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Abstract: Caprazamycin A has significant antibacterial 

activity against Mycobacterium tuberculosis (TB). The first 

total synthesis is herein reported featuring (i) the scalable 

preparation of the syn-β-hydroxy amino acid with a 

thiourea-catalyzed diastereoselective aldol reaction, (ii) 

construction of a diazepanone with an unstable fatty acid 

side chain, and (iii) global deprotection with hydrogenation. 

This report provides a route for the synthesis of related 

liponucleoside antibiotics with fatty acid side chains. 

 

Caprazamycin A (1) was isolated from Streptomyces sp. 

MK730 62F2 and is a liponucleoside characterized by a 

seven-membered diazepanone core with an amino ribose, a 

uridine and a fatty acid side chain (Figure 1).1 Several 

analogs isolated by Igarashi et al. in 2003 share these 

features. Caprazamycins have antibacterial activity against 

Mycobacterium tuberculosis (TB), including 

multidrug-resistant TB (MDR-TB). Biological studies 

showed that it is an inhibitor of the peptidoglycan 

biosynthetic enzyme MraY.2 MraY is essential for bacterial 

cell growth and is biosynthetically located upstream of an 

enzyme targeted by β-lactam and glycopeptide antibiotics 

(e.g. vancomycin). New antimicrobial agents targeting 

MraY are expected to be active against vancomycin- and 

methicillin-resistant Staphylococcus aureus (VRSA and 

MRSA).3 Recently, CPZEN-45, which exhibits more potent 

activity against TB‒‒including extensively 

multidrug-resistant TB (XDR-TB), has been developed 

based on caprazamycins.2b,4  

The complex structure and significant biological 

activities of caprazamycins have drawn much attention from 

synthetic chemists.5,6 Matsuda and Ichikawa accomplished 

the first total synthesis of palmitoyl caprazol and caprazol 

(2), which does not possess a fatty acid side chain.7 

Shibasaki and Watanabe recently reported the synthesis of 2 

and the fatty acid side chain.8 However, a total synthesis of 

the caprazamycins has not yet been reported, because of the 

difficulty in introducing an unstable fatty acid side chain. 

This has also hampered the total synthesis of related 

liponucleoside antibiotics, such as liposidomycin C (3).9 

Therefore, we initiated a caprazamycin A (1) synthetic 

project, which would also be applicable to related natural 

products.  

Figure 1. Caprazamycin A (1), caprazol (2) and liposidomycin C (3). 

It is challenging to introduce the side chain containing 
unstable structures. To access caprazamycin A (1), it was 
envisioned that unstable side chains 4 and 5 could be 
introduced to protected caprazol 6 as the final step. This 
would be followed by global deprotection without adversely 
affecting any functional groups (Scheme 1). Benzyl (Bn), 
carboxybenzyl (Cbz) and benzyloxymethyl (BOM) 
protecting groups were selected and are readily removed by 
Pd-catalyzed hydrogenation. Protected 6 was prepared using 
(i) the Mitsunobu reaction to construct the seven-membered 
diazepanone, and (ii) a diastereoselective aldol reaction of 
isocyanate 8 and aldehyde 9 with thiourea catalyst 10 to 
obtain syn-β-hydroxy amino acid derivative 7.10 

 

 

Scheme 1. Retrosynthesis of caprazamycin A (1). 

Fatty acid side chains 4 and 5 were first prepared. 

β-Siloxy carboxylic acid 4 was synthesized from acid 

chloride 11 via the modified Noyori asymmetric reduction11 
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of β-ketoester 1212 (Scheme 2). Enantioselective 

desymmetrization of 3-methyl glutaric anhydride 13 using 

cinchona alkaloid catalyst 14 with Song’s procedure13 gave 

carboxylic acid 15 with high enantioselectivity (92% ee). 

Condensation of 15 with L-rhamnose derivative 16,14 

followed by removal of the benzyl group of ester 17 with 

hydrogenolysis gave carboxylic acid 5. 

 

 
Scheme 2. Synthesis of fatty acid side chains 5 and 6. Reagents and conditions: a) 

BnOAc, LDA, THF, −78 °C, 51%; b) H2, (S)-BINAP-RuBr2 (4.0 mol%), MeOH, 

50 °C, 48%, 94%ee for two steps; c) TESOTf, 2,6-lutidine, CH2Cl2, 0 °C, 94%; d) H2, 

10% Pd/C, EtOAc, 25 °C, 92%; e) BnOH, catalyst 14 (10 mol%), CPME, 86%, 92% 

ee.; f) Ghosez reagent, CH2Cl2, 0 °C, then nBuLi, THF, 48%; g) H2, 10% Pd/C, EtOAc, 

25 °C, 92%. LDA = lithium diisopropylamide, CPME = cyclopentyl methyl ether, 

Ghosez reagent = 1-chloro- N,N,2- trimethylpropenylamine. 

Construction of the syn-β-hydroxy amino acid moiety 

with S configuration at C5’ was then investigated. Several 

strategies have been employed for this in the past,5d,e,6g,i-k,7a,8a 

two of which were for the total synthesis of caprazol. One is 

Sharpless’ asymmetric aminohydroxylation of the 

α,β-unsaturated ester7a and the other is the diastereoselective 

isocyanoacetate aldol reaction.8a We anticipated that the 

stereochemistry at C5’ could be controlled with a novel 

diastereoselective aldol reaction using isocyanate 8 in the 

presence of an organocatalyst.10  

Initially, aldehyde 915 was treated with 8 and Et3N (10 

mol%) in toluene to give a mixture of aldol adducts 18a and 

18b in 50% yield with poor diastereoselectivity (1:1.8) 

(Table 1, Entry 1). In contrast, treatment with (S,S)-thiourea 

catalyst 10a (10 mol%) in toluene gave desired aldol adduct 

18a as the major product in 64% yield (3.1:1), along with a 

small amount of byproduct 19 (Entry 2). The selectivity was 

improved to 6.5:1 by changing to (S,S)-thiourea catalyst 10b 

(10 mol%) (Entry 3). Formation of byproduct 19 was 

suppressed by reducing the amount of catalyst (7 mol%) 

(Entry 4). Use of (R,R)-thiourea catalyst 10b (10 mol%) 

gave undesired diastereomer 18b in 80% yield with high 

selectivity (>20:1) (Entry 5). This protocol was also applied 

to the large scale synthesis of aldol adduct 18a. 

Aldol adduct 18a was converted to syn-β-hydroxy 

amino acid derivative 7 in good yield by regioselective 

decarboxylation and transesterification of the resultant 

thermodynamically stable trans-oxazolidinone in the 

presence of zinc cluster Zn4(OCOCF3)6O (Scheme 3).16 The 

minor isomer was removed during these transformations. 

Following Matsuda and Ichikawa’s procedure,7 fluoride 21 

underwent β-selective glycosylation, reduction of the azido 

group, Cbz protection and hydrolysis under basic conditions 

to give 22. Carboxylic acid 22 was treated with Ghosez 

reagent17 and coupled with anti-β-hydroxy amino acid 

derivative 23.18 The TBS group was selectively removed 

 

Table 1. Optimization of diastereoselective aldol reaction. 

 
Entry Catalyst Resultsa By-product 

1 Et3N (10 mol%) 50% (dr = 1:1.8) 10% 

2 (S,S)-10a (10 mol%) 64% (dr = 3.1:1) 7% 

3 (S,S)-10b (10 mol%) 77% (dr = 6.5:1) 9% 

4 (S,S)-10b (7 mol%) 80% (dr = 5.0:1) 0% 

5 (R,R)-10b (10 mol%) 80% (dr = 1:>20) 10% 

[a] Diastereomeric ratio (dr) was determined by 1H NMR. 

 
 

and construction of the diazepanone core was extensively 

investigated. The Mitsunobu reaction of 25 using PPh3 and 

di-tert-butyl azodicarboxylate (DBAD) proceeded to give 

the seven-membered ring without epimerization or other 

side reactions. Finally, protecting group manipulation of 26 

gave protected caprazol 6 and the structure was confirmed 

through conversion to caprazol (2).1,7a,8a 

With side chain fragments 4 and 5 and protected 

caprazol 6 in hand, we focused on the introduction of the 

fatty acid side chain. This side chain readily decomposes 

through β-elimination of the β-acyloxy carbonyl under basic 

conditions and cleavage of the O-acylglycoside under acidic 

conditions. In fact, attempts to introduce the fatty acid side 

chain 2719 to model diazepanone 28 using EDCI caused 

β-elimination to give unsaturated carboxylic acid 30 instead 

of desired 29 (Scheme 4). DCC and PyBOP were also 

ineffective. The β-hydroxy ester of diazepanone may also 

decompose through β-elimination and a retro-aldol reaction. 

Thus, fragments 4 and 5 were introduced in a stepwise 

manner. 

 

 

Scheme 4. Initial attempts to introduce fatty acid side chain (27). 

The final stage of this synthesis began with coupling 

β-siloxy carboxylic acid 4 with protected caprazol 6 without 

epimerization (Scheme 3). The Troc group was removed 

under mild conditions without touching the unstable 

β-acyloxy moiety. This was followed by reductive 

amination. After removal of the TES group, carboxylic acid 

5 was introduced to resultant alcohol 31 using Yamaguchi 



conditions to give protected caprazamycin A (32).8b Finally, 

global deprotection with hydrogenation in the presence of 

Pd black was successful without side-chain decomposition. 

This completed the first total synthesis of caprazamycin A 

(1). The 1H and 13C NMR, IR and HRMS for this matched 

those of the natural product.20 

In summary, we have accomplished the first total 

synthesis of caprazamycin A in 23 steps (longest linear 

sequence from aldehyde 9). The key points are (i) scalable 

synthesis of the syn-β-hydroxy amino acid moiety with a 

thiourea-catalyzed diastereoselective aldol reaction, (ii) 

maintaining the structural integrity of the diazepanone core 

during introduction of the fatty acid side chain, and (iii) 

global deprotection with hydrogenation. This is the first 

report detailing the introduction of the unstable fatty acid 

side chain. This should allow the synthesis of related 

liponucleoside antibiotics. 

 

 

Scheme 3. Total synthesis of caprazamycin A (1). Reagents and conditions: a) aq. KOH, THF, 0 to 25 °C; b) DBU, THF, 70 °C, 86% (2 steps); c) Zn4(OCOCF3)6O (3.2 mol%), 

MeOH, 50 °C, quant.; d) NaH, pNsCl, DMF, 0 to 25 °C; e) NaOMe, MeOH, 65% (2 steps); f) 21, BF3·Et2O, MS4Å, CH2Cl2, −30 °C, 71%; g) PPh3, THF/PhH = 1:1 then CbzCl, 

aq NaHCO3, 0 to 25 °C; h) Ba(OH)2·8H2O, THF/H2O = 4:1, 0 to 25 °C; i) Ghosez reagent, CH2Cl2, 0 °C then 23, aq. NaHCO3, 0 °C, 46% (3 steps); j) CSA, MeOH/CH2Cl2 = 1:1, 

0 °C, 68% (17% for recovered 24, b.r.s.m. 82%); k) PPh3, DBAD, toluene, 0 °C, 75%; l) K2CO3, PhSH, MeCN, 0 to 25 °C, 73%; m) TrocCl, DMAP, pyridine, CH2Cl2, 0 to 25 °C, 

79%; n) TsOH·H2O, MeOH, 60 °C, 41% and diol having penthylidene acetal (21%); o) CbzCl, DMAP, CH2Cl2, 0 to 25 °C; p) pTsOH·H2O, MeOH, 25 to 60 °C, 71% (2 steps); q) 

4, EDCI, DMAP, CH2Cl2, 0 to 25 °C; r) Zn, AcOH/THF, 25 °C; s) AcOH, ClCH2CH2Cl, 25 °C; t) (CH2O)n, NaBH(OAc)3, AcOH/ClCH2CH2Cl, 25 °C; u) HF·py, THF, 0 °C to 

25 °C, 43% (5 steps); v) 5, 2,4,6- trichlorobenzoyl chloride, DMAP, Et3N, 0 to 25 °C, 64%; w) Pd black, EtOH/HCO2H = 20:1, 25 °C, 98%; x) Zn, AcOH/THF, 25 to 50 °C; y) 

(CH2O)n, NaBH(OAc)3, AcOH/CH2Cl2, 25 °C, quant. (2 steps); z) Pd black, EtOH/HCO2H = 10:1, 25 °C, 46%. DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene, pNs = 

4-nitrobenzenesulfonyl, Ghosez reagent = 1-chloro-N,N,2-trimethylpropenylamine, CSA = 10-camphor sulfonic acid, DBAD = di-tert-butyl azodicarboxylate, TrocCl = 

2,2,2-trichloroethyl chloroformate, DMAP = N,N-dimethyl-4-aminopyridine, Cbz = benzyloxycarbonyl, pTs = p-toluenesulfonyl, EDCI = 1-Ethyl-3- (3-dimethylaminopropyl) 

carbodiimide

Keywords: antibiotics ・ natural products ・ total synthesis ・

caprazamycin ・ liponucleoside 

[1] a) M. Igarashi, N. Nakagawa, N. Doi, S. Hattori, H. Naganawa, M. 

Hamada, J. Antibiot. 2003, 56, 580; b) T. Takeuchi, M. Igarashi, H. 
Naganawa, JP P2003-12687A, 2003; c) M. Igarashi, Y. Takahashi, T. 

Shitara, H. Nakamura, H. Naganawa, T. Miyake, Y. Akamatsu, J. 

Antibiot. 2005, 58, 327; d) C. Dini, Curr. Top. Med. Chem. 2005, 5, 
1221; e) T. D. H. Bugg, A. J. Lloyd, D. I. Roper, Infect. Disord. Drug 

Targets, 2006, 6, 85.  

[2] a) C. Dini, P. Collette, N. Drochon, J. C. Guillot, G. Lemoine, P. 
Mauvais, J. Aszodi, Bioorg. Med. Chem. Lett. 2000, 10, 1839; b) Y. 

Ishizaki, C. Hayashi, K. Inoue, M. Igarashi, Y. Takahashi, V. Pujari, D. 

C. Crick, P. J. Brennan, A. Nomoto, J. Biol. Chem. 2013, 288, 30309. 
[3] K. Kimura, T. D. H. Bugg, Nat. Prod. Rep. 2003, 20, 252. 

[4] a) Y. Takahashi, M. Igarashi, T. Miyake, H. Soutome, K. Ishikawa, Y. 

Komatsuki, Y. Koyama, N. Nakagawa, S. Hattori, K. Inoue, N. Doi, Y. 
Akamatsu, J. Antibiot. 2013, 66, 171; b) S. N. M. Hanif, A. J. Hickey, L. 

Garcia-Contreras, J. Pharm. Biomed. Anal. 2014, 88, 370. 

[5] Synthetic studies toward caprazamycins: a) S. Hirano, S. Ichikawa, A. 
Matsuda, Bioorg. Med. Chem. 2008, 16, 5123; b) S. Ichikawa, Chem. 

Pharm. Bull. 2008, 56, 1059; c) K. Ii, S. Ichikawa, B. Al-Dabbagh, A. 

Bouhss, A. Matsuda, J. Med. Chem. 2010, 53, 3793; d) A. P. Spork, S. 

Koppermann, B. Dittrich, R. Herbst-Irmer, C. Ducho, Tetrahedron: 

Asymmetry 2010, 21, 763; e) F. Sarabia, C. Vivar-García, C. 

García-Ruiz, L. Martín-Ortiz, A. Romero-Carrasco, J. Org. Chem. 2012, 
77, 1328; f) C. Tsukano, S. Yokouchi, A. L. Girard, T. Kuribayashi, S. 

Sakamoto, T. Enomoto, Y. Takemoto, Org. Biomol. Chem. 2012, 10, 

6074; g) H. Miyaoka, J. Wada, E. Kawashima, Heterocycles 2014, 88, 
719. 

[6] Synthetic studies towards related liponucleoside antibiotics: a) M. R. 

Spada, M. Ubukata, K. Isono, Heterocycles 1992, 34, 1147; b) S. Knapp, 
S. Nandan, L. Resnick, Tetrahedron Lett. 1992, 33, 5485; c) K. S. Kim, 

I. H. Cho, Y. H. Ahn, J. I. Park, J. Chem. Soc., Perkin Trans 1 1995, 

1783; d) W. J. Moore, F. A. Luzzio, Tetrahedron Lett. 1995, 36, 6599; 
e) K. S. Kim, C. S. Cheong, J. S. Hahn, J. I. Park, Bull. Korean Chem. 

Soc. 1997, 18, 465; f) Y. L. Merrer, C. Gravier-Pelletier, M. Gerrouache, 

J. C. Depezay, Tetrahedron Lett. 1998, 39, 385; g) K. S. Kim, Y. H. 
Ahn, Tetrahedron: Asymmetry 1998, 9, 3601; h) S. Knapp, G. J. 

Morriello, S. R. Nandan, T. J. Emge, G. A. Doss, R. T. Mosley, L. Chen, 

J. Org. Chem. 2001, 66, 5822; i) C. Gravier- Pelletier, M. Milla, Y. L. 



Merrer, J. C. Depezay, Eur. J. Org. Chem. 2001, 16, 3089; j) S. Knapp, 

G. J. Morriello, G. A. Doss, Org. Lett. 2002, 4, 603; k) B. Drouillat, O. 
Poupardin, Y. Bourdreux, C. Greck, Tetrahedron Lett. 2003, 31, 2781; 

l) A. Yamashita, E. B. Norton, R. T. Williamson, D. M. Ho, S. Sinishtaj, 

T. S. Mansour, Org. Lett. 2003, 5, 3305; m) F. Sarabia, L. Martin-Ortiz, 
F. J. Lopez-Herrera, Org. Lett. 2003, 5, 3927; n) N. Nakajima, T. Isobe, 

S. Irisa, M. Ubukata, Heterocycles 2003, 59, 107; o) S. Fukunishi, M. 

Ubukata, N. Nakajima, Heterocycles 2005, 66, 129; p) Y. Bourdreux, B. 
Drouillat, C. Greck, Lett. Org. Chem. 2006, 3, 368; q) S. Fukunishi, M. 

Ubukata, N. Nakajima, Heterocycles 2007, 73, 627; r) O. Monasson, M. 

Ginisty, G. Bertho, C. Gravier-Pelletier, Y. L. Merrer, Tetrahedron Lett. 
2007, 48, 8149; s) X. H. Xu, A. E. Trunkfield, T. D. H. Bugg, F. L. 

Qing, Org. Biomol. Chem. 2008, 6, 157; t) O. Monasson, M. Ginisty, J. 

Mravljak, G. Bertho, C. Gravier-Pelletier, Y. L. Merrer, Tetrahedron: 
Asymmetry 2009, 20, 2320; u) M. J. Fer, P. Doan, T. Prangé, S. 

Calvet-Vitale, C. Gravier-Pelletier, J. Org. Chem. 2014, 79, 7758; v) A. 

P. Spork, M. Büschleb, O. Ries, D. Wiegmann, S. Boettcher, A. 
Mihalyi, T. D. H. Bugg, C. Ducho, Chem. Eur. J. 2014, 20, 15292. 

[7] a) S. Hirano, S. Ichikawa, A. Matsuda, Angew. Chem. Int. Ed. 2005, 44, 

1854; b) S. Hirano, S. Ichikawa, A. Matsuda, J. Org. Chem. 2007, 72, 
9936; c) S. Hirano, S. Ichikawa, A. Matsuda, J. Org. Chem. 2008, 73, 

569. 

[8] a) P. Gopinath, L. Wang, H. Abe, G. Ravi, T. Masuda, T. Watanabe, M. 

Shibasaki, Org. Lett. 2014, 16, 3364; b) P. Gopinath, T. Watanabe, M. 

Shibasaki, J. Org. Chem. 2012, 77, 9260.  

[9] a) K. Isono, M. Uramoto, H. Kusakabe, K. Kimura, K. Izaki, C. C. 
Nelson, J. A. McCloskey, J. Antibiot. 1985, 38, 1617; b) K. Kimura, Y. 

Ikeda, S. Kagami, M. Yoshihama, K. Suzuki, H. Osada, K. Isono, J. 

Antibiot. 1998, 51, 1099; c) M. Ubukata, K. Kimura, K. Isono, C. C. 
Nelson, J. M. Gregson, J. A. McCloskey, J. Org. Chem. 1992, 57, 6392; 

d) K. Kimura, Y. Ikeda, S. Kagami, M. Yoshihama, M. Ubukata, Y. 

Esumi, H. Osada, K. Isono, J. Antibiot. 1998, 51, 647; e) K. Kimura, S. 

Kagami, Y. Ikeda, H. Takahashi, M. Yoshihama, H. Kusakabe, H. 

Osada, K. Isono, J. Antibiot. 1998, 51, 640. 
[10] S. Sakamoto, N. Kazumi, Y. Kobayashi, C. Tsukano, Y. Takemoto, 

Org. Lett. 2014, 16, 4758. 

[11] a) R. Noyori, H. Takaya, Acc. Chem. Res. 1990, 23, 345; b) V. 
Ratovelomanana-Vidal, C. Girard, R. Touati, J. P. Tranchier, B. Ben 

Hassine, J. P. Genêt, Adv. Synth. Catal. 2003, 345, 261. 

[12] D. F. Taber, P. B. Deker, H. M. Fales, T. H. Jones, H. A. Lloyd, J. Org. 
Chem. 1988, 53, 2968. 

[13] a) S. H. Oh, H. S. Rho, J. W. Lee, J. E. Lee, S. H. Youk, J. Chin, C. E. 

Song, Angew. Chem. Int. Ed. 2008, 47, 7872; b) T. Honjo, T. Tsumura, 
S. Sano, Y. Nagao, K. Yamaguchi, Y. Sei, Synlett, 2009, 20, 3279. 

[14] a) M. S. Arias-Pérez, M. S. López, M. J. Santos, J. Chem. Soc., Perkin 

Trans. 2, 2002, 1549; b) D. A. Evans, W. C. Black, J. Am. Chem. Soc. 
1993, 115, 4497. 

[15] Aldehyde 9 was prepared from commercially available uridine in three 

steps. See Supporting Information. 
[16] T. Ohshima, T. Iwasaki, Y. Maegawa, A. Yoshiyama, K. Mashima, J. 

Am. Chem. Soc. 2008, 130, 2944. 

[17] A. Devos, J. Remion, A.-M. Frisque-Hesbain, A. Colens, L. Ghosez, J. 
Chem. Soc., Chem. Commun. 1979, 1180. 

[18] Amine 23 was synthesized from L-(+)-diethyl tartrate in ten steps. See 

Supporting Information. 

[19] Carboxylic acid 27 was prepared from the precursor of 4 and 5 as 

described by Shibasaki and Watanabe et al (ref 8b). 

[20] The NMR spectrum of caprazamycin A was dependent on 
concentration and pKa. Thus, the NMR was measured in 

DMSO-d6/D2O/DCO2D (20:1:1 for comparison. Also see Supporting 

Information. 

 

 


