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Abstract

This paper considers linear time-invariant (LTI) sampled-data systems and
studies their generalized H2 norms. They are defined as the induced norms
from L2 to L∞, in which two types of the L∞ norm of the output are consid-
ered as the temporal supremum magnitude under the spatial ∞-norm and
2-norm. The input/output relation of sampled-data systems is first formu-
lated under their lifting-based treatment. We then develop a method for
computing the generalized H2 norms with operator-theoretic gridding ap-
proximation. This method leads to readily computable upper bounds as well
as lower bounds of the generalized H2 norms, whose gaps tend to 0 at the
rate of 1/

√
N with the gridding approximation parameter N . An approx-

imately equivalent discretization method of the generalized plant is further
provided as a fundamental step to addressing the controller synthesis problem
of minimizing the generalized H2 norms of sampled-data systems. Finally,
a numerical example is given to show the effectiveness of the computation
method.
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1. Introduction

The H2 norm has been widely used as a performance measure for the
disturbance rejection problem. There are two time-domain ideas to define
the H2 norm for linear time-invariant (LTI) sampled-data systems. By this
term, we mean that the continuous-time plant is LTI and controlled by an
LTI discrete-time controller. Furthermore, our particular interest lies in the
intersample behavior of the continuous-time signals about the plant. The first
idea [1] considers the L2 norm of the output for the impulse input occurring
at a sampling instant. However, it does not take account of the periodically
time-varying nature of LTI sampled-data systems viewed in continuous time.
With this nature taken into consideration, the second idea (which admits
an equivalent frequency-domain interpretation) [2, 3, 4] deals with the root
mean square (RMS) of the L2 norms of all the responses for the impulse
inputs occurring at τ in the sampling interval [0, h).

If we confine ourselves to single-output LTI continuous-time and discrete-
time systems, on the other hand, we could adopt an alternative time-domain
definition of the H2 norm without considering the impulse input. More pre-
cisely, it is well known that the H2 norm coincides with the induced norm
from L2 to L∞ [5, 6, 7] in such LTI continuous-time systems and that from
l2 to l∞ [8, 9] in such LTI discrete-time systems. Even though this is not the
case for the multi-output LTI continuous-time and discrete-time systems,
the induced norms have been regarded as their generalized H2 norms. In
such treatment, two different spatial norms (i.e., the vector ∞ and 2 norms)
are often dealt with in defining the L∞ and l∞ norms of the output for the
multi-output cases.

It is well known that the L2 input considered in the generalized H2 norms
is also relevant to the H∞ norm of LTI sampled-data systems because the
latter is nothing but the induced norm from L2 to L2. Even with the same
class of inputs, which is practical for dealing with typical disturbances with
finite energy, however, taking these two different norms on the output can be
quite meaningful depending on different purposes. Use of the L∞ norm for
the output leads to the generalized H2 norms and is particularly suitable for
such situations where having a large instantaneous peak value of the output
(in terms of the L∞ norm) is much more problematic than having a large
‘average’ value of the output (in terms of the L2 norm). Thus, considering
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the generalized H2 norms properly matches practical control applications
such as avoiding robot manipulators from colliding with their surrounding
objects and suppressing chemical plants from being overly pressured caused
by unknown disturbances with finite energy; the H∞ and L1 norms do not
match these problems effectively. In this sense, it is worthwhile to study the
generalized H2 norms of LTI sampled-data systems. They were analytically
formulated in [10] for the first time by employing the idea of the lifting
technique [10, 11, 12, 13], but their computation was not discussed there.
An approximate but asymptotically exact computation method was then
provided in [14] by using an idea of fast-sampling rather than lifting.

Recently, the generalized H2 norms of LTI sampled-data systems were
revisited in [15] again with the lifting arguments in such a way that a com-
parative study of the generalized H2 norms with the two existing definitions
for the H2 norm of sampled-data systems can also be carried out. The ar-
guments therein revealed for the first time that the generalized H2 norms
coincide with neither of the two existing definitions of the H2 norm for LTI
sampled-data systems. This clearly means that the generalized H2 norms
(i.e., induced norms from L2 to L∞ with two alternative underlying spatial
norms about the latter) could be interpreted as yet another definition of
the H2 norm of single-output LTI sampled-data systems. However, to com-
pute the generalized H2 norms with the arguments in [15], one should take
the supremum of a suitably constructed function over the sampling interval
[0, h). Thus, only an approximate computation approach based on gridding
is given in [15] and the arguments in [14] are also subject to the same kind
of situation (as well as some more additional assumption on the system). In
other words, no upper bounds of the generalized H2 norms have been derived
and their lower bounds are obtained only through gridding in the existing
studies.

This paper aims at resolving this issue through an operator-theoretic
interpretation of the gridding method [15], and derives computable upper
bounds as well as lower bounds of the generalized H2 norms together with
the associated convergence rate. More precisely, such an interpretation leads
to a method for computing upper and lower bounds of each of the two gener-
alized H2 norms for an LTI sampled-data system. Furthermore, it is shown
that the gaps between the upper and lower bounds converge to 0 at the
rates of 1/

√
N , where N is the gridding approximation parameter. This pa-

per also gives an alternative interpretation of the lower bound computation
through an approximate discretization process of the generalized plant. To
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this end, we relate the computation with that of the l∞/l2-induced norm of
an approximately equivalent LTI discrete-time system constructed with the
discretized generalized plant, where the latter computation is readily possi-
ble [8, 9]. This interpretation through the discretization of the generalized
plant gives a crucial basis for the optimal controller synthesis for minimizing
the generalized H2 norms of LTI sampled-data systems [16].

We remark that the gridding approximation has been extended to another
approximation approach in [17] but for the case of SISO systems and only for
the spatial ∞ norm. The present paper nevertheless opts to confine itself to
the simpler gridding approximation at the sacrifice of slight deterioration in
the accuracy of approximation while dealing also with the multi-input/multi-
output (MIMO) case and the spatial 2 norm; this allows us to circumvent the
introduction of the more involved fast-lifting treatment [18] adopted (even
for the gridding approach) in [17] and helps us to provide a less complicated
perspective for this simpler approach.

The organization of this paper is as follows. Section 2 gives some math-
ematical notations. In Section 3, the lifting-based results in [15] relevant
to the generalized H2 norms of sampled-data systems are reviewed. The
main results of this paper are given in Section 4. A method for computing
upper and lower bounds of the generalized H2 norms together with the asso-
ciated convergence rate is provided through the operator-theoretic gridding
approximation idea. Furthermore, the lower bound computation is related
to discretization of the continuous-time generalized plant to open a further
direction for the associated optimal controller synthesis. Finally, a numer-
ical example is given in Section 5 to demonstrate the effectiveness of the
developed computation method.

2. Mathematical Notations

This section gives the mathematical notations used in this paper. The
notations N, Rν

∞ and Rν
2 denote the set of positive integers, the Banach

space of ν-dimensional real vectors equipped with vector ∞-norm (denoted
by | · |∞) and the Hilbert space of ν-dimensional real vectors equipped with
the usual inner product and the associated Euclidean norm (denoted by |·|2),
respectively. The notation N0 is further used to imply N ∪ {0}.

The notations | · |p/2 (p = ∞, 2) are used to imply the induced norms of
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a matrix as a mapping from Rν1
2 to Rν2

p , i.e.,

|T |p/2 := sup
w∈Rν1

2

|Tw|p
|w|2

(p = ∞, 2)

The notations ∥ · ∥(∞,p) (p = ∞, 2) are used to mean the L∞[0, h) norms
under the spatial ∞-norm and 2-norm, respectively, i.e.,

∥z(·)∥(∞,∞) := ess sup
0≤t<h

|z(t)|∞ = ess sup
0≤t<h

max
1≤i<ν

|zi(t)|,

∥z(·)∥(∞,2) := ess sup
0≤t<h

|z(t)|2 = ess sup
0≤t<h

(
zT (t)z(t)

)1/2
,

or those with h replaced by an integer fraction h′ = h/N or ∞, whose
distinction will be clear from the context (the same comment applies to
the following norm notations used in common for slightly different types of
quantities). The notation ∥ · ∥(2,2) is used to mean either the L2[0, h) norm
of a real-vector-valued function, i.e.,

∥w(·)∥(2,2) :=
(∫ h

0

|w(t)|22dt
)1/2

,

or that with h replaced by h′ = h/N or ∞.
On the other hand, for an operator T from (L2[0, h))

ν1 to (L∞[0, h))ν2 ,
the notations ∥ · ∥(∞,p)/(2,2) (p = ∞, 2) are used to denote either the induced
norms

∥T∥(∞,p)/(2,2) := sup
w∈(L2[0,h))ν1

∥Tw∥(∞,p)

∥w∥(2,2)
(p = ∞, 2),

or that with h replaced by ∞. This notation is also applied to the discrete-
time case, i.e., the induced norms from l2 to l∞ equipped with two spatial
(∞ and 2) norms for the l∞ norm.

The notations ∥ · ∥(∞,p)/2 (p = ∞, 2) are used to imply the induced norms
from Rν1

2 to (L∞[0, h))ν2 , i.e.,

∥T∥(∞,p)/2 := sup
x∈Rν1

2

∥Tx∥(∞,p)

|x|2
(p = ∞, 2)

or that with h replaced by h′.
Furthermore, the notation ∥ ·∥2/2 is used to imply the induced norm from

l2 or (L2[0, h))
ν1 to Rν2

2 , or that with h replaced by h′. Finally, we use the
notations dmax(·) and λmax(·) to denote the maximum diagonal entry and
maximum eigenvalue of a real symmetric matrix, respectively.
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3. Characterization of the Generalized H2 Norms in Sampled-Data
Systems

This section reviews the results in [15] and gives an explicit characteriza-
tion for the generalized H2 norms of LTI sampled-data systems through the
lifting treatment [10, 11, 12, 13]. A similar result was first derived in [14]
without applying the lifting technique.

Let us consider the stable sampled-data system ΣSD shown in Fig. 1,
where P represents the continuous-time LTI generalized plant, while Ψ , H
and S represent the discrete-time LTI controller, the zero-order hold and
the ideal sampler, respectively, operating with sampling period h in a syn-
chronous fashion. Solid lines and dashed lines in Fig. 1 are used for continuous-
time signals and discrete-time signals, respectively. Suppose that P and Ψ
are given respectively by

P :


ẋ = Ax+B1w +B2u

z = C1x+D12u

y = C2x,

Ψ :

{
ψk+1 = AΨψk +BΨyk

uk = CΨψk +DΨyk
(1)

where x(t) ∈ Rn
2 , w(t) ∈ Rnw

2 , u(t) ∈ Rnu
2 , y(t) ∈ Rny

2 , ψk ∈ RnΨ
2 , yk = y(kh)

and u(t) = uk (kh ≤ t < (k+1)h). Furthermore, we regard z(t) to belong to
Rnz

p , where p is either ∞ or 2, depending on the context. Note that we have
assumed ‘D11 = 0’ and ‘D21 = 0’ for the continuous-time generalized plant
P in (1). These assumptions are necessary (and sufficient by the stability of
ΣSD) for the generalized H2 norms

∥ΣSD∥(∞,p)/(2,2) := sup
∥w∥(2,2)≤1

∥z∥(∞,p) (p = ∞, 2) (2)

to be well-defined/bounded.
To alleviate the difficulty in the treatment of ΣSD caused by its periodi-

cally time-varying nature, we apply the lifting technique [10, 11, 12, 13] to the

-w

-u P
-z

-y S

�Ψ

- H

Figure 1: Sampled-data system ΣSD.
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sampled-data system ΣSD; given f ∈ (L∞)ν or f ∈ (L2)
ν , its lifting {f̂k}∞k=0

(with sampling period h) with f̂k ∈ (L∞[0, h))ν or (L2[0, h))
ν (k ∈ N0) is

defined by

f̂k(θ) = f(kh+ θ) (0 ≤ θ < h) (3)

Here, for f̂ := [f̂T
0 , f̂

T
1 , · · · ]T , we define ∥f̂∥(∞,p) (p = ∞, 2) and ∥f̂∥(2,2)

by supk ∥f̂k∥(∞,p) (p = ∞, 2) and (
∑∞

k=0 ∥f̂k∥2(2,2))1/2, respectively, and thus
lifting is norm-preserving in both L∞ and L2. By applying lifting to w ∈
(L2)

nw and z ∈ (L∞)nz , the lifted representation of ΣSD is given by{
ξk+1 = Aξk + Bŵk

ẑk = Cξk +Dŵk

(4)

with ξk := [xTk ψT
k ]

T (xk := x(kh)), the stable matrix

A=

[
Ad +B2dDΨC2d B2dCΨ

BΨC2d AΨ

]
: Rn+nΨ

2 → Rn+nΨ
2 (5)

and the operators

B = JΣB1 : (L2[0, h))
nw → Rn+nΨ

2 (6)

C = M1CΣ : Rn+nΨ
2 → (L∞[0, h))nz (7)

D = D11 : (L2[0, h))
nw → (L∞[0, h))nz (8)

where

Ad := exp(Ah), B2d :=

∫ h

0

exp(Aθ)B2dθ, C2d :=C2 (9)

B1w=

∫ h

0

exp(A(h− θ))B1w(θ)dθ (10)(
M1

[
x
u

])
(θ)=M1 exp(A2θ)

[
x
u

]
,

M1 :=
[
C1 D12

]
:Rn+nu

2 → Rnz
p , A2 :=

[
A B2

0 0

]
:Rn+nu

2 → Rn+nu
2 (11)

(D11w)(θ)=

∫ θ

0

C1 exp(A(θ − τ))B1w(τ)dτ (12)

JΣ :=

[
I
0

]
:Rn

2 → Rn+nΨ
2 , CΣ :=

[
I 0

DΨC2d CΨ

]
:Rn+nΨ

2 → Rn+nu
2 (13)
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From the stability assumption of ΣSD, A has all its eigenvalues in the open
unit disc.

We first note (4) and describe the closed-loop relation between ŵk and
ẑk (k = 0, · · · ,∞) as follows:

ẑ0
ẑ1
ẑ2
...

 =


D 0 · · ·
CB D 0 · · ·
CAB CB D 0 · · ·
...

. . . . . . . . . . . .



ŵ0

ŵ1

ŵ2
...

 (14)

Because lifting is norm-preserving in both L2 and L∞, the generalized H2

norms of the sampled-data system ΣSD coincides with the associated induced
norm of the above operator in the right hand side. Since this operator has a
Toeplitz structure (and thus every row is an extension of the previous row), it
readily follows from ∥z∥(∞,p) = sup

k
∥ẑk∥(∞,p) (p = ∞, 2) that the generalized

H2 norms of ΣSD coincide with the generalized H2 norms of its “last” block
row, i.e., (after reordering without affecting the generalized H2 norms)

F :=
[
D CB CAB CA2B · · ·

]
(15)

Here, with a slight abuse of the terminology, the generalized H2 norms of F
for p = ∞, 2 refer to

∥F∥(∞,p)/(2,2) := sup
∥ŵ∥(2,2)≤1

∥(Fŵ)(·)∥(∞,p) = sup
∥ŵ∥(2,2)≤1

sup
0≤θ<h

|(Fŵ)(θ)|p

= sup
0≤θ<h

sup
∥ŵ∥(2,2)≤1

|(Fŵ)(θ)|p (16)

To explicitly characterize the generalized H2 norms ∥F∥(∞,p)/(2,2) (p = ∞, 2),
we briefly sketch the results in [15] as follows. For each θ ∈ [0, h], we first
introduce the matrices

Wθ :=

∫ θ

0

exp(A(θ − τ))B1B
T
1 exp(AT (θ − τ))dτ (17)

Cθ :=M1 exp(A2θ)CΣ (18)

Then, withWh, consider the solutionXh to the discrete-time Lyapunov equa-
tion

AXhAT −Xh +

[
Wh 0
0 0

]
= 0 (19)
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Let us further introduce the matrix function F (θ) defined as

F (θ) := C1WθC
T
1 +CθXhC

T
θ (θ ∈ [0, h]) (20)

Then, it was shown in [15] that

sup
∥ŵ∥(2,2)≤1

|(Fŵ)(θ)|∞ = d1/2max(F (θ)) (21)

sup
∥ŵ∥(2,2)≤1

|(Fŵ)(θ)|2 = λ1/2max(F (θ)) (22)

This together with (16) leads to the following result.

Theorem 1 ([15]). The generalized H2 norms associated with the MIMO
LTI sampled-data system ΣSD are given by

∥F∥(∞,∞)/(2,2) = sup
0≤θ<h

d1/2max(F (θ)) (23)

∥F∥(∞,2)/(2,2) = sup
0≤θ<h

λ1/2max(F (θ)) (24)

Theorem 1 almost gives a direct computation method for the generalized
H2 norms ∥F∥(∞,p)/(2,2) (p = ∞, 2). However, when a simple gridding idea
is taken and thus lower bounds are obtained (i.e., by computing F (θ) for N
equally spaced points in [0, h)), it is not clear how much the lower bounds
could deviate from the exact norms in the worst case. This is closely re-
lated with the fact that this theorem cannot lead to easily obtainable upper
bounds of the generalized H2 norms ∥F∥(∞,p)/(2,2) (p = ∞, 2). In this regard,
the following section is devoted to giving readily computable upper bounds
as well as lower bounds of the generalized H2 norms ∥F∥(∞,p)/(2,2). More
precisely, we develop an alternative operator-theoretic method for approxi-
mately computing ∥F∥(∞,p)/(2,2) (p = ∞, 2), which is free from the gridding
idea in its usual sense. The key idea in that direction is very close to a
similar one that has proved very useful in the L∞-induced norm problem of
sampled-data systems [19, 20], but we exploit in a slightly simplified way
to facilitate the overall arguments. We call the method (operator-theoretic)
gridding approximation, and analyze the convergence rate in N with which
the gaps between the upper and lower bounds converge to 0, where N is the
gridding approximation parameter.
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4. Main Results

In this section, we first introduce an operator-theoretic interpretation
of the gridding approximation. Then, we provide a method for computing
upper and lower bounds of the generalized H2 norms ∥F∥(∞,p)/(2,2) (p = ∞, 2)
together with the associated convergence rate in their gridding approximation
treatment. Finally, an approximately equivalent discretization method of the
continuous-time generalized plant P is discussed.

4.1. Gridding Approximation

We first introduce the operator HN0 with N ∈ N and h′ := h/N given by

(HN0z)(θ) = z

(⌊
θ

h′

⌋
h′
)

(0 ≤ θ < h) (25)

where z is a function on [0, h) and ⌊·⌋ denotes the largest integer that does
not exceed (·). For z continuous on [0, h), the function (HN0z)(θ) is piecewise
constant on [0, h), and HN0 is used in defining the gridding approximation
of F . More precisely, the gridding approximation is defined as

FNG :=
[
HN0D HN0CB HN0CAB HN0CA2B · · ·

]
(26)

Here, it is obvious that (FNGŵ)(θ) = (Fŵ)(θ) for every ŵ such that ∥ŵ∥(2,2) ≤
1 and θ ∈ KN := {0, h′, 2h′, · · · , (N − 1)h′}. Since

∥FNG∥(∞,p)/(2,2) = sup
0≤θ<h

sup
∥ŵ∥(2,2)≤1

|(FNGŵ)(θ)|p (27)

as in (16), it follows from (21) and (22) that

∥FNG∥(∞,∞)/(2,2) = max
θ∈KN

d1/2max(F (θ)) (28)

∥FNG∥(∞,2)/(2,2) = max
θ∈KN

λ1/2max(F (θ)) (29)

To put it another way, computing the operator norms ∥FNG∥(∞,p)/(2,2) (p =
∞, 2) corresponds to very simple gridding treatment of the matrix function
F (θ) with N equally spaced points in (23) and (24). This is why the operator
FNG is called the gridding approximation of F .

Because of the equivalence to the gridding treatment of F (θ), the norm
∥FNG∥(∞,p)/(2,2) obviously corresponds to a lower bound of ∥F∥(∞,p)/(2,2) for
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each p = ∞, 2. Furthermore, an exact computation of these lower bounds
∥FNG∥(∞,p)/(2,2) (p = ∞, 2) is straightforward if we recall the explicit defi-
nition of F (θ) in (20). Actually, this gridding treatment merely in terms of
F (θ) (i.e., without introducing FNG) is nothing but the approximate compu-
tation method for ∥F∥(∞,p)/(2,2) (p = ∞, 2) given in [14, 15], but this method
is not necessarily satisfactory in the following two respects.

First, it does not provide a method for giving upper bounds of ∥F∥(∞,p)/(2,2)

(p = ∞, 2). Secondly, the computation formula has no clear relationship with
an associated (discrete-time) dynamical system, so that it is not clear how
we could extend the computation method to arguments for designing opti-
mal controllers minimizing the generalized H2 norms. The reason why FNG

has been introduced in the present paper is that it is quite helpful in resolv-
ing these issues, in spite of the aforementioned equivalence in dealing with
F (θ) and FNG in some restricted aspect (i.e., lower bound computation). In-
deed, the remainder of this section is devoted to providing upper bounds for
∥F∥(∞,p)/(2,2) (p = ∞, 2) and the associated convergence rate analysis in N
about the upper and lower bounds through the use of FNG. Furthermore, we
derive alternative exact computation methods of ∥FNG∥(∞,p)/(2,2) (p = ∞, 2)
through appropriate discretization of the generalized plant P .

4.2. Upper/Lower Bounds and Convergence Rate Analysis

The following two lemmas play important roles in deriving upper and
lower bounds of the generalized H2 norms and the associated convergence
rate for the gridding approximation approach.

Lemma 1. For each p = ∞, 2, the inequality

∥(I −HN0)D11∥(∞,p)/(2,2) ≤
K

[p]
ND√
N

+
K

[p]
ND0

N
(30)

holds, where

K
[∞]
ND/

√
N := d1/2max(C1Wh′CT

1 ) (31)

K
[2]
ND/

√
N := λ1/2max(C1Wh′CT

1 ) (32)

K
[p]
ND0 := h · |C1A|p/2 · eh

′|A|2/2 · |V(N−1)h′|2/2 (p = ∞, 2) (33)

with the matrix Vθ defined by

VθV
T
θ =Wθ (θ ∈ [0, h]) (34)
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for Wθ given in (17). Furthermore, K
[p]
ND and K

[p]
ND0 have uniform upper

bounds with respect to N given respectively by K
[p]
D :=

√
h · |C1|p/2 · eh|A|2/2 ·

|B1|2/2 and K
[p]
D0 := h · |C1A|p/2 · eh|A|2/2 · |Vh|2/2.

Lemma 2. For each p = ∞, 2, the inequality

∥(I −HN0)M1∥(∞,p)/2 ≤
K

[p]
NC0

N
(35)

holds, where

K
[p]
NC0 := h · |M1A2|p/2 · eh

′|A2|2/2 · max
0≤i≤N−1

|(A′
2d)

i|2/2 (36)

with A′
2d := exp(A2h

′). Furthermore, K
[p]
NC0 has a uniform upper bound with

respect to N given by K
[p]
C0 := h · |M1A2|p/2 · eh|A2|2/2.

The proofs of these lemmas are given in the appendix. From Lemmas 1
and 2, we readily have the following result.

Theorem 2. For each p = ∞, 2, the inequality

∥F − FNG∥(∞,p)/(2,2) ≤
K

[p]
ND√
N

+
K

[p]
N0

N
(37)

holds with

K
[p]
N0 := K

[p]
ND0 +K

[p]
NC0 · (|CΣXhC

T
Σ |2/2)1/2 (38)

where CΣ and Xh are described by (13) and (19), respectively. Furthermore,

K
[p]
N0 has a uniform upper bound with respect to N given by K

[p]
0 := K

[p]
D0 +

K
[p]
C0 · (|CΣXhC

T
Σ |2/2)1/2, while K

[p]
ND has a uniform upper bound with respect

to N given by K
[p]
D .

Proof. We first recall that D = D11, C = M1CΣ and B = JΣB1. Then,
we have for each p = ∞, 2 that

∥F − FNG∥(∞,p)/(2,2)

= ∥
[
(I −HN0)D (I −HN0)CB (I −HN0)CAB · · ·

]
∥(∞,p)/(2,2)

≤ ∥(I −HN0)D11∥(∞,p)/(2,2)

+ ∥(I −HN0)M1∥(∞,p)/2 · ∥
[
CΣJΣB1 CΣAJΣB1 · · ·

]
∥2/2 (39)
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where the last factor denotes the induced norm from the lifting image of
(L2[0,∞))nw to Rn+nu

2 . Since the unit-ball image of B1 : (L2[0, h))
nw → Rn

2

coincides with that of Vh : RnV
2 → Rn

2 (where nV is the number of columns of
Vh) and, equivalently, {B1w : ∥w∥(2,2) ≤ α} = {Vhwd : |wd|2 ≤ α} for every
α > 0, we readily see that

∥
[
CΣJΣB1 CΣAB1 · · ·

]
∥2/2 = ∥

[
CΣJΣVh CΣAJΣVh · · ·

]
∥2/2 =: ∥ΠD∥2/2

(40)

where the latter two ∥·∥2/2 denotes the induced norm from l2 to Rn+nu
2 . Here,

ΠD can be regarded as a finite-rank (and thus compact) operator acting on
Hilbert spaces, and thus ∥ΠD∥2/2 can be computed with the adjoint operator
Π ∗

D : Rn+nu
2 → l2 of ΠD defined as

Π ∗
D =

[
CΣJΣVh CΣAJΣVh · · ·

]T
(41)

through the relation ∥ΠD∥22/2 = ∥ΠDΠ
∗
D∥2/2 = |CΣXhC

T
Σ |2/2. Combining the

above arguments with (30) and (35) readily completes the proof. Q.E.D.

Since ∥FNG∥(∞,p)/(2,2) (p = ∞, 2) can be explicitly computed (recall (28)
and (29)), it is quite meaningful to apply the triangle inequality to (37)
to obtain the following result, which gives upper and lower bounds of the
generalizedH2 norms together with the associated convergence rate of 1/

√
N .

Corollary 3. The following inequalities hold:

∥FNG∥(∞,∞)/(2,2) ≤ ∥F∥(∞,∞)/(2,2) ≤ ∥FNG∥(∞,∞)/(2,2) +
K

[∞]
ND√
N

+
K

[∞]
N0

N
(42)

∥FNG∥(∞,2)/(2,2) ≤ ∥F∥(∞,∞)/(2,2) ≤ ∥FNG∥(∞,2)/(2,2) +
K

[2]
ND√
N

+
K

[2]
N0

N
(43)

4.3. Discretization of Continuous-Time Generalized Plant

In this subsection, we give alternative methods for exactly computing
∥FNG∥(∞,p)/(2,2) (p = ∞, 2) through discretization treatment of the general-

13



ized plant P . For i = 0, 1, · · · , N − 1, we first note by (25) that(
HN0M1

[
x
u

])
(θ) =M1(A

′
2d)

i

[
x
u

]
(ih′ ≤ θ < (i+ 1)h′) (44)

(HN0D11w)(θ)=

∫ ih′

0

C1 exp(A(ih
′ − τ))B1w(τ)dτ

= C1

∫ ih′

0

exp(A(ih′ − τ))B1w(τ)dτ =: C1B
′
1iw (ih′ ≤ θ < (i+ 1)h′) (45)

Note that B′
1i corresponds to B1 with the underlying horizon replaced by

[0, ih′). This, together with essentially the same arguments as the derivation
of (40), immediately implies that for p = ∞, ∥FNG∥(∞,∞)/(2,2) coincides with
the induced norm of the infinite-dimensional matrix

FNG :=
[
C1V

′
dN M1A

′
2dNCΣJΣVh M1A

′
2dNCΣAJΣVh · · ·

]
(46)

from l2 to RMnz
∞ , where (·) denotes diag[(·), · · · , (·)] consisting of N copies of

(·) and

V ′
dN :=


0
Vh′

...
V(N−1)h′

 , A′
2dN =


I
A′

2d
...

(A′
2d)

N−1

 (47)

Note that we can define Vih′ (i = 1, · · · , N−1) from (34) so that they have the
same number of columns as Vh. For p = 2 on the other hand, ∥FNG∥(∞,2)/(2,2)

coincides with

max
1≤j≤N

∥FNGj∥2/2 (48)

where FNGj denotes the matrix with nz rows constituting the jth block row
of FNG and ∥ · ∥2/2 denotes the induced norm from l2 to Rnz

2 . Here, let us
further define DNG := C1V

′
dN and MN0 := M1A

′
2dNCΣ , for simplicity. Then,

we readily see that the matrix FNG corresponds to the (reversed) ‘last’ block
row of the infinite-dimensional Toeplitz matrix representation of the input/
output relation of the discrete-time system

ΣNG :

{
ξk+1 = Aξk + JΣVhwk

zk =MN0ξk +DNGwk

(49)
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Furthermore, the discrete-time system ΣNG of (49) coincides with the closed-
loop system obtained by connecting Ψ to the discrete-time generalized plant

PNG :


xk+1 = Adxk + Vhwk +B2duk

zk = CNdxk +DNGwk +DNduk

yk = C2dxk

(50)

where the matrices CNd : Rn
2 → RNnz

p and DNd : Rnu
2 → RNnz

p are given by[
CNd DNd

]
:=M1A

′
2dN (51)

Next, for p = 2, we define N subsystems PNGj (j = 1, · · · , N) of PNG con-
structed by replacing CNd, DNG and DNd in PNG with the matrices with nz

rows constituting the jth block rows of CNd, DNG and DNd, respectively.
Furthermore, let ΣNGj be the discrete-time system obtained by connecting
Ψ to the discrete-time generalized plant PNGj. We then readily have the
following result giving alternative characterizations of the gridding approxi-
mation ∥FNG∥(∞,p)/(2,2) (p = ∞, 2) through the computations of the induced
norms from l2 to l∞ equipped with two spatial (∞ and 2) norms for the l∞
norm discussed in [8].

Theorem 4. The following relations hold:

∥FNG∥(∞,∞)/(2,2) = ∥ΣNG∥(∞,∞)/(2,2) (52)

∥FNG∥(∞,2)/(2,2) = max
1≤j≤N

∥ΣNGj∥(∞,2)/(2,2) (53)

The relevant studies associated with the generalizedH2 norms of sampled-
data systems in [14, 15] were confined to the analysis problem and extend-
ing those arguments to allow controller synthesis (nor deriving the upper
bounds in Corollary 3) has not been discussed. In this connection, the above
theorem can be interpreted as providing a fundamental step to addressing
the controller synthesis problem of minimizing the generalized H2 norms of
sampled-data systems by working on ΣNG. Indeed, one would expect that
such a controller synthesis problem could be approximately reducible to that
of minimizing the discrete-time generalized H2 norms through the discretized
generalized plant PNG in (50) if N is relatively large (because the last two
terms in (42) and (43) tend to 0 at the rate of 1/

√
N). This expectation

can actually be fully justified and thus the arguments in the present paper
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eventually have a further crucial impact on the associated controller syn-
thesis problem. However, it is only after the present arguments have been
adequately extended as briefly discussed for the SISO case with only p = ∞
in [16]. The reason why the present arguments alone cannot immediately

justify the above expectation is that K
[p]
N0 (p = ∞, 2) in Corollary 3 depend

on the controller Ψ itself as seen from (38). The arguments in [16] and their
extension to the MIMO case and p = 2 require more involved treatment and
space, and thus it is not suitable to discuss the full details in this paper. In-
stead, we provide a relevant controller synthesis procedure only as a sort of
conjecture so that the meaning and an ultimate research goal of the present
study will be clearly understood. That is, once we generalize the arguments
in [16] and formally establish the claim that

the discrete-time controller Ψ minimizing ∥ΣNG∥(∞,p)/(2,2) (p =
∞, 2) is a suboptimal controller for the sampled-data system ΣSD

under the generalized H2 norm ∥ΣSD∥(∞,p)/(2,2) (p = ∞, 2) in
the sense that the gap between the perfomance by the designed
controller and that by the optimal controller for ΣSD is ensured
to be bounded by an order of 1/

√
N

(the details of this claim will be presented elsewhere due to limited space),
then we are led to the following consequence:

the optimal controller synthesis for ΣSD virtually reduces to that
for ΣNG (with the approximately discretized generalized plant
PNG in (50)) with a sufficiently large N .

The latter problem is simply that for discrete-time systems and can be tack-
led by only sightly modifying the arguments in [21, 22] for the LMI-based
synthesis method for the optimal controller minimizing the H2 norm of the
closed-loop system; for example, if we consider the extension of the arguments
in [22], we are immediately led to the minimization problem of γ under the
LMI constraints

P J AdX +B2dL Ad +B2dRC2d Vh
∗ H Q Y Ad + FC2d Y Vh
∗ ∗ X +XT − P I + ST − J 0
∗ ∗ ∗ Y + Y T −H 0
∗ ∗ ∗ ∗ I

 > 0 (54)
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W CNdX +DNdL CNd +DNdRC2d DNG

∗ X +XT − P I + ST − J 0
∗ ∗ Y + Y T −H 0
∗ ∗ ∗ I

 > 0 (55)

µp(W ) < γ2 (56)

where the decision variables are the matrices Q, F , L, R, X, Y , P >
0, J , H > 0, S and W > 0 together with the scalar γ > 0. Further-
more, µ∞(W ) denotes maxi=1,...,N dmax(Wii), whereWii ∈ Rnz×nz denotes the
ith diagonal submatrix of W =: (Wij)i,j=1,...,N ∈ RNnz×Nnz (hence µ∞(W )
can actually be also represented simply as dmax(W )), while µ2(W ) denotes
maxi=1,...,N λmax(Wii). The LMI condition for the optimal H2 controller syn-
thesis in [22] involves tr(W ) < γ2 instead of (56), and this will be the only
essential difference arising in the synthesis of the optimal controller minimiz-
ing the corresponding generalized H2 norm.

5. Numerical Example

This section examines the effectiveness of the computation methods de-
veloped in this paper through a numerical example.

We consider the 5-mass-spring-damper system shown in Figure 2, where
m1, . . . ,m5 denote the masses, k1, . . . , k5 denote the spring constants, c1, . . . , c5
denote the damper constants, l1, . . . , l5 denote the displacements of masses
from their equilibrium positions, d1, . . . , d5 denote the unknown disturbances
in L2 affecting the masses m1, . . . ,m5, respectively, and u denotes the control
input force applied on the mass m5. Then, the motion of this system is given

Figure 2: 5-mass-spring-damper system.
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by the 10th-order state equation

ẋ =

[
05×5 I5
Amk Amc

]
x+

[
05×5

diag[− 1
m1
, . . . ,− 1

m5
]

]
w +

[
09×1

1
m5

]
u

=: Ax+B1w +B2u (57)

where x :=
[
l1 · · · l5 l̇1 · · · l̇5

]T
, w := [d1 · · · d5]T and

Amk :=


−k1+k2

m1

k2
m1

0 0 0
k2
m2

−k2+k3
m2

k3
m2

0 0

0 k3
m3

−k3+k4
m3

k4
m3

0

0 0 k4
m4

−k4+k5
m4

k5
m4

0 0 0 k5
m5

− k5
m5

 (58)

Amc :=


− c1+c2

m1

c2
m1

0 0 0
c2
m2

− c2+c3
m2

c3
m2

0 0

0 c3
m3

− c3+c4
m3

c4
m3

0

0 0 c4
m4

− c4+c5
m4

c5
m4

0 0 0 c5
m5

− c5
m5

 (59)

Suppose that we only have the measurements of the mass positions, i.e.,
y = [l1 · · · l5]T , so that C2 = [I5 05×5]. We further suppose that the controlled
output is given by

z :=

[√
m1

2
l̇1 · · ·

√
m5

2
l̇5

]T
(60)

which implies that each entry of z corresponds to (the square root of) the
kinetic energy of each mass. Hence, ∥z∥2p represents the largest energy of
the masses when p = ∞ while it represents the total energy of the masses
when p = 2. Thus, both ∥z∥∞ and ∥z∥2 are suitable as a possible measure
for the control performance of the controller Ψ with respect to the unknown
disturbance in L2 when the objective is to suppress the vibration of the
masses in some way or another. This problem leads to

C1 :=
[
05×5 diag[

√
m1

2
, . . . ,

√
m5

2
]
]

(61)

D12 := 05×1 (62)

and computing the generalized H2 norms ∥F∥(∞,p)/(2,2) (p = ∞, 2) between
w and z. For simplicity, let us assume in the following that m1 = · · · =
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m5 = 1, k1 = · · · = k5 = 0.5 and c1 = · · · = c5 = 0.2 and h = 0.5. We
next consider the case when the discrete-time controller Ψ is described by
the static output feedback gain

−
[
0.5 0.5 0.5 0.5 1

]
(63)

We compute estimates of the generalized H2 norms ∥F∥(∞,p)/(2,2)

(p = ∞, 2) by taking the gridding approximation parameter N ranging from
200 to 4000. The results of the estimate ∥ΣNG∥(∞,∞)/(2,2) and the error bound

K
[∞]
ND/

√
N + K

[∞]
N0 /N associated with (42) are shown in Table 1, while the

relevant results associated with (43) are shown in Table 2.
Upper bounds as well as lower bounds of ∥F∥(∞,p)/(2,2) (p = ∞, 2) can be

obtained immediately from Corollary 3 by using the results given in Tables 1
and 2 and their gaps tend to 0 with the rate no slower than 1/

√
N . This

observation demonstrates the effectiveness of the theoretical results derived
in this paper for the numerical analysis of ∥F∥(∞,p)/(2,2) (p = ∞, 2).

Table 1: Computation results for ∥ΣNG∥(∞,∞)/(2,2) and error bound.

N 200 500 1000 2000 4000
∥ΣNG∥(∞,∞)/(2,2) 4.1043 4.1043 4.1043 4.1043 4.1043

K
[∞]
ND/

√
N +K

[∞]
N0 /N 0.0753 0.0383 0.0238 0.0152 0.0099

Table 2: Computation results for max
1≤j≤N

∥ΣNGj∥(∞,2)/(2,2) and error bound.

N 200 500 1000 2000 4000
max
1≤j≤N

∥ΣNGj∥(∞,2)/(2,2) 5.6696 5.6696 5.6696 5.6696 5.6696

K
[2]
ND/

√
N +K

[2]
N0/N 0.0957 0.0465 0.0279 0.0172 0.0109

6. Conclusion

This paper provided a method for computing the upper bounds as well as
the lower bounds of the generalizedH2 norms (i.e., the induced norms from L2

to L∞) in MIMO LTI sampled-data systems through an operator-theoretic
gridding approximation approach. As a fundamental step to tackling the
optimal controller synthesis problem of minimizing the generalized H2 norms
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of sampled-data systems, an approximately equivalent discretization method
of the generalized plant was discussed in this paper; the corresponding l∞/l2-
induced norms give the lower bounds and are readily computable [8, 9]. It
was further remarked that the discretized plant can eventually be justified as
what should be used in reducing the associated optimal controller synthesis
problem for sampled-data systems to the discrete-time controller synthesis
problem of minimizing the discrete-time generalized H2 norms (i.e., l∞/l2
induced norms); due to limited space, the basic idea was stated only as a
sort of conjecture to stress the meaning and an ultimate research goal of the
present study but further details will be presented elsewhere. It was also
shown that the gaps between the bounds converge to 0 at the rate of 1/

√
N ,

where N is the gridding approximation parameter with which the sampling
interval is fractioned in the analysis. We then examined effectiveness of the
developed method through a numerical example.
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Appendix A. Proof of Lemmas

This appendix is concerned with the proofs of Lemmas given in this paper.

Proof of Lemma 1:

It readily follows that

∥(I −HN0)D11∥(∞,p)/(2,2) = max
0≤i≤N−1

sup
0≤θ′<h′

sup
∥w∥(2,2)≤1

∣∣∣ ∫ ih′+θ′

0

C1

exp(A(ih′ + θ′ − τ)B1w(τ)dτ −
∫ ih′

0

C1 exp(A(ih
′ − τ)B1w(τ)dτ

∣∣∣
p

≤ max
0≤i≤N−1

sup
0≤θ′<h′

sup
∥w∥(2,2)≤1

∣∣∣ ∫ ih′+θ′

ih′
C1 exp(A(ih

′ + θ′ − τ)B1w(τ)dτ
∣∣∣
p

+ max
0≤i≤N−1

sup
0≤θ′<h′

sup
∥w∥(2,2)≤1

∣∣∣C1(exp(Aθ
′)− I)

∫ ih′

0

exp(A(ih′ − τ))B1w(τ)dτ
∣∣∣
p

≤ sup
∥w∥(2,2)≤1

∣∣∣ ∫ h′

0

C1 exp(A(h
′ − τ)B1w(τ)dτ

∣∣∣
p
+ sup

0≤θ′<h′

∣∣∣C1(exp(Aθ
′)− I)

∣∣∣
p/2

· sup
∥w∥(2,2)≤1

∣∣∣ ∫ (N−1)h′

0

exp(A((N − 1)h′ − τ)B1w(τ)dτ
∣∣∣
2

(A.1)
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Here, we first consider the first term of (A.1). For p = ∞, applying the
continuous-time Cauchy-Schwarz inequality leads to

sup
∥w∥(2,2)≤1

∣∣∣ ∫ h′

0

C1 exp(A(h
′ − τ)B1w(τ)dτ

∣∣∣2
∞

= max
1≤j≤nz

∫ h′

0

C1j exp(A(h
′ − θ′))B1B

T
1 exp(AT (h′ − θ′))CT

1jdθ
′

= max
1≤j≤nz

C1jWh′CT
1j = d1/2max(C1Wh′CT

1 ) (A.2)

where C1j denotes the jth row of C1. For p = 2, on the other hand, it readily
follows that

sup
∥w∥(2,2)≤1

∣∣∣ ∫ h′

0

C1 exp(A(h
′ − τ)B1w(τ)dτ

∣∣∣
2
= ∥C1B

′
11∥2/2 (A.3)

(with B′
1i defined in (45)) and this can be exactly computed with the adjoint

operator (B′
11)

∗ : Rn
2 → (L2[0, h

′))nw of B′
11 through the relation

∥C1B
′
11∥22/2 = |C1B

′
11(B

′
11)

∗CT
1 |2/2 = λmax(C1Wh′CT

1 ) (A.4)

Next, let us deal with the two factors in the second term of (A.1). It
readily follows from the Taylor expansion of exp(Aθ′) that the first factor
satisfies

sup
0≤θ′<h′

|C1(exp(Aθ
′)− I)|p/2 ≤ sup

0≤θ′<h′

∣∣∣∣∣C1

∞∑
i=1

Ai(θ′)i

i!

∣∣∣∣∣
p/2

≤ h′|C1A|p/2
∞∑
i=1

|A|i−1
2/2 (h

′)i−1

i!
≤ h′|C1A|p/2eh

′|A|2/2 (A.5)

and the second factor is nothing but ∥B′
1(N−1)∥2/2 = |V(N−1)h′|2/2. Combining

the above arguments lead to the first assertion of Lemma 1.
The second assertion of Lemma 1 follows if we note that applying the
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continuous-time Cauchy-Schwarz inequality to the first term of (A.1) derives

sup
∥w∥(2,2)≤1

∣∣∣∣∣
∫ h′

0

C1 exp(A(h
′ − θ′))B1w(θ

′)dθ′

∣∣∣∣∣
p

≤ sup
∥w∥(2,2)≤1

∫ h′

0

|C1 exp(A(h
′ − θ′))B1w(θ

′)|p dθ
′

≤ sup
∥w∥(2,2)≤1

∫ h′

0

∣∣C1 exp(A(h
′ − θ′))B1|p/2 · |w(θ′)

∣∣
2
dθ′

≤
(∫ h′

0

|C1 exp(A(h
′ − θ′))B1|2p/2dθ′

)1/2

· sup
∥w∥(2,2)≤1

(∫ h′

0

|w(θ′)|22dθ′
)1/2

≤
√
h′|C1|p/2eh

′|A|2/2 · |B1|2/2 ≤
√
h|C1|p/2eh|A|2/2 · |B1|2/2 (A.6)

and that V(N−1)h′V T
(N−1)h′ ≤ VhV

T
h .

Proof of Lemma 2:

It immediately follows that

∥(I −HN0)M1∥(∞,p)/2

= max
0≤i≤N−1

sup
0≤θ′<h′

|M1 exp(A2(ih
′ + θ′))−M1 exp(A2(ih

′))|p/2

= max
0≤i≤N−1

sup
0≤θ′<h′

|M1(exp(A2θ
′)− I)(A′

2d)
i|p/2

≤ sup
0≤θ′<h′

|M1(exp(A2θ
′)− I)|p/2 · max

0≤i≤N−1
|(A′

2d)
i|2/2 (A.7)

Here, applying the essentially the same arguments in (A.5) to the first term
of the right-hand-side of (A.7) readily derives

sup
0≤θ′<h′

|M1(exp(A2θ
′)− I)|p/2 ≤ h′|M1A2|p/2eh

′|A2|2/2 (A.8)

This together with (A.7) clearly leads to the first assertion of Lemma 2. The
second assertion of Lemma 2 follows if we note that

eh
′|A2|2/2 · max

1≤i≤N−1
|(A′

2d)
i|2/2 ≤ eh

′|A2|2/2 · e(N−1)h′|A2|2/2 = eh|A2|2/2 (A.9)
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