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Abstract 

Almost every dry season, peatland fires occur in Sumatra and Kalimantan Inlands. Dense smoke haze 

from Indonesian peatland fires (IPFs) causes impacts on health, visibility, transport and regional climate 

in Southeast Asian countries such as Indonesia, Malaysia, and Singapore. Quantitative knowledge of IPF 

source contribution to ambient aerosols in Southeast Asia (SEA) is so useful to make appropriate 

suggestions to policy makers to mitigate IPF-induced haze pollution. However, its quantitative 

contribution to ambient aerosols in SEA remains unclarified. In this study, the source contributions to 

PM2.5 were determined by the Positive Matrix Factorization (PMF) model with annual comprehensive 

observation data at Petaling Jaya on the west coast of Peninsular Malaysia, which is downwind of the 

IPF areas in Sumatra Island, during the dry (southwest monsoon: June–September) season. The average 

PM2.5 mass concentration during the whole sampling periods (Aug 2011–Jul 2012) based on the PMF 

and chemical mass closure models was determined as 20–21 μg m−3. Throughout the sampling periods, 

IPF contributed (on average) 6.1–7.0 μg m−3 to the PM2.5, or ~30% of the retrieved PM2.5 concentration. 

In particular, the PM2.5 was dominantly sourced from IPF during the southwest monsoon season (51–

55% of the total PM2.5 concentration on average). Thus, reducing the IPF burden in the PM2.5 levels 

would drastically improve the air quality (especially during the southwest monsoon season) around the 

west coast of Peninsular Malaysia. 
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1. Introduction 

Peatland is a terrestrial wetland ecosystem in which the organic matter production exceeds its 

decomposition, resulting in net accumulation (Page et al., 2006). Indonesia has the largest 

tropical peatland area (2.7 × 105 km2) in the world (Joosten, 2010) and almost every dry season, 

peatland fires occur in Sumatra and Kalimantan Inlands. As peatland fires are usually ignited 

underground and can travel large distances unseen before reappearing elsewhere, they are 

extremely difficult to extinguish (Fujii et al., 2015b). For this reason, peatland fires pose a more 

serious risk of uncontrollable burning than other sources of ignitable biomass. 

Dense smoke haze from Indonesian peatland fires (IPFs) causes impacts on health, visibility, 

transport and regional climate in Southeast Asian countries such as Indonesia, Malaysia, and 

Singapore (Betha et al., 2014, 2013; Engling et al., 2014; Fujii et al., 2016a, 2015a, 2015b, 2014; 

Harrison et al., 2009; He et al., 2010; Page et al., 2002; See et al., 2007, 2006; Tacconi, 2003). 

PM2.5 is the main constituent of the smoke haze that is chiefly responsible for adverse health and 

environmental effects (See et al., 2006). Chemical characterizations of IPF-induced smoke 

aerosols including PM2.5 have been conducted to investigate the contribution of IPFs to the air 

quality in Southeast Asia (SEA) or identify the key indicator of IPF in transboundary pollution 

countries or near fire sources (Abas et al., 2004a, 2004b; Betha et al., 2013; Fang et al., 1999; 

Fujii et al., 2016a, 2015a, 2015b, 2014; Huboyo et al., 2016; Okuda et al., 2002; See et al., 2007). 

Most of these studies were based on intensive field observations and/or the chemical speciation of 

ordinary species (ions and metals) and organic species derived from IPFs have been seldom 

focused, despite the high proportion of organic carbon (OC) (~70% of the PM2.5 mass) at the IPF 

source (Fujii et al., 2014). Based on long-term (annual) field observations, Fujii et al. (2015b) 
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reported the chemical characteristics of carbonaceous PM2.5 in Malaysia for the first time. As 

some key findings, they demonstrated that IPFs significantly affect many carbonaceous species in 

PM2.5 (e.g., OP (Pyrolysis OC), p-hydroxybenzoic acid, and heptacosane), and the OP/OC4 mass 

ratio is a useful indicator of transboundary haze pollution from IPFs at receptor sites even in light 

haze (the ratio during the haze periods were higher (> 4) than during the non-haze periods (< 

2)). Note that OP and OC4 were determined according to IMPROVE_A protocol in their study. 

In addition to chemical characterization, quantitative knowledge of IPF source contribution to 

ambient aerosols in SEA provides valuable information to policy makers to mitigate IPF-induced 

haze pollution. However, it seems to be extremely difficult to extract IPF source contribution with 

accuracy, since SEA hosts one of the most complex aerosol systems in the world (Reid et al., 

2013), especially with mixtures of a wide range of atmospheric pollutants (e.g., several types of 

biomass burning including IPF, industry, and mobile sources). See et al. (2007) and Engling et al. 

(2014) respectively reported that on hazy days, IPFs significantly contribute to the ambient 

aerosols in Indonesia (18 and 51% of PM2.5 mass) and Singapore (~76% of PM mass). Their 

analyses were conducted based on intensive field observations by chemical mass balance (CMB) 

modeling, incorporating typical chemical species such as inorganic ions and metals, and they 

mostly used source profiles in the US EPA data base (SPECIATE). Thus, the source profiles may 

not necessarily represent the actual local sources affecting the receptor sites, and the reliability is 

questionable. Besides, long-term observation data are necessary to determine quantitative source 

contribution in relation to PM2.5 ambient air quality standard. In Malaysia, the sources of ambient 

aerosols have been apportioned by the Positive Matrix Factorization (PMF) model, which 

requires no prior knowledge of the source profiles (Amil et al., 2016; Khan et al., 2016a, 2016b, 
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2015; Rahman et al., 2015). However, these studies applied the datasets of ordinary chemical 

species, and didn’t focus on the IPF source. Thus, the quantitative contribution of IPFs to ambient 

aerosols in SEA (especially in Malaysia) remains unclarified. An approach based on the source 

indicators of IPF would effectively and efficiently determine the IPF burden at the receptor sites. 

In this study, the source contributions to PM2.5 based on the annual observation data at Petaling 

Jaya on the west coast of Peninsular Malaysia, which is downwind of the IPF areas in Sumatra 

Island, during the dry (southwest monsoon: June–September) season were determined by PMF 

modeling. Here, we strongly emphasize the following key point in this study: the highest priority 

was to extract the IPF source factor and quantitatively determine the contribution of IPF to the 

annual and seasonal average PM2.5 levels based on the source indicator of IPF. Our study reveals 

the contribution of IPF source to PM2.5 concentration throughout a year for the first time in 

Malaysia and can provide valuable information for PM2.5 mitigation strategies in SEA. 

 

 

2. Material and methods 

2.1. Sampling location 

The sampling location and methods have been detailed in our former reports (Amil et al., 2016; 

Fujii et al., 2015b). Briefly, the sampling was performed on the roof of the Malaysian 

Meteorological Department’s main building (eight stories) located at Petaling Jaya in Malaysia 

(3° 06′ 09′′ N, 101° 38′ 41′′ E) from August 2011 to July 2012. Classified as an urban-industrial 

area, Petaling Jaya is located approximately 10 km from Malaysia’s capital (Kuala Lumpur), and 

is predominantly residential and industrial with high-density road traffic. 
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2.2. Sample collection and analysis 

PM2.5 samples were collected by a Tisch high-volume air sampler (model: TE-3070V-2.5-BL) 

on a pre-heated quartz fiber filter (Whatman, 500 °C for 3 h) for 24 h at a flow rate of 1.13 m3 

min-1. The OC, elemental carbon (EC), water-soluble ions, trace metals, and solvent-extractable 

organic compounds in the samples were quantified. The carbonaceous content was quantified 

using a DRI model 2001 OC/EC carbon analyzer, which employs the thermal optical-reflectance 

method under the IMPROVE_A protocol. The detailed information of OC and EC is provided in 

our previous report (Fujii et al., 2015b). The target water-soluble ions (C2O4
2-, Cl-, NO3

-, SO4
2-, 

Na+, NH4
+, K+, and Ca2+) were analyzed in aliquots taken from the quartz fiber filters. Each filter 

was extracted by ultrasonic agitation for 20 min using 5 mL deionized water. The extract was 

filtered through a PTFE syringe filter (pore size 0.45 μm) and analyzed by ion chromatography 

(an ICS-2000 (Dionex) for C2O4
2-; an HIC-10A (Shimadzu) for other ions). Metals were analyzed 

by inductively coupled plasma mass spectrometry (Elan 9000, PerkinElmer). Seven metals (Al, 

Fe, Pb, Zn, Cu, Ni, and V) were determined in this study. Detailed information of these metals is 

provided elsewhere (Amil et al., 2016). 

The solvent-extractable organic compounds were determined by the gas chromatography/mass 

spectrometry technique. The target compounds were levoglucosan, mannosan, galactosan, 

p-hydroxybenzoic acid, vanillic acid, syringic acid, and n-alkanes (C22 (docosane)–C33 

(tritriacontane)). Detailed information of these compounds is provided in our previous report 

(Fujii et al., 2015b). 
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2.3. Source apportionment 

The PM2.5 sources at the fixed receptor site were identified and characterized by the source 

apportionment tool PMF5.0 (Norris et al., 2014). PMF is a factor analysis model that solves the 

chemical mass balance equations by a weighted least-squares algorithm and with imposing 

non-negativity constraints on the factors (Hasheminassab et al., 2014; Reff et al., 2007). The PMF 

model is described in detail elsewhere (Norris et al., 2014). The main research objective of the 

present study is extracting the IPF source factor. 

The PMF calculation requires the sample species concentrations and their associated 

uncertainties as inputs. In this study, the chemical species in the PMF calculation were OC−OP 

(= OC1 + OC2 + OC3 + OC4), OP, C2O4
2-, Cl-, NO3

-, SO4
2-, Na+, NH4

+, K+, Ca2+, levoglucosan, 

mannosan, galactosan, p-hydroxybenzoic acid, vanillic acid, syringic acid, n-alkanes (C22 

(docosane)–C33 (tritriacontane)), Al, Fe, Pb, Zn, Cu, Ni, and V. Referring to previous studies, the 

indicators of the IPF source factor were selected as OP, p-hydroxybenzoic acid, and C25–C33 

(Fujii et al., 2016a, 2015a, 2015b). Two input data sets were constructed as follows. First, the 

concentrations of species below the detection limit (DL: Limit of Detection in this study) were set 

to DL/2. For data points at or below the DL, the uncertainty (σ) was set to 5/6 DL; above the DL, 

the uncertainty was calculated as ((percentage uncertainty × concentration)2 + DL2)1/2. The 

percentage uncertainty is sourced from the analytical uncertainty introduced through chemical 

analysis methods. The errors associated with the modeling assumptions, such as variations in the 

source profiles and chemical transformations in the atmosphere, were incorporated by adding a 

modeling uncertainty of 5% to each species (Yli-Tuomi et al., 2015). 

To categorize the species, all variables were analyzed under the signal-to-noise (S/N) criterion, 
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in which variables with S/N > 2 and 0.2 < S/N < 2 were categorized as strong and weak, 

respectively. The weak variables were then down-weighed by tripling the user-provided 

uncertainty. Although previous studies regarded variables with S/N < 0.2 as bad variables and 

excluded them from the PMF calculation (Achad et al., 2014; Richard et al., 2011), there were no 

bad variables in this study. Instead, vanillic acid and syringic acid were categorized as weak 

variables, and the others were categorized as strong variables. 

Following Xie et al. (2012), the factor number (p) was determined by two criteria: the 

interpretability of the resultant PMF factor profiles and the success rate of factor matching in the 

bootstrap runs. One-hundred replicate data sets were generated from the original data set by 

resampling blocks of samples (where the block size was chosen algorithmically) with 

replacement using a stationary block bootstrap technique (Xie et al., 2012). Each dataset was 

independently analyzed by PMF calculations. The minimum correlation value, seed set, and 

block size in the bootstrapping procedure were set to 0.6, 20, and 5, respectively. 

 

 

3. Results and discussion 

3.1. Exploration of PMF solution 

The optimal solution of the PMF model was determined by varying the number of factors from 

three to six. The simulation statistics of all data sets in the PMF calculations are summarized in 

Table 1. The three- and four-factor solutions yielded factor matching rates above 80%, while the 

five- and six-factor solutions showed low matching rates. Besides a high factor-matching rates (> 

80%), the four-factor solution attained the most physically interpretable results. The three-factor 
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solution resulted in a mixing of more different sources in one factor compared to the four-factor 

solution. Thus, we regarded the four-factor solution as the optimal solution. 

 

3.2. Factor identification 

The relative contributions of the chemical species in the extracted four factors are shown in Fig. 

1. Factor 1 is heavily loaded with Cl-, NO3
-, and Na+, suggesting mixed sources of sea salt and 

nitrate (SS + Nitrate). Factor 2 is dominated by OP, C2O4
2-, NH4

+, levoglucosan, mannosan, 

galactosan, p-hydroxybenzoic acid, and C25–C33, implying an IPF source. Factor 3 contains large 

amounts of C2O4
2-, SO4

2-, NH4
+, Ni, and V, suggesting a heavy oil combustion source. Factor 4 is 

heavily loaded with multiple chemical species (e.g., EC, Ca2+, n-alkanes, Al, Fe, Pb, Zn, and Cu) 

and we assigned it to Unknown mixed sources. Based on the report by Kahn et al. (2016) (their 

sampling site is Bangi, which is located ~30 km southeast away from Petaling Jaya), factor 4 may 

include the sources such as vehicle related emission, soil dust, and coal combustion sources. To 

separately extract these sources, it is needed to prepare a dataset of additional individual source 

indicators. 

 

3.3. Source apportionment of major chemical species 

This subsection assigns the major chemical species in PM2.5 (OC, EC, and SO4
2-). The ratios of 

predicted to measured OC, EC, and SO4
2- concentrations were 1.0 ± 0.17 (average ± standard 

deviation), 1.0 ± 0.25, and 1.0 ± 0.20, respectively, confirming that the resolved sources 

effectively account for most of the variation in these chemical species (Fig. 2). 

Figure 3 presents the time-series of the source apportionment of OC, EC, and SO4
2- in the 
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analyzed PM2.5. In addition, the statistical results of the source apportionment of these species for 

each season are shown in Table 2. During the southwest monsoon season from June to September, 

IPF contributes dominantly to OC (5.7 μgC m−3 of the OC concentration on average, or 56% of 

the OC mass), followed by Unknown (1.9 μgC m-3). During the northeast monsoon season from 

December to March, the OC concentration is contributed mostly by Unknown (3.0 μgC m−3 on 

average), and secondly by heavy oil combustion (1.1 μgC m−3). The OP/OC4 mass ratio has been 

suggested as a useful indicator of IPF (Fujii et al., 2016a). The OC concentrations contributed by 

IPF were well correlated with the OP/OC4 mass ratios during the sampling periods as shown in 

Fig. 4 (Pearson correlation coefficient = 0.93, p value < 0.001). This supports the assignment of 

the PMF factor as the IPF source in the present study. Regarding EC, Unknown is the dominant 

source of EC in both seasons (southwest monsoon season: 1.1 μgC m-3, northeast monsoon 

season: 1.7 μgC m-3). The SO4
2- levels are dominated by heavy oil combustion in both seasons 

(southwest monsoon season: 2.4 μg m-3, northeast monsoon season: 1.4 μg m-3). 

 

3.4. Source apportionment of PM2.5 mass 

To estimate the contributions of the IPF and other sources identified in the PMF calculation to 

the PM2.5 mass, we applied a chemical mass closure model. Six categories were selected in this 

model: organic matter (OM), EC, NH4
+, SO4

2- derived from non-sea salt (nss-SO4
2-), K+ derived 

from non-sea salt (nss-K+), and sea salt. The concentrations of each category in each source were 

calculated by the following equations. 
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 [Reconstructed PM2.5] = [PM2.5]P + [PM2.5]Others (1) 

 [PM2.5]P = k[OC]P + [EC]P + [SO4
2-]P + [NH4

+]P + [K+]P (2) 

 

[PM2.5]Others = 1.6([OC]H + [OC]SN + [OC]U) + ([EC]H + [EC]SN + [EC]U) 

+ ([SO4
2-]H + ([SO4

2-]SN–0.252[Na+]SN) + [SO4
2-]U)  

+ ([NH4
+]H + [NH4

+]SN + [NH4
+]U) 

+ ([K+]H + ([K+]SN–0.037[Na+]SN) + [K+]U) 

+ (1.47[Na+]SN + [Cl-]SN) 

(3) 

 

where [Reconstructed PM2.5] denotes the PM2.5 mass concentration calculated by the mass 

closure model based on the PMF result. [X]i is the concentration of X contributed by source i (the 

subscripts P, H, SN, and U refer to IPF, heavy oil combustion, SS + Nitrate, and Unknown, 

respectively). Turpin and Lim (2001) concluded that 1.6 ± 0.2 as an OM to OC mass conversion 

factor was a better estimate for urban areas, whereas 2.2–2.6 for aerosols originating from 

biomass burning (Yttri et al., 2007). In this study, to determine the amounts of OM in IPF and the 

other sources, the OCs in IPF and the other sources were multiplied by 2.2–2.6 (= k) and 1.6, 

respectively. As Petaling Jaya is urban-industrial area, we assume that amounts of OM not 

influenced by IPF source can be calculated by 1.6[OC]. In Eq. (3), the terms ([SO4
2-]SN–

0.252[Na+]SN), ([K+]SN–0.037[Na+]SN), and (1.47[Na+]SN + [Cl-]SN) compute the concentrations of 

nss-SO4
2-, nss-K+ in SN, and sea salt, respectively. Chemical mass closure models usually include 

a crustal matter category. However, the present study excludes the crustal matter because we lack 

sufficient data on the major components of crustal matter, such as Si and Ti. Thus, exclusion of 

this category would lead to underestimation of the PM2.5 mass concentration in the present 

calculation. However, source contribution of crustal matter to PM2.5 should be low, because 
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aerosols of crustal origin are predominantly in the coarse fraction (Seinfeld and Pandis, 2016). In 

fact, crustal matter in PM2.5 at Bangi, which is close to Petaling Jaya was estimated as ~4.0 % of 

PM2.5 mass (Fujii et al., 2016b). Thus, exclusion of crustal matter would lead to a several % 

underestimation in the present calculation. 

Figure 5 shows a time-series of the PM2.5 mass concentration during the study periods, 

reconstructed by the chemical mass closure model based on the PMF results. The PM2.5 was 

dominantly sourced from IPF during the southwest monsoon season (51–55% of the total PM2.5 

concentration on average) and large contribution was clearly observed in the high PM2.5 mass 

concentration events. Particularly, PM2.5 for 11 September 2011 and 15 June 2012 are considered 

to be obviously affected by IPF source based on the backward air trajectory data by the Hybrid 

Single Particle Lagrangian Integrated model (Draxler and Hess, 2014). In contrast, the source 

contribution of IPF during the northeast monsoon season was negligible. The data of monthly 

hotspot counts in the Sumatra Island and backward air trajectories shown in our former report 

(Fujii et al., 2015b) support this conclusion. 

From the PMF and chemical mass closure models, the average PM2.5 mass concentration was 

determined as 20–21 μg m−3 during the whole sampling periods (Aug 2011–Jul 2012). In Kuala 

Lumpur (~10 km from the sampling site), the annual average PM2.5 mass concentration was 24 

μg m−3 in 2011 (Rahman et al., 2015), consistent with our result. During the whole sampling 

periods, IPF contributed (on average) 6.1–7.0 μg m−3 to the PM2.5 mass concentration, or ~30% 

of the reconstructed PM2.5 concentration. 
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4. Conclusion 

The source contributions to PM2.5 based on the annual observation data at Petaling Jaya on the 

west coast of Peninsular Malaysia, which is downwind of the IPF areas in Sumatra Island, during 

the dry season were determined by PMF modeling. The following four factors were extracted in 

this study: (1) SS + Nitrate, (2) IPF, (3) Heavy oil, and (4) Unknown. During the southwest and 

northeast monsoon season, IPF (5.7 μgC m−3) and Unknown (3.0 μgC m−3) contributes 

dominantly to OC, respectively. Regarding EC, Unknown is the dominant source of EC in both 

seasons (southwest monsoon season: 1.1 μgC m-3, northeast monsoon season: 1.7 μgC m-3). The 

SO4
2- levels are dominated by heavy oil combustion in both seasons (southwest monsoon season: 

2.4 μg m-3, northeast monsoon season: 1.4 μg m-3). The average PM2.5 mass concentration during 

the whole sampling periods (Aug 2011–Jul 2012) based on the PMF and chemical mass closure 

models was determined as 20–21 μg m−3. Throughout the sampling periods, IPF contributed an 

estimated 6.1–7.0 μg m−3 to the PM2.5, or ~30% of the retrieved PM2.5 concentration. In particular, 

the PM2.5 was dominantly sourced from IPF during the southwest monsoon season (51–55% of 

the total PM2.5 concentration on average). Thus, reducing the IPF burden in the PM2.5 levels 

would drastically improve the air quality (especially during the southwest monsoon season) 

around the west coast of Peninsular Malaysia. 
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Table Captions 

Table 1. Simulation statistics of all data sets in the PMF model. 

Table 2. Source contributions of OC, EC, and SO4
2- in PM2.5 for each season (average ± standard 

deviation).  
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No. of factor 3 4 5 6 

No. of samples 81 81 81 81 
No. of species 41 41 41 41 
No. of bootstrap replicate datasets 100 100 100 100 

No. of data sets for which PMF did not 
converge to a solution 0 0 0 0 

No. of data sets for unmatched 
factors* 1 16 48 34 

*No. of bootstrapped cases in which the bootstrapped factors were poorly-reproducible and not 

uniquely matched to the base case factor. 

 

 

 

Table 1. 
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IPFc Heavy oil SS + Nitrated Unknown 

OC 
[μgC m-3] 

SWa monsoon 
(Jun–Sep) 

5.7 ± 6.9 1.8 ± 1.3 0.67 ± 0.63 1.9 ± 1.3 

Post-monsoon 
(Oct–Nov) 

0.80 ± 1.2 1.1 ± 0.77 1.1 ± 0.62 2.2 ± 0.98 

NEb monsoon 
(Dec–Mar) 

0.36 ± 0.38 1.1 ± 0.76 0.85 ± 0.43 3.0 ± 0.84 

Pre-monsoon 
(Apr–May) 

0.35 ± 0.48 1.3 ± 1.4 1.3 ± 0.39 1.6 ± 0.84 

 
     

EC 
[μgC m-3] 

SW monsoon 
(Jun–Sep) 

0.47 ± 0.57 0.83 ± 0.59 0.61 ± 0.57 1.1 ± 0.73 

Post-monsoon 
(Oct–Nov) 

0.066 ± 0.095 0.51 ± 0.36 0.96 ± 0.56 1.3 ± 0.55 

NE monsoon 
(Dec–Mar) 

0.030 ± 0.031 0.50 ± 0.35 0.76 ± 0.39 1.7 ± 0.47 

Pre-monsoon 
(Apr–May) 

0.029 ± 0.040 0.62 ± 0.65 1.2 ± 0.36 0.92 ± 0.48 

 
     

SO4
2- 

[μg m-3] 

SW monsoon 
(Jun–Sep) 

1.3 ± 1.5 2.4 ± 1.7 0.49 ± 0.46 0.14 ± 0.090 

Post-monsoon 
(Oct–Nov) 

0.18 ± 0.26 1.5 ± 1.0 0.77 ± 0.45 0.16 ± 0.069 

NE monsoon 
(Dec–Mar) 

0.081 ± 0.085 1.4 ± 1.0 0.62 ± 0.32 0.21 ± 0.059 

Pre-monsoon 
(Apr–May) 

0.079 ± 0.11 1.8 ± 1.9 0.94 ± 0.29 0.11 ± 0.059 

aSW = southwest. bNE = northeast. cIPF = Indonesian peatland fire. dSS + Nitrate = mixed 

sources of sea salt and nitrate. 

Table 2. 
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Figure Captions 

Fig. 1. Relative contribution of each chemical species in the extracted PMF factors. LG = 

levoglucosan, MN = mannosan, GL = galactosan, pHBA = p-hydroxybenzoic acid, VA = vanillic 

acid, SA = syringic acid. 

Fig. 2. Comparison between the predicted and measured PM2.5 concentrations of OC, EC, and 

SO4
2-. 

Fig. 3. Time series of source apportionment of OC, EC, and SO4
2- in PM2.5 during the sampling 

periods. 

Fig. 4. Relationship between OC contributed by Indonesian peatland fire (IPF) and OP/OC4 mass 

ratios. 

Fig. 5. Time series of source apportionment of PM2.5 during the sampling periods. Error bars 

represent estimates of uncertainty ranges, which derive from an uncertainty of OM to OC 

conversion factor for Indonesian peatland fire (IPF) source. 

Fig. 6. Backward air trajectories during the sampling periods. The 3-days backward air 

trajectories every 3 hours with 500 m above ground level arriving at the sampling site in local 

time were calculated in (a) 12 September 2011 and (b) 15 June 2012 by the Hybrid Single 

Particle Lagrangian Integrated model (Draxler and Hess, 2004) based on meteorological data 

obtained from the Global Data Assimilation. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6 

(a) 11 Sep. 2011 

(b) 15 Jun. 2012 
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