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Abstract

This paper deals with the L1 analysis of stable finite-dimensional linear time-invariant (LTI)
systems, by which we mean the computation of the L∞-induced norm of these systems. To
compute this norm, we need to integrate the absolute value of the impulse response of the given
system, which corresponds to the kernel function in the convolution formula for the input/
output relation. However, it is very difficult to compute this integral exactly or even approx-
imately with an explicit upper bound and lower bound. We first review an approach named
input approximation, in which the input of the LTI system is approximated by a staircase or
piecewise linear function and computation methods for an upper bound and lower bound of
the L∞-induced norm are given. We further develop another approach using an idea of kernel
approximation, in which the kernel function in the convolution is approximated by a staircase
or piecewise linear function. These approaches are introduced through fast-lifting, by which the
interval [0, h) with a sufficiently large h is divided into M subintervals with an equal width.
It is then shown that the approximation errors in staircase or piecewise linear approximation
are ensured to be reciprocally proportional to M or M2, respectively. The effectiveness of the
proposed methods is demonstrated through numerical examples.

1 Introduction

The L∞-induced norm of control systems is the peak magnitude of the output for the worst bounded
persistent input with a unit peak magnitude. There have been a number of studies on the L∞-
induced norm problem associated with a linear time-invariant (LTI) system [1–3] and a positive
system [4,5] since evaluating the peak magnitude of the output is very important in many control
systems. Because this norm corresponds to the L1 norm of the impulse response of the system
in the (strictly causal) finite-dimensional single-input/single-output (SISO) LTI case, the study
associated with the treatment of the L∞-induced norm has been called the L1 problem. This
problem is pertinent to dealing with bounded persistent disturbances such as steps and sinusoids,
which are often encountered in control systems. Accurate computation of the L∞-induced norm
associated with an LTI system is very hard since we need to integrate the absolute value (i.e., we
need to compute the L1 norm) of the impulse response of the LTI system, which corresponds to
the kernel function in the convolution formula for its input/output relation, and it is very difficult
to compute this integral exactly. To the best of authors’ knowledge, an exact computation of the
integral could be done only when the relevant system is a positive finite-dimensional LTI system [6]
(for which the impulse response is nonnegative and thus the operation of taking its absolute value
may be eliminated, leading to an analytic formula for the integral), and there have been no studies
on giving an exact computation of the L∞-induced norm as well as its upper and lower bounds
associated with (not necessarily positive) finite-dimensional LTI systems. This paper studies to
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compute upper and lower bounds in such a way that these bounds can be made as close to each
other as one desires.

In this paper, we provide two simple approaches named input approximation and kernel ap-
proximation for computing the L∞-induced norm associated with a stable finite-dimensional LTI
system. They are two different approaches in terms of the viewpoint behind approximations but
share a common technical feature that they employ a staircase approximation or piecewise linear
approximation scheme of functions. In these input and kernel approximation approaches, we first
apply a truncation idea, by which the time interval [0,∞) is divided into [0, h) and [h,∞) with a
sufficiently large constant h. Then, the behavior of the system on the time interval [0, h) is treated
as accurately as possible while that on [h,∞) in a comparatively simple way. This is because the
effect of the latter interval on the L∞-induced norm is very small when h is large enough; this
implies that evaluating the effect of the latter interval in a relatively rough way does not cause
severe deterioration of the resulting upper and lower bounds for the induced norm, as long as the
effect of the former interval is evaluated adequately. Such an accurate evaluation is achieved by first
applying to the signals on the former interval the fast-lifting [7] treatment, which has an integer
parameter M and simply divides (without applying sampling of signals) the time interval [0, h) into
M subintervals with an equal width (in the context of the present paper, the role of fast-lifting
is essentially the same as the conventional lifting [8–10] in the studies of sampled-data systems
and time-delay systems, except that the original interval [0, h) is finite). With this fast-lifting
treatment, the input as well as the kernel function associated with the convolution formula for LTI
systems can be dealt with independently on each of the M subintervals. Fast-lifting plays a role in
reducing the size of the intervals to be directly dealt with, and provides us with improved accuracy
in the approximation of the input and kernel functions. Indeed, it is shown that the staircase and
piecewise linear approximation schemes are applicable also to multi-input multi-output (MIMO)
systems and lead to approximation errors in the computation of the L∞-induced norm converging
to 0 at the rate of 1/M and 1/M2, respectively, in the kernel approximation approach. This is a
parallel result to that in the input approximation approach, which follows easily by the arguments
in [11] associated with the L∞[0, h)-induced norm computation of compression operators (describ-
ing the input-output mapping of the LTI system over the interval [0, h)), as long as the convergence
rate is concerned. To reveal the mutual connection between the input and kernel approximation
approaches, however, we further investigate the relationship between the error bounds in the input
and kernel approximation approaches and also give explicit upper and lower bounds for the L∞-
induced norms obtained by these two approaches. Finally, we demonstrate the effectiveness of the
resulting four types of computation methods through numerical examples.

In the following, we use the notations N and Rν
∞ to denote the set of positive integers and

the Banach space of ν-dimensional real vectors equipped with vector ∞-norm, respectively. The
notation ∥ · ∥ is used to mean either the L∞[0, h) norm of a vector function, i.e.,

∥f(·)∥ := max
j

ess sup
0≤t<h

|fj(t)| (1)

(or that with h replaced by h/M or ∞), the L∞[0, h)-induced norm (or that with h/M or ∞ instead
of h) of an operator, or the ∞-norm of a matrix or a vector, i.e., for T ∈ Rm×n

∞ ,

∥T∥ := max
i=1,...,m

n∑
j=1

|aij | (2)

whose distinction will be clear from the context.
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2 L∞-Induced Norm and Truncation

Let us consider the stable finite-dimensional linear time-invariant (FDLTI) system

dx

dt
= Ax+Bw, z = Cx+Dw (3)

where x(t) ∈ Rn
∞ is the state, w(t) ∈ Rnw

∞ is the input and z(t) ∈ Rnz
∞ is the output. It is well

known that

z(t) =

∫ t

0
C exp(A(t− τ))Bw(τ)dτ +Dw(t) =: (F∞w)(t) (0 ≤ t < ∞) (4)

where F∞ is the operator from (L∞)nw to (L∞)nz associated with the input/output relation of the
stable system (3). The L∞-induced norm of the system (3) is given by

sup
∥w∥≤1

∥(F∞w)(·)∥ =: ∥F∞∥ (5)

where ∥ · ∥ on the left hand side denotes the L∞ norm. For simplicity, let us assume D = 0 for a
while; we will return to the general case with D ̸= 0 before we provide our final results. Then, by
noting that (F∞w)(t) is a continuous function, the L∞-induced norm ∥F∞∥ is described by

∥F∞∥ = sup
∥w∥≤1

sup
t

∥(F∞w)(t)∥ (6)

On the other hand, since the system (3) is LTI, it readily follows from the property of L∞ that

sup
∥w∥≤1

∥(F∞w)(T1)∥ ≤ sup
∥w∥≤1

∥(F∞w)(T2)∥ (7)

whenever 0 ≤ T1 < T2. This is because for every w1 ∈ L∞ such that ∥w1∥ ≤ 1, the function w2

defined by delaying w1 as

w2(t) :=

{
0 0 ≤ t < T2 − T1

w1(t− T2 + T1) t ≥ T2 − T1

(8)

belongs to L∞, satisfies ∥w2∥ ≤ 1, and the corresponding output F∞w2 becomes F∞w1 delayed by
T2 − T1. By combining these arguments, the L∞-induced norm ∥F∞∥ can be rearranged as

∥F∞∥ = sup
∥w∥≤1

lim
t→∞

∥(F∞w)(t)∥ = sup
∥w∥≤1

lim
t→∞

∥∥∥∥∫ t

0
C exp(A(t− τ))Bw(τ)dτ +Dw(t)

∥∥∥∥
= sup

∥w∥≤1
lim
t→∞

∥∥∥∥∫ t

0
C exp(Aθ)Bw(t− θ)dθ +Dw(t)

∥∥∥∥
= sup

∥u∥≤1
lim
t→∞

∥∥∥∥∫ t

0
C exp(Aθ)Bu(θ)dθ +Du(0)

∥∥∥∥
=: sup

∥u∥≤1
lim
t→∞

∥(Fu)(t)∥ =: ∥F∥ (9)

where the equality in the third line is validated by letting θ := t−τ and considering u(θ) := w(t−θ)
for 0 ≤ θ ≤ t. Hence, this paper computes ∥F∞∥ by computing the L∞-induced norm ∥F∥ instead
because of some simplicities in the following arguments.
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Remark 1 Even though we have been assuming for a while that D = 0 as mentioned above, note
that F has been defined in (9) for a general D for later purposes.

To compute ∥F∥ when D = 0, we first introduce a truncation idea of F . We thus take a
sufficiently large h. Without loss of generality (see the limit in the last line of (9)), we then take t
larger than h and decompose F into

(Fu)(t) = F−
h u+ (F+

h u)(t) (10)

where

F−
h u :=

∫ h

0
C exp(Aθ)Bu(θ)dθ, (F+

h u)(t) :=

∫ t

h
C exp(Aθ)Bu(θ)dθ (11)

Then, we have

∥F−
h ∥ − ∥F+

h ∥ ≤ ∥F∥ ≤ ∥F−
h ∥+ ∥F+

h ∥ (12)

where

∥F−
h ∥ := sup

∥u∥≤1
∥F−

h u∥, ∥F+
h ∥ := sup

∥u∥≤1
lim
t→∞

∥(F+
h u)(t)∥ (13)

It will be explained in Section 4 that ∥F+
h ∥ has an upper bound proportional to ∥C exp(Ah)∥ and

the latter norm becomes arbitrarily small by taking h sufficiently large by the stability assumption
of (3). Hence, our approach to computing ∥F∥ uses (12), in which ∥F−

h ∥ is computed as accurately
as possible while the computation of ∥F+

h ∥ is treated in a comparatively simple way; we aim at
computing upper and lower bounds of the L∞-induced norm ∥F∥ through approximations of F−

h

and an upper bound computation of ∥F+
h ∥. The choice of h (as well as other parameters to be

introduced) will be discussed in Section 4.

3 Fast-lifting Treatment of F−
h and Computation of ∥F−

h ∥

In this section, we suppose that h is given and aim at computing upper and lower bounds of ∥F−
h ∥.

This is because a closed-form expression for this norm (can readily be obtained but) requires us
to compute the integral of the absolute value of each entry of the matrix function C exp(Aθ)B.
Since it is very hard to perform such computations exactly, we consider computing the norm
approximately but in such a way that its upper and lower bounds are available. To achieve this goal,
we introduce input or kernel1 approximation, where the former is related to u(θ) while the latter to
C exp(Aθ)B. They are two different approaches in terms of the viewpoint behind approximations
but share a common technical feature that they use either a staircase approximation or piecewise
linear approximation scheme of (either the input or kernel) functions. Furthermore, the associated
approximation errors converge to 0 at the rate of 1/M and 1/M2 in staircase approximation and
piecewise linear approximation, respectively. Here, M is the parameter of fast-lifting [7] applied
to subdivide the interval [0, h) into M subintervals with an equal width, as a preliminary step to
develop such approximation schemes.

To describe the details of the approximate computation methods for ∥F−
h ∥, we first review

fast-lifting [7] (which in the context of the present paper is nothing but lifting [8–10] applied to
1Even though this term should make sense only such a part of (9) relevant to w is referred to, we retain this term

with a slight abuse of terminology even when we view such a part of (9) relevant to u.
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signals with finite duration). For M ∈ N and h′ := h/M , fast-lifting is defined as the mapping
from f ∈ (L∞[0, h))ν to f̌ := [(f (1))T · · · (f (M))T ]T ∈ (L∞[0, h′))Mν , and is denoted by f̌ := LMf ,
where

f (i)(θ′) := f((i− 1)h′ + θ′) (0 ≤ θ′ < h′) (14)

It is easy to see from the fast-lifting treatment of u(θ) (0 ≤ θ < h) that the operation on F−
h u is

described by

F−
h u =

M∑
i=1

C(A′
d)

i−1B′u(i) (15)

where

B′u(i) :=

∫ h′

0
exp(Aθ′)Bu(i)(θ′)dθ′, A′

d := exp(Ah′) (16)

Note that right hand side of (15) corresponds to the expanded representation of F−
h L−1

M ǔ, where
ǔ = LMu = [(u(1))T , · · · , (u(M))T ]T .

It readily follows that

∥F−
h ∥ = ∥F−

h L−1
M ∥ (17)

where ∥·∥ on the right hand side denotes the induced norm from (L∞[0, h′))Mnw to Rnz
∞ . Regarding

the right hand side, it follows from (15) that the operator F−
h L−1

M is described by

F−
h L−1

M = C ′
dMB′ (18)

where

C ′
dM =

[
C CA′

d · · · C(A′
d)

M−1
]

(19)

and (·) denotes diag[(·), · · · , (·)] consisting of M copies of (·).
As mentioned before, it is difficult to compute ∥F−

h ∥ exactly since computing the integral of
the absolute value of each entry of the matrix function C exp(Aθ)B is very hard. We thus aim
at its approximate computation, for which the above application of fast-lifting is helpful when we
are to compute ∥F−

h ∥ by computing ∥F−
h L−1

M ∥ = ∥C ′
dMB′∥ instead. This is because the input and

kernel function C exp(Aθ′)B, 0 ≤ θ ≤ h′ associated with the operator B′ are defined on a smaller
interval than the interval [0, h] on which F−

h is defined. This provides us with a better chance
for more accurate approximation. In particular, we aim at computing upper and lower bounds of
∥F−

h ∥ through the input or kernel approximation approach.

3.1 Review of Input Approximation Approach

In this subsection, we review the input approximation idea developed in [11,12], in which constant
and linear approximations to the input of B′ (which by (18) lead to staircase and piecewise linear
approximations to the input of F−

h ) are introduced for computing ∥F−
h ∥, as well as the associated

convergence rates in M . It is important to note from our preceding arguments that ∥F−
h ∥ is nothing

but the L∞[0, h)-induced norm of the compression operator on [0, h) associated with the FDLTI
system (3). Hence, the following descriptions in this subsection is nothing but the review of our
recent results in [11].
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3.1.1 Staircase approximation

Consider the averaging operator J′
0 : (L∞[0, h′))nw → (L∞[0, h′))nw [11, 12] defined by

(J′
0u)(θ

′) =
1

h′

∫ h′

0
u(τ ′)dτ ′ (0 ≤ θ′ < h′) (20)

and the operator B′
i0 : (L∞[0, h))nw → Rn

∞ defined as B′
i0 := B′J′

0, where the subscript i stands for
input approximation. In other words, introducing the operator B′

i0 corresponds to restricting the
input of B′ to constant functions and that B′

i0u = B′u whenever u is a constant function.
We next consider the operator F−

hM i0 obtained by replacing B′ with B′
i0 in (18):

F−
hM i0 = C ′

dMB′
i0 (21)

It is easy to see that F−
hM i0 is the fast-lifted counterpart to the staircase approximation of F−

h (under

the input approximation approach). When we consider ∥F−
hM i0∥ = ∥C ′

dMB′
i0∥ as an approximation

of ∥F∥ (recall (12) and (17)), it is easy to see that the input of B′
i0 may be confined to constant

vector functions. In this case, we may replace C ′
dMB′

i0 with C ′
dMB′

0d by identifying constant vector
functions with constant vectors, where

B′
0d :=

∫ h′

0
exp(Aθ′)Bdθ′ (22)

This implies that ∥F−
hM i0∥ can be computed exactly and (after the recovery of the treatment of D)

leads to the following theorem [11], where

F−
hM i0 :=

[
CB′

0d · · · C(A′
d)

M−1B′
0d D

]
(23)

Theorem 1 The inequality

∥F−
hM i0∥ ≤ ∥F−

h ∥ ≤ ∥F−
hM i0∥+

KM i0

M
(24)

holds with KM i0 given by

KM i0 :=
h2

M
∥C ′

dM∥ · ∥A∥ · ∥B∥e∥A∥h/M (25)

Furthermore, KM i0 has the following uniform upper bound with respect to M :

KU
i0 := h2∥C∥ · ∥A∥ · ∥B∥e2∥A∥h (26)

Remark 2 The second assertion of Theorem 1 can be proved easily if we note from (19) that

∥C ′
dM∥ ≤ M∥C∥e∥A∥h (27)

The same arguments are repeatedly applied to the arguments associated with KU
i1 , KU

k0 and KU
k1 in

Theorems 2, 3 and 4, respectively.

Theorem 1 implies that an upper bound and a lower bound of ∥F−
h ∥ can be computed through

matrix ∞-norm computations, and as the fast-lifting parameter M becomes larger, the gap between
the upper and lower bounds tends to 0 at no slower convergence rate than 1/M .
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3.1.2 Piecewise linear approximation

Following again the arguments in [11], we next introduce the ‘linearizing’ operator J′
1 : (L∞[0, h′))nw →

(L∞[0, h′))nw defined as

(J′
1u)(θ

′) =

∫ h′

0
f0(τ

′)u(τ ′)dτ ′ + θ′
∫ h′

0
f1(τ

′)u(τ ′)dτ ′ (28)

where the scalar-valued functions f0(τ
′) and f1(τ

′) [11,12] are given by

f0(τ
′) = − 6

(h′)2
τ ′ +

4

h′
, f1(τ

′) =
12

(h′)3
τ ′ − 6

(h′)2
(29)

See [11] for the rationale for taking such specific functions; among important properties of J′
1 is

that J′
1u = u whenever u is a linear function. Let us further introduce the operator B′

i1 := B′J′
1.

Introducing this operator is equivalent to restricting the input of B′ to linear functions, and B′
i1u =

B′u whenever u is a linear function.
We next consider the operator F−

hM i1 obtained by replacing B′ with B′
i1 in (18):

F−
hM i1 = C ′

dMB′
i1 (30)

It is easy to see that F−
hM i1 is the fast-lifted counterpart to the piecewise linear approximation of

F−
h (under the input approximation approach). As discussed in [11], ∥F−

hM i1∥ can also be computed
exactly, and (after the recovery of the treatment of D) we are led to Theorem 2 given below, whose
statement requires some preparations as follows: Let Tj (j = 1, · · · ,M) be the matrix consisting
of the L1[0, h

′) norm of each entry of the matrix linear function

Sj0 + Sj1θ
′ := C(A′

d)
j−1(G0 +G1θ

′) (31)

where the matrices G0 and G1 are defined as

G0 := − 6

(h′)2
B′

1d +
4

h′
B′

0d, G1 :=
12

(h′)3
B′

1d −
6

(h′)2
B′

0d (32)

through the matrices B′
0d and

B′
1d :=

∫ h′

0
exp(Aθ′)θ′Bdθ′ (33)

Note that the L1[0, h
′) norm of a scalar function f on [0, h′) is defined as

∫ h′

0 |f(t)|dt. Defining the
matrix

F−
hM i1 :=

[
T1 · · · TM D

]
(34)

we are led to the following theorem [11].

Theorem 2 The inequality

∥F−
hM i1∥ −

KM i1

M2
≤ ∥F−

h ∥ ≤ ∥F−
hM i1∥+

KM i1

M2
(35)

holds with KM i1 given by

KM i1 :=
h3

2M
∥C ′

dM∥ · ∥A∥2 · ∥B∥e∥A∥h/M (36)

Furthermore, KM i1 has the following uniform upper bound with respect to M :

KU
i1 :=

h3

2
∥C∥ · ∥A∥2∥B∥e2∥A∥h (37)
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Theorem 2 implies that an upper bound and a lower bound of ∥F−
h ∥ can be computed through

the matrix ∞-norm ∥F−
hM i1∥, and as the fast-lifting parameter M becomes larger, the gap between

the upper and lower bounds tends to 0 at no slower convergence rate than 1/M2.

Remark 3 We note that FDLTI systems are a special case of sampled-data systems and the input
approximation approach in the present paper has been taken also in the L∞-induced norm compu-
tation of sampled-data systems [12] (derived by extending the arguments in [11] developed for the
L∞[0, h)-induced norm computation of compression operators). Hence, Theorems 1 and 2 reviewed
above for the input approximation approach can be interpreted to follow from the arguments in [12].

3.2 Kernel Approximation Approach

This subsection proceeds to one of the main arguments in this paper, in which we develop a new
framework for computing ∥F−

h ∥ by using an idea of kernel approximation. More precisely, we apply
staircase and piecewise linear approximations to the kernel function C exp(Aθ)B (or more precisely,
constant and linear approximations of the kernel function exp(Aθ′)B, 0 ≤ θ′ < h′) and show the
associated convergence rates in M .

3.2.1 Staircase approximation

We introduce the operator B′
k0 : (L∞[0, h′))nw → Rn

∞ defined as

B′
k0u :=

∫ h′

0
Bu(θ′)dθ′ (38)

where the subscript k stands for kernel approximation. Introducing the operator B′
k0 corresponds

to the zero-order approximation of the kernel function exp(Aθ′)B =
∞∑
i=0

(Aθ′)i

i!
B of the operator

B′.
We next consider the operator F−

hMk0 obtained by replacing B′ with B′
k0 in (18):

F−
hMk0 := C ′

dMB′
k0 (39)

It is easy to see that F−
hMk0 is the fast-lifted counterpart to the staircase approximation of F−

h (under
the kernel approximation approach). This paper shows that ∥F−

hMk0∥ can be computed exactly and
tends to ∥F−

h ∥ as M → ∞. The following two lemmas play important roles in establishing the
above facts and the associated convergence rate; we remark that the treatment of D has been
recovered in the second lemma.

Lemma 1 The following inequality holds:

∥B′ −B′
k0∥ ≤ h2

2M2
∥A∥ · ∥B∥e∥A∥h/M (40)

Lemma 2 ∥F−
hMk0∥ coincides with the ∞-norm of the finite-dimensional matrix F−

hMk0 given by

F−
hMk0 :=

[
CBh′ · · · C(A′

d)
M−1Bh′ D

]
(41)
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The proofs of these lemmas are given in Appendix A since they are quite technical. From
Lemmas 1 and 2, we can readily obtain the following result.

Theorem 3 The inequality

∥F−
hMk0∥ −

KMk0

M
≤ ∥F−

h ∥ ≤ ∥F−
hMk0∥+

KMk0

M
(42)

holds with KMk0 defined as

KMk0 :=
h2

2M
∥C ′

dM∥ · ∥A∥ · ∥B∥e∥A∥h/M (43)

Furthermore, KMk0 has a uniform upper bound with respect to M given by

KU
k0 :=

h2

2
∥C∥ · ∥A∥ · ∥B∥e2∥A∥h (44)

3.2.2 Piecewise linear approximation

We introduce the operator B′
k1 : (L∞[0, h′))nw → Rn

∞ defined as

B′
k1u :=

∫ h′

0
(I +Aθ′)Bu(θ′)dθ′ (45)

Introducing the operator B′
k1 is equivalent to the first-order approximation of the kernel function

of B′.
We next consider the operator F−

hMk1 obtained by replacing B′ with B′
k1 in (18):

F−
hMk1 = C ′

dMB′
k1 (46)

It is easy to see that F−
hMk1 is the fast-lifted counterpart to the piecewise linear approximation of

F−
h (under the kernel approximation approach). In the following, we show that ∥F−

hMk1∥ can be
computed exactly and converges to ∥F−

h ∥ as M → ∞. The following two lemmas are significant in
establishing the above facts together with the associated convergence rate.

Lemma 3 The following inequality holds:

∥B′ −B′
k1∥ ≤ h3

6M3
∥A∥2 · ∥B∥e∥A∥h/M (47)

Lemma 4 Let Yj (j = 1, · · · ,M) be the matrix consisting of the L1[0, h
′) norm of each entry of

the matrix linear function C(A′
d)

j−1(I+Aθ′)B involved in (46). Then, ∥F−
hMk1∥ coincides with the

∞-norm of the finite-dimensional matrix F−
hMk1 given by

F−
hMk1 :=

[
Y1 · · · YM D

]
(48)

The proofs of these lemmas are also given in the appendix. From Lemmas 3 and 4, we can
readily obtain the following theorem.
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Theorem 4 The inequality

∥F−
hMk1∥ −

KMk1

M2
≤ ∥F−

h ∥ ≤ ∥F−
hMk1∥+

KMk1

M2
(49)

holds with KMk1 defined as

KMk1 :=
h3

6M
∥C ′

dM∥ · ∥A∥2 · ∥B∥e∥A∥h/M (50)

Furthermore, KMk1 has a uniform upper bound with respect to M given by

KU
k1 :=

h3

6
∥C∥ · ∥A∥2 · ∥B∥e2∥A∥h (51)

We are now in a position to compare effectiveness of the input and kernel approximation ap-
proaches in the treatment of F−

h , the compression operator on [0, h). We see that KMk0 and KMk1

relevant to the approximation errors in the kernel approximation approach developed in the present
paper are smaller than KM i0 and KM i1, respectively, relevant to those for the existing input ap-
proximation approach. More precisely, we can see from (25) and (43) that KMk0 = KM i0/2 for the
staircase approximation scheme, while (36) and (50) implies that KMk1 = KM i1/3 for the piecewise
linear approximation scheme. If we note that the treatment of the truncated part F+

h discussed
in the following section is common for all the four methods discussed in this section, the following
interpretations of these two relations will be justified.

The former relation implies that the gap between the upper and lower bounds in (24) and
that in (42) coincide with each other. This could be interpreted as implying that the overall
ability is the same for the input and kernel approximation approaches as far as the staircase
approximation scheme is taken. For the piecewise linear approximation scheme, on the other
hand, the latter relation implies that the gap between the upper and lower bounds in (49) for the
kernel approximation approach is one third of that in (35) for the input approximation approach.
Meanwhile, it has been (numerically) demonstrated in [11] (dealing with the L∞[0, h)-induced norm
of the compression operator through the input approximation approach) that the piecewise linear
approximation scheme is superior to the staircase approximation scheme in the computation of
∥F−

h ∥ under the input approximation approach. Summarizing these observation clearly indicates
an advantage of the method with combined use of the piecewise linear approximation scheme and
our new kernel approximation approach over the other three methods.

Remark 4 Through similar arguments to [12], it is expected that the same combined method can be
developed also for the computation of the L∞-induced norm of sampled-data systems. Such a method
is also expected to lead to an improved gap between its upper and lower bounds than the method
in [12], which is based on (the piecewise linear approximation scheme and) the input approximation
approach.

4 Upper Bound of ∥F+
h ∥ and Computation of the L∞-Induced

Norm

This section is dedicated to a computation method for an upper bound of ∥F+
h ∥, which together

with the arguments in the preceding sections leads to methods for computing upper and lower
bounds of the L∞-induced norm ∥F∥ of the FDLTI system (3). Theses bounds are ensured to
converge to each other as the parameters h and M tends to ∞.
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We first note from (13) (with t replaced by t+ h) and (11) that

∥F+
h ∥ ≤ lim

t→∞
sup
∥u∥≤1

∥∥∥∥∫ t

0
exp(Aθ)Bu(θ + h)dθ

∥∥∥∥ ∥C exp(Ah)∥ (52)

If we take q > 0 such that ∥ exp(Aq)∥ < 1, it easily follows that

lim
t→∞

sup
∥u∥≤1

∥∥∥∥∫ t

0
exp(Aθ)Bu(θ + h)dθ

∥∥∥∥
≤ (1 + ∥ exp(Aq)∥+ ∥ exp(2Aq)∥+ · · · ) · sup

∥v∥≤1

∥∥∥∥∫ q

0
exp(Aθ)Bv(θ)dθ

∥∥∥∥
≤ 1

1− ∥ exp(Aq)∥
· qe∥A∥q∥B∥ (53)

Summarizing (52) and (53), we can obtain the following result.

Proposition 1 If we take q > 0 such that ∥ exp(Aq)∥ < 1, then

∥F+
h ∥ ≤ qe∥A∥q∥B∥

1− ∥ exp(Aq)∥
∥C exp(Ah)∥ =: Khq (54)

and Khq converges to 0 regardless of q as h → ∞.

Combining Theorems 1–4 and Proposition 1 together with (12), we are led to the following
main results.

Theorem 5 If we take q > 0 such that ∥ exp(Aq)∥ < 1, then

∥F−
hM i0∥ −Khq ≤∥F∥ ≤ ∥F−

hM i0∥+
KM i0

M
+Khq (55)

∥F−
hM i1∥ −

KM i1

M2
−Khq ≤∥F∥ ≤ ∥F−

hM i1∥+
KM i1

M2
+Khq (56)

∥F−
hMk0∥ −

KMk0

M
−Khq ≤∥F∥ ≤ ∥F−

hMk0∥+
KMk0

M
+Khq (57)

∥F−
hMk1∥ −

KMk1

M2
−Khq ≤∥F∥ ≤ ∥F−

hMk1∥+
KMk1

M2
+Khq (58)

Furthermore, KM i0, KM i1, KMk0 and KMk1 have uniform upper bounds KU
i0 , K

U
i1 , K

U
k0 and KU

k1 de-
fined as (26), (37), (44) and (51), respectively, and KM i0/M, KM i1/M

2, KMk0/M and KMk1/M
2

converge to 0 as M → ∞, while Khq converges to 0 regardless of q as h → ∞.

It should be noted in Theorem 5 that the uniform upper bounds KU
i0 , K

U
i1 , K

U
k0 and KU

k1 given
in (26), (37), (44) and (51), respectively, depend on h, and increase as h is increased to reduce Khq.
However, Khq is bounded from above in the exponential order eσh in h regardless of q, where σ < 0
is the maximum real part of the eigenvalues of A. It is hence expected that Khq can be made small
with a modest h and thus we can keep the uniform upper bounds KU

i0 , KU
i1 , KU

k0 and KU
k1 modest.

Regarding a guideline for taking the parameters h, M and q, we can summarize the above
arguments as follows. It may be reasonable to take a relatively small q as long as ∥ exp(Aq)∥ < 1;
this is to avoid undue increase of Khq, or in particular e∥A∥q. Once q is fixed, the next step would
be to take an h such that Khq is as small as we wish; this is always possible by taking h sufficiently

11



large. Once h is also fixed, the uniform upper bounds KU
i0 , KU

i1 , KU
k0 and KU

k1 in (26), (37), (44)
and (51), respectively, are determined, and thus the last step would be taking an M such that
KU

i0/M, KU
i1/M

2, KU
k0/M and KU

k1/M
2 are as small as we wish. It is obvious that following this

kind of guideline leads to computation methods for the L∞-induced norm of the FDLTI system (3)
to any degree of accuracy.

5 Numerical Examples

In this section, we study numerical examples and examine effectiveness of the computation methods
discussed in this paper.

Let us first consider the stable SISO FDLTI oscillatory system

A =

[
0 −2
2 −2

]
, B =

[
1
−1

]
, C =

[
1 1

]
, D = 1 (59)

We compute estimates of its L∞-induced norm, or equivalently ∥F∥, by taking the fast-lifting
parameter M ranging from 500 to 5000 on the condition that h = 25 and q = 2 following the
guideline in Section 4, which leads toKhq = 2.26×10−7. The results for the upper and lower bounds
of ∥F∥ obtained by Theorem 5 and the computation times under the staircase approximation scheme
are shown in Table 1, while with the piecewise linear approximation scheme are shown in Table 2.
We are mainly interested in the comparison between the existing input approximation approach
and the kernel approximation approach developed in this paper. Hence, these (and the following)
tables consist of Case (a) for the existing approach and Case (b) for the new approach.

We next consider the stable MIMO FDLTI oscillatory system

A =


−1 0 2 2
1 −1 2 3
0 −2 −2 0
1 −1 −1 −2

 , B =


1 1
0 1
2 0
1 −1

 , C =

[
1 1 0 −1
2 1 −1 1

]
, D =

[
1 1
−2 1

]
(60)

We compute the upper and lower bounds of its L∞-induced norm by taking the fast-lifting pa-
rameter M ranging from 500 to 5000 on the condition that h = 25 and q = 2, which leads to
Khq = 2.65× 10−8. The results are shown in Tables 3 and 4.

Table 1: Results with staircase approximation scheme in SISO example.
Case (a): Input approximation approach

M 500 1000 2000 5000

∥F−
hM i0∥+

KM i0

M
+Khq 3.703542 3.361762 3.215702 3.135198

∥FhM i0∥ −Khq 3.084104 3.084248 3.084370 3.084370
time (sec) 0.015281 0.030330 0.036423 0.079816

Case (b): Kernel approximation approach

M 500 1000 2000 5000

∥F−
hMk0∥+

KMk0

M
+Khq 3.392950 3.222860 3.149950 3.109775

∥F−
hMk0∥ −

KMk0

M
−Khq 2.773512 2.945347 3.018618 3.058947

time (sec) 0.015093 0.024384 0.036143 0.078988
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We can see from these tables that the error bounds for the computation of ∥F∥ (i.e., the gaps
between the upper and lower bounds) decrease by taking M larger for all estimates. Hence, all the
four approximation methods discussed in this paper can be validated as methods for computing
the L∞-induced norm. A more important concern in this paper, however, lies in the effectiveness
comparison between (a) the existing input approximation approach and (b) the kernel approxima-
tion approach developed in this paper. In this respect, we had an earlier discussion in Section 3,
which implies that, under the staircase approximation scheme, the kernel approximation approach
can provide no advantage over the input approximation approach in reducing the gap between the
computed upper and lower bounds. As seen from Tables 1 and 3, the convergence of this gap
(common for the input and kernel approximation schemes) is not fast with respect to M . This
suggests us to use the piecewise linear approximation scheme instead, which exhibits much faster
convergence as seen from Tables 2 and 4. We can further observe from these tables that once we
switch to the piecewise linear approximation scheme, an advantage of the kernel approximation
approach over the input approximation approach is prominent. This is because the range between
the upper and lower bounds obtained by the kernel approximation approach is always contained
in (and thus less conservative than) that by the input approximation approach for the same M .

Table 2: Results with piecewise linear approximation scheme in SISO example.
Case (a): Input approximation approach

M 500 1000 2000 5000

∥F−
hM i1∥+

KM i1

M2
+Khq 3.146314 3.098249 3.087656 3.084882

∥F−
hM i1∥ −

KM i1

M2
−Khq 3.022426 3.070497 3.081089 3.083865

time (sec) 0.020353 0.035159 0.049186 0.120428

Case (b): Kernel approximation approach

M 500 1000 2000 5000

∥F−
hMk1∥+

KMk1

M2
+Khq 3.108609 3.089882 3.085686 3.084578

∥F−
hMk1∥ −

KMk1

M2
−Khq 3.067312 3.080631 3.083497 3.084238

time (sec) 0.019011 0.032270 0.038521 0.119789

Table 3: Results with staircase approximation scheme in MIMO example.
Case (a): Input approximation approach

M 500 1000 2000 5000

∥F−
hM i0∥+

KM i0

M
+Khq 18.548486 13.828079 11.996866 11.041614

∥FhM i0∥ −Khq 10.458708 10.458788 10.459380 10.459432
time (sec) 0.017563 0.033310 0.048476 0.094044

Case (b): Kernel approximation approach

M 500 1000 2000 5000

∥F−
hMk0∥+

KMk0

M
+Khq 14.576154 12.181119 11.246745 10.758005

∥F−
hMk0∥ −

KMk0

M
−Khq 6.486376 8.811828 9.709259 10.175823

time (sec) 0.015604 0.026847 0.040918 0.090371
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Furthermore, the computation times in the kernel approximation approach are slightly smaller than
those in the input approximation approach under the same parameter M . As an overall evaluation,
the kernel approximation approach with the piecewise linear approximation scheme exhibits the
smallest range for the L∞-induced norm estimates with relatively short computation times among
the four methods discussed in this paper, and thus can be an effective alternative to the existing
methods developed in earlier studies.

6 Conclusion

This paper tackled a difficult problem of accurately computing the L∞-induced norm associated
with a stable FDLTI system, which is very important in many control systems. To this problem,
we applied a truncation idea with a sufficiently large h, which mostly reduces the problem to the
induced-norm computation of the compression operator defined on the time interval [0, h) (describ-
ing the input/output relation of the FDLTI system on that interval). We first reviewed the input
approximation approach to the L∞[0, h)-induced norm computation of the compression operator
based on the fast-lifting treatment. We next developed a new approach to the L∞[0, h)-induced
norm computation called the kernel approximation approach, which is also based on fast-lifting.
In the latter new approach, we applied two schemes in approximating kernel functions, which are
essentially the same as those used in the former existing approach, i.e., the staircase approximation
scheme and the piecewise linear approximation scheme. It was then shown that the approximation
errors in our new approach converge to 0 at the rates of 1/M and 1/M2 in the staircase approxi-
mation and piecewise linear approximation schemes, respectively, as the fast-lifting parameter M
tends to infinity. Even though these convergence rates are qualitatively the same as those in the
existing input approximation approach, our detailed analysis showed that the approximation errors
through our new kernel approximation approach are smaller than those through the existing input
approximation approach. We then gave a method for evaluating the effect on the truncated inter-
val [h,∞), and this was used commonly in both the input and kernel approximation approaches.
Through this evaluation together with the input and kernel approximation approaches, we can
compute the L∞-induced norm of FDLTI systems to any degree of accuracy. Finally, we examined
effectiveness of our kernel approximation approach through numerical studies and confirmed that

Table 4: Results with piecewise linear approximation scheme in MIMO example.
Case (a): Input approximation approach

M 500 1000 2000 5000

∥F−
hM i1∥+

KM i1

M2
+Khq 11.875157 10.754256 10.526707 10.469630

∥F−
hM i1∥ −

KM i1

M2
−Khq 9.043735 10.164630 10.392177 10.449254

time (sec) 0.025248 0.038933 0.064876 0.134318

Case (b): Kernel approximation approach

M 500 1000 2000 5000

∥F−
hMk1∥+

KMk1

M2
+Khq 10.943846 10.560772 10.482617 10.462958

∥F−
hMk1∥ −

KMk1

M2
−Khq 10.000038 10.364230 10.437774 10.456166

time (sec) 0.022003 0.038181 0.061540 0.133024
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this approach works more effectively than the existing input approximation approach, not only in
accuracy but also in computation times, especially when the piecewise linear approximation scheme
is taken.

It is expected that the kernel approximation approach developed in this paper can be extended to
the computation of the L∞-induced norm of sampled-data systems (i.e., the L1 analysis of sampled-
data systems) and lead to more accurate estimates than the existing input approximation approach.
On the other hand, however, there seems to be an obstacle for the kernel approximation approach
to be directly applied to the L1 optimal controller synthesis problem of sampled-data systems while
the input approximation approach can be, with the staircase approximation scheme [13,14] or the
piecewise linear approximation scheme [15]. This is because the preadjoint arguments, which play a
crucial role both in the staircase approximation scheme [14] and the piecewise linear approximation
scheme [15] in tackling the L1 optimal controller synthesis problem with the input approximation
approach, do not seem applicable in the kernel approximation approach. This, in turn, implies
that developing a theoretical basis of the kernel approximation approach for this synthesis problem
seems to be a nontrivial issue. This interesting topic is left for future studies.

We further note that constructing the jth-order approximants B′
ij and B′

kj to B′ (with desired
properties from the jth-order approximation viewpoint) could be carried out even for j ≥ 2 by
following the same line of arguments as in [11] and Subsection 3.2, respectively. However, the overall
performance improvement by taking j ≥ 2 may not be definite since it would take a longer time to
compute the L1[0, h

′) norms of jth-order polynomials when j ≥ 2. This is in sharp contrast with
the present paper dealing only with j = 0 and j = 1 (i.e., constant and linear functions) and might
govern the overall performance as the fast-lifting parameter M becomes larger. Analyzing such an
aspect and developing an effective computation method exploiting a jth-order approximation idea
for j ≥ 2 may be an interesting future topic.

Finally, we remark that for the class of positive finite-dimensional LTI systems [6], the L∞-
induced norm computation reduces to the finite-dimensional matrix ∞-norm computation ∥D −
CA−1B∥ as shown in [4] (for essentially the same reason as that stated in Introduction). More
interestingly, this explicit result has been extended to positive LTI systems with distributed de-
lays in [5], where an ‘equivalent’ finite-dimensional LTI positive system has been clarified that
possesses the same L∞-induced norm as the original system with distributed delays. This might
suggest that computing upper and lower bounds of the L∞-induced norm of (not necessarily pos-
itive) LTI systems with (distributed) delays may still be a tractable problem. If the L∞-induced
norm of (not necessarily positive) LTI systems with (distributed) delays can also be reduced to the
L∞-induced norm associated with ‘equivalent’ LTI systems without delays, both the input approx-
imation method and kernel approximation method discussed in the present paper can immediately
be applied to the latter systems, but it is nontrivial whether such equivalent systems do exist gener-
ically. This may be an interesting topic to study. On the other hand, aiming at direct extension of
the kernel approximation method in the present paper to the distributed delay systems, in which
the kernel functions associated with distributed delays are approximated, could also be a (quite
nontrivial but) interesting future topic.
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A. Proofs of Lemmas

This appendix is concerned with the proofs of Lemmas in Section 3. They are based on the Taylor
expansion of the matrix exponential of Aθ′ (or Ah′), and the proofs of Lemmas 1 and 2 proceed
in essentially the same way as those of Lemmas 3 and 4. Hence, only the proofs of the latter two
lemmas are given.
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From the Taylor expansion of exp(Aθ′), we can obtain the following inequalities.

∥∥(B′ −B′
k1)u

∥∥ =

∥∥∥∥∥
∫ h′

0
{exp(Aθ′)− (I +Aθ′)}Bu(θ′)dθ′

∥∥∥∥∥
=

∥∥∥∥∥∥
∫ h′

0

 ∞∑
j=2

Aj(θ′)j

j!

Bu(θ′)dθ′

∥∥∥∥∥∥ ≤
∫ h′

0

∞∑
j=2

∥A∥j(θ′)j

j!
dθ′ · ∥B∥ · ∥u∥

≤ 1

6
(h′)3∥A∥2 · ∥B∥e∥A∥h′ · ∥u∥ (61)

This completes the proof of Lemma 3.
We next consider the computation of ∥F−

hMk1∥ (assuming that D = 0). This norm is described
by

∥F−
hMk1∥ = sup

∥ǔ∥≤1
∥F−

hMk1ǔ∥ (62)

where

F−
hMk1ǔ =

M∑
j=1

C(A′
d)

j−1B′
k1u

(j), [(u(1))T , · · · , (u(M))T ]T := ǔ (63)

By the definition of B′
k1, we can see that

C(A′
d)

j−1B′
k1u

(j) =

∫ h′

0
C(A′

d)
j−1(I +Aθ′)Bu(j)(θ′)dθ′ (64)

Note that the integrand involves the function used in defining Yj . Hence, by the property of
L∞[0, h′) and the definition of F−

hMk1, it follows that ∥F−
hMk1∥ coincides with the ∞-norm of the

finite-dimensional matrix F−
hMk1 given by (48) with D removed. Then, the assertion of Lemma 4

for the case D ̸= 0 follows immediately again by the property of L∞[0, h′), as has been the case
with the input approximation arguments in [11].
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