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Abstract

In this study, for predicting arterial function and pathogenesis from a mechanical

viewpoint, we develop a continuum mechanical model of an arterial wall that embodies

residual and active stresses following a traditional anisotropic passive constitutive law.

The residual and active stresses are incorporated into finite element methods based on

a two-field variational principle described in the Lagrangian form. The linearization of

nonlinear weak-form equations derived from this variational principle is then described

for developing an original finite element algorithm. Numerical simulations reveal the

following: (i) residual stresses lead to a reduction in stress gradient regardless of the

magnitude of external load; (ii) active stresses help homogenize stress distribution under

physiological external load, but this homogeneity collapses under pathological external

load; (iii) when residual and active stresses act together, the effect of the residual

stresses is relatively obscured by that of the active stresses. We conclude that residual

stresses have minor but persistent mechanical effects on the arterial wall under both

physiological and pathological external loads, active stresses play an important role in

the physiological functions and pathogenesis of arteries, and the mechanical effect of

residual stresses is dependent on the presence/absence of active stresses.
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1 Introduction

Arteries are important biological soft tissues that conduct blood flow and facilitate the ex-

change of oxygen/carbon dioxide, nutrients, and waste products between blood and tissues

throughout the body. These biological activities are decreased by pathological structural

changes, such as atherosclerosis or arterial aneurysm. Recent advances in molecular biology

have emphasized the importance of mechanical factors in regulating the structure and func-

tion of biological tissues. Therefore, it is important to develop a solid mechanics-based arterial

model and to analyze it through numerical simulations. In the field of clinical medicine, the

combination of such a mechanical model and analysis could be used for evaluating physio-

logical functions, predicting pathogenesis, and improving disease treatment. In particular,

the stress distribution obtained through mechanical analysis will provide useful information

about the location of pathological changes.

Like other biological soft tissues, arteries undergo finite deformations. Their mechan-

ical behavior is highly nonlinear, anisotropic, inhomogeneous, and incompressible in the

physiological state. Quantifying the mechanical stress field is equivalent to solving complex

boundary-value problems with these characteristics on arbitrary three-dimensional geome-

tries. A numerical approach using finite element methods is utilized to calculate the de-

formation and stress field for these complex boundary-value problems (Weiss et al., 1996;

Holzapfel et al., 2002).
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In modeling the mechanical behaviors of an arterial wall, numerous constitutive laws have

been proposed and evaluated (Holzapfel et al., 2000; Schröder et al., 2005). However, most

such laws describe passive mechanical responses, whereas, biological arterial walls are sub-

jected to residual and active stresses in vivo (Humphrey et al., 2002). As is well known,

residual stresses decrease the maximum circumferential stresses under physiological loading,

while active stresses alter the wall diameter and thickness for regulating local blood flow and

altering stress distribution throughout the wall. For evaluating the mechanical behaviors of

arterial walls, residual and active stresses should be formulated in a form suitable for finite

element analysis. Thus far, despite the importance of these stresses, many studies have in-

dividually considered residual stress (Vaishnav et al., 1987; Van Dyke et al., 2002; Alastrué

et al., 2007; Bustamante et al., 2010) and active stress (Rachev et al., 1999; Zulliger et al.,

2004; Murtada et al., 2010; St̊alhand et al., 2011; Schmitz et al., 2011) under physiologi-

cal boundary conditions. Analyses considering the effects of both these two stresses under

pathological boundary conditions are lacking. Given that the presence or absence of residual

stresses could alter the magnitude of any generated active stress, incorporating both these

two stresses into the model is important. Furthermore, stress analysis with the model in-

cluding both residual and active stresses under pathological boundary conditions would help

elucidate arterial pathogenesis.

The objectives of this study are as follows: 1) developing a continuum mechanical model

4



of an arterial wall that considers both residual and active stresses in addition to the tradi-

tional passive mechanical response; 2) examining the effects of residual and active stresses

on arterial pathogenesis. To this end, we calculate stress distributions under the pathologi-

cal boundary conditions by performing finite element analysis on a model that incorporates

both residual and active stresses. The influence of residual stresses in the arterial wall is

implemented as a deformation gradient tensor derived from the opening angle experimental

method (Vaishnav et al., 1987). To model active mechanical behaviors, we adopt a phe-

nomenological strain-energy function proposed by Rachev et al. (1999) that captures the

interaction between mechanical stretch and myogenic contraction. In finite element analysis

of finite deformations, weak-form equations equivalent to the equations of equilibrium and

kinematic boundary conditions are nonlinear and must be linearized before they are solved.

Linarization involves the derivation of the fourth-order elasticity tensor, which characterizes

the material properties; this key process is described in detail. The effects of residual and

active stresses on the arterial wall are investigated by finite element analysis under both phys-

iological and pathological external pressure loadings. Numerical simulations demonstrating

the critical role of active stresses in pathogenesis, such as thickening of an arterial wall in the

hypertensive state, are presented.
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2 Continuum mechanical basis and variational formu-

lation for finite element implementation

Finite element methods are widely used to analyze the nonlinear continuum mechanics of

arteries. This section gives a minimal background for the finite element analysis developed in

this paper. It outlines the basic kinematics, constitutive laws, and the variational formulation

of a two-field energy functional in Lagrangian form.

2.1 Deformation and constitutive laws

The position of the particle in the reference configuration Ω0 ⊂ R3 is denoted as X. In

the current configuration Ω ⊂ R3, the position of the same particle is denoted as x, and we

assume that a bijection ϕ : Ω0 → Ω exists such that x = ϕ(X). The deformation gradient

F with Jacobian J = det F > 0 is then defined as F = ∂ϕ(X)/∂X, and the right Cauchy-

Green and Green-Lagrange strain tensors are defined as C = F TF and E = 1/2(C − I)

respectively, where I is a second-order unit tensor. The deformation gradient tensor F is

split into two components as

F = J1/3 F , (1)

where the overbar (·) denotes the isochoric contributions of certain physical quantities. The

J1/3I term is associated with volumetric deformations, while F is associated with isochoric
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deformations of the material. The isochoric right Cauchy-Green and Green-Lagrange strain

tensors are defined as C = F
T
F and E = 1/2(C − I), respectively (Holzapfel, 2000).

We consider hyperelastic materials that postulate the existence of a strain-energy function

Ψ (defined per unit reference volume). The second Piola-Kirchhoff stress tensor S is derived

from the strain-energy function Ψ(C) as

S = 2
∂Ψ(C)

∂C
. (2)

In the representation theorem for invariants, an anisotropic hyperelastic material reinforced

by two families of fibers is expressed in terms of nine invariants I1, · · · , I9 of C and struc-

tural tensors a0 ⊗ a0 and g0 ⊗ g0, where two unit vector fields a0 and g0 in the reference

configuration are implemented to describe the local fiber direction (Holzapfel, 2000; Schröder

et al., 2003, 2005).

Using multiplicative decomposition of the deformation gradient tensor F , the strain-

energy function Ψ of a slightly compressible anisotropic material is assumed to be uncoupled,

in which the volumetric and isochoric components are such that

Ψ(C, a0 ⊗ a0, g0 ⊗ g0) = Ψvol(J) + Ψiso(I1, I2, · · · , I9), (3)

where I1, · · · , I9 are the isochoric contributions of invariants I1, · · · , I9, respectively. The
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purely volumetric part

Ψvol(J) =
κ

2
(J − 1)2 (4)

controls the degree of incompressibility by means of the positive parameter κ (Brink et al.,

1996). And exact incompressibility means κ →∞.

2.2 Variational principle of saddle type

Let us consider the mixed variational formulation of slightly compressible finite elasticity. The

boundary-value problem associated with constrained conditions, such as slightly compressible

material response (i.e., J ' 1) can be applied to derive the variational formulation (Sussman

et al., 1987; Chang et al., 1991; Brink et al., 1996). Besides the usual displacement field

u ∈ U , another additional Lagrangian multiplier field p ∈ P is incorporated and treated as

an independent variable, where U and P are function spaces. The two-field functional of the

total potential energy is expressed as

ΠPL(u, p) =

∫

Ω0

[
p{J(u)− 1} − p2

2κ
+ Ψiso(C, a0 ⊗ a0, g0 ⊗ g0)

]
dV + Πext(u). (5)

The second term of the integrand relaxes the incompressible constraint J = 1 included in the

first term of the integrand. The functional Πext(u) is the potential of conservative external

forces. The boundary-value problem with constraint is equivalent to finding the stationary

point (u, p) of the functional ΠPL(u, p) over the set U × P . In other words, we have to solve
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the saddle point problem

inf
u∈U

sup
p∈P

ΠPL(u, p) . (6)

Therefore, the first variations of the functional ΠPL(u, p) with respect to u and p vanish

for arbitrary functions δu ∈ U0 and δp ∈ P , respectively (Brink et al., 1996; Rüter et al.,

2000). The set U0 is a function space where δu = 0 on the Dirichlet boundary. The following

weak-form equations are obtained from the chain rule: Find (u, p) ∈ U × P such that for all

(δu, δp) ∈ U0 × P ,

DuΠPL(u, p) · δu =

∫

Ω0

(
JpC−1 + 2

∂Ψiso(C,a0 ⊗ a0, g0 ⊗ g0)

∂C

)
: δEdV − Lext(δu)

=0, (7a)

DpΠPL(u, p) · δp =

∫

Ω0

(
J − 1− p

κ

)
δpdV = 0 , (7b)

where Lext(δu) is the first variation of the potential of conservative external forces Πext(u) and

δE is the first variation of E with respect to the displacement field u. If the external forces

are pressure loads which are deformation dependent and not conservative, then Lext(δu) is

expressed as

Lext(δu) = −pext

∫

∂ΩN

n · δuds, (8)

where n = n(x) is the outward unit vector perpendicular to the pressure load surface ∂ΩN,

pext is a prescribed constant pressure, and ds denotes an infinitesimal surface area in the
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current configuration.

In Eq. (7a), 2∂Ψiso(C,a0 ⊗ a0, g0 ⊗ g0)/∂C ≡ Siso and JpC−1 ≡ Svol are the isochoric

and volumetric second Piola-Kirchhoff stress tensors, respectively.

Weak-form Eqs. (7a) and (7b) are generally nonlinear in the unknown fields u and p.

To implement these equations in mixed finite element methods, they must be linearized and

solved by the Newton-Raphson iterative method. Since linearization is one of the impor-

tant procedures in finite element coding and contains the fourth-order elasticity tensor that

characterizes material properties, it is presented for the weak-form Eqs. (7a) and (7b) in

Appendix A.

3 Continuum mechanical formulation of an arterial wall

In this section, we describe the mechanical properties (histological structure, residual stress,

and active stress) of the arterial wall. Using a continuum mechanics approach, we develop

and formulate these mechanical properties in a form suitable for finite element analysis. The

arterial wall is considered as a slightly compressible thick-walled cylindrical tube, which is

the simplified shape of a non-diseased artery.
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3.1 Strain-energy function for the passive response

Many biological soft tissues are relatively insensitive to the rate at which strain is applied

and reach a preconditioned state after repeated loading. For this reason, soft tissues are

considered as pseudoelastic and are modeled as hyperelastic materials (Fung et al., 1979;

Weiss et al., 1996; Itskov et al., 2006).

We adopt the passive mechanical model proposed by Holzapfel et al. (2004), which ac-

counts for the histological structure of the artery and whose results are consistent with

experiment. In this model, the arterial wall is treated as a two-layer (comprising inner and

outer layers) thick-walled cylindrical tube. Each layer is composed of an isotropic material

and two families of collagen fibers helically wound around the arterial axis, which character-

ize the anisotropy, as indicated in Fig. 1. Fiber contribution to the strain-energy function is

modeled using a pair of preferred directional unit vectors a0,j and g0,j, where j signifies one

of in and out. In the local covariant basis of the cylindrical coordinate system {eR, eΘ, eZ},

a0,j and g0,j take the following forms:

a0,j = 0 eR + cos ηj eΘ + sin ηj eZ , (9a)

g0,j = 0 eR + cos ηj eΘ − sin ηj eZ , (9b)

where ηj, j = in, out are the angles between the fibers and the circumferential direction, as
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indicated in Fig. 1. The isochoric term of this (passive) strain-energy function depends on

three invariants I1, I4, and I6 and is given by

Ψpas,iso(C,a0 ⊗ a0, g0 ⊗ g0) = ce(I1 − 3) +
c1

2c2

∑
i=4,6

[
exp{c2(I i − 1)2} − 1

]
, (10)

where ce > 0, c1 > 0, and c2 > 0 are material parameters. The first term on the right hand

side of Eq. (10) is an isotropic contribution that depends on invariant I1, expressed as trC.

The second anisotropic term on the right hand side of this equation contributes only when

the fibers are extended, i.e., when I4 > 1 or I6 > 1, where I4 = a0 ·Ca0 and I6 = g0 ·Cg0.

3.2 Residual deformation and opening angle method

Residual stresses are present in many biological tissues, such as skeletal ligaments (Weiss et

al., 2005), airways, or blood vessels. For the existence of residual stresses, arteries are not

stress free even in the absence of applied loading. When an artery is transversely cut and

excised from the body as a ring segment (termed the closed load-free state; see Fig. 2(a)) and

then cut along its radius, it releases this stress by springing into an open segment form (termed

the opened up stress-free state; see Fig. 2(b)) (Vaishnav et al., 1987). This phenomenon

shows that the inner wall is compressed whereas the outer wall is circumferentially tensioned.

A common measure of the residual stresses in the closed load-free state of arterial segment

is the opening angle method. Residual deformation and stresses are calculated under the
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following assumptions:

1. An arterial segment is axially symmetric (more specifically, circular) and incompress-

ible.

2. The strain and stress fields are uniform in the axial direction.

3. Once it has been radially cut, the arterial segment is stress-free.

4. The residual deformation gradient and residual stress tensors in a closed load-free ar-

terial ring segment are equivalent to those in a load-free artery in vivo.

To determine the residual deformation gradient F res, it is necessary to know the cross-

sectional geometry of both closed load-free (stressed) state and opened up stress-free state,

including the opening angle α. In cylindrical coordinates, the components of the local co-

variant bases of the closed load-free state and opened up stress-free states are (R, Θ, Z) and

(R0, Θ0, Z0), respectively (see Fig. 2(a) and 2(b)). On account of the cylindrical symme-

try, the principal directions coincide with the axial directions {eR, eΘ, eZ}, and the residual

deformation gradient tensor F res with respect to {eR0
, eΘ0

, eZ0} and {eR, eΘ, eZ} is given by

F res = λres,R(R)eR ⊗ eR0

+ λres,Θ(R)eΘ ⊗ eΘ0

+ λres,ZeZ ⊗ eZ0

. (11)

where the principal residual stretches λres,R(R), λres,Θ(R), and λres,Z(R) are the functions of

a single variable, R. This equation plays an important role in deriving the closed load-free
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state in an arterial wall.

We next seek the principal residual stretches λres,R(R), λres,Θ(R), and λres,Z(R). Let the

inner radii, the outer radii, and the axial lengths of the opened up stress-free state be R0
in,

R0
out, and L0 respectively, and define the respective closed load-free state variables as Rin,

Rout, and L (Fig. 2(b) and 2(a)). The radii Rin, Rout, R0
in, R0

out, and the opening angle α are

measurable quantities. From the incompressibility assumption and the boundary conditions

of the Z-surface σZZ(R) = 0 (Rin < R < Rout), we can write

2πL{(Rout)
2 −R2

in} = (2π − α)L0{(R0
out)

2 − (R0
in)

2}.

The residual axial stretch λres,Z is a constant, defined as

λres,Z =
L

L0
=

(2π − α){(R0
out)

2 − (R0
in)

2}
2π{(Rout)2 −R2

in}
= constant. (12)

Under the incompressibility assumption and specified boundary conditions, the radial coor-

dinates of an arbitrary point in the closed load-free state R and in the opened up stress-free

state R0 are related by

λres,Z2π(R2 −R2
in) = (2π − α){(R0)2 − (R0

in)
2},
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from which R0 is obtained as

R0 =

√
(R0

in)
2 +

(
2π

2π − α

)
λres,Z{R2 − (Rin)2} . (13)

The radial, circumferential, and axial residual stretches λres,R(R), λres,Θ(R), and λres,Z sat-

isfy λres,R(R)λres,Θ(R)λres,Z = 1. In cylindrical coordinates (R, Θ, Z), these stretches are

expressed as follows:

λres,R(R) = FR
R0 =

∂R

∂R0
=

√
(R0

in)
2 +

(
2π

2π−α

)
λres,Z{R2 − (Rin)2}

(
2π

2π−α

)
λres,ZR

(14a)

λres,Θ(R) = FΘ
Θ0 =

R∂Θ

R0∂Θ0
=

(
2π

2π−α

)
R√

(R0
in)

2 +
(

2π
2π−α

)
λres,Z{R2 − (Rin)2}

(14b)

λres,Z = constant. (14c)

The total deformation mapping of the stress-free configuration Ωsf onto the current con-

figuration Ω is defined as ϕ ◦ ϕres, where ϕres is a bijection that maps points of Ωsf onto

the points of the reference configuration Ω0 and ϕ is a bijection that maps points of Ω0 onto

points of Ω. Analogously, the total deformation gradient tensor F total of Ωsf onto Ω is defined

as the dot product of two second-order tensors F and F res, i.e.,

F total = FF res, (15)
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where F and F res are deformation gradient tensors of Ω0 onto Ω and of Ωres onto Ω0, respec-

tively.

Remark 1. The calculation scheme for determining residual deformation gradient tensor

F res using the opening angle method can be applied to incompressible and axisymmetric cylin-

drical arterial segments only and requires that at least two of the diagonal components of F res

be specified.

Remark 2. When using Eq. (15), if all components of the residual deformation gradient

tensor F res are known using some methods, we can analyze the mechanical behavior of arterial

segments considering the effect of residual stress regardless of the non-diagonal components’

values.

3.3 Strain-energy function for active stress generation

Active stresses are present in many biological tissues, such as skeletal muscles, airways (Wang

et al., 2008), or blood vessels. In an artery, vascular smooth muscle cells generate active

stresses. Before presenting the active constitutive law for an arterial wall, we describe the

smooth muscle cells that generate active stresses together with their working conditions.

Smooth muscle cells are mainly circumferentially aligned and are modeled using a pre-

ferred directional unit vector m0 at point X ∈ Ω0, as indicated in Fig. 1. Similar to Eqs.
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(9a) and (9b), the directional vector m0 in the Rachev model takes the following form:

m0 = 0 eR + 1 eΘ + 0 eZ . (16)

Deformed smooth muscle cells at the associated points x ∈ Ω are defined by a directional unit

vector m. The vectors m0 and m are related by Fm0 = λmm, where λm is the isochoric

stretch of smooth muscle cells.

For the active stress generator, we consider the following assumptions.

1. Smooth muscle cells are uniformly distributed throughout the arterial wall.

2. Smooth muscle cells expand and contract in concert with their surrounding tissue.

Assuming that residual stresses exist, the isochoric smooth muscle stretch λm is defined

with respect to the stress-free state (Fig. 2(b)). Conversely, the effect of residual

stresses is neglected, λm is defined with respect to the load-free state (Fig. 2(a)).

3. Smooth muscle cells can generate active stress only when λm lies within some finite

interval, i.e., λ0 < λm < λmax.

4. The passive response of smooth muscle cells is negligible because its effect is sufficiently

small relative to other arterial responses.

5. The total Cauchy stress tensor is the sum of the passive and active Cauchy stress
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tensors (σpas and σact, respectively).

σ = σpas + σact. (17)

In modeling active stresses, we adopt the phenomenological model proposed by Rachev

et al. (1999). This model is based on the concept that embedded muscle fibers self-actively

expand or contract in the direction of m0. The isochoric contribution of the active strain-

energy function Ψact,iso, which depends on λm, is given by

Ψact,iso(λm) = A

{
λm +

1

3

(λmax − λm)3

(λmax − λ0)2

}
, (18)

where λmax is the stretch at which active stress generating capability is maximized, λ0 is

the stretch at which active stress generation ceases, and A is a material constant associated

with the degree of muscle activation (which has units of stress). When A = 0 kPa, the

mechanical response is purely passive and smooth muscle cells are fully relaxed. Under

normal physiological conditions, smooth muscle cells can generate basal active stresses. In

this state, we assume A = 50 kPa. If smooth muscle cells are fully activated (e.g., by the

nervous system), A is set to 100 kPa.
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3.4 Sum of the strain-energy function

The material behavior is described by means of total strain-energy function as

Ψ = Ψvol(J) + Ψpas,iso(C,a0 ⊗ a0, g0 ⊗ g0) + Ψact,iso(λm). (19)

In finite element methods described by the total Lagrangian formulation, the second Piola-

Kirchhoff stress tensor S and fourth-order elasticity tensor C need to be calculated. The

isochoric contributions of passive second Piola-Kirchhoff stress tensor Spas,iso and fourth-

order elasticity tensor Cpas,iso are presented in Appendix B and those of active terms Sact,iso

and Cact,iso are presented in Appendix C.

4 Comparison of the analytical and numerical solutions

This section verifies the finite-element numerical solution developed in this study. Numerical

analysis is conducted using an in-house research code developed for analyzing geometric

and material nonlinear problems. The numerical and analytical solutions are compared by

deriving analytical radius-pressure relationships for the presented model.

4.1 Derivation of analytical radius-pressure relationship

In this subsection, the arterial segment is considered as an incompressible, axially symmetric,

uniform thick-walled cylindrical tube.
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We seek an analytical radius-pressure relationship pext = f(rin), where pext is the external

pressure load acting on the inner wall of the arterial segment and rin is an inner radius of

the deformed arterial segment. The segment is subjected to pressure loads pext on the inner

surface but no forced displacements occur in the axial direction (λz = 1.0). By assuming

axial symmetry, the boundary-value problem is reduced to a one-dimensional problem in

terms of radial position r.

The following points require careful considerations: first, the shear components of the

passive Cauchy stress tensor vanish (i.e., σrθ
pas = σθz

pas = σzr
pas = 0) because the collagen fibers

are symmetrically distributed in the Z plane. Second, all components of the active Cauchy

stress tensor vanish except the θθ component. Because the smooth muscle cells are assumed

to be aligned in the circumferential direction only, the argument of σθθ
act is the circumferential

stretch λθ = F θ
Θ.

The general constitutive equation for incompressible hyperelastic materials including ac-

tive stresses is

σ = −prsI + F

(
∂Ψpas

∂F

)T

+ F

(
∂Ψact

∂F

)T

, (20)

where −prsI is a reaction stress tensor, Ψpas is a passive strain-energy function with argu-

ments F , a0 ⊗ a0, and g0 ⊗ g0 (defined for det F = 1), and Ψact is an active strain-energy

function with arguments λm. The arguments of the (passive and active) strain-energy func-

tions are omitted in this subsection for brevity. Let the the material point in cylindrical
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coordinates, inner radius, and outer radius of the closed load-free state be (R, Θ, Z), Rin,

and Rout respectively, and denote the equivalent variables for the loaded deformed state as

(r, θ, z), rin, and rout (Fig. 2(a) and 2(c)). By cylindrical symmetry, the principal directions

coincide with the axial directions (r, θ, z) and the deformation gradient tensor F is given in

terms of {eR, eΘ, eZ} and {er, eθ, ez} by

F = λr(r)er ⊗ eR + λθ(r)eθ ⊗ eΘ + λz(r)ez ⊗ eZ , (21)

where principal stretches λr(r), λθ(r), and λz(r) are functions of r. Note that the reaction

stress tensor −prsI is also a function of r alone.

We next define principal stretches λr(r) and λθ(r). Assuming incompressibility and the

boundary condition λz = 1, we obtain

R =
√

(r2 − r2
in) + R2

in. (22)

Analogously, the outer radius rout of the deformed arterial segment is obtained as

rout =
√

(R2
out −R2

in) + r2
in . (23)

The radial, circumferential, and axial stretches λr(r), λθ(r), and λz satisfy λr(r)λθ(r)λz = 1.
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In cylindrical coordinates (r, θ, z), these stretches are expressed as

λr(r) = F r
R =

∂r

∂R
=

√
(r2 − r2

in) + R2
in

r
(24a)

λθ(r) = F θ
Θ =

r∂θ

R∂Θ
=

r√
(r2 − r2

in) + R2
in

(24b)

λz = F z
Z = 1. (24c)

Because the body forces are negligible compared with the surface traction loads and

internal forces, and given the geometrical and constitutive symmetry, all components of the

equilibrium equations vanish except

dσrr

dr
+

σrr − σθθ

r
= 0. (25)

From Eq. (25) and the following boundary conditions on the inner and outer surface of an

arterial segment

σrr(rout) = 0 , σrr(rin) = −pext (26)

the external pressure load acting on an inner wall of the artery (pext) is calculated as

pext = −
∫ rout

rin

σrr − σθθ

r
dr. (27)

Note that pext is defined such that compression is positive. Substituting the cylindrical
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components of Eq. (20) into Eq. (27) we obtain

pext(rin) =

∫ rout

rin

(
λθ

∂Ψpas

∂λθ

+ λθ
∂Ψact

∂λθ

− λr
∂Ψpas

∂λr

)
dr

r
. (28)

The final step in relating the pressure to radius is substituting the (passive and active)

strain-energy function into Eq. (28) and integrating. The terms ∂Ψpas/∂λθ, λθ∂Ψact/∂λθ,

and ∂Ψpas/∂λr in Eq. (28) are calculated in Appendix D.

In integrating Eq. (28), the following four points should be noted: first, the material

constants differ between the inner and outer layers. Second, the anisotropic term in the

passive strain-energy function should contribute only when the collagen fibers are extended;

that is, when I4 > 1 or I6 > 1. Third, for smooth muscle cells to generate active stresses,

their stretch λm must lie within a finite interval. Finally, because closed-form evaluation is

possible only under simple constitutive laws such as the Moony-Rivlin model, the radius-

pressure curve is obtained by numerical quadrature.

4.2 Conditions of the numerical analysis

The passive and active material constants in Eqs. (10) and (18) and the geometric data used

in the model are listed in Tables 1, 2, and 3. Consistent with previous works, the axial

length of the arterial segment is assumed to be equal to the inner radius in the load-free

state. The mean ratio of the inner-layer and outer-layer wall thicknesses is supposed to be
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2:1. The body forces are regarded as insignificant compared to surface traction loads and

internal forces.

The maximum external pressure load pext = 60 kPa with constant axial stretch λz = 1.0

is applied as a boundary condition to the inner wall.

In the finite element analysis, the arterial segment is considered as a slightly compress-

ible thick-walled cylindrical tube with axial symmetry and axial uniformity. Finite element

analysis is conducted under the following conditions: (i) The arterial segment is discretized

into 9 radial elements, 108 circumferential element, and 18 axial elements, and is modeled

by the Q1/P0-element (i.e., trilinear displacement and constant Lagrange multiplier approxi-

mations); (ii) The penalty parameter κ is taken as ce × 104; (iii) Newton-Raphson iterations

continue until all normalized square norms are below 10−5; (iv) Boundary conditions are

divided into 10 equal increments. Large sparse linear systems and eigenvalue problems are

solved using the PARDISO solver (included in the Intel Math Kernel Library) and LAPACK

routines, respectively.

Remark 3. The Q1/P0-element is the lowest order mixed approximation for a hexahedral

finite element; however, it does not satisfy the discrete inf-sup condition and it exhibits the

spurious Lagrange multiplier modes of a checkerboard instability (Silvester et al., 1990; Vin-

cent et al., 1992; Chapelle et al., 1993). Conversely, the Q1/P0-elements gives good results

with the use of a suitable posteriori filtering technique. The term −p2/2κ in Eq. (5) was
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introduced to filter the spurious Lagrange multiplier mode. In this study, we use the Q1/P0-

element for discretization, since this element is one of the cheapest and most popular elements

for three-dimensional problems from the computational implementation aspects.

4.3 Verification of the numerical results

The external pressure loads acting on an inner wall of the artery (pext) as a function of

deformed inner radius (rin) are shown in Fig. 3. Both analytical and finite element solutions

are provided. The passive mechanical response (A = 0 kPa) yields strong agreement between

the two solutions (Fig. 3 dashed line and symbol ”◦”). Under active mechanical response

(A = 50 kPa), the smoothness of the graph disappears around the bifurcation point (rin

being a multi-variable function of pext in the neighborhood of 25.0 kPa) and the theoretical

and numerical solutions dissociate (Fig. 3 solid line and symbol ”¤”). By appropriately

dividing the external load increments, the solutions converge. In both cases, the solution

converges within three to five iterations for every load step.

5 Numerical examples of stress distribution in the ar-

terial segment

In this section, we assume fixed approximate axial in situ stretch of the artery (1.7) and

impose various external pressure loads (inner pressures) as boundary conditions. We examine
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the stress distributions in an arterial segment considering the effect of residual and/or active

stresses (smooth muscle cells are in basal tone, i.e., A = 50 kPa). The stress distributions

are computed by finite element analysis under the conditions of Section 4.2, using the same

material constants and geometric data.

5.1 Effects of physiological loading

The Cauchy stress distribution through the arterial segment in the presence/absence of resid-

ual and/or active stresses is obtained under a physiological external pressure load pext = 13.33

kPa. The following four cases are considered.

• Case 1: Absence of residual and active stresses (◦).

• Case 2: Presence of residual stresses; absence of active stresses (•).

• Case 3: Absence of residual stresses; presence of active stresses (¤).

• Case 4: Presence of residual and active stresses (¥).

In Case 2 and Case 4, the (total) deformation gradient tensor is the dot product of the

deformation gradient tensor F and the residual deformation gradient tensor F res (see. Eq.

(15)). In Case 3, smooth muscle stretch is defined with respect to the closed load-free state

and in Case 4 with respect to the opened up stress-free state.
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Figure 4 shows the distributions of the principal Cauchy stress components σθθ and σzz

as functions of deformed radial coordinate r. In the circumferential direction (Fig. 4(a)),

residual stress leads to reduction in the stress gradient (•). However, stress discontinuity

persists at the interface between the inner and outer layer. With the inclusion of active

stresses, the stress distribution tends to become more homogeneous (¤). When both residual

and active stresses exist (¥), the stress distribution is similar to that of active stresses alone.

Active stresses play a critical role in eliminating stress discontinuity and homogenizing the

stress distribution. In the axial direction (Fig. 4(b)), residual stresses exert little effects on

stress distributions (•). Active stresses play a small role in reducing the stress gradient but do

not reduce axial stress discontinuity, because they are assumed to act in the circumferential

directional alone (¤). It should be noted that incorporation of active contraction in the axial

direction may change this conclusion.

5.2 Effects of pathological loading

In the following, we focus on the Cauchy stress distributions in the circumferential direction,

the assumed direction of active stresses. Figure 5 shows the distributions of the circumfer-

ential Cauchy stress component σθθ as functions of the deformed radial coordinate r under

various external pressure loads pext (namely 13.33, 16.00, 20.00, and 26.66 kPa, correspond-

ing to normal mean blood pressure, normal systolic blood pressure, hypertension, and severe
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hypertension, respectively). Figure 5(a) shows the stress distribution under passive mechan-

ical response, i.e., absence of residual and active stresses. High external pressure loads cause

increases in both inner radius and stress gradient. Residual stresses (see Fig. 5(b)) reduce

the stress gradient and maximum stress at all external pressure loads. When active stresses

are presented (see Fig. 5(c)), the uniform stress distribution resulting from smooth mus-

cle activation collapses as external pressure load increases. In the presence of both residual

and active stresses (Fig. 5(d)), residual stresses are less important than active stresses in

reducing the stress gradient under physiological load, although they decrease the maximum

stresses at all magnitudes of external pressure load.

5.3 Thickness of the arterial wall under hypertensive loading

Experiments have shown that strain and stress distributions throughout the arterial wall

are nearly uniform under physiological loadings (Matsumoto et al., 1996). If hypertensive

loading persists, the thickness of the inner layer increases to maintain the circumferential

stress around the level of normotensive loading (Fung et al., 1989).

The second of the above mentioned experimental findings is likely related to the essential

role of the active stresses. To investigate this idea, we subject the arterial wall to hypertensive

loading and calculate the changes in stress distribution. In response, the wall thickness of

the closed load-free arterial segment increases toward the inside of the cavity, whereas the
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outer radius remains unchanged (Fig. 6). In the wall-thickening process, we suppose that

smooth muscle cells are in basal tone (A = 50 kPa) and that thickness increases in the

inner layer only; that is, the ratio between outer and inner radius deviates from 2:1. In

this scenario, residual stresses are not considered, because their effect is obscured by that

of active stresses when residual and active stresses act together as indicated in the previous

subsection. The external pressure load pext applied to the inner wall is 26.66 kPa mimicking

severe hypertension.

Suppose that the wall thickness of a normal arterial segment is 1. Under high loads,

suppose that the thickness of the arterial wall has increased by factors of 1.111, 1.222, and

1.333. Figure 7 shows the circumferential Cauchy stress distributions through the deformed

wall thickness as wall thickness increases. In the absence of active stresses, no reduction in

transmural stress gradient is observed (Fig. 7(a)). However, presence of active stresses does

reduce this gradient (Fig. 7(b)). In clinical hypertension, when stress gradients occur in the

arterial wall, the arteries afferently increase the thicknesses of their inner layer to restore the

stress distributions to normotensive (physiological) levels. Smooth muscle activation plays

an important role in this process.
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6 Discussion

Numerous mechanical models of arterial walls have been proposed and examined in previous

works (Holzapfel et al., 2000; Schröder et al., 2005). These literatures, which have mainly

analyzed the passive mechanical responses described by hyperelastic materials, have demon-

strated the existence of large stress gradients through the arterial wall and high stresses in

the innermost layer. Such stress distribution has been suggested to predispose the inner

surface of an artery to arteriosclerosis (Humphrey et al., 2002). However, both residual and

active stresses are present in arterial walls. Incorporating residual stresses into the stress

analyses under physiological boundary conditions reduces the stress gradients (Vaishnav et

al., 1987). Stress gradients are further reduced if active stresses are added (Rachev et al.,

1999). Including these stresses in the analysis replicates an experimental fact: that is, the

strain and stress distributions are nearly uniform throughout the arterial wall in physiolog-

ical boundary conditions (Matsumoto et al., 1996). Residual and active stresses are now

recognized as essential biomechanical factors.

In general, biological tissue maintains its balance by producing and removing its con-

stituents (a process called turnover). It is widely believed that homogeneous stress dis-

tribution prevents incompatible turnover (Humphrey, 2003); that is, inhomogeneous stress

distribution could induce a locally incompatibled turnover. For example, high blood pressure

against the arterial wall alters the stress distribution within it. The resulting incompatible
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turnover could lead to wall thickening toward the inside of the cavity as the wall attempts to

restore homogeneous stress distribution (Fung et al., 1989). In an artery, both residual and

active stresses are presumed to create or reduce the stress gradients that promote pathogen-

esis or remodeling under external loads. Despite the non-negligible functions of these two

stresses, few researchers have attempted to quantify the effects of both residual and active

stresses.

In this study, for realistically predicting arterial function and pathogenesis from a mechan-

ical viewpoint, we developed a continuum mechanical model of arterial wall that incorporates

both residual and active stresses in addition to the traditional passive mechanical response.

Using the developed model, we examined the effects of these stresses on the pathogenesis of

an artery by calculating stress distributions under the pathological boundary conditions by

performing finite element analysis. The following results were obtained: (i) residual stresses

lead to a reduction in stress gradient regardless of the magnitude of external load; (ii) active

stresses have a role in homogenizing the stress distribution under physiological external load,

but such induced homogeneity collapses under pathological external load; (iii) when residual

and active stresses act together, the effect of the residual stresses is relatively obscured by

that of the active stresses. Our computer simulations replicated an experimentally deter-

mined phenomenon in hypertensive loading, that is, stress gradients in an arterial wall cause

an afferent increase in wall thickness, which restores stress distributions to their physiologi-
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cal levels. From these results, we conclude that residual stresses have minor but persistent

mechanical effects on the arterial wall under both physiological and pathological external

loads, active stresses play an important role in the physiological functions and pathogenesis

of arteries, and the mechanical effect of residual stresses is dependent on the presence or

absence of active stresses.

Residual and/or active stresses are observed in many biological tissues and have an impor-

tant role in their physiological functions. Studies have been conducted on the mathematical

modeling and numerical analyses of the mechanical behavior of biological tissues including

residual and/or active stresses, such as those of the airway (Wang et al., 2008) or skeletal

ligaments (Weiss et al., 2005). As for the arterial wall, residual stresses are modeled using

the opening angle method or its variants (Van Dyke et al., 2002). We chose the opening

angle experimental method for incorporating residual stresses into numerical analysis, be-

cause a method for theoretically estimating the residual deformation gradient tensor of a

hollow cylindrical tube artery is yet to be established. For modeling active stresses, a phe-

nomenological strain-energy function (Rachev et al., 1999; Zulliger et al., 2004; Schmitz et

al., 2011) or the mechanical model of a microstructure that generates active stresses (Mur-

tada et al., 2010; St̊alhand et al., 2011) is used. The former is straightforward to adapt to

finite element analysis, but given that it is an extrapolation from experiments, this method

lacks any theoretical basis. The latter model is deduced theoretically, but it is difficult to
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determine material constants and integrate the macrostructure. We chose the strain-energy

function approach for incorporating active stresses into numerical analysis, because by doing

so, relatively few parameters are required for determining material behavior.

Several simplifying assumptions were made in this study. First, residual stresses were

assessed by the opening angle method. However, this method provides essentially two-

dimensional information because it assumes that an arterial segment is circular and uniform.

The opening angle method is inadequate for determining three-dimensional residual stress

distributions. For instance, within inhomogeneous materials, the opening angle α or axial

stretch λz should differ from layer to layer (Bustamante et al., 2010). In arbitrary three-

dimensional geometries, the experimental method should be replaced with a theoretical one

that calculates the residual deformation gradient tensors. Second, we assumed that active

stress generators, i.e., smooth muscle cells, are uniformly distributed in the wall, align and

generate active stresses in the circumferential direction only. However, smooth muscle cells

may be contained in the middle layer of the wall and are not necessarily one-dimensional; they

possibly undergo multi-axial contraction and relaxation (Takamizawa et al., 1992; Humphrey

et al., 2002). An improved constitutive law of the active stress generator would eliminate

the stress discontinuity in inhomogeneous materials, rendering all components of the Cauchy

stress tensor uniform throughout the arterial wall. Third, because there are in vivo blood

flows inside the cavity of the vessel, fluid-solid interactions cannot be ignored in a computa-
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tional mechanical approach (Humphrey et al., 2002).

In future studies, we plan to develop a model that consider the above described assump-

tions and try to analyze patient specific geometries under complicate boundary conditions.

If computational arterial models based on appropriate constitutive laws and boundary con-

ditions are established, physiological functions could be predicted more realistically, leading

to improved diagnosis or disease treatment.
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Appendix A Linearization of weak form

Linearization is an important process in nonlinear finite element coding. Therefore, this

Appendix summarizes the linearization procedure of the weak form Eqs. (7a) and (7b)

described in the variational principle of saddle type of Section 2.2. Further details and

mathematical background are provided in Brink et al. (1996) and Rüter et al. (2000).

Eqs. (7a) and (7b) are linearized by the second variation of Eq. (5). For simplicity, the

terms in Eqs. (7a) and (7b) are expressed in short-hand notation as

Gup(δu) =

∫

Ω0

{
JpC−1 + 2

∂Ψiso(C, a0 ⊗ a0, g0 ⊗ g0)

∂C

}
: δEdV, (A.1)

Fup(δp) =

∫

Ω0

(
J − 1− p

κ

)
δpdV. (A.2)

Linearization is based on first-order Taylor’s expansion, expressed as

Gup(δu) + DuGup(δu) ·∆u + DpGup(δu) ·∆p

+o(‖ ∆u ‖) + o(‖ ∆p ‖) = Lext(δu), (A.3a)

Fup(δp) + DuFup(δp) ·∆u + DpFup(δp) ·∆p

+o(‖ ∆u ‖) + o(‖ ∆p ‖) = 0, (A.3b)
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where ∆(·) denotes the linearization operator. The quantities ∆u and ∆p denote the incre-

ment of the displacement field u and the Lagrange multiplier field p, respectively. The term

o(‖ ∆x ‖), characterized by the Landau order symbol, is a small error that tends to zero

faster than ‖ ∆x ‖→ 0, i.e., lim‖∆x‖→0 o(‖ ∆x ‖)/ ‖ ∆x ‖→ 0.

By substituting Eqs. (A.1) and (A.2) into Eqs. (A.3a) and (A.3b) and omitting o(‖ ∆u ‖)

and o(‖ ∆p ‖), the linearized weak form is obtained as follows: given the current state

(u, p) ∈ U × P , find increments (∆u, ∆p) ∈ U0 × P such that for all (δu, δp) ∈ U0 × P ,

aup(∆u, δu) + bup(∆p, δu) = Lext(δu)−Gup(δu), (A.4a)

bup(δp, ∆u) + cup(∆p, δp) = −Fup(δp), (A.4b)

where

aup(∆u, δu) ≡DuGup(δu) ·∆u

=

∫

Ω0

(
JpC−1 + 2

∂Ψiso(C,a0 ⊗ a0, g0 ⊗ g0)

∂C

)
: (Grad∆u)TGradδu

+ δE :

(
2p

∂JC−1

∂C
+ 4

∂2Ψiso(C, a0 ⊗ a0, g0 ⊗ g0)

∂C∂C

)
: ∆EdV, (A.5)

bup(∆p, δu) ≡DpGup(δu) ·∆p

=

∫

Ω0

J∆pC−1 : δEdV =

∫

Ω0

J∆p divδudV, (A.6)
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bup(δp, ∆u) ≡DuFup(δp) ·∆u

=

∫

Ω0

JδpC−1 : ∆EdV =

∫

Ω0

Jδp div∆udV, (A.7)

cup(δp, ∆p) ≡ DpFup(δp) ·∆p = −
∫

Ω0

δp∆p

κ
dV. (A.8)

Here we use bilinear forms aup : U0×U0 → R, bup : P ×U0 → R, cup : P ×P → R and linear

forms Lext : U0 → R, Gup : U0 → R, Fup : P → R.

In Eq. (A.5), 4∂2Ψiso(C,a0 ⊗ a0, g0 ⊗ g0)/∂C∂C ≡ Ciso and 2p∂
(
JC−1

)
/∂C ≡ Cvol

are the isochoric and volumetric fourth-order elasticity tensors, respectively. These elasticity

tensors embody constitutive laws, and thus play an important role in nonlinear finite element

methods.
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Appendix B The isochoric contributions of passive sec-

ond Piola-Kirchhoff stress tensor Spas,iso

and fourth-order elasticity tensor Cpas,iso

Finite element codes described by the total Lagrangian formulation require calculation of the

second Piola-Kirchhoff stress tensor S and fourth-order elasticity tensor C. This Appendix

derives the isochoric contributions of passive second Piola-Kirchhoff stress tensor Spas,iso and

fourth-order elasticity tensor Cpas,iso as stated in Section 3.1.

The isochoric contribution of the passive second Piola-Kirchhoff stress tensor Spas,iso is

given by

Spas,iso =
∂Ψpas,iso(I1, I4, I6)

∂C

=2
∂Ψpas,iso(I1, I4, I6)

∂C
:
∂C

∂C

=2
∂Ψpas,iso(I1, I4, I6)

∂C
: J−2/3

(
I− 1

3
C ⊗C−1

)

=J−2/3P : 2
∂Ψpas,iso(I1, I4, I6)

∂C
= J−2/3P : Spas. (B.1)

where P is the fourth-order material projection tensor defined as

P = I− 1

3
C−1 ⊗C, (B.2)
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and I is a fourth-order unit tensor. The passive fictitious second Piola-Kirchhoff stress tensor

Spas is defined as

Spas ≡2
∂Ψpas,iso(I1, I4, I6)

∂C

=ceI + c1(I4 − 1)
[
exp

{
c2(I4 − 1)2

}]
a0 ⊗ a0 (B.3)

+ c1(I6 − 1)
[
exp

{
c2(I6 − 1)2

}]
g0 ⊗ g0.

Here we have used the following relationships:

∂I1

∂C
= I,

∂I4

∂C
= a0 ⊗ a0,

∂I6

∂C
= g0 ⊗ g0, (B.4)

where I is a second-order unit tensor.

The isochoric contribution of the passive fourth-order elasticity tensor Cpas,iso is given by

(see Holzapfel (2000))

Cpas,iso =2
∂Spas,iso

∂C
= 4

∂2Ψpas,iso(I1, I4, I6)

∂C∂C

=P : 2J−4/3∂Spas

∂C
: PT +

2

3

(
J−2/3Spas : C

)
P̃ (B.5)

− 2

3

(
C−1 ⊗ Spas,iso + Spas,iso ⊗C−1

)
.
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Here we have used the fourth-order modified material projection tensor

P̃ = −∂C−1

∂C
− 1

3
C−1 ⊗C−1 (B.6)

and the notation

∂Spas

∂C
=

{
2c2(I4 − 1)2 + 1

}
c1 exp

{
c2(I4 − 1)2

}
a0 ⊗ a0 ⊗ a0 ⊗ a0

+
{

2c2(I6 − 1)2 + 1
}

c1 exp
{
c2(I6 − 1)2

}
g0 ⊗ g0 ⊗ g0 ⊗ g0. (B.7)

When implementing these equations in finite element code, the cylindrical components of the

second- and fourth-order tensors are transformed into Cartesian components by the tensorial

transformation law.
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Appendix C The isochoric contributions of active sec-

ond Piola-Kirchhoff stress tensor Sact,iso and

fourth-order elasticity tensor Cact,iso

This Appendix gives explicit expressions for the isochoric contributions of the active second

Piola-Kirchhoff stress tensor Sact,iso and fourth-order elasticity tensor Cact,iso as stated in

Section 3.3.

The isochoric contribution of the active second Piola-Kirchhoff stress tensor Sact,iso is

given by

Sact,iso =2
∂Ψact,iso(λm)

∂C
= J−2/3P : 2

∂Ψact,iso(λm)

∂C

=J−2/3P : Sact. (C.1)

where the active fictitious second Piola-Kirchhoff stress tensor Sact is defined as

Sact ≡2
∂Ψact,iso(λm)

∂C
= 2

dΨact,iso(λm)

dλm

∂λm

∂C

=
A

λm

{
1−

(
λmax − λm

λmax − λ0

)2
}

m0 ⊗m0. (C.2)
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Here we have used the following relationship:

∂λm

∂C
=

1

2λm

m0 ⊗m0. (C.3)

The isochoric contribution of the active fourth-order elasticity tensor Cact,iso is given by

Cact,iso =2
∂Sact,iso

∂C
= 4

∂2Ψact,iso(λm)

∂C∂C

=P : 2J−4/3∂Sact

∂C
: PT +

2

3

(
J−2/3Sact : C

)
P̃ (C.4)

− 2

3

(
C−1 ⊗ Sact,iso + Sact,iso ⊗C−1

)
.

Here we have used the following notation:

∂Sact

∂C
=

A

2

(
− 1

(λm)3
+

(λmax − λm)2

(λm)3(λmax − λ0)2

+
2(λmax − λm)

(λm)2(λmax − λ0)2

)
m0 ⊗m0 ⊗m0 ⊗m0. (C.5)

We remark that explicit expressions for the active fourth-order elasticity tensor have not been

previously reported in the literature.
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Appendix D Calculation of ∂Ψpas/∂λθ, λθ∂Ψact/∂λθ, and

∂Ψpas/∂λr

To obtain the analytical radius-pressure relationship stated in Section 4.1, we substitute

the passive and active strain-energy function into Eq. (28). The calculation of ∂Ψpas/∂λθ,

λθ∂Ψact/∂λθ, and ∂Ψpas/∂λr in Eq. (28) are presented in this Appendix.

First, we calculate ∂Ψpas/∂λθ and ∂Ψpas/∂λr in Eq. (28). The first invariant of the right

Cauchy-Green tensor C and the fourth and sixth pseudo-invariants of C, a0⊗a0, and g0⊗g0

are respectively given by

I1(r) = λr(r)
2 + λθ(r)

2 + λ2
z, (D.1)

I4(r) = λθ(r)
2 cos2 ηj + λ2

z sin2 ηj, (D.2)

I6(r) = λθ(r)
2 cos2 ηj + λ2

z sin2 ηj. (D.3)

The coupled form of the strain-energy function in the Holzapfel constitutive model is

Ψpas(C, a0 ⊗ a0, g0 ⊗ g0) = ce(I1 − 3) +
c1

2c2

∑
i=4,6

[
exp{c2(Ii − 1)2} − 1

]
. (D.4)

44



Using Eqs. (D.1), (D.2), (D.3), and (D.4), we obtain

∂Ψpas

∂λr

=
∂Ψpas

∂I1

∂I1

∂λr

+
∂Ψpas

∂I4

∂I4

∂λr

+
∂Ψpas

∂I6

∂I6

∂λr

=2ceλr(r) (D.5)

∂Ψpas

∂λθ

=
∂Ψpas

∂I1

∂I1

∂λθ

+
∂Ψpas

∂I4

∂I4

∂λθ

+
∂Ψpas

∂I6

∂I6

∂λθ

=2ceλθ(r) + 2c1{I4(r)− 1}λθ(r) cos2 ηj exp[c2{I4(r)− 1}2]

+ 2c1{I6(r)− 1}λθ(r) cos2 ηj exp [c2{I6(r)− 1}2], (D.6)

where we have used the relationships

∂I1

∂λr

= 2λr(r) ,
∂I1

∂λθ

= 2λθ(r) ,

∂I4

∂λr

=
∂I6

∂λr

= 0 ,
∂I4

∂λθ

=
∂I6

∂λθ

= 2λθ(r) cos2 ηj.

Next, we calculate of λθ∂Ψact/∂λθ = σθθ
act in Eq. (28). The coupled form of the strain-

energy function in the active stress model is

Ψact(λm) = A

{
λm +

1

3

(λmax − λm)3

(λmax − λ0)2

}
. (D.7)
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The active second Piola-Kirchhoff stress tensor is given by

Sact = 2
∂Ψact(λm)

∂C
= 2

dΨact(λm)

dλm

∂λm

∂C

=
A

λm

{
1−

(
λmax − λm

λmax − λ0

)2
}

m0 ⊗m0, (D.8)

where we have used the relationship

∂λm

∂C
=

1

2λm

m0 ⊗m0. (D.9)

The active Cauchy stress tensor σact is the push-forward operation of Sact by the deformation

gradient tensor F , i.e., Jσ = FSF T (where J = 1 in the incompressible condition). It is

given by

σact =
A

λm

{
1−

(
λmax − λm

λmax − λ0

)2
}

F (m0 ⊗m0) F T

=Aλm

{
1−

(
λmax − λm

λmax − λ0

)2
}

m⊗m. (D.10)

Because smooth muscle cells are solely aligned in the circumferential direction and the bound-

ary loadings are symmetric, we set λm = λθ to obtain

σθθ
act = Aλθ

{
1−

(
λmax − λθ

λmax − λ0

)2
}

. (D.11)
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Table 1

Material constants used in the passive constitutive law Eq. (10) taken from previous studies

on rabbit carotid artery (Holzapfel et al., 2004).

Layer ce [kPa] c1 [kPa] c2 η [deg]

Inner 3.380 5.399 0.3579 20

Outer 0.3831 0.8255 1.030 65
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Table 2

Material constants used in the active constitutive law Eq. (18) taken from previous studies

(Rachev et al., 1999).

Muscle tone A [kPa] λmax λ0

Basal tone 50 1.4 0.65
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Table 3

Geometric arterial segment data of rabbit carotid artery (Holzapfel et al., 2000, 2004).

State Opening angle [deg] Inner radius [mm] Outer radius [mm]

Stress free 160 1.43 1.82

Load free - 0.71 1.10
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η
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η
out

Inner layer 

Outer layer Collagen fibers 

Smooth muscle cell 

g0,out

a0,out

a0,in

g0,in

Figure 1: Computational model of arterial wall. The arterial wall comprises two layers
embedding active stress generators, i.e., smooth muscle cells. Each layer is composed of a
non-collagenous matrix and two families of collagen fibers, whose reference directions are
represented by unit vectors a0 and g0. Smooth muscle cells, whose reference directions
are represented by the unit vector m0, mainly align in the circumferential direction and
predominantly generate circumferential active stress.
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(a) Arterial segment excised from the body. Ref-
erence configuration Ω0. Closed load-free state.
The set {er, eθ, ez} is the local covariant basis
of the cylindrical coordinate system. The con-
travariant components of a material point vector
are denoted as (R,Θ, Z).

R0
out

e
R0

e
Θ0

e
Z0

Ω
sf

α

L0
R0

R0
in

α

Θ0

(b) Radial cut. Stress-free configuration
Ωsf. Opened up stress-free state. The set
{eR0 , eΘ0 , eZ0} is the local covariant basis of the
cylindrical coordinate system. The contravari-
ant components of a stress-free material point
vector are denoted as (R0,Θ0, Z0).

e
r

e
z

e
θ

r
in

r
out

r

θ

Ω

l

(c) Application of external loads. Current con-
figuration Ω. Loaded deformed state. The set
{er,eθ,ez} is the local covariant basis of the
cylindrical coordinate system. The contravari-
ant components of a spatial point vector are de-
noted as (r, θ, z).

Figure 2: Schematic of the opening angle method for assessing the residual deformation
gradient F res in cylindrical geometry. The arterial segment is assumed to be axially uniform;
therefore the opening angle α is independent of axial position Z0.
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Figure 3: Deformed inner radius vs. external pressure loads (inner pressure). Solid and
dashed lines indicate the exact solution of the Holzapfel constitutive model plus the active
stress model (A = 50 kPa) and the (passive) Holzapfel constitutive model, respectively. The
symbols ¤ and ◦ indicate corresponding finite element solutions.
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Figure 4: Comparison of Cauchy stress distributions in the presence/absence of residual
and/or active stresses at normal external pressure load pext = 13.33 kPa.
Case 1(◦): No residual or active stresses.
Case 2(•): Residual stresses present; active stresses absent.
Case 3(¤): Residual stresses absent; active stresses present.
Case 4(¥): Presence of residual and active stresses.
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(d) Presence of residual and active stresses.

Figure 5: Comparison of circumferential Cauchy stress distributions in the presence/absence
of residual and/or active stresses under various external pressure loads ranging from 13.33
to 26.66 kPa.
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Figure 6: Arteries respond to the hypertensive state by increasing their wall thickness toward
the inside of the cavity. The numbers beneath the artery cross-sections in this figure indicate
the wall thickness resulting from hypertrophy.
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(b) Residual stresses absent; active stresses present.

Figure 7: Comparison of circumferential Cauchy stress distributions at severe hypertensive
loading (pext = 26.66 kPa) as functions of deviations in the arterial wall thickness.
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