good agreement, yielding a sufficiently low
Rwp value for the following discussion. Some structural parameters after refinement are listed in
Table 1 for the initial, 50 and 100 h of relaxed samples. Figure 4 shows the calculated mole fractions
of H2 and H3 phases. It can be seen that the H2 phase is predominant and the mole fraction of H3
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is approximately 0.1. It was also observed that the mole fractions seem not to vary largely during
relaxation. Figure 5 shows the relaxation time dependence of the lattice parameters of the a- and c-axes.
The a-lengths are gradually increased with relaxation time for both H2 and H3 phases, while that of H2
is a little smaller. Nevertheless, these variations are still restricted only within 0.01 angstrom. On the
other hand, c-lengths of H2 and H3 phases increase and decrease respectively with relaxation time,
to show a difference of 1 angstrom. Assuming that c-length corresponds to the content of lithium ions,
Li+ migrate from H3 to H2 phases keeping molar ratio constant. Namely, during the lithium extraction,
H3 phase involves excess lithium ions in comparison with the equilibrium state.
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Figure 2. X-ray diffraction patterns of Li0.12Ni0.874Co0.090Al0.036O2 obtained during relaxation time
after the termination of lithium extraction. Diffraction patterns measured after relaxation up to 100 h
are superimposed on each plot. Asterisk marks (*) indicate the diffraction peaks of aluminum foil
current collector. Diffraction profiles around 003 reflections are enlarged in the inset.

Therefore, it is thought that H3 forms from the H2 phase containing still larger lithium ions during
charging, after that at the relaxation process lithium migration occurs to achieve a stable condition.
Figure 6 shows changes in volume of the unit cell with the relaxation time. The volumes of H2 and
H3 phases show the same trend as c-length. Figure 7 compares the mole fractions of H3 phases for
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LiNiO2, Ni-rich NCA and present NCA. It can be seen that mole fraction of the H3 phase reduces with
the cobalt content, i.e., a larger cobalt introduction stabilizes the H2 phase.Materials 2018, 11, x FOR PEER REVIEW  4 of 7 
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Figure 3. Observed and the Rietveld refined diffraction patterns of LixNi0.874Co0.090Al0.036O2 (x = 0.09)
after 30 h of relaxation from the termination of lithium extraction. The vertical lines in the middle
section show the positions of peaks calculated for Bragg reflection. The trace (∆Y) in the bottom section
represents the difference between observed and calculated patterns. The asterisk mark (*) indicates
diffraction peaks of the aluminum foil collector.
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Table 1. Refined structure parameters of Li0.12Ni0.874Co0.090Al0.036O2 for initial state, and after 50 and
100 h of relaxation.

Relaxation
Time

Mole Fraction c/Å Oxide Ion Coordinates
Rwp

H2 Phase H3 Phase H2 Phase H3 Phase H2 Phase H3 Phase

0 h 0.91 (1) 0.09 (1) 14.062 (2) 13.843 (9) 0.2316 (7) 0.268 (4) 5.09
50 h 0.97 (1) 0.03 (1) 14.116 (1) 13.755 (8) 0.2341 (8) 0.218 (10) 5.71

100 h 0.90 (4) 0.10 (4) 14.156 (10) 13.246 (8) 0.2329 (7) 0.298 (9) 5.40
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It is also observed that variation of mole fraction during the relaxation time reduces with the
content of cobalt. This suggests that since cobalt introduction restricts the unfavorable H2–H3 transition
not only in the charging process, but also in relaxation time, NCA improves the cycle performance at
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highly charged state. In the previous work, we proved that very small amounts of cobalt substitution
as well as aluminum largely contribute to the H2–H3 phase transition [18]. Nevertheless, it has
been known that transition still occurs in the highly de-lithiated region. Thus, in the present study,
increasing the cobalt concentration, H2–H3 transition and relaxation behavior has been observed. We
are now investigating the relaxation of Co-rich NCA after the electrochemical lithium extraction down
to x < 0.12 to compare with these materials. We are planning to discuss the structural variability of
NCA series after the data collection of the above system.

4. Conclusions

We have performed a relaxation analysis on LixNi0.874Co0.090Al0.036O2 to study the structural
variability at the deeply Li extracted region for x = 0.12 and compared with previous LiNiO2 and
Ni-rich LiNi0.933Co0.031Al0.036O2 systems concerning the cell performance of NCAs. It was found that
during the relaxation time, the c-length of the H2 phase increases while that of H3 phase decreases,
keeping with the molar ratio. The H3 phase, with larger lithium ions at the initial stage, provides
the lithium ions to the H2 phase during the relaxation time. When comparing with the previously
reported LiNiO2 and Ni-rich NCAs, it is found that higher content of Co restricts the unfavorable
H2–H3 transition, which would attribute to cell performance.
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