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Abstract

A simple model of a lipid membrane, a binary mixture of saturated lipids and un-
saturated lipids, was studied using an integral equation theory. The planar membrane
is modeled as mixture of linear and bent molecules in two dimensional space, and
site-site radial distribution function, Kirkwood-Buff (KB) integral and related quan-
tities were computed over the whole range of the molar fraction to understand their
mixing behavior. We found that a close packing of linear molecules is enhanced as
increase the fraction of bent molecules, and a long range correlation between the linear
molecules is weakened. A high concentration of linear molecules promote the demixing
of linear molecules and bent molecules, and enhance the long range correlation between
molecules. This implies that the higher the concentration of linear molecules, the larger
clusters tend to be formed.
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A simple model of a lipid membrane, a binary mixture of saturated lipids and unsaturated
lipids, was studied over the whole range of the molar fraction using an integral equation
theory.
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INTRODUCTION

Plasma membrane is a two dimensional liquid, which is a non-ideal mixture of large number

of chemical species such as lipids, cholesterols and proteins.1 The packing of lipid molecules

and their mutual affinity depend sensitively on a slight structural alteration of lipid, such

as saturation of alkyl chains, leading to a complex behavior of the mixture. An example

is liquid-liquid phase separation of the mixture of saturated lipids, unsaturated lipids and

cholesterols. The mixture is separated into liquid-ordered (Lo) phases and liquid-disordered

(Ld) phases.2–9 While the former is enriched with saturated lipids and cholesterols, the latter

is with unsaturated ones. Such a phase separation occurs only below room temperature, and

the mixture is almost homogeneous at physiological temperature within the resolution of

the optical microscope. More microscopic, fluorescence resonance energy transfer (FRET)

measurements recently reported that microdomain is formed in model membrane system

even at physiological temperature, but the domain is too small to be detected by the optical

microscope10,11.

Computational study is another approach to understand the microscopic structure of

lipid mixture in molecular detail. Monte Carlo method for lattice model has been used to

describe the phase behavior and the microdomain formation in lipid mixture12–16. Molecular

dynamics (MD) simulation is also powerful tool to elucidate the atomic scale features of the

membrane, and many studies have been reported targeting to understand phase separation

and microdomain formation in lipid bilayer17–26. For example, Marrink and his coworkers

have developed a coarse grained force field called MARTINI, specializing for lipid mem-

brane. They applied it to a membrane consisting of saturated phosphatidylcholines (PCs),

unsaturated PCs and cholesterols, showing that the spontaneous separation of the mixture

into Lo and Ld phases at room temperature25,26. Recently, Straub et al. reported a com-

prehensive study on the system.27 Integral equation theory for fluids28–30 is an alternative

approach. Thanks to the algebraic nature, fluid structure free from statistical error is pro-

vided, which could be a drawback of MD simulation. In particular, an integral equation

theory for polyatomic molecular liquids called reference site interaction model (RISM)28–32

has been successfully applied to obtain structural and thermodynamic properties of various
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chemicals and biological systems33–35. The two dimensional (2D) versions of RISM equation

were proposed and applied to the planar dumbbell fluid36–39. Comparison with Monte Carlo

simulations showed very good agreement.

In the present study, we perform 2D RISM calculation on a simple model of lipid mem-

brane, binary mixture of linear and bent molecules. They respectively mimic saturated and

unsaturated lipids, representing the structural difference of the alkyl chain. The mixing be-

havior of two types molecules are elucidated in terms of local distribution of molecules, radial

distribution function (RDF), and of Kirkwood-Buff (KB) integral over the whole range of the

molar fraction. KB integral enables us to analyze the mutual affinity between molecules40–42,

relating to thermodynamic properties of the mixture. In general RDF and KB integral are

obtained by neutron and X-ray scattering experiment.28,43,44 It should be emphasized that

this is the first report on binary mixture of saturated and unsaturated lipids using integral

equation theory for fluids in two dimensional space. A systematic study over a wide range

of molar fraction is readily achieved due to the algebraic nature of the theory.

MODEL AND THEORY

Model for lipid molecule

Lipid membrane is modeled as binary fluid mixture in a two-dimensional plane composed of

linear molecules and bent molecules (Fig.1). The molecules are composed of spherical atoms

to form a linear pentamer and a bent pentamer with the bond length σ. The kink of the

bent molecule mimics cis double bond in the unsaturated alkyl chain that may disrupt the

packing of lipid molecules. The linear molecules are always perpendicular to xy plane. For

bent molecules, the axis between atom 1 and 3 are perpendicular to xy plane, but the 3-5

bond is tilted from xy plane at 60◦. The atom labeled with 3 is constrained on xy plane and

allowed to move only on this plane. The molecule can rotate only around z−axis, but the

geometry is fixed throughout the present study. The present model is intended to grasp the

essential features of mixing behavior of saturated and unsaturated lipids, over a wide range

of the molar fraction. The number of interaction sites, five, is almost a minimum number to
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adequately mimic and distinguish the structural feature of these two-types of lipids.

The interaction between atoms is given by Lennard-Jones like potential

uαβ(r) = 4ϵ

 σ√
r2 + z2αβ

12

−

 σ√
r2 + z2αβ

6 , (1)

where zαβ is the difference between z coordinates of sites α and β, |zα − zβ|, and r is a

distance between the two sites projected on xy plane. Namely, the denominator represents

a distance in three dimensional space, and the interaction between molecules in 3D space

is effectively mapped on the two-dimensional space. The parameters ϵ and σ are the same

for all atomistic sites. The ratio of bond length to σ is set as unity to represent the typical

chemical bond.

Integral equation theory

Let us consider a binary mixture composed of NL linear molecules and NB bent molecule in a

two-dimensional area A with the total number of density ρ = ρL+ρB = (NL+NB)/A = N/A.

The molar fraction of linear molecule and bent molecule are defined as xL = NL/N and

xB = 1− xL, respectively.

In Fourier space, RISM integral equation in 2D can be written as36–38:

H(k) = Ω(k)C(k)Ω(k) +Ω(k)ρC(k)H(k), (2)

where H(k),C(k) and Ω(k) are matrices, whose elements are Fourier transforms of the fol-

lowing site-site correlation functions between interaction sites of α and β; intermolecular

total correlation functions, hαβ(r), intermolecular direct correlation function, cαβ(r), and in-

tramolecular correlation functions ωαβ(r). ρ is diagonal matrix whose elements are densities

of molecules. All of these matrices are decomposed into linear molecule part (L) and bent

molecule part (B):

H(k) =

HLL(k) HLB(k)

HBL(k) HBB(k)

 , C(k) =

CLL(k) CLB(k)

CBL(k) CBB(k)

 ,

Ω(k) =

ΩLL(k) 0

0 ΩBB(k)

 , ρ =

ρLI 0

0 ρBI

 .
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The structural information of molecules is described in the intramolecular correlation func-

tions, whose Fourier-transformed expression is written as36–38,

ΩXX
αβ (k) = J0(klαβ) (X = L or B), (3)

where lαβ is a intramolecular distance between sites α and β projected on xy plane. Because

the tilt angle is fixed, it does not depend on the rotation of bent molecule. J0 is the zeroth-

order Bessel function of the first kind. Because both of functions, cαγ and hαγ, are unknown,

we need an additional relation called closure relating these functions to solve the RISM

integral equation. In this study, we use PY closure approximation:

gαβ(r) = exp [−uαβ(r)/(kBT )] (1 + hαβ(r)− cαβ(r)), (4)

where gαβ(r) = hαβ +1 is radial distribution function (RDF), and T and kB are respectively

temperature and Boltzmann constant. We also employed HNC closure, but the convergence

could not be obtained under some conditions.

COMPUTAIONAL DETAIL

Two-dimensional Fourier transforms in isotropic system are defined as

f̂(k) = 2π

∫ ∞

0

rf(r)J0(kr)dr. (5)

f(r) =
1

2π

∫ ∞

0

kf̂(k)J0(kr)dk, (6)

The right hand sides of Eqs.(5) and (6) are Fourier-Bessel transform. RISM integral Eq. (2)

complemented with PY closure Eq. (4) was solved employing discrete Hankel transform on

the radial grid 1000 points for rmax = 30σ. The equations were converged to the root-mean-

square accuracy of 10−6 by means of modified direct inversion in the iterative subspace

(MDIIS)45. In the calculation, the temperature and packing fraction are fixed at T ∗ =

kBT/ϵ = 16.5 and η = ρ(ALxL +ABxB) = 0.4, where AL = π(σ/2)2 and AB = 3AL − (π/3−
√
3/4)σ2 are excluded areas of the linear and bent molecules, respectively.
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RESULTS AND DISCUSSION

RDFs and KB integrals

Here we focus on the local distributions of linear molecules and bent molecules in the mixture.

Figure 2 plots three pairs of RDFs between the central atoms, gLL33 (r), g
LB
33 (r), and gBB

33 (r),

and their change with respect the molar fraction of linear molecule (xL). Because the site

dependence of RDF is negligibly small in the present computations, RDFs between other

pairs are not shown. Note that xL = 0.0 means an infinite dilution of linear molecule,

essentially corresponding to pure bent molecule system.

As shown in the figure, the first peak of L-L RDFs at r/σ ≈ 1.0 are much higher than

those of L-B and B-B. It is likely that, while linear molecules preferably contact with each

other, bent molecules are not in close contact because of the steric hindrance caused by the

kink. The first peak of B-B RDF of pure bent molecules (xL = 0.0; solid line) is lower and

broader than others due to the loose packing.

Starting from pure linear molecule system (xL = 1.0; dotted line) to decrease xL, the first

peak of the L-L RDF becomes higher by adding bent molecules. On the other hand, the

second peak (r/σ ≈ 2.2) becomes lower and lower with decrease of xL, and finally disappears

at xL = 0. A close packing of linear molecules is remarkably enhanced in the first neighbor by

adding bent molecules. It is likely that, for the high concentration of the bent molecules, they

push linear molecules into small domains. The structure of gLL33 (r) in the second neighbor

and beyond becomes indistinct presumably because of a lack of linear molecules as well as

disruption of long range correlation. At the same time, B-B RDF is monotonically lowered

in the whole range of r with decreasing of xL. RDF of L-B becomes lower as xL increases in

the whole range of the distance r, and eventually lower than unity beyond the first-neighbor.

Although inhomogeneity of fluid is not directly taken into account due to the inherent nature

of the present theory, this implies that the presence of linear molecule promotes the separation

of two types of molecules.

Kirkwood-Buff (KB) integral is defined as the integral of RDF over area, up to a specific
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distance r.

GXY
αβ (r) = 2π

∫ r

0

dr
′
r
′{gXY

αβ (r
′
)− 1}, (X, Y = L, B), (7)

quantifying the affinity between molecules in the mixture. Figure 3 presents the KB integrals

between the central sites in molecules, GLL
33 (r), G

LB
33 (r) and GBB

33 (r). At short distances all

of KB integrals are once decreased because of excluded volume effect. In the region where

RDF is greater (lower) than unity, corresponding KB integral is increased (decreased).

For all xL, GLL
33 (r) is increased steeply at r/σ ≈ 1.0 owing to the high, first peak, and

then converged to positive value. The oscillation behaviours are seen in 2 < r/σ < 5,

especially for linear molecule-rich condition (xL > 0.6), originating from the distinct second

peak (and/or beyond) in RDFs. Whilst the values of GBB
33 (r) and GLB

33 (r) are nearly zero for

small xL, the former is clearly increased with r for large xL. On the contrary, the decease of

GLB
33 (r) with r is enhanced because the RDF is lower than unity except the first peak. The

distance at which the KB integral converges is called the correlation radius Rc, showing that

there exists no correlation between molecules due to intermolecular forces beyond Rc. Rc of

GLL
33 (r) is increased from Rc/σ ≈ 2.0 to Rc/σ ≈ 6.0 as xL is increased, indicating that long

range correlation is enhanced as increasing the concentration.

KB parameters

As seen in the previous section, KB integral converges to a specific value at longer r. KB

parameter is defined as the infinite limit of KB integrals.

GXY = lim
r→∞

GXY
αβ (r), (X, Y = L, B). (8)

Because the quantity does not depend on the site in principle, the subscript is omitted in

the left hand side of the equation. The parameter gives information on the affinities between

two species. For example, ρLGLL indicates the excess value of the coordination number of

linear molecules around a linear molecule with respect to the bulk region.

Figure 4 shows the molar fraction dependence of KB parameters. For small xL, GBB

and GLB are almost similar. As linear molecules are added to the system, while GBB mono-

tonically increases, GLB decreases up to xL ≈ 0.8 and then increases. The value of GLL
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starts from 6.1σ2 at xL = 0, and increases up to xL ≈ 0.6, then decreases when more linear

molecules are added. This decrease is caused by the peak lowering in RDF between lin-

ear molecules as discussed previously. Basically, GLL and GBB are larger than GLB at any

xL, meaning that the affinity between the same-type molecules is higher than that between

different types. Interestingly, B-B affinity becomes larger than L-L affinity for large xL de-

spite the steric hindrance in bent molecules. In the large presence of linear molecules, bent

molecules are segregated from the domains formed by linear molecules, and eventually their

affinity looks larger.

Coordination number and local molar fraction

The coordination numbers (CNs) of molecules Y(=L, B) around molecule X(=L,B) are

similarly defined for site 3 as follows,

NXY
33 (r) ≡ ρY

∫ r

0

dr′gXY
33 (r′) = ρY[GXY

33 (r) + πr2]. (9)

The boundary for the first coordination shell (CS) is chosen as the position of first local

minimum r = r1 of the RDF, and the second CS is assigned from r = r1 to the second local

minimum r = r2. CNs for the first and second CS around linear and bent molecules are

displayed in the Fig. 5. CNs for the first CS around a linear molecule are in (a), where they

are monotonically increased as increasing of xL, and reach converged values, NLL
33 (r1)= 4.5

and NBL
33 (r1)= 2.7. The contributions from the second CS, NXY

33 (r2)−NXY
33 (r1), are plotted

in (b), where the increase with respect to xL is slightly rapid compared to the first CS: 7.5

for linear molecule solvent and 6.3 for bent molecule solvent. Because linear molecules are

tightly packed together, CNs of linear molecules are larger than that around a bent molecule

both in the first and second CSs. Fig. 5 (c) and (d) are for CNs around a bent molecule,

plotted as function of xB(= 1− xL). As seen in the figure, NBB
33 (r1) and NLB

33 (r1) and those

corresponding to the second CSs are nearly equal because their affinities are comparable (see

Fig. 3, small xL). The CNs at xB = 1 for the first CS are NLB
33 (r1) = 2.0 and NBB

33 (r1) = 2.0,

and those for the second are respectively 3.4 and 3.5.

The preferential solvation around a molecule X is represented by the local molar fraction
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(LMF) which is defined as,

x̃XY
33(r) =

NXY
33 (r)

NXX
33 (r) +NXY

33 (r)
(10)

x̃XX
33(r) =

NXX
33 (r)

NXX
33 (r) +NXY

33 (r)
= 1− x̃XY

33(r). (11)

LMF for the first CS, x̃XY
33(r1), and that for the second CS, x̃XY

33(r2)−x̃XY
33(r1), are shown

in Fig. 6. The straight dashed-line in each figure indicates bulk molar fraction, namely if

the plot deviates to upper side of this line, molecules tend to preferentially associate in local

region, compared to the bulk. Fig. 6 (a) exhibits that both of LMF in the first and second

CS are positively deviated from the bulk. The tendency is enhanced near xL = 0.5 where

linear and bent molecules compete in the solvation around a molecule, and x̃LL
33(r1) = 0.70

at xL = 0.5 Owing to this high affinity between linear molecules, much less bent molecules

come close as shown in (c).

The solvation structure around bent molecule is totally different. As shown in (b) and

(d), the deviation from the bulk is relatively small. For x̃BB
33(r1), the maximum deviation

is seen in small xB region though it is closer to the bulk, x̃BB
33(r1) = 0.58 at xB = 0.5. The

linear and bent molecules prefer to be solvated by themselves rather than other species.

CONCLUSIONS

Using an integral equation theory, we analyzed the binary mixture of linear and bent molecule

in planar membrane, mimicking the lipid membrane composed of saturated and unsaturated

lipid. Their mixing behavior is interpreted as follows; The structural difference between

linear and bent molecules prevent the complete mixing. While the linear molecules tightly

packed together with each other, the kink of bent molecules interfere with association of

bent molecule with other molecules. We found that a close packing of linear molecules is

enhanced as increase the fraction of bent molecules, and a long range correlation between

the linear molecules is weakened.
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Figure 1: The model of molecules in membrane

Figure 2: Intermolecular site-site radial distribution of linear and bent molecule system with

molar fraction xL= 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0

Figure 3: Kirkwood-Buff integrals for the same system as Fig. 2 with molar fraction xL=

0.0, 0.2, 0.4, 0.6, 0.8 and 1.0.

Figure 4: The molar fraction dependence of Kirkwood-Buff parameters.

Figure 5: The molar fraction dependence of CNs. (a) NLL(r1) and NBL(r1), (b) the second

coordination for LL and BL, (c) NLB(r1) and NBB(r1), (d) the second coordination for LB

and BB

Figure 6: The local molar fraction of linear molecules around (a) a linear molecule and (b)

a bent molecule, and bent molecules around (c) a linear molecule and (d) a bent molecule

in the first and second CS
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