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Abstract 10 

 A method for Monte Carlo sensitivity analyses of -eigenvalue (prompt neutron time 11 

decay constant) in a subcritical system is developed using the first-order differential 12 

operator sampling (DOS) method. The first-order derivative of -eigenvalue with respect 13 

to nuclear data is calculated using the DOS method that includes the capability of 14 

calculating perturbed source effect. This paper is an extension of the author’s previous 15 

work for development of the sensitivity analysis method for keff-eigenvalue. Unlike the 16 

conventional Monte Carlo method for -eigenvalue calculation that uses the power 17 

iteration of fission sources, this paper introduces a recently developed “time source 18 

method”. The “time source method” has a weakness for a void-containing subcritical 19 

system, which is overcome by assigning a virtual total cross section in the void region. The 20 

perturbed source effect, which is caused by the change of nuclear data in a subcritical 21 

system, can be calculated by two methods, the source perturbation iteration method and the 22 

superhistory method. The source perturbation iteration method is superior in terms of 23 

computation efficiency, but a huge computer memory is required. The superhistory method 24 

dramatically reduces the memory requirement, although it worsens the variance of the 25 

sensitivity coefficients. The method developed in this paper is applied to some numerical 26 

tests that use multi-group constants, and it is verified by comparing to the results obtained 27 
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by a deterministic perturbation theory. 1 
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1. Introduction 6 

 Monte Carlo methods for sensitivity and uncertainty (S/U) analysis of keff-eigenvalue 7 

or neutron general responses (e.g., capture to fission ratio) have been developed and 8 

installed into production-level Monte Carlo calculation codes such as SCALE (Rearden, 9 

2004; Perfetti, 2012; Perfetti and Rearden, 2016), MCNP (Kiedrowski et al., 2011; 10 

Kiedrowski and Brown, 2013), SERPENT (Aufiero et al., 2015), MORET (Jinaphanh et al., 11 

2016), McCARD (Shim and Kim, 2011), and RMC (Qiu et al., 2015; Qiu et al., 2016a; Qiu 12 

et al., 2016b). There are several Monte Carlo techniques that are used for the S/U analyses 13 

such as “iterated fission probability” (IFP) method (Truchet, et al., 2015; Terranova and 14 

Zoia, 2017), “collision-history based method” (Aufiero et al., 2015; Aufiero et al., 2016), 15 

“contribution method” (Perfetti and Rearden, 2016), “superhistory” method (Yamamoto, 16 

2018), and so on. This paper newly develops a Monte Carlo technique for calculating 17 

sensitivity coefficients of -eigenvalue with respect to nuclear data, which has not 18 

previously been performed. In a subcritical system, keff-eigenvalue cannot be directly 19 

measured. Instead, an -eigenvalue (prompt neutron time decay constant) can be directly 20 

measured using the pulsed neutron method or other reactor noise techniques. The 21 

-eigenvalue is closely related with the subcriticality, and it is an important indicator for 22 

verification or validation of computational methods for subcritical system analyses. The 23 

sensitivity or uncertainty analyses of -eigenvalue with respect to nuclear data will 24 

contribute to evaluation of nuclear data in a subcritical system. The sensitivity coefficients 25 

of -eigenvalue can be calculated by the deterministic method using the forward and 26 

adjoint fluxes in an -eigenvalue mode calculation. Recently, Endo and A. Yamamoto 27 
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(2018) and Favorite (2018) established a calculation method for sensitivity coefficient 1 

analysis of -eigenvalue within the limit of the deterministic method. On the other hand, 2 

developing a Monte Carlo method to calculate the sensitivity coefficients of -eigenvalue 3 

has not been attempted as far as the authors of this paper know. The objective of this paper 4 

is to develop a Monte Carlo technique of -eigenvalue sensitivity analyses. For this 5 

purpose, an -eigenvalue needs to be obtained in the Monte Carlo method. Conventionally, 6 

a Monte Carlo -eigenvalue calculation method utilizes the fission source power iteration 7 

method for keff-eigenvalue calculations (Brockway et al., 1985; Yamamoto and Miyoshi, 8 

2003; Yamamoto, 2011; Zoia et al., 2014). The -eigenvalue is calculated during the 9 

course of keff-eigenvalue calculation. The -eigenvalue is iteratively updated at the end of 10 

each cycle in such a way that the keff-eigenvalue becomes unity. This method is dubbed as 11 

the “fission source method” hereafter. It is well known that this Monte Carlo method for 12 

-eigenvalue suffers from an abnormal termination due to too many neutrons produced in 13 

a deep subcritical system that has a large -eigenvalue. To overcome this drawback, a 14 

“time source method” was invented by Shim et al. (2014, 2015). In the “time source 15 

method”, the -eigenvalue is truly an eigenvalue of the -mode eigenvalue equation while 16 

the -eigenvalue in the “fission source method” is an adjustment parameter to make the 17 

keff-eigenvalue unity. 18 

 If we choose the “time source” method, the -eigenvalue can be expressed by a 19 

Neumann-series solution in an -mode eigenvalue equation. Thus, the sensitivity 20 

coefficients of the -eigenvalue with respect to nuclear data can be calculated with the 21 

differential operator sampling (DOS) method in the same way that the DOS method was 22 

used for the sensitivity coefficients of keff-eigenvalue (Yamamoto, 2018). This paper 23 

proposes a method for calculating sensitivity coefficients of -eigenvalue by introducing 24 

the DOS method in the “time source” method. 25 

 It is commonly recognized that the Monte Carlo S/U analysis methods require a huge 26 
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amount of memory storage regardless of the method adopted. Several techniques for 1 

reducing the memory requirements have been developed. In MCNP, a sparse data handling 2 

scheme is employed. It can reduce the memory requirement by a factor of 10 to 100 for 3 

many problems (Kiedrowski and Brown, 2013). In McCARD (Shim and Kim, 2011; Choi 4 

and Shim, 2016a; Choi and Shim, 2016b), a memory-efficient adjoint estimation method 5 

was developed by applying the IFP concept for the Monte Carlo Wielandt method 6 

(Yamamoto and Miyoshi, 2004). In RMC (Wang, et al., 2015; Qiu et al., 2015; Qiu et al., 7 

2016a; Qiu et al., 2016b), the superhistory method (Brissenden and Garlick,1986) as well 8 

as the Wielandt method was adopted. The DOS method also requires huge amount of 9 

memory to calculate perturbed source effect caused by the change of nuclear data. In 10 

Yamamoto (2018), the superhistory method was introduced to reduce the memory 11 

requirement for calculating the sensitivity coefficients of keff-eigenvalue. This paper again 12 

tries to apply the superhistory method for calculating the sensitivity coefficients of 13 

-eigenvalue with less memory requirement. 14 

 In the sections that follow, a new Monte Carlo algorithm for calculating sensitivity 15 

coefficients of -eigenvalue that uses the DOS method is presented. Some numerical tests 16 

are performed for verification of the new method. The superhistory method is applied to 17 

the numerical tests, and the performance of the superhistory method for sensitivity 18 

analyses of -eigenvalue is examined. 19 

 20 

2. Review of Monte Carlo -eigenvalue calculation methods 21 

2.1 Fission source method 22 

This section reviews the Monte Carlo methods to calculate an -eigenvalue. First, the 23 

conventional “fission source method” is presented. There exist several methods for the 24 

“fission source method”. A method, published in (Yamamoto and Miyoshi, 2003; 25 

Yamamoto, 2011), is presented here. The equation to be solved for an -eigenvalue 26 
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calculation is 1 
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   the macroscopic total cross section,    the macroscopic scattering cross section, 3 

   the macroscopic fission cross section,    the prompt neutron spectrum,    the 4 

number of prompt neutrons per fission, and                       . kp in Eq. (1) is 5 

supposed to be unity in the –mode eigenvalue equation. However, it is explicitly shown 6 

because kp needs to be calculated in the “fission source method”. Eq. (1) is very similar to 7 

the eigenvalue equation for keff except that the last term on the left-hand side,        8 

         , is included and that  and  are for prompt neutrons. The Monte Carlo 9 

algorithm to solve Eq. (1) is almost the same as the one for keff-eigenvalue calculations. 10 

Thus, the “source” of this calculation method is the fission source, and the eigenvalue is 11 

the kp-eigenvalue instead of the . The difference from the normal keff-eigenvalue 12 

calculation is that we must take into account the second term on the left-hand side of Eq. 13 

(1) during the random walk processes of the Monte Carlo calculation. For this purpose, as 14 

the particle flies a distance    in the jth flight path, the initial weight    changes to 15 

            
 

     
                                                      

Because the  is a positive value in a subcritical system, the weight increases as it flies 16 

even through a void region. At the end of each cycle, kp is calculated in the same manner as 17 

in the keff-eigenvalue calculations. The  used for the next cycle is determined so that kp 18 

approaches unity as 19 
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where m is the cycle number and c is an arbitrary positive value. An appropriate value for 1 

the parameter, c, can be easily found by several trial runs. The -eigenvalue is simply 2 

calculated by arithmetic mean of   beyond the inactive cycles. As seen in Eq. (5), the  3 

value strongly correlates with the one in the previous cycle. Thus, we have to keep in mind 4 

that the standard deviation of the  values does not represent a true standard deviation. 5 

 6 

2.2 Time source method 7 

 The “time source method” is another approach for -eigenvalue calculation. The 8 

details are presented in Shim et al. (2014, 2015). In this paper, the Monte Carlo algorithm 9 

of the “time source method” is briefly explained. 10 

The equation to be solved is 11 

                     
 

    
                                        

which is almost the same as Eq. (1) except that kp does not exist. In the “fission source 12 

method”, fission neutrons produced in a cycle are not followed within the cycle. They are 13 

stored for the sources in the next cycle. On the other hand, in the “time source method”, 14 

fission neutrons and their all progenies are followed within the cycle until they are all 15 

annihilated due to escape or Russian roulette, which means that the computation time of 16 

the “time source method” becomes longer than that of the “fission source method”. 17 

However, the additional computation time for following the fission neutrons strongly 18 

depends on the subcriticality. As the subcriticality becomes larger, the increase in the 19 

computation time becomes insignificant. The sources for the next cycle m are determined 20 

at each collision point as: 21 

           
 

           
                                                      

where n = the number of sources at the collision point, w = the weight of the colliding 22 

particle,     uniform pseudo random number from (0,1). Int [x] denotes the largest 23 

integer not exceeding x.      is the -eigenvalue obtained in the previous cycle. This 24 
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term is introduced to keep the number of source particles almost constant throughout the 1 

cycles. The random walk process for the “time source method” is exactly the same as the 2 

fixed source problem in a subcritical system. In the “fission source method”, the energy of 3 

a source particle is determined based on the fission neutron spectrum, and the direction of 4 

the source particle is isotropic. In the “time source method”, the energy and the direction of 5 

a source particle are the same as those of the particle that generates the source particle. 6 

Thus, the energy and the direction of the colliding particle as well as the position of the 7 

collision need to be stored for the use of the next cycle. At the end of each cycle, the 8 

-eigenvalue is calculated using the collision estimator as: 9 

     
  

           
  
           

  
  

                                         

where i and j denote the ith collision and jth source particles, respectively, and    the 10 

sum of the source particle’s weight in the mth cycle. The -eigenvalue can also be 11 

calculated using the track length estimator as: 12 

      
  

              
  

  

                                                   

where i denotes the ith track, and      the track length of the ith track from the jth source 13 

particle. 14 

 The “time source method” has a difficulty in that no source is generated in a void or 15 

transparent region. This difficulty does not arise in the “fission source method” because the 16 

effect of the term                  is taken into account by Eq. (4) even in a void 17 

region. This difficulty can be circumvented by assigning a virtual total cross section in a 18 

void region. This method is similar to the Woodcock delta tracking method (Woodcock, 19 

1965). A finite flight distance s in the void region is determined by           , where 20 

     the virtual total cross section. If the virtual collision occurs within the void region, 21 

the number of source particles is determined at the collision point using Eq. (7). After that, 22 

the particle keeps flying without changing the weight or the direction. The virtual total 23 



 8 

cross section can be determined arbitrarily. If a small virtual total cross section is chosen, 1 

the collision rarely occurs and a large number of sources per collision point are generated. 2 

If a large virtual total cross section is chosen, many unnecessary collisions occur. In the 3 

next section, the “time source method” is demonstrated for a subcritical system containing 4 

a void region to study how the virtual total cross section affects the calculation result. 5 

 6 

2.3 Numerical tests of the time source method 7 

In this section, a numerical example for -eigenvalue calculation in a subcritical 8 

system including a void region is presented using three-energy group calculations. Fig. 1 9 

shows the geometry for the calculation is a two-dimensional rectangular shape. The inner 10 

region is a void region and the outer region consist of a homogenized UO2 fuel rod array. 11 

Table 1 shows the three-energy group constants of the homogenized UO2 fuel rod array. 12 

The group constants are prepared with a standard thermal reactor analysis code SRAC 13 

(Okumura et al., 2007). The scatterings are assumed to be isotropic. The reference 14 

calculation for the -eigenvalue is performed with a discrete ordinates transport code 15 

DANTSYS (Alcouffe et al., 1995) using the same group constants. A test Monte Carlo 16 

program developed by the authors of this paper is used throughout this study. The 17 

-eigenvalues are obtained with the “time source method” and the “fission source method” 18 

with 30,000 neutrons per cycle, skipping 20 cycles and running 3,000 active cycles. The 19 

-eigenvalue calculations of the “time source method” are performed with several virtual 20 

total cross sections. The results of the -eigenvalues and the relative CPU time are shown 21 

in Table 2. The -eigenvalues are calculated with the track length estimator (Eq. (9)). The 22 

number of source neutrons in the void region are also shown in Table 2. While the number 23 

of sources in the void region and the relative CPU time are almost constant regardless of 24 

the virtual total cross section, the fluctuation of the number of sources becomes larger for a 25 

small virtual total cross section. The -eigenvalues calculated with the virtual total cross 26 
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section that is larger than 1.0 cm
−1

 agree well with the “fission source method” and the 1 

deterministic method. Compared with the “fission source method”, the “time source 2 

method” requires much longer computation time because the fission neutrons have to be 3 

followed within a cycle. The virtual total cross section of 0.1 cm
−1

 slightly overestimates 4 

the -eigenvalue, which may be caused by less source points generated in the void region 5 

and by improperly distributed source points. The null virtual total cross section generates 6 

null time sources in the void region, and the -eigenvalue is significantly overestimated. 7 

Using the collision estimator for the null virtual total cross section, the -eigenvalue is 8 

incorrectly overestimated because the contribution to the time sources are omitted in the 9 

void region. The dependence of the computation time on the virtual total cross section is 10 

not so large because the number of time sources in the void region is almost constant 11 

regardless of the virtual total cross section. However, an excessively large virtual total 12 

cross section (     20.0 or 50.0 cm
−1

) worsens the computational efficiency because of 13 

many unnecessary virtual collisions. 14 

[Fig. 1][Table 1][Table 2] 15 

3. Sensitivity analysis of -eigenvalue calculation 16 

3.1 Differential operator sampling method 17 

 The differential operator sampling (DOS) method (Rief, 1984; McKinney and Iverson, 18 

1996; Densmore et al., 1997) for the perturbation calculation with the source perturbation 19 

being implemented was already established in previous research (Nagaya and Mori, 2005; 20 

Nagaya and Mori, 2011; Raskach, 2009; Raskach, 2010; Jinaphanh et al., 2016). The 21 

capability of the DOS method was expanded to the second and higher orders (Nagaya and 22 

Mori, 2011; Nagaya et al., 2015). The formalism to calculate the first derivative of 23 

keff-eigenvalue with respect to a parameter was presented in detail in many previous 24 

publications (e.g., Nagaya and Mori, 2005; Yamamoto, 2018). A recently published paper 25 

(Yamamoto, 2018) is one of examples in which the application of the first-order DOS 26 
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method to the sensitivity coefficient of keff-eigenvalue was demonstrated. The sensitivity 1 

coefficient of -eigenvalue with respect to nuclear data is equivalent to the first derivative 2 

of the -eigenvalue with respect to nuclear data. Thus, the first-order DOS method is 3 

straightforwardly available for calculating sensitivity coefficients of -eigenvalue. This 4 

section newly presents a Monte Carlo algorithm for applying the first-order DOS method 5 

to the sensitivity coefficient of -eigenvalue. 6 

The DOS method scores an estimate of each differential coefficient with respect to a 7 

parameter at each flight path or each collision point within a region where the parameter 8 

exists. The fundamentals are the same as the sensitivity coefficient of keff-eigenvalue. Thus, 9 

this section, for the most part, is duplicated from the previous publication (Yamamoto, 10 

2018). The estimates that are scored during the course of the random walk process are 11 

shown as follows.  12 

First, a particle starts from a time source position r. The energy and the direction of 13 

the source particle are inherited from the particle that generates the source particle in the 14 

previous cycle. The particle moves from the position r to a collision point    that is 15 

determined by the transport kernel: 16 

                                                                      

When the particle travels a distance s through the perturbed region and undergoes a 17 

collision, the weighting coefficient to be scored is 18 

 

 

 

  
        

 

  

   
  

  
   
  

                                             

where x is a parameter to be perturbed. For simplicity, the variables for the energy and the 19 

direction are omitted. If x is a macroscopic cross section of reaction x (=s, c, f),        20 

 . Thus, Eq. (11) is 21 

 

 

 

  
        

 

  
                                               

If the particle passes through the perturbed region without undergoing a collision, only the 22 

second term on the right-hand side of Eq. (11),          , is scored. 23 
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 When the particle undergoes a collision, the particle’s weight is reduced by the 1 

non-absorption probability: 2 

   
  
  
                                                                        

The weighting coefficient for the scattering kernel        is 3 

  
  

 

  

  
  

 
 

  

   
  

 
 

  

   
  

                                                    

The sum of the weighting coefficients of Eqs. (11) and (14) is accumulated until the ith 4 

collision: 5 

      
    
    

  
 

    

 

  
    

 

   

    
 

  
    

 

                                        

where                             . The second term on the right-hand side of Eq. 6 

(14),              , cancels out the same term in Eq. (11) except at the last collision. 7 

The second term on the right-hand side of Eq. (15) means the sum of                  8 

until the ith collision where      is the macroscopic scattering cross section for the lth 9 

scattering. The third term on the right-hand side of Eq. (15) means the sum of    10 

         in the kth flight distance of the perturbed region until the ith collision. 11 

 At each collision point, the number of fission neutrons m is calculated as: 12 

      
   

  
                                                          

If a fission neutron is generated at this point, i.e.,    , the weighing coefficient for the 13 

fission kernel is determined as: 14 

  
   

 
 

  

   

  
 

 

   
 
    

  
 

 

  
 
   
  

                                        

If a fission occurs at the ith collision, the following weighting coefficient is transferred to 15 

each fission neutron: 16 

           
 

     
 
      

  
 

                                                  

where the summation for n is carried out over all fissions in the perturbed region until the 17 

ith collision. The second term on the right-hand side of Eq. (17),              , 18 



 12 

cancels out the same term in Eq. (11). 1 

 The scorings of Eqs. (15) and (18) are repeated at each flight, collision and fission 2 

until the particle from the time source and all its progenies are discarded. As a result, the 3 

first derivative of the inverse of the -eigenvalue with respect to the perturbation 4 

parameter x for the mth particle history is given by 5 

 

  
 
 

 
   

 

      
 

                                                               

where    the particle weight of the ith collision. From Eq. (19), the first derivative of the 6 

-eigenvalue is derived as: 7 

 

  
  
       

 

      
 

                                                        

The superscript NP denotes that Eq. (20) does not include the perturbed source effect 8 

caused by the change of x.      is represented for some perturbation parameters as 9 

follows: 10 

     

 
 
 
 
 
 

 
 
 
 
 

    
 

                         

 
 

    
  

 

    

 

   

    
 

                 

 
 

    

 

   

    
 

                     

                  

  

where N is the number of fissions in the perturbed region until the ith collision. Eq. (24) 11 

represents the sensitivity coefficient with respect to the fission spectrum in the gth group. 12 

After all the particles starting from the time source positions for one cycle are exhausted, 13 

the sensitivity coefficient in the cycle is calculated: 14 

   
  

  
 

 

 
 

     
  

  

 

   

                                                    

where M = the number of particle histories in one cycle and j = the cycle number. 15 

 16 
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3.2 The differential operator sampling method with perturbed source effect 1 

 The change of a cross section perturbs the time source distribution, thereby affecting 2 

the sensitivity coefficients. The first derivative given in Eq. (25) does not include the 3 

perturbed source effect. The DOS method for the perturbed source effect is already 4 

established for the sensitivity coefficient of keff-eigenvalue (Nagaya and Mori, 2005; 5 

Nagaya and Mori, 2011; Yamamoto, 2018). The perturbed source effect for the sensitivity 6 

coefficient of -eigenvalue can be calculated with the same procedure as for keff-eigenvalue. 7 

Thus, this section, for the most part, is duplicated from the previous publication 8 

(Yamamoto, 2018). The perturbed source effect is calculated as follows. 9 

 At a point where the lth time source neutron in the jth cycle is generated at the ith 10 

collision in the mth particle history, the following quantity is scored: 11 

      
 

                                                                                

      
 

                                                                   

where        is the same one as defined in Eq. (18) except that the cycle index j is added. 12 

         , which is defined in Eq. (28), represents the perturbed source effect in the 13 

weighting coefficient and it is inherited from the previous         cycle. The subscript 14 

n stands for the index of iteration for the source perturbation because the perturbed source 15 

effect needs to be calculated by an iteration procedure. N is the maximum iteration number, 16 

and the iteration is repeated until the perturbed source effect converges. In each cycle, 17 

      
 

 is stored for       and        where L is the total number of time source 18 

neutrons generated in each cycle. 19 

At the end of the jth cycle,       
 

 calculated by Eq. (26) or (27) is normalized so that 20 

we obtain               for the next cycle: 21 

                    
 

 
 

 
       

 

 

   

                                 

This normalization process is to keep the size of the sampling constant in each cycle. The 22 



 14 

perturbed source effect of the first derivative of the -eigenvalue in the mth history in the 1 

jth cycle is scored at each collision point: 2 

 

  
    
       

 

      
 

                                                 

where the summation is carried out at each collision in the mth history. Eventually, the first 3 

derivative of the -eigenvalue in the jth cycle is 4 

 

  
   

 

 
  

 

  
    
   

 

  
    
   

 

   

                                      

The memory requirement for this iteration procedure is N × L × (bytes per variable for 5 

each cross section). The number of cross sections is (the number of isotopes) × (the 6 

number of reactions) × (the number of energy groups). If the sensitivity coefficients of 7 

many isotopes, reactions, and fine energy groups are sought at the same time, the iteration 8 

procedure in the DOS method (or in the IFP method) results in prohibitively huge memory 9 

requirements. This is because       
 

 (defined in Eq. (26) or (27)) needs to be stored for 10 

1 nN  and 1 lL  until           (defined in Eq. (28)) is obtained. 11 

 12 

3.3 Memory reduction with the superhistory method 13 

 The superhistory method was applied for memory reduction in the sensitivity 14 

calculation of keff-eigenvalue in (Yamamoto, 2018). This paper applies the superhistory 15 

method to -eigenvalue calculations and the sensitivity analyses of -eigenvalue. In the 16 

superhistory method of this paper, the time source neutrons (instead of fission neutrons) in 17 

a cycle are tracked over N (>1) generations, each of which is called a “supergeneration”. 18 

The -eigenvalue calculated in the Nth supergeneration (i.e., the last supergeneration of the 19 

cycle) is adopted as the -eigenvalue of the cycle, and the time source neutrons generated 20 

in the Nth supergeneration are inherited to the next cycle. 21 

 When the lth time source neutron is generated at the ith collision at the first 22 

supergeneration of the jth cycle, the weighting coefficient,       , (defined in Eq. (15) for 23 
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the ith collision in the history) is assigned to the time source neutron as: 1 

      
                                                                            

where       
 = the weighting coefficient of the lth time source neutron in the first 2 

supergeneration of the jth cycle. The number of time source neutrons in each 3 

supergeneration is determined using Eq. (7). The total number of time source neutrons in 4 

each supergeneration is nearly constant due to the multiplication of  in Eq. (7) that is 5 

obtained in the previous cycle. 6 

In the second supergeneration,       
 , which is assigned to the lth time source neutron, 7 

is further transferred to an l th time source neutron that is generated by the lth source 8 

neutron as: 9 

       
        

                                                              

This procedure is repeated until the last supergeneration of the jth cycle. At the end of the 10 

last supergeneration, the sensitivity coefficient of  with respect to a parameter x for the 11 

mth superhistory in the jth cycle is given by 12 

 

  
         

 

      
 

        
                                            

where the summation is carried out at each collision in the Nth supergeneration and       
  13 

is the weighting coefficient for the mth superhistory in the Nth supergeneration. The final 14 

result of the first derivative of  includes the perturbed source effect if the number of the 15 

supergeneration N is large enough. The weighting coefficient in the last supergeneration 16 

      
  can be obtained one by one in each superhistory. Thus, it is not necessary to store a 17 

large amount of information until all histories in each cycle are terminated. The memory 18 

requirement for the superhistory method can be reduced by a factor of (the number of 19 

histories per cycle) × (the number of iterations for source perturbation) compared to the 20 

method in the previous section. 21 

 22 
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4. Numerical tests for sensitivity coefficient of -eigenvalue 1 

4.1 Differential operator sampling method with perturbed source effect 2 

 The sensitivity calculation methods for -eigenvalue using the DOS method are tested 3 

in this section. The geometry of the test problem is shown in Fig. 2. The geometry is a 4 

two-dimensional rectangular shape. The inner and outer regions consist of a homogenized 5 

light-water moderated mixed oxide fuel rod array and a homogenized UO2 fuel rod array, 6 

respectively. Table 1 shows the three-energy group constants for these regions. The 7 

sensitivity coefficients are calculated with respect to the macroscopic cross sections 8 

(capture, fission, and scattering cross sections) or the fission spectrum in the inner region 9 

(i.e., the MOX fuel rod array). 10 

[Fig. 2] 11 

 The reference calculations for the sensitivity coefficients are performed with 12 

DANTSYS using the same group constants. The three-energy group forward and adjoint 13 

angular fluxes of -eigenvalue mode are calculated with the Sn order 8. Using the angular 14 

fluxes, the sensitivity coefficients are calculated based on the linear perturbation theory: 15 

   
 

 

  

  
 
     

  
  

       
  
  

       
   
  

  

         
                             

where x = a cross section or a fission spectrum,   the forward flux,    the adjoint 16 

flux,       the integration over all phase space,   the production operator,   the 17 

scattering operator, and      the inverse of neutron velocity. The formula in Eq. (34) is 18 

almost the same as the one in (Endo and A. Yamamoto, 2018). The difference is that Eq. 19 

(34) neglects the dependence of the neutron velocity on the parameter x unlike the formula 20 

in (Endo and A. Yamamoto, 2018). 21 

 For verification of the test Monte Carlo program developed for the purpose of this 22 

paper, keff and -eigenvalues are calculated both with the Monte Carlo program and 23 

DANTSYS. The results are compared in Table 3. The eigenvalues by the Monte Carlo 24 



 17 

method agree well with the results by DANTSYS. As stated in Sec. 2.2, the computational 1 

time for an -eigenvalue calculation with the “time source method” becomes longer with 2 

the subcriticality. This is demonstrated in Table 4, where the relative computation times 3 

are compared for several levels of subcriticality. 4 

[Table 3][Table 4] 5 

 The sensitivity coefficients of -eigenvalue with respect to the capture, fission, 6 

scattering cross sections and the fission spectrum are shown in Tables 5, 6, 7, and 8, 7 

respectively. The sensitivity coefficient with respect to the scattering cross section in the 8 

third group is insignificant and it is omitted in Table 7. The sensitivity calculations are 9 

performed with 30,000 neutrons per cycle, skipping 20 cycles and running 2,000 active 10 

cycles. The number of iterations for the perturbed source effect is 12. This number of 11 

iterations is large enough to obtain the converged solutions as shown later. The results with 12 

DANTSYS agree with those with the Monte Carlo method within three standard deviations 13 

except for the fission spectrum. The geometry of this test problem is two-thirds smaller 14 

than the test problem in (Yamamoto, 2018) where the sensitivity coefficients of 15 

keff-eigenvalue were calculated. The remaining conditions are unchanged. Comparing the 16 

sensitivity coefficients of -eigenvalue in this paper with those of keff-eigenvalue in 17 

(Yamamoto, 2018), the perturbed source effect of -eigenvalue is minor and it is 18 

approximately one-tenth as small as that of keff-eigenvalue. The perturbed source effect is 19 

the most significant for the scattering cross section in the second group. Fig. 3 shows the 20 

perturbed source effect for the scattering cross section in the second group as a function of 21 

the number of iterations for source perturbation. The perturbed source effect converges 22 

approximately after 3 iterations. The convergence of the perturbed source effect of 23 

-eigenvalue is faster than that of keff-eigenvalue that requires more than 7 iterations as 24 

seen in Fig. 2 in (Yamamoto, 2018). The perturbed source effect depends on the level of 25 

subcriticality. It can be anticipated that the perturbed source effect becomes more 26 
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significant and its convergence becomes slower as the subcriticality becomes larger. This 1 

is corroborated in Table 9, where the fractions of the perturbed source effect in the total 2 

sensitivity coefficients are listed for several levels of subcriticality. 3 

[Table 5][Table 6][Table 7][Table 8][Table 9][Fig. 3] 4 

 The geometry of another numerical test is shown in Fig. 4. The inner and outer regions 5 

consist of a light water and a homogenized UO2 fuel rod array, respectively. In the same 6 

manner as in the previous test, the sensitivity coefficients of -eigenvalue are calculated 7 

with respect to the macroscopic cross sections (capture and scattering cross sections) in the 8 

inner region (i.e., the light water). The sensitivity coefficients of -eigenvalue with respect 9 

to the capture and scattering cross sections are shown in Tables 10 and 11, respectively. 10 

The results with DANTSYS agree with those with the Monte Carlo method within two 11 

standard deviations. The statistical uncertainty is relatively large for the sensitivity 12 

coefficient to the scattering cross section. Looking back to Eq. (22), we understand that 13 

this large uncertainty is caused by the cancelation of the second term           and the 14 

third term      in Eq. (22). 15 

 [Table 10][Table 11] [Fig. 4] 16 

4.2 Superhistory method 17 

 The sensitivity coefficients for the test problems in Sec. 4.1 are calculated using the 18 

superhistory method. First, it is investigated how many supergenerations are needed to 19 

achieve convergence of the sensitivity coefficients. Fig. 5 shows the sensitivity coefficients 20 

with respect to the scattering cross section in the second group as a function of the number 21 

of supergenerations. The convergence of the sensitivity coefficients seems to be achieved 22 

after 8 supergenerations. Thus, all results of the sensitivity coefficients in this paper are 23 

obtained with 8 supergenerations. The results of the superhistory method for the test 24 

problems in Sec. 4.1 are shown in Tables 12 through 17. In the tables, the relative 25 

figure-of-merit (=1/(variance)/(CPU time)) of the superhistory method with respect to the 26 

source perturbation iteration method is shown. The superhistory method well reproduces 27 
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the results of the source perturbation method except for the scattering cross section of the 1 

light water. The difference in the case of the scattering cross section is due to the large 2 

statistical uncertainty. The FOM of the superhistory method is reduced to approximately 3 

less than 20% of the source perturbation method. However, the memory reduction is an 4 

obvious advantage of the superhistory method, albeit with less computational efficiency. 5 

[Table 12][Table 13][Table 14][Table 15][Table 16][Table 17][Fig. 5] 6 

5. Conclusions 7 

 Following the procedure for calculating the sensitivity coefficients of keff-eigenvalue 8 

that has been already presented in the author’s previous publication, a new Monte Carlo 9 

calculation technique for the sensitivity coefficients of -eigenvalue is proposed in this 10 

paper. The conventional Monte Carlo -eigenvalue calculation method uses the power 11 

iteration method for keff-eigenvalue. This conventional -eigenvalue calculation that uses 12 

the power iteration of fission sources is not available for the sensitivity analyses of 13 

-eigenvalue. Instead, the “time source method” is introduced for the sensitivity analyses 14 

of -eigenvalue. One weakness of the “time source method” is that no time source can be 15 

defined in a void region. This weakness can be circumvented by assigning a virtual total 16 

cross section in the void region, which is similar to the Woodcock delta tracking method. 17 

Although the virtual total cross section can be arbitrarily defined, a smaller virtual total 18 

cross section leads to a large statistical uncertainty in time sources in the void region and a 19 

biased -eigenvalue. The virtual total cross section should be large enough to the extent 20 

that it does not inadvertently increase the computation time due to unnecessary virtual 21 

collisions. 22 

 Using the “time source method”, the sensitivity coefficients of -eigenvalue can be 23 

calculated in the same manner as the sensitivity coefficients of keff-eigenvalue. However, 24 

the “time source method” requires longer computation time as compared to the “fission 25 

source method” because fission neutrons and all their progenies have to be followed within 26 
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a cycle. The sensitivity coefficient of -eigenvalue is the first derivative of -eigenvalue 1 

with respect to nuclear data. Thus, the first-order differential operator sampling method is 2 

available for this purpose. The perturbed source effect needs to be considered for the 3 

sensitivity analyses of -eigenvalue, and it can be calculated using the source perturbation 4 

iteration method or the superhistory method. It is found that the perturbed source effect in 5 

the sensitivity coefficient of -eigenvalue is not so significant as that of keff-eigenvalue. 6 

The source perturbation iteration method requires a huge memory if the sensitivity 7 

coefficients of a large number of isotopes, reactions and energy groups are calculated in 8 

one calculation. On the other hand, the superhistory method does not need to store a large 9 

amount of information because the superhistory method tracks a single particle history 10 

over approximately ten supergenerations that constitute one cycle. Significant memory 11 

reduction can be achieved by introducing the superhistory method. 12 

The numerical tests in this paper deal with the sensitivity coefficients with respect to 13 

the multi-group macroscopic cross sections. However, the algorithm presented in this 14 

paper can be expanded straightforwardly to sensitivity analyses of -eigenvalue in the 15 

continuous energy Monte Carlo. 16 

 17 

18 
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Fig. 1 Geometry of the test problem for -eigenvalue calculation (void problem). 
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Fig. 2 Geometry of the test problem for sensitivity analysis of -eigenvalue (MOX 

problem). 
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Fig. 3 Perturbed source effect vs. the number of iterations for source perturbation (the 

scattering cross section in the second group). 
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Fig. 4 Geometry of the test problem for sensitivity analysis of -eigenvalue (water-hole 

problem). 
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Fig. 5 Sensitivity coefficient vs. the number of supergenerations (the scattering cross section 

in the second group for “MOX problem”). 
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Table 1 Three-group constants for UO2 fuel rod array, MOX fuel rod array, and light water 

 

 
 

UO2 fuel rod 

array 

MOX fuel rod 

array 

 Light water 

Total cross 

section (cm
-1

) 

    0.29829 0.289397 0.33207 

    0.83334 0.825987 1.1265 

    1.6389 1.6600 2.7812 

Fission cross 

section (cm
-1

) 

    0.0030586 0.0025989   

    0.0021579 0.0019544   

    0.056928 0.070119   

Absorption 

cross section 

(cm
-1

) 

    0.003385 0.003265 0.00030500 

    0.011895 0.011435 0.00036990 

    0.086180 0.12441 0.0182500 

Group transfer 

cross section 

(cm
-1

) 

  
    0.073843 0.071620 0.10464 

  
    0.0 0.0 0.0 

  
    0.043803 0.044045 0.097961 

Neutrons per 

fission 
  2.4 2.8   

Fission 

spectrum 

   0.878198 0.878198   

   0.121802 0.121802   

   0 0   

Neutron velocity 

(cm/s) 

   1.66743×10
9
 

   1.73734×10
7
 

   3.46850×10
5
 

 

  

Table



Table 2 Results of -eigenvalue calculation for the void-containing system. 

Virtual total 

cross section 

(cm
−1

) 

 (s
−1

)
*
 

Number of 

sources in the 

void region
***

 

Number of source 

points in the void 

region
****

 

Relative CPU 

time 

0.0 3780.8 ± 1.1 

(4131.8 ± 2.4)
**

 

0 0 0.93 

0.1 3585.6 ± 2.4 2879 ± 20 107.1 ± 0.2 1.00 

1.0 3577.6 ± 1.3 2922 ± 7 255.1 ± 0.2 1.04 

8.0 3578.7 ± 1.1 2918 ± 3 1338 ± 1 1.03 

20.0 3579.1 ± 1.0 2918 ± 2 2300 ± 2 1.13 

50.0 3578.0 ± 1.0 2919 ± 2 2918 ± 2 1.31 

Fission source 3576.8 ± 0.4     0.0761 

DANTSYS 3577.2       
*
The track length estimator is used. 

**
The collision estimator is used. 

***
The sum of “n” calculated by Eq. (7). 

****
The sum of the number of points where the time sources are produced. 

 

Table 3 Results of -eigenvalue and keff for the test problem. 

  (s
−1

) keff 

Monte Carlo 6355.3 ± 0.7
*
 0.84066 ± 0.00009 

DANTSYS 6343.7 0.84078 
*
This -eigenvalue is obtained by the “fission source method”. 

 

 

Table 4 Comparison of computation times for the “time source method” with different  values.  

  (s
−1

) keff Relative CPU time 

× 1.00 6356.8 ± 1.5 0.84066 ± 0.00009 1.00 

× 0.98 7008.7 ± 1.5 0.82368 ± 0.00009 0.91 

× 0.95 7978.8 ± 1.5 0.79851 ± 0.00009 0.79 

 

 

 

 

 

 

 



Table 5 Sensitivity coefficients of to the capture cross section in the MOX fuel rod array (MOX 

problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 8.891×10
−3

 2.182×10
−1

 7.653×10
−1

 

Differential operator (MC)    

Without source perturbation 8.658×10
−3

 

(4.1×10
−6

)
*
 

2.085×10
−1 

(9×10
−5

) 

7.161×10
−1 

(2.6×10
−4

) 

Perturbed source effect 1.935×10
−4

 

(1.21×10
−5

) 

8.886×10
−3

 

(3.07×10
−4

) 

4.636×10
−2

 

(1.01×10
−3

) 

Total 8.852×10
−3

 

(1.3×10
−5

) 

2.174×10
−1

 

(3.2×10
−4

) 

7.624×10
−1

 

(1.0×10
−3

) 

MC/DANTSYS 0.996 1.000 1.000 

*One standard deviation 

 

 

Table 6 Sensitivity coefficients of  to the fission cross section in the MOX fuel rod array (MOX 

problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS −6.683×10
−2

 −5.398×10
−2

 −5.650×10
−1

 

Differential operator (MC)    

Without source perturbation −6.485×10
−2

 

(1.1×10
−4

)
*
 

−5.287×10
−2 

(1.1×10
−4

) 

−5.850×10
−1 

(4.2×10
−4

) 

Perturbed source effect −2.060×10
−3

 

(3.37×10
−4

) 

−3.279×10
−4

 

(3.212×10
−4

) 

2.204×10
−2

 

(1.25×10
−3

) 

Total −6.691×10
−2

 

(3.5×10
−4

) 

−5.320×10
−2

 

(3.4×10
−4

) 

−5.630×10
−1

 

(1.3×10
−3

) 

MC/DANTSYS 1.001 0.986 0.996 

*One standard deviation 

 

 

 

 

 

 

 

 

 

 



Table 7 Sensitivity coefficients of  to the scattering cross section in the MOX fuel rod array (MOX 

problem). 

 1st Gr. 2nd Gr. 

DANTSYS −3.327×10
−1

 −4.222×10
−1

 

Differential operator (MC)   

Without source perturbation −3.015×10
−1

 

(6.5×10
−4

)
*
 

−3.727×10
−1 

(1.4×10
−3

) 

Perturbed source effect −2.946×10
−2

 

(1.96×10
−3

) 

−5.041×10
−2

 

(4.34×10
−3

) 

Total −3.309×10
−1

 

(2.1×10
−3

) 

−4.231×10
−1

 

(4.6×10
−3

) 

MC/DANTSYS 0.995 1.002 

*One standard deviation 

 

Table 8 Sensitivity coefficients of  to the fission spectrum in the MOX fuel rod array (MOX 

problem). 

 1st Gr. 2nd Gr. 

DANTSYS 1.482×10
0
 2.721×10

−1
 

Differential operator (MC)   

Without source perturbation 1.443×10
0
 

(7×10
−4

)
*
 

2.684×10
−1 

(2.1×10
−4

) 

Perturbed source effect 2.882×10
−2

 

(2.00×10
−3

) 

1.083×10
−2

 

(6.1×10
−4

) 

Total 1.472×10
0
 

(2.1×10
−3

) 

2.792×10
−1

 

(6.4×10
−4

) 

MC/DANTSYS 0.993 1.026 

*One standard deviation 

 

 

Table 9 Fractions of perturbed source effect in the total sensitivity coefficients for different  values.  

  (s
−1

) keff 
Fraction of perturbed 

source effect 

× 1.00 6356.8 ± 1.5 0.84066 ± 0.00009 0.119 

× 0.90 9586.2 ± 1.5 0.75645 ± 0.00009 0.163 

× 0.80 11692 ± 1.4 0.70251 ± 0.00009 0.205 

 

 

 



Table 10 Sensitivity coefficients of to the capture cross section in the light water (water-hole 

problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 1.854×10
−3

 3.857×10
−3

 6.349×10
−1

 

Differential operator (MC)    

Without source perturbation 1.838×10
−3

 

(9×10
−7

)
*
 

3.781×10
−3 

(1.7×10
−6

) 

6.172×10
−1 

(2.3×10
−4

) 

Perturbed source effect 1.830×10
−5

 

(2.83×10
−6

) 

7.485×10
−5

 

(5.41×10
−6

) 

1.927×10
−2

 

(7.8×10
−4

) 

Total 1.856×10
−3

 

(3.0×10
−6

) 

3.856×10
−3

 

(5.7×10
−6

) 

6.364×10
−1

 

(8.1×10
−4

) 

MC/DANTSYS 1.001 1.000 1.002 

*One standard deviation 

 

 

Table 11 Sensitivity coefficients of  to the scattering cross section in the light water (water-hole 

problem). 

 1st Gr. 2nd Gr. 

DANTSYS −1.017×10
−1

 −8.269×10
−2

 

Differential operator (MC)   

Without source perturbation −9.415×10
−2

 

(4.5×10
−4

)
*
 

−7.329×10
−2 

(1.06×10
−3

) 

Perturbed source effect −9.686×10
−3

 

(1.356×10
−3

) 

−1.189×10
−2

 

(3.29×10
−3

) 

Total −1.038×10
−1

 

(1.4×10
−3

) 

−8.518×10
−2

 

(3.46×10
−3

) 

MC/DANTSYS 1.020 1.030 

*One standard deviation 

 

 

 

 

 

 

 

 

 

 



Table 12 Sensitivity coefficients with the superhistory method for the case of Table 4 (capture cross 

section, MOX problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 8.891×10
−3

 2.182×10
−1

 7.653×10
−1

 

Differential operator (MC)    

 Source perturbation iteration method 8.852×10
−3

 

(1.3×10
−5

)
 *
 

2.174×10
−1

 

(3.2×10
−4

) 

7.624×10
−1

 

(1.0×10
−3

) 

 Superhistory method 

 8 supergenerations 

8.866×10
−3

 

(2.1×10
−5

) 

2.167×10
−1 

(5.0×10
−4

) 

7.634×10
−1 

(1.7×10
−3

) 

FOM of superhistory method
**

 0.097 0.145 0.104 

*One standard deviation 

**Relative FOM of the superhistory method with respect to the source perturbation iteration method 

 

 

Table 13 Sensitivity coefficients with the superhistory method for the case of Table 5 (fission cross 

section, MOX problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS −6.683×10
−2

 −5.398×10
−2

 −5.650×10
−1

 

Differential operator (MC)    

Source perturbation iteration method −6.691×10
−2

 

(3.5×10
−4

)
*
 

−5.320×10
−2

 

(3.4×10
−4

) 

−5.630×10
−1

 

(1.3×10
−3

) 

Superhistory method 

8 supergenerations 

−6.662×10
−2

 

(4.4×10
−4

) 

−5.321×10
−2

 

(4.2×10
−4

) 

−5.644×10
−1

 

(2.0×10
−3

) 

FOM of superhistory method
**

 0.171 0.172 0.124 

*One standard deviation 

**Relative FOM of the superhistory method with respect to the source perturbation iteration method 

 

 

 

 

 

 

 

 

 

 

 

 



Table 14 Sensitivity coefficients with the superhistory method for the case of Table 6 (scattering cross 

section, MOX problem). 

 1st Gr. 2nd Gr. 

DANTSYS −3.327×10
−1

 −4.222×10
−1

 

Differential operator (MC)   

Source perturbation iteration method −3.309×10
−1

 

(2.1×10
−3

)
*
 

−4.285×10
−1

 

(4.6×10
−3

) 

Superhistory method 

8 supergenerations 

−3.311×10
−1

 

(1.9×10
−3

) 

−4.231×10
−1

 

(4.1×10
−3

) 

FOM of superhistory method
**

 0.161 0.182 

*One standard deviation 

**Relative FOM of the superhistory method with respect to the source perturbation iteration method 

 

 

Table 15 Sensitivity coefficients with the superhistory method for the case of Table 7 (fission 

spectrum, MOX problem). 

 1st Gr. 2nd Gr. 

DANTSYS 1.482×10
0
 2.721×10

−1
 

Differential operator (MC)   

Source perturbation iteration method 1.472×10
0
 

(2.1×10
−3

)
*
 

2.792×10
−1

 

(6.4×10
−4

) 

Superhistory method 

8 supergenerations 

1.475×10
0
 

(3.3×10
−3

) 

2.780×10
−1

 

(9.1×10
−4

) 

FOM of superhistory method
**

 0.152 0.190 

*One standard deviation 

**Relative FOM of the superhistory method with respect to the source perturbation iteration method 

 

 

 

 

 

 

 

 

 

 

 

 



Table 16 Sensitivity coefficients with the superhistory method for the case of Table 8 (capture cross 

section, water-hole problem). 

 1st Gr. 2nd Gr. 3rd Gr. 

DANTSYS 1.854×10
−3

 3.857×10
−3

 6.349×10
−1

 

Differential operator (MC)    

Source perturbation iteration method 1.856×10
−3

 

(3.0×10
−6

)
*
 

3.856×10
−3

 

(5.7×10
−6

) 

6.364×10
−1

 

(8.1×10
−4

) 

Superhistory method 

8 supergenerations 

1.854×10
−3

 

(4.4×10
−6

) 

3.845×10
−3

 

(8.7×10
−6

) 

6.351×10
−1

 

(1.2×10
−3

) 

FOM of superhistory method
**

 0.127 0.087 0.086 

*One standard deviation 

**Relative FOM of the superhistory method with respect to the source perturbation iteration method 

 

 

 

Table 17 Sensitivity coefficients with the superhistory method for the case of Table 9 (scattering cross 

section, water-hole problem). 

 1st Gr. 2nd Gr. 

DANTSYS −1.017×10
−1

 −8.269×10
−2

 

Differential operator (MC)   

Source perturbation iteration method −1.038×10
−1

 

(1.4×10
−3

)
*
 

−8.518×10
−2

 

(3.46×10
−3

) 

Superhistory method 

8 supergenerations 

−1.003×10
−1

 

(1.2×10
−3

) 

−8.129×10
−2

 

(3.03×10
−3

) 

FOM of superhistory method
**

 0.240 0.247 

*One standard deviation 

**Relative FOM of the superhistory method with respect to the source perturbation iteration method 




