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Abstract

The modified Kortweg-de Vries equation (for short, mKdV) models the propagation
of nonlinear water waves in the shallow water approximation. We consider the weakly
damped and forced mKdV equation under the periodic boundary condition. We prove
the existence of the global attractor in Hs, s > 11/12 for the weakly damped and forced
mKdV on the one dimensional torus. To see the asymptomatic behavior of the solutions
of mKdV equation below energy space, the study of global attractor below energy space is
important. The existence of global attractor below the energy space has not been known,
though the global well-posedness below the energy space is established. We directly
apply the I-method to the damped and forced mKdV, because the Miura transformation
does not work for the mKdV with damping and forcing terms. We need to make a
close investigation into the trilinear estimates involving resonant frequencies, which are
different from the bilinear estimates corresponding to the KdV.
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Chapter 1

Introduction

The increase of interest in turbulence and chaos has motivated for new mathematical
mechanics and some new concepts like attractors, fractal sets, Feigenbaum cascades etc.
This work mainly concentrate on attractors and global attractors.

In last three decades, theory of global attractor has been develop dramatically on
semi-groups for infinite dimensional dynamic systems. The dynamic systems arising in
the biology, physics or chemistry are often generated by a partial differential equation
and therefore, have infinite dimensional underling space. Usually these systems are either
conservative or exhibit some dissipation. We can hope to reduce the study to a bounded
or compact attracting set (or a global attractor) that contains enough information of the
flow and sometimes has the finite diminution character also.

The global attractor of a dynamical system is the unique compact invariant set that
attracts the trajectories starting in any bounded set at a uniform rate. A global attractor
plays an important role in the study of the behaviour of solution as time goes to infinity.

The main result in this work is about finding the global attractor for weakly damped
and forced modified Kortteweg-de Vries equation. In chapter three of our work, we will
discuss this problem in details.

We divided this work into three chapters. First chapter include the introduction to
global attractor and their basic properties. The most part of this chapter is from the
book by Roger Temam [? ]. For more details on stable and unstable orbits please see
Guckenheimer and Holmes [14], for absorbing sets see J.E.Billoti and J.P.La Salle [? ]
and for details on the main existence theorem for global attractor see F.Abergel [1] and
in O.A. Ladyzhenskaya [17]. The second chapter is divided into two sections namely the
Soblev spaces and Besov spaces. This introductory part of functional spaces is from the
book by H. Bahouri, J-Y Chemin and R. Danchin [2]. For inside details on the references
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for this book please see [2, page 49-50 for Sobolev spaces and page 120-121 for Besov
spaces].

This chapter is dedicated to the introduction of global attractor on semigroup. In
first section, we give the definition of a global attractor and state the necessary and
sufficient condition for the existence of a global attractor. More precisely, we discuss
about the absorbing set, invariant set , an attractor and the global attractor. The second
section describe the impotence of a global attractor. We describe how the study of
global attractor below energy space is useful. Although, showing the existence of a global
attractor below energy space is not that easy. We list some of the difficulties in showing
the existence of global attractor below energy space and possible way of handling such
issues.

1.1 What is the Global Attractor?
In this section, we define the global attractor on a semi-group which is generally defined
by the solutions of an ordinary differential equations(ODE) or partial differential equa-
tions(PDE). We consider the dynamical system whose state is described by an element
u = u(t) on a metric space H where time t varies over R or on some interval of R. Usually,
H is either the Banach or Hilbert space but for the present chapter, we just consider a
metric space.

1.1.1 Notations and Definition

We start this subsection with the definition of semigroup formed by the evolution of
dynamical system:

Definition 1.1.1. The solution of the dynamical system is described by the family of
operators (S(t))t>0, that map H into itself and satisfies the usual semigroup properties.S(s+ t) = S(s) · S(t) ∀s, t > 0

S(0) = I Identity in H.
(1.1.1)

Remark 1.1.2. If f is the state of the dynamical system at time s, then S(s)f is the
state at time s+ t and

u(t) = S(t)u(0), (1.1.2)
u(t+ s) = S(t)u(s) = S(s)u(t), s, t > 0. (1.1.3)
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Remark 1.1.3. In general, we consider the semigroup generated by the solutions of
ODE and PDE’s. In case of ODE, the general theorem for existence and uniqueness of
the solution provides the definition of S(t) but in the case of infinite dimension, we first
investigate the existence and uniqueness theorem as there is no general theorem exists to
study the dynamical system.

We atleast assume that ∀ t > 0, the operators S(t) are continuous from H into itself.
In general, the operators S(t) are not injective as the injectivity property for S(t) is
equivalent to backward uniqueness of the dynamical system. Nevertheless, if S(t) are
one-one for t > 0, we define the operators S(−t) as the inverse of S(t) which maps from
H to H. Now, we give few definitions as follows:

Definition 1.1.4. For u0 ∈ H, the orbit or trajectories starting at u0 is the set⋃
t>0 S(t)u0. It is also known as positive orbits through u0.

Definition 1.1.5. For u0 ∈ H, the orbit or trajectories ending at u0 is the set ⋃t>0 S(−t)−1u0.

We are assuming here that the orbit or trajectories ending at u0 exist. It is also know as
negative orbit through u0.

A complete orbit containing u0 is the union of positive and negative orbit through
u0. Now, we define the ω−limit set.

Definition 1.1.6. For u0 ∈ H or A ⊂ H, we define the ω-limit set of u0 (or A), as

ω(u0) =
⋂
s>0

⋃
t>s

S(t)u0

or
ω(A) =

⋂
s>0

⋃
t>s

S(t)A,

where the closers are taken over H.

We can define the similar ω-limit set for t < 0 but from now on we skip the results
related to t < 0 as it is not relevant for our work. Let us state the following proposition:

Proposition 1.1.7. f ∈ ω(A) if and only if there exists a sequence of elements fn ∈ A
and a sequence tn → +∞ such that

S(tn)fn → f as n → ∞.

Definition 1.1.8. A fixed point, or a stationary point, or an equilibrium point is a point
u0 ∈ H such that

S(t)u0 = u0 ∀t > 0.
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Clearly, the orbit and the ω-limit set for such point is {u0}.

If u0 is the stationary point, then we have the following definitions:

Definition 1.1.9. The stable manifold of u0, M−(u0) is the set of points v which belongs
to the complete orbit {u(t), t ∈ R}, v = u(t0) and such that

u(t) = S(t− t0)v → u0 as t → ∞.

Definition 1.1.10. The unstable manifold of u0, M+(u0) is the set of points v which
belongs to the complete orbit {u(t), t ∈ R} and such that

u(t) → u0 t → −∞.

Stable or unstable manifolds can be empty set. A stationary point u0 is stable if
M+(u0) = ∅ and unstable otherwise. We also skip the details for discrete case. Although,
discrete case are also similar to continuous case. Now, we will discus about the invariant
sets:

Definition 1.1.11. We say that a set A is positively invariant for the semigroup S(t) if

S(t)A ⊂ A ∀t > 0

and negatively invariant if
S(t)A ⊃ A ∀t > 0.

A set which is both positively and negatively invariant is known as the invariant set or a
functional invariant set i.e.

S(t)A = A ∀t > 0.

Examples 1.1.12.

• If a set A contains a fixed point or a union of fixed points, then it is a trivial
example of invariant set.

• If it exists, a time periodic orbit is an invariant set. In fact, if for some u0 ∈
H,T > 0 and S(T )u0 = u0, then S(t)u0 exists for all t ∈ R and

A = {S(t)u0, t ∈ R}

is invariant.
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The following lemma generates some special types of invariant sets.

Lemma 1.1.13. Let A ⊂ H and A ≠ ∅. Assume that for some t0 > 0, the set ⋃
t>t0

S(t)A
is relatively compact in H. Then, ω(A) is nonempty, compact and invariant.

For proving the main assumption that ⋃
t>0

S(t)A is relatively compact, we need to
show that it is bounded if H is finite dimensional and show that it is bounded in a space
W compactly embedded in H for infinite dimension. The lemma is used especially for
ω-limit set.
Now, we define one more important ingredient for the definition of global attractor.

Definition 1.1.14. An attractor is a set A ⊂ H that has following properties:

1. A is an invariant set i.e. S(t)A = A, t > 0.

2. A possesses an open neighbourhood O such that, ∀ u0 ∈ O, S(t)u0 converges to A
as t → ∞

d(S(t)u0,A) → 0 as t → ∞,

where d is the distance between a set and a point given as

d(x,A) = inf
y∈A

d(x, y).

Remark 1.1.15. If A is an attractor, the largest open set O that satisfies (2) of Definition
1.1.14 is called the basin of the attractor.

Definition 1.1.16. We say that A uniformly attracts the set B ⊂ O if

d(S(t)B,A) → 0 as t → ∞,

where d(B1, B2) is the semidistance defined as

d(B1, B2) = sup
x∈B1

inf
y∈B2

d(x, y).

In infinite dimensions to work with different topologies, we have the following defini-
tion:

Definition 1.1.17. Let V ⊂ W. We say that A is an attractor in V if A ⊂ V, S(t)A = A
and satisfies the second condition in Definition 1.1.14 with respect to the topology of V.

Finally, we define the global attractor as follow:
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Definition 1.1.18. We say that A ⊂ H is a global attractor for the semigroup (S(t))t>0

if A is a compact attractor that attracts the bounded sets of H. The basin of this set is
all of H.

1.1.2 Existence and Uniqueness

In this subsection, we discuss about the conditions for existence of the global attractor.
We start this subsection with the definition of the absorbing set:

Definition 1.1.19. Let B ⊂ H and O an open set containing B. We say that B is
absorbing in O if the orbit of any bounded set of O enters into B after some time i.e.∀B1 ⊂ O, B1 bounded

∃ t1(B1) such that S(t)B1 ⊂ B ∀ t > t1(B1).

We also says that B absorbs the sets of O.

Before giving the main result, let us assume the following two remarks:

Remark 1.1.20. For every bounded set B there exists t1 which may depend on B such
that ⋃

t>t1

S(t)B (1.1.4)

is relatively compact in H. In other words, the operators S(t) are relatively compact for t
large.

We can also have the following similar condition:

Remark 1.1.21. Let H is a Banach space and for every t, S(t) = L1(t) + L2(t) where
the operators L1(·) are uniformly compact for t large (i.e.satisfies Equation (1.1.4)) and
L2 are continuous mapping from H into itself such that for every bounded set A ⊂ H, we
have

rc(t) = sup
u∈A

|L2(t)u|H → 0 as t → ∞. (1.1.5)

Remark 1.1.22. For a Banach space, any family of operator satisfying Equation (1.1.4)
also satisfies Equation (1.1.5) with L2 = 0.

Let us state the main result:

Theorem 1.1.23. Let H is a metric space. Assume that the operators S(t) satisfies
(1.1.1)-(1.1.3) and either (1.1.4) or (1.1.5). Also assume that there exists an open set O
and a bounded set B of O such that B is absorbing in O.
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Then, the ω-limit set of B, A = ω(B), is a compact attractor which attracts the
bounded sets of O. For the inclusion relation, it is the maximal bounded attractor in O.

Moreover, if H is a Banach space, D is convex and the mapping t → S(t)u0 is
continuous from R into H, for every u0 ∈ H, then A is connected too.

Remark 1.1.24. The assumption in Equation (1.1.4) can be weaker for Theorem 1.1.23
i.e. for some t0 > 0, S(t0) is compact.

Note that there are some weaker version of Theorem 1.1.23 exists but we only need
to use the above hypothesis. With this main result, we end this section.

1.2 Why Global Attractor Is Important?
A partial differential equation or system can be written in the form

∂tu = F (u(t)), (1.2.1)

where the operator F (u) includes the partial derivatives of u with respect to spatial
variable x = (x1, . . . xn). Dynamic system generated by Equation (1.2.1) can be studied
locally and globally. The local theory is quite rich but same is not true for global theory.
The long-time behaviour of solution of such system can be adequately described in terms
of global attractor of the system. In many equations, the influence of initial data vanishes
after a long time. Therefore, permanent regimes are of impotence. The time-independent
solution of F (u) = 0 can be consider as one of the simplest example.

As discussed in the last section, attractor of a semigroup is the ω-limit set of a
neighbourhood of the attractor, which can be called as local attractor. A dynamical
system can have many local attractors for example stable periodic solution with different
domain of attraction. A global attractor is the maximal operator in the sense of inclusion
as it define the domain of attraction as whole Banach space H.

1.2.1 Difficulties In Finding The Global Attractor

An infinite dimensional dynamic system generated by PDE has many technical concerns
which are not there in finite dimensional theory. We list few of them as follow:

• Most of the times, the semigroup S(t) is only defined for t > 0 and can not be
extended for t ∈ R.

• Infinite dimensional function spaces are not locally compact.
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• Solution with bounded energy can blow up in a finite time.

• Uniqueness of the solution may be difficult to establish (3D Navier-Stokes system).

• Expression of characteristics of attractors in terms of physical parameters of the
problem.

• Interconnection of spatial properties of solution and there dynamical properties.

We should note that there are obvious similarities between finite and infinite systems. For
instant, constructing ω-limit set as global attractor works well for both type of systems.

Hence, the global attractor is a key concept to study the behaviour of dynamical
systems mainly infinite dimensional. As listed above, it is not easy to study about infinite
systems specially globally. But still there are few techniques which makes our job much
easer like a global attractor.

1.2.2 Global Attractor Below Energy Space

It is quite difficult to find a global attractor below energy space as the global attractor is
much more than showing the global existence. Indeed, we need to find two operators L1

and L2 which satisfies the hypothesis of Theorem 1.1.23. Our main work concentrates
on weakly damped and forced modified Korteweg-de Vries equation(mKdV). For mKdV
equation, global well-posedness is known in Sobolev space Hs for s > 1/2. But the
existence of a global attractor is not known. Hence, it seems to be intresting problem to
consider the global attractor below energy space. To see the asymptomatic behavior of
the solution of mKdV equation below energy space, the study of global attractor below
energy space is important.



Chapter 2

Functional Spaces

This chapter is devoted to some functional spaces and their basic properties which will be
used throughout this work. These functional space are quite important for the existence
and uniqueness of the solution associated to the non-linear partial differential equations.
this chapter consist of mainly two sections.

The first section contains a brief introduction on Sobolev spaces. In first part of this
section, we introduce Fourier transform on Rn. In the second part, we give some basic
inequalities of Real analysis mainly we state the Minkowski’s and Hölder’s inequality
which will be used throughout this work. Then we state convolution inequalities on
locally compact group equipped with left-invariant Haar measure.Further, we establish
bilinear interpolation-type inequality based on atomic decomposition. At the end, we
state few properties of Hardy-Littlewood maximal operator.

The third and forth part of this section contains a brief introduction to homogeneous
and nonhomogeneous Sobolev spaces, respectively. In the third part of this section,
we give some basic properties of homogeneous Sobolev space. We present embeddings
in some space spaces like Lebesgue spaces and bounded mean oscillation spaces. We
also state embeddings in Hölder spaces. At the end of third part, we give some refined
Sobolev inequalities which are invariant by translation and dilation. In the last part of
first section, we mainly concentrate on nonhomogeneous spaces. Trace theorems and
compact embedding are some of the main results, we discuss there. We also emphasis on
Moser-Trudinger and Hardy inequalities.

We can deal with the functions and distributions easily if they can be split into count-
able sum of smooth functions with compactly supported Fourier transform. Littlewood-
Paley theory provides such a decomposition. The first subsection of second section
contains the Bernstein inequality. Then we study the action of heat flow or of a dif-
feomorphism over spectrally localised functions. The second subsection is devoted to
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homogeneous Besov spaces with an introduction of Littlewood-Paley decomposition.
Subsection three is devoted to paradifferential calculus and its basic properties. Last sub-
section consist of nonhomogeneous Besov spaces, paralinearization theorem and compact
properties of Besov spaces.

2.1 Sobolev Spaces
In this section, we study the basic concepts of real analysis, Sobolev spaces used in the
theory of nonlinear partial differential equations.

2.1.1 Fourier Transform on Rn

In this subsection, we discuss about the Fourier transform on Rn and some basic properties
of it. We start this subsection with the definition of Fourier transform.

Definition 2.1.1. Let f ∈ L1(Rn). Then Fourier transform of f is defined as

Ff(ξ) = f̂(ξ) =
∫
Rn
e−i(x|ξ)f(x)dx, (2.1.1)

where (x|ξ) denotes the inner product on Rn. We can see that |f̂(ξ)| 6 ∥f∥L1 which
implies that F : L1(Rn) → L∞(Rn) is a continuous mapping. Now we define Schwartz
functions denoted as S with the help of following notations.

Let f be a function on Rn and α be a multi-index. Suppose that x ∈ Rn. Then
length of α is defined as |α| = α1 + · · · + αn. Also, define ∂αf = ∂α1

1 f · · · ∂αn
n f and

xα = xα1 · · ·xαn .

Definition 2.1.2. The set of smooth functions u on Rn is said to be Schwartz space
S(Rn) if for any j ∈ N we have

∥u∥j,S = sup
|α|6j
x∈Rn

(1 + |x|)j|∂αu(x)| < ∞.

The following theorem explain how the Fourier transform act on Schwartz functions.

Theorem 2.1.3. For any integer j there exist a constant C and an integer k such that

∀ u ∈ S, ∥û∥j,S 6 C∥u∥k,S .

Therefore, Fourier transform is a continuous map on S. Also, F is an automorphism on
S with inverse (2π)−nF̌ , where F̌ denotes f → {ξ → (Ff)(−ξ)}.
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Now, we define the tempered distribution and the relation between Fourier transform
and distribution.

Definition 2.1.4. Any continuous linear functional on S(Rn) is known as tempered
distribution on Rn. The set of tempered distribution is denoted as S ′(Rn)

Definition 2.1.5. We say that a sequence (φn)n∈N of tempered distributions is said to
converge to φ in S ′(Rn) if

∀ ϕ ∈ S(Rn), lim
n→∞

⟨φn, ϕ⟩ = ⟨φ, ϕ⟩.

We give a proposition related to the duality.

Proposition 2.1.6. Let T : S → S is a linear continuous map. Then

⟨tTφ, ϕ⟩ = ⟨φ, Tϕ⟩

defines a tempered distribution. Moreover, if (un)n∈N is a sequence of distributions which
converges to u in S ′(Rn) then (tTun)n∈N converges to tTu. Therefore, tT is a continuous
and linear map.

Let us list some examples which are consequences of Proposition 2.1.6.

Remark 2.1.7. Consider an operator (−∂)α for some multi-index α. Then for all ϕ ∈ S,
we have

∥(−∂)αϕ∥j,S 6 ∥ϕ∥j+|α|,S .

Also, we have the same assertion for xα → xαϕ i.e.

∥xαϕ∥j,S 6 ∥ϕ∥j+|α|,S .

Remark 2.1.8. Define

TAϕ = 1
detA ϕ ◦ A−1,

where A is a linear automorphism on Rn. Clearly, TL satisfies Proposition 2.1.6.

Remark 2.1.9. For any ϕ ∈ S, we have

∥Tθϕ∥j,S 6 Cj∥θ∥j+n+1,S∥ϕ∥j,S ,
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wher θ ∈ S(Rn) and Tθϕ = θ̌ ∗ ϕ.

Remark 2.1.10. Let θM be the space of smooth functions on Rn such that, for any
integer j, an integer N exists such that

sup
x∈Rn

(1 + |x|j)−N sup
|α|6j

|∂αf(x)| < ∞,

then the multiplication by f , the operator Tf satisfies the hypothesis of Proposition 2.1.6.

Definition 2.1.11. A tempered distribution g is said to be homogeneous of degree n if

gλ = λng ∀ λ > 0.

Remark 2.1.12. We can easily see that the notation of convolution for distribution is
same that of the Schwartz class S if it is in L1.

We list the properties of Fourier transform on S as the following proposition.

Proposition 2.1.13. Let (u, v) ∈ S ′ × S, λ ∈ R \ {0} and (α, β) ∈ Rn × Rn. Then, we
have

(i∂)αû = F(xαu), (iξ)αû = F(∂αu),
e−i(ξ|α)û = F(ταf), τβû = F(ei(x|β)u),

λ−nû(λ−1ξ) = F(u(λx)), F(u ∗ v) = v̂û,

where τα stands for the translation operator.

Now, we state the Plancherel’s theorem as follow:

Theorem 2.1.14. The Fourier transform is an automorphism of S ′ with inverse (2π)−nF̌ .
Moreover, F is an automorphism on L2(Rn) and satisfies ∥û∥L2 = (2π)n/2∥u∥L2 .

We define the following subspace of S ′(Rn) which is quite useful for us.

Definition 2.1.15. The space of tempered distributions u such that

lim
λ→∞

∥v(λD)u∥L∞ = 0 for any v ∈ D(Rn), (2.1.2)

is denoted by S ′
h(Rn). Here, D(Rn) denotes the space of smooth compactly supported

functions on Rn.

We can easily get the following equivalent condition for the distributions in S ′
h(Rn).
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Proposition 2.1.16. u ∈ S ′
h(Rn) if and only if there exists some smooth compactly

supported function v satisfying the inequality (2.1.2) and v(0) ̸= 0.

For better understanding of the space S ′
h(Rn), we list some of the examples:

Examples 2.1.17.

• If the Fourier transform of a distribution u is locally integrable near 0, then
u ∈ S ′

h(Rn). Indeed, the space E ′ of compactly supported distributions is included in
S ′
h(Rn).

• If u is a tempered distribution such that v(D)u ∈ Lp for some p ∈ [1,∞) and some
function v in D(Rn) with v(0) ̸= 0, then u ∈ S ′

h(Rn).

• A nonzero polynomial P does not belongs to S ′
h(Rn). This implies that S ′

h(Rn) is
not a close subspace of S ′ in weak topology.

We give Fourier transform for some functions which are not in L1.

Proposition 2.1.18. Let w be a nonzero complex number with nonnegative real part.
Then

F
(
e−w|·|2

)
(ξ) =

(
π

w

)n
2
e− |ξ|

4w ,

where w− n
2 = |w|− n

2 e−in
2 θ with θ ∈ [−π

2 ,
π
2 ].

Proposition 2.1.19. Let s ∈)0, n(. Then F(| · |−s) = Cn,s| · |s−n for some constant Cn,s
depending only on s and n.

To end this part of first section, let us state the following lemma:

Lemma 2.1.20. Let A be a distribution on Rn supported in {0}. Suppose that PA = bA

for some real number b, where P =
>n∑
j=1

xj∂j. Then, we have the following results:

1. If b is not an integer less than or equal to −n, Then A = 0.

2. If b is an integer less than or equal to −n,, then there exists some real numbers cα
such that

A =
∑

|α|=−b−n
cα∂

αδ0
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2.1.2 Basic Real Analysis

In this section, we state very basic results of analysis which are very essential for our
work. Let us start this subsection with Hölder’s inequality.

Proposition 2.1.21. Hölder Inequality : Let (X,µ) be a measure space and (p, q, r) ∈
[1,∞]3 such that

1
p

+ 1
q

= 1
r
.

Let (u, v) ∈ Lp(X,µ) × Lq(X,µ), then uv ∈ Lr(X,µ) and

∥uv∥Lr 6 ∥u∥Lp∥v∥Lq .

Now, let us state the following lemma:

Lemma 2.1.22. Let (X,µ) be a measure space and p ∈ [1,∞]. Suppose that u be a
measurable function. If

sup
∥v∥

Lp′ 61

∫
X

|u(x)v(x)|dµ(x) < ∞,

then u ∈ Lp and
∥u∥Lp 6 sup

∥v∥
Lp′ 61

∫
X
u(x)v(x)dµ(x),

where p′ denotes the conjugate exponent of p defined as

1
p

+ 1
p′ = 1.

Proposition 2.1.23. Minkowski’s Inequality : Let (X,µ) and (Y, ν) be two measure
spaces and u be a nonzero measurable function on X × Y. For all 1 6 p 6 q 6 ∞, we
have ∥∥∥∥u(·, x2)∥Lp(X,µ)

∥∥∥
Lq(Y,ν)

6
∥∥∥∥u(x1, ·)∥Lq(Y,ν)

∥∥∥
Lp(X,µ)

.

Now, we give the definition of convolution between two measurable functions defined
on some locally compact topological group G equipped with a left-invariant Haar measure
ν.

Definition 2.1.24. Let u and v are two measurable functions on a locally compact
topological group G equipped with a left-invariant Haar measure ν. Then

u ∗ v(x) =
∫
G
u(y)v(y−1 · x)dν(y).
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Lemma 2.1.25. Young’s Inequality: Le G be a locally compact topological group
equipped with a left-invariant Haar measure ν. If ν satisfies

ν(P−1) = ν(P ) for any Borel set P,

then for all (p, q, r) ∈ [1,∞]3 with

1
p

+ 1
q

= 1
r

+ 1 (2.1.3)

and for any (u, v) ∈ Lp(G, ν) × Lq(G, ν), we have

u ∗ v ∈ Lr(G, ν) and ∥u ∗ v∥Lr(G,ν) 6 ∥u∥Lp(G,ν)∥v∥Lq(G,ν).

We now state the refined Yong’s inequality.

Theorem 2.1.26. Refined Young’s Inequality: Let (G, ν) satisfies the same asser-
tion as in Lemma 2.1.25. Suppose that (p, q, r) ∈ [1,∞]3 and satisfies (2.1.3). For any
u ∈ Lp(G, ν) and any measurable function v on G where

∥v∥qLq
w(G,ν) = sup

λ>0
λqν(|g| > λ) < ∞.

Then, there exists a constant C such that the function u ∗ v ∈ Lr(G, ν), and

∥u ∗ v∥Lr(G,ν) 6 C∥u∥Lp(G,ν)∥v∥Lq(G,ν).

Theorem 2.1.26 implies the well known Hardy-Littlewood-Sobolev inequality on Rn.

Theorem 2.1.27. Hardy-Little-wood-Sobolev Inequality: Let s ∈ [0, n] and (p, r) ∈
[1,∞]2 satisfies

1
p

+ s

n
= 1 + 1

r
.

Then, there exists a constant C such that

∥| · |−s ∗ u∥Lr(Rn) 6 ∥u∥Lp(Rn).

Proposition 2.1.28. Atomic Decomposition: Let (X, ν) be a measure space and
p ∈ [1,∞]. Suppose that u ∈ Lp. Then, there exists a sequence of positive real numbers
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(an)n∈Z and a sequence of nonnagetive functions (un)k∈Z such that

u =
∑
n∈Z

anun,

where the functions un have pairwise disjoint supports and

ν(Supp un) 6 2n+1

∥un∥L∞ 6 2− n
p

1
2∥u∥pLp 6

∑
n∈Z

apn 6 2∥u∥pLp .

Proposition 2.1.28 describe the atomic decomposition of a function u ∈ Lp which
help us to prove Theorem 2.1.26. We state another application of atomic decomposition
namely bilinear interpolation theorem which is very useful in our study.

Theorem 2.1.29. Bilinear Interpolation Theorem: Let (X,µ) and (Y, ν) are
two measure spaces. Let A be a continuous bilinear functional on L2(X;Lpj (Y )) ×
L2(X;Lqj (Y )) for j ∈ {0, 1} and (pj, qj) ∈ [1, 2]2 and such that p0 ̸= p1 and q0 ̸= q1.

For any θ ∈ [0, 1], the bilinear functional A is then continuous on L2(X;Lpθ(Y )) ×
L2(X;Lqθ(Y )), where

(
1
pθ
,

1
qθ

)
= (1 − θ)

(
1
p0
,

1
q0

)
+ θ

(
1
p1
,

1
q1

)
.

Definition 2.1.30. Let (X, d) be a metric space endowed with the Borel measure ν.

Indeed, if u : X → R is in L1
loc(X, ν), then we define

∀x ∈ X, Mf(x) = sup
τ>0

1
ν(B(x, τ))

∫
B(x,τ)

|u(y)|dν(y).

Then, M is known as the maximal function.

The following lemma is useful for the proof of Theorem 2.1.32.

Lemma 2.1.31. Let (X, ν) be a metric space with the Borel measure ν with the doubling
property. Then there exists a constant C1 such that for any family (Bi)16i6n of balls,
there exists a subfamily (Bij )16j6n of pairwise disjoint balls such that

ν

 p⋃
j=1

Bij

 > C1ν

(
n⋃
i=1

Bi

)
.
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We state the following well-known fundamental result about the maximal function.

Theorem 2.1.32. Let (X, d) be the metric space with the measure ν has doubling property.
Then, there exists a constant C depending only on the doubling constant B such that
∀ 1 < p 6 ∞ and u ∈ Lp(X, ν), we have Mf ∈ Lp(X, ν) and

∥Mf∥Lp 6
p

p− 1C
1
p ∥u∥Lp .

For the proof of Gagliardo-Nirenberg inequalities, we list the following results:

Proposition 2.1.33. Let G be a locally compact group with neutral element e, with a
distance d such that d(e, y−1.x) = d(x, y) ∀ (x, y) ∈ G2 and a left-invariant Haar measure
satisfies ν(B−1) = ν(B) for any Borel set B. Also, for r > 0, there exists a positive
measure µ, on the sphere ∑r = {x ∈ G \ d(e, x) = r} such that for any L2 function v on
G, we have ∫

G
v(x)dν(x) =

∫ +∞

0

(∫∑
r

v(x)dµr(x)
)
dr.

For all measurable functions w and any L1 function H on G such that

∀x ∈ G,H(x) = h(d(e, x))

for some nonincreasing function h : R+ → R+, we then have

∀x ∈ G, |H ∗ f(x)| 6 ∥H∥L1(G,ν)Mf(x).

2.1.3 Homogeneous Sobolev Spaces

This subsection consist of introduction to homogeneous Sobolev spaces and there embed-
ding into Lebesgue, BMO and Hölder spaces. The homogeneous Sobolev spaces plays a
vital role in study of nonlinear partial differential equations. Let us start this section
with the definition and some basic properties of homogeneous Sobolev spaces.

Definition 2.1.34. Let s ∈ R. The homogeneous Sobolev space Ḣs(Rn) is the space of
tempered distributions u over Rn such that û ∈ L1

loc(Rn) and satisfies

∥u∥2
Ḣs =

∫
Rn

|ξ|2s|û(ξ)|2dξ < ∞.

The following proposition explain a kind of interpolation of homogeneous Sobolev
spaces:
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Proposition 2.1.35. Let s1 6 s 6 s2. Then, Ḣs1 ∩Ḣs2 included in Ḣs and for θ ∈ [0, 1],
we have

∥u∥Ḣs 6 C∥u∥1−θ
Ḣs1 ∥u∥θḢs2 ,

where s = s1(1 − θ) + s2θ.

Proposition 2.1.36. Let l be a positive integer. Then, the space Ḣ−l(Rm) consist of
distributions which are the sums of derivatives of order l of L2(Rn) functions.

Remark 2.1.37. Proposition 2.1.36, describe the homogeneous Sobolev spaces with
negative index. For the positive index, Ḣs is the subset of distributions with locally
integrable Fourier transforms such that ∂αu ∈ L2(Rn) for all multi-index α with length s.
We observe that Ḣ0 = L2 from Plancherel theorem.

The following proposition explain the necessary and sufficient property for Ḣs to be
Hilbert space:

Proposition 2.1.38. Ḣs(Rn) is a Hilbert space if and only if s < n
2 .

We define the space S0(Rn) as the collection of functions of S(Rn) whose Fourier
transform vanish near origin. Based on S0(Rn), we have the following proposition.

Proposition 2.1.39. S0(Rn) is dense in Ḣs for s < n
2 .

Proposition 2.1.40. Let s < n
2 . Then the bilinear functional

T =

S0 × S0 → C

(u, v) →
∫
Rn u(x)v(x)dx

can be extended to a bilinear continuous functional on Ḣs × Ḣ−s. Moreover, if B is a
continuous linear functional on Ḣs, then there exists a unique distribution v in Ḣ−s such
that

∀u ∈ Ḣs, ⟨B, u⟩ = T (v, u) and ∥B∥(Ḣs)′ = ∥v∥Ḣ−s .

In fact, Proposition 2.1.67 states that Ḣ−s can be considered as dual of Ḣs. The
following proposition explain that we can describe Ḣs as the finite difference for s ∈ (0, 1).

Proposition 2.1.41. Let s ∈ (0, 1) and u ∈ Ḣs(Rn). Then, Ḣs and

∫
Rn×Rn

|u(x+ y) − u(y)|2
|y|n+2s dxdy < ∞.
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Moreover, there exists a constant Cs such that for any function u ∈ Ḣs, we have

∥u∥Ḣs 6 Cs

∫
Rn×Rn

|u(x+ y) − u(y)|2
|y|n+2s dxdy.

With Proposition 2.1.41, introduction to Ḣs is completed. Now we state the embed-
dings of Ḣs spaces in Lp(Rn.). We begin with the following well known result:

Proposition 2.1.42. If s ∈ [0, n/2), then the space Ḣs is continuously embedded in
L

2n
n−2s (Rn).

Proposition 2.1.43. Let p ∈ (1, 2], then Lp(Rn) is continuously embedded in Ḣs for
s = n

2 − n
p
.

In order to make Proposition 2.1.42 invariant under multiplication by any character
ei(x|w), we shall construct a family of Banach spaces Bs whose norm is invariant under
translation and satisfies

∥f(λ·)∥Bs ∼ λs−n/2∥f∥Bs , g∥f(λ·)∥Bs 6 Cs,nλ
s−n/2∥f∥Ḣs ,

and for some real number θ ∈ (0, 1), we have

∥f∥Lp 6 Cs,n∥f∥1−θ
Ḣs ∥f∥θBs

.

To achieve our goal, let us introduce the following space:

Definition 2.1.44. Let η ∈ S(Rn) such that θ̂ is compactly supported, 0 6 η̂ 6 1 and
has value 1 near 0. For u ∈ S ′(Rn) and σ > 0, we define

∥u∥Ḃ−σ = sup
A>0

An−σ∥η(A·) ∗ u∥L∞ .

Remark 2.1.45. If u ∈ Ḃ−σ such that ∥u∥Ḃ−σ is finite, then Ḃ−σ is a Banach space.
Moreover, changing the value of η produces an equivalent norm.

We give the following relation between Ḃσ and Ḣs.

Proposition 2.1.46. Let s < n
2 . The space Ḣs is continuously embedded in Ḃs− n

2 .

Moreover, there exists a constant only depending on Supp of η̂ and n such that

∥u∥
Ḃs− n

2 6
C

(n2 − s) 1
2
∥u∥Ḣs ∀u ∈ Ḣs.
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Proposition 2.1.47. Let σ ∈ (0, , n] and (φϵ)ϵ>0(x) = ei
x1
ϵ φ(x). Then, there exists a

constant C such that ∥φϵ∥Ḃ−σ 6 Cϵσ ∀ϵ > 0.

Now we state the refined Sobolev inequality.

Theorem 2.1.48. Let s ∈ (0, n2 ). There exists a constant depending on n and η̂ such
that

∥u∥Lp 6
C

(p− 2)
1
p

∥u∥
1− 2

p

Ḃs− n
2
∥u∥

2
p

Ḣs ,

where p = 2n
n−2s .

Remark 2.1.49. Let s ∈ (0, n2 ). Then from Proposition 2.1.46 and Theorem 2.1.48 and
for any u ∈ Ḣs, we have

∥u∥Lp 6
C√
p− 2∥u∥Ḣs ,

where p = 2n
n−2s .

Definition 2.1.50. Define Q = [−1/2, 1/2]n and let xI = 3/8I for any element of
{−1, 1}n. We define the transform A as

T :


D(Q) → D(Q)
f → Af = 2n ∑

I∈{−1,1}n
AIf,

where AIf(x) = f(4(x − xI)). For B ⊂ Q, we define AI(B) = xI + 1
4B, T (B) =⋃

I∈{−1,1}n AI(B) and denote AI(Q) = QI . The support of AIf is included in QI as
f ∈ D(Q) and the fact that if I ̸= I ′ then QI ∩QI′ = φ, we get

∥Af∥Lp = 2n(1− 1
p

)∥f∥Lp . (2.1.4)

For simplification, assume that s is an integer, then we have

∂j(Af)(x) = 2n
∑

I∈{−1,1}n

(4∂jf)(4(x− xI)) = 4A(∂jf)(x)

and from Equation (2.1.4), we get

∥Af∥Ḣs = 22s+ n
2 ∥f∥Ḣs .

The estimate of Af in terms of Ḃ−σ is given by following proposition.
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Proposition 2.1.51. For σ ∈ (0, n], there exists a constant C such that

∥Af∥Ḃ−σ 6 2n−2σ∥f∥Ḃ−σ + C∥f∥L1 .

As Ḣ n
2 (Rn) is not included in L∞(Rn), we have to discuss this limiting case separately.

We give the following definition:

Definition 2.1.52. The space BMO(Rn) of bounded mean oscillations is the set of the
locally integrable function f such that

∥f∥BMO = sup
B

1
|B|

∫
B

|f − fB|dx < ∞,

where fB = 1
|B|
∫
B fdx. The supremum is taken oveer all Euclidean balls. Note that

∥ · ∥BMO vanishes for all constant functions and hence it is a seminorm. Now, we state
one of the important theorem of Sobolev embedding:

Theorem 2.1.53. The space L1
loc(Rn) ∩ Ḣ

n
2 (Rn) is included in BMO(Rn). Moreover,

there exists a constant c such that

∥u∥BMO 6 c∥u∥
Ḣ

n
2 ∀u ∈ L1

loc(Rn) ∩ Ḣ
n
2 (Rn).

Now, we state the embedding of Ḣs in the Hölder space. First of all let us give the
definition of Hölder space.

Definition 2.1.54. Let (k, p) ∈ N× (0, 1]. The Hölder space is the space of Ck functions
u on Rn such that

∥u∥Ck,p = sup
|α|6k

(
∥∂αu∥L∞ + sup

x ̸=y

|∂αu(x) − ∂αu(y)|
|x− y|p

)
< ∞.

Remark 2.1.55. C0,1 is the space of bounded Lipschitz functions.

We state the following embedding between Ck,p and Ḣs.

Theorem 2.1.56. Let s > n
2 and s− n

2 is not an integer. Then, the space Ḣs is included
in the Hölder space with index

(k, p) =
([
s− n

2

]
, s− n

2 −
[
s− n

2

])
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and for all u ∈ Ḣs, we have

sup
|α|=k

sup
x ̸=y

|∂αu(x) − ∂αu(y)|
|x− y|p

6 Cn,s∥u∥Ḣs .

2.1.4 Nonhomogeneous Sobolev Spaces

This section is devoted to the introduction to nonhomogeneous Sobolev spaces. We
mainly focus on the trace theorem and the Hardy inequality. We start this section with
the definition of nonhomogeneous Sobolev space.

Definition 2.1.57. Let s ∈ R. The Sobolev space Hs(Rn)(denoted as Hs) consist of
distributions u such that û ∈ L2

loc(Rn) and

∥u∥Hs =
∫
Rn

(1 + |ξ|2)s|û(ξ)|2dξ < ∞.

Remark 2.1.58. As the Fourier transform is an isometric linear operation from Hs to
the space L2(Rn; (1 + |ξ|2)sdξ), the space Hs equipped with the scaler product

(u|v)Hs =
∫
Rn

(1 + |ξ|2)sû(ξ)¯̂v(ξ)dξ

is a Hilbert space.

Proposition 2.1.59. Let s1 6 s 6 s2. Then, Hs1 ∩Hs2 included in Hs and for θ ∈ [0, 1],
we have

∥u∥Hs 6 C∥u∥1−θ
Hs1 ∥u∥θHs2 ,

where s = s1(1 − θ) + s2θ.

Remark 2.1.60. It is easy to see that the family of Hs spaces is decreasing with respect
to s. For nonnegative integer s, from Plancherel theorem, the space Hs coincides with the
set of L2(Rn) functions u such that ∂α ∈ L2 where α is a multi-index such that |α| 6 s.

For negative integer, we have the following proposition.

Proposition 2.1.61. Let s be a positive integer. Then, the space H−s(Rm) consist of
distributions which are the sums of derivatives of order l of L2(Rn) functions.

Remark 2.1.62. For any ϵ > 0, δ0 ∈ H− n
2 −ϵ but does not belongs to H− n

2 . Also, δ0 is
not in Ḣs for any s.

Remark 2.1.63. Hs is included in Ḣs for nonnegative s and opposit happen for negative
s. Also, Hs ̸= Ḣs, s ̸= 0.
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Proposition 2.1.64. Let Hs
K(Rn) is the space of distributions of Hs which are supported

on a compact set K where s is nonnegative. Then, there exists a constant C such that

1
C

∥u∥Hs 6 ∥u∥Ḣs 6 C∥u∥Hs ∀u ∈ Hs
K .

For functions supported in small balls,we state the following Poincare-type inequality.

Corollary 2.1.65. Let 0 6 t 6 s. For any positive δ and any function u ∈ Hs(Rn)
supported on a ball of radios δ, there exists a constant C such that

∥u∥Ḣt 6 Cδs−t∥u∥Ḣs and ∥u∥Ht 6 Cδs−t∥u∥Hs .

Proposition 2.1.66. The space S is dense in Hs.

For duality of Hs, we have the following proposition.

Proposition 2.1.67. For any real s, the bilinear functional

T =

S × S → C

(u, v) →
∫
Rn u(x)v(x)dx

can be extended to a bilinear continuous functional on Hs × H−s. Moreover, if B is a
continuous linear functional on Hs, then there exists a unique distribution v in H−s such
that

∀u ∈ Hs, ⟨B, u⟩ = T (v, u) and ∥B∥(Hs)′ = ∥v∥H−s .

Proposition 2.1.68. Let s = k + σ, where k ∈ N and σ ∈ (0, 1). Then, for multi-index
α we have

Hs(Rn) =
{
u ∈ L2(Rn)/|α| 6 m, ∂αu ∈ L2(Rn)

}

and for |α| = m, ∫
Rn×Rn

|∂αu(x+ y) − ∂αu(x)|2
|y|n+2σ dxdx < ∞.

Moreover, there exists a constant C such that

1
C

∥u∥2
Hs 6

∑
|α|=m

∫
Rn×Rn

|∂αu(x+ y) − ∂αu(x)|2
|y|n+2σ dxdx+

∑
|α|6m

∥∂αu∥2
L2 6 C∥u∥Hs .

Definition 2.1.69. A global k diffeomorphism on Rn is any Ck diffeomorphism η : Rn →
Rn whose derivatives of order less than or equal to k are bounded and for some constant
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c and (x, y) ∈ Rn × Rn, we have

|η(x) − η(y)| > C|x− y|.

Corollary 2.1.70. Let η be a global k diffeomorphism on Rn, 0 6 s < k and u ∈ Rn,

then u ◦ η ∈ Hs(Rn).

We also have the following density result.

Proposition 2.1.71. For any real s, the space D(Rn) is dense in Hs(Rn).

Proposition 2.1.72. Multiplication by a Schwartz function S(Rn) is a continuous map
from Hs to itself.

Note that under multiplication by general C∞ function, Hs is not stable.
Now, we consider the trace and the trace lifting operator. Consider the hyperplane

x1 = 0 in Rn. For u in Lebesgue space, we formally define the trace operator Σ as
Σu(x) = u(0, x), but as the Haar measure for the hyperplane is 0, this definition is not
good to consider. For example, there are L2 functions which are continuous for x1 ̸= 0
and goes to infinity when x1 → 0. Hence, we can not give this definition in general.
Extending the usual trace operator by continuity gives us the definition for trace operator
on Rn spaces.

Theorem 2.1.73. Let s > 1/2 be a real number. The restriction map Σ defined by

Σ :

S(Rn) → S(Rn−1)
u → Σ(u) : (x2, . . . , xn) → u(0, x2, . . . , xn)

can be extended continuously from Hs(Rn) onto Hs− 1
2 (Rn−1).

We have the following corollary:

Corollary 2.1.74. Let s > k + 1
2 with k ∈ N. The map

γ :

H
s(Rn) → ⊕k

j=0 H
s−j− 1

2 (Rn−1)
u → (Σj(u))06j6k,

where Σju = Σ(∂jx1u) is continuous and onto.

Remark 2.1.75. From Theorem 2.1.73 and Corollary 2.1.74, the spaces Hs are local
and invariant under the action of diffeomorphism and we may define the trace operator
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for any smooth hypersurface S of Rn. So localizing and straightening S reduce the problem
to the study of the trace operator defined in Theorem 2.1.73.

Now, we state the few results related to embedding of the spaces Hs.

Theorem 2.1.76. The space Hs embedded continuously in

1. the Lebesgue space Lp(Rn), if 0 6 s 6 n/2 and 2 6 p 6 2n/(n− 2s)

2. the Hölder space Ck,p(Rn), if s > n/2 + k + p for some k ∈ N and p ∈ (0, 1).

Following Moser-Trudinger inequality holds. Although, H n
2 fails to be embedded in

L∞.

Theorem 2.1.77. There exist two constants c1 and c2 only depending on the dimension
n, such that for any u ∈ H

n
2 (Rn), we have

∫
Rn

exp(c1

(
|u(x)|
∥u∥

H
1
2

)2)
− 1

 dx 6 c2.

Theorem 2.1.78. Let t < s. Multiplication by a function in S(Rn) is a compact operator
from Hs in H t.

From Theorem 2.1.78, we can deduce the following compactness result:

Theorem 2.1.79. For any compact subset K of Rn and s′ < s, the embedding Hs
K(Rn)

into Hs′
K(Rn) is a compact linear operator.

Before stating the Hardy inequality, we need to give the density result of D(Rn \ {0})
in Hs. The density of D(Rn\{0}) plays an important role in the proof of Hardy inequality
and the related result.

Theorem 2.1.80. If s 6 n/2 (resp., < n/2.) Then the space D(Rn \ {0}) is dense in
Hn/2 (resp., Ḣn/2.) If s > n/2, then the closer of the space D(Rn \ {0}) in Hs is the set
of functions u in Hs such that for every multi-index α with |α| < s− n/2, ∂αu(0) = 0.

Remark 2.1.81. For n = 1, the map u → u(0) can not be extended to H n
2 (R) functions.

In other words, we can prove that the restriction map Σ on hyperplane x1 = 0 can not be
extended to H 1

2 (Rn) functions.

Now we state the Hardy inequality with singular weight in Sobolev spaces.
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Theorem 2.1.82. If n > 3, then

(∫
Rn

|u(x)|2
|x|2

dx

) 1
2

6
2

n− 2∥∇u∥L2 (2.1.5)

for any f ∈ H1(Rn).

2.2 Besov Spaces
In this section, we give the details of Besov spaces and there basic properties using
Littlewood-Paley decomposition.

2.2.1 Bernstein Lemmas

From littlewood-Paley decomposition, the Fourier multiplier acts almost as homotheties
on distributions where Fourier transform supported in a ball or an annulus. We start
this subsection with Bernstein lemma.

Let R > 0. A set {ξ ∈ Rn : |ξ| 6 R} is called a ball and for r2 > r1 > 0 the set
{ξ ∈ Rn : 0 < r1 6 |ξ| 6 r2} is called an annulus.

Lemma 2.2.1. Let C and B be an annulus and a ball respectively. Assume that k be an
arbitrary nonnegative integer, (p, q) ∈ [1,∞]2 with q > p > 1 and u be any function of
Lp. Then there exists a constant C such that

Supp û ⊂ λB ⇒ ∥Dku∥Lq = sup
|α|=k

∥∂αu∥Lq 6 Ck+1λk+n( 1
p

− 1
q

)∥u∥Lp ,

Supp û ⊂ λC ⇒ C−k−1λk∥u∥Lp 6 ∥Dku∥Lp 6 Ck+1λk∥u∥Lp .

Now we state the lemma about the action of Fourier multiplier which behaves like
homogeneous function of degree m.

Lemma 2.2.2. Let k = 2[1 + n/2] (where [r] stands for integer part of r), m ∈ R and C
be an annulus. Given σ a k-times differentiable function on Rn \ {0} and a multi-index
α with |α∥ 6 k, there exits a constant Cα such that

∀ ξ ∈ Rn, |∂ασ(ξ)| 6 Cα|ξ|m−|α|.
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Suppose that p ∈ [1,∞], λ > 0 and u be a function in Lp with Fourier transform supported
in λC. Then there exits a constant C (depending only on Cα) such that

∥σ(D)u∥Lp 6 Cλm∥u∥Lp with σ(D)u = F−1(σû).

We state the Faá da Bruno’s formula as follow:

Lemma 2.2.3. Let u : Rn → Rm and F : Rm → R be smooth functions. Given a
multi-index α, we have

∂α(F ◦ u) =
∑
µ,ν

Cµ,ν∂
µF

∏
16|β|6|α|
16j6m

(∂βuj)νβj ,

where the coefficients Cµ,ν are non-negative integers and the sum is taken over those µ
and ν such that 1 6 |µ| 6 |α|, νβj

∈ N∗,

∑
16|β|6|α|

νβj
= µj ∀ 1 6 j 6 m and

∑
16|β|6|α|
16j6m

βνβj
= α.

With Fourier transform supported in an annulus, the action of semigroup of heat
equation on distributions is given by following lemma:

Lemma 2.2.4. Consider an annulus C. Let p ∈ [1,∞] and (t, λ) be a couple of positive
real numbers. Then there exists positive constants c and C such that

Supp û ⊂ λC ⇒ ∥et∆u∥Lp 6 Ce−ctλ2∥u∥Lp .

Definition 2.2.5. Let X be a Banach space, I is an interval of R, p ∈ [1,∞] then
LpI(X) is the Lebesgue measurable functions from I to X such that t → ∥u(t)∥X ∈ Lp(I).
The space LpI(X) is embedded with the norm

∥u∥Lp
I (X) =

(∫
I

∥u(t)∥pXdt
) 1

p

.

For p = ∞, we can give the definition in terms of esssup.

Corollary 2.2.6. Let λ be a positive real number and C be an annulus. Let u0 [resp.
g = g(t, y)] satisfy Supp û0 ⊂ λC (resp., Supp ĝ(t) ⊂ λC ∀ t ∈ [0, T ]). Let u and v be
solutions of

∂tu− ν∆u = 0 and u|t=0 = u0 and
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∂tv − ν∆v = g and v|t=0 = 0,

respectively. Choose arbitrary 1 6 a 6 b 6 ∞ and 1 6 p 6 q 6 ∞. Then there exists
positive constants c and C, depending only on C, such that

∥u∥Lq
T (Lb) 6 C(νλ2)− 1

qλn( 1
a

− 1
b

)∥u0∥La ,

∥v∥Lq
T (Lb) 6 C(νλ2)−1+( 1

p
− 1

q
)λn( 1

a
− 1

b
)∥g∥Lp

T (La).

Now we explain the action of a diffeomorphism

Lemma 2.2.7. Let χ ∈ S(Rn). Let u ∈ S ′(Rn) such that û is supported in λC, ψ be C1,1

global diffeomorphism over Rn with inverse φ, p ∈ [1,∞] and (λ, µ) ∈ (0,∞)2. Then
there exists a constant C such that

∥χ(µ−1D)(u ◦ ψ)∥Lp 6 Cλ−1∥Jφ∥
1
p

L∞∥u∥Lp

(
∥DJφ∥L∞∥Jψ∥L∞ + µ∥Dφ∥L∞

)

where Jφ(z) = |det(Dφ(z))| and χ(µ−1D)(u ◦ ψ) = F−1(χ(µ−1·)F(u ◦ ψ)).

Lemma 2.2.8. Consider a smooth function θ with support in an annulus of Rn. Let
ψ be a C0,1 measure-preserving global diffeomorphism over Rn with inverse φ, u be a
distribution with û supported in λC, (λ, µ) ∈ (0,∞)2 and p ∈ [1,∞]. Then there exists a
constant C such that

∥θ(µ−1D)(u ◦ ψ)∥Lp 6 C∥u∥Lp min
(
µ

λ
∥Dφ∥L∞ ,

λ

µ
∥Dψ∥L∞

)
.

Now we state the lemma which describe some properties of powers of functions with
Fourier support in an annulus.

Lemma 2.2.9. Consider an annulus C. Let λ be a positive real number, p be a positive
integer and u be a function in Lp whose Fourier transform is supported in λC. Then
there exists a constant C such that

∥up∥L2 6 Cλ−1∥∇(up)∥L2 .

Remark 2.2.10. If Fu is supported in an annulus, then F(up) is not supported in an
annulus, but rather in a ball. The above lemma guarantees that the L2 norm of up may
be controlled by the L2 norm of its gradient.

Now, let us discuss about the dyadic partition of unity which is useful in further
studies.
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Proposition 2.2.11. Consider an annulus {ξ ∈ Rn : 3/4 6 |ξ| 6 8/3}. There exist
radial functions χ ∈ D(B(0, 4/3)) and ϕ ∈ D(C), with values in the interval [0, 1], such
that

∀ξ ∈ Rn, χ(ξ) +
∑
j>0

ϕ(2−jξ) = 1, (2.2.1)

∀ξ ∈ Rn \ {0},
∑
j∈Z

ϕ(2−jξ) = 1, (2.2.2)

|j − j′| > 2 ⇒ Supp ϕ(2−j·) ∩ Supp ϕ(2−j′·) = ∅, (2.2.3)
j > 1 ⇒ Supp χ ∩ Supp ϕ(2−j·) = ∅, (2.2.4)

the set C̃ = B(0, 2/3) + C is an annulus, and we have

|j − j′| > 5 ⇒ 2j′ C̃ ∩ 2jC = ∅. (2.2.5)

Furthermore,

∀ξ ∈ Rn,
1
2 6 χ2(ξ) +

∑
j>0

ϕ2(2−jξ) 6 1, (2.2.6)

∀ξ ∈ Rn \ 0, 1
2 6

∑
j∈Z

ϕ2(2−jξ) 6 1. (2.2.7)

From now on, assume the following remark.

Remark 2.2.12. We fix two functions χ and ϕ satisfying the assertions (2.2.1) − (2.2.7).
Write h = F−1ϕ and h̃ = F−1χ. The non-homogeneus dyadic blocks ∆j are defined by

∆j(u) = 0 if j 6 −2, ∆−1u = χ(D)u =
∫
Rn

h̃(y)u(x− y)dy,

and ∆j(u) = ϕ(2−jD)u = 2jn
∫
Rn

h(2jy)u(x− y)dy if j > 0.

The nonhomogeneous low-frequency cut-off operator Sj is defined by

Sju =
∑

j′6j−1
∆j′u.
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The homogeneous dyadic blocks ∆̇j and the homogeneous low-frequency cut-off operators
Ṡj are defined for all j ∈ Z by

∆̇ju = ϕ(2−jD)u = 2jn
∫
Rn

h(2jy)u(x− y)dy,

Ṡju = χ(2−jD)u = 2jn
∫
Rn

h̃(2jy)u(x− y)dy.

Note that, the operators in Remark 2.2.12 map Lp into Lp with norms independent of j
and p. Also, we can write the below (formal) Littlewood-Paley decompositions:

Id =
∑
j

∆j and Id =
∑
j

∆̇j. (2.2.8)

In the non-homogeneous case, the above decomposition makes sense in S ′(Rn).

Proposition 2.2.13. Let u ∈ S ′(Rd). Then u = lim
j→∞

Sju, in S ′(Rd).

Now, we state the convergence result.

Proposition 2.2.14. Let C̃ be a given annulus. Consider (uj)j∈N, a L∞ sequence of
bounded functions such that the Fourier transform of uj is supported in 2j C̃. Assume
that, for some integer N , the sequence (2−jN∥uj∥L∞)j∈N is bounded. Then, the series∑
j
uj converges in S ′(Rn).

Proposition 2.2.15. Let C̃ be a given annulus. Consider (uj)j∈N, a sequence of bounded
functions such that the support of ûj is included in 2j C̃. Let, for some integer N , the
sequence (2−jN∥uj∥L∞)j∈N be bounded and the series ∑

j<0
uj converges in L∞. Then the

series ∑
j∈Z

converges to some u in S ′ and u ∈ S ′
h.

2.2.2 Homogeneous Besov Spaces

This subsection is devoted to the introduction to homogeneous Besov spaces. We start
this subsection with the definition of homogeneous Besov spaces.

Definition 2.2.16. Let (p, r) ∈ [1,∞]2 and s ∈ R. The homogeneous Besov space Ḃs
p,r

consists of those distributions u ∈ S ′
h such that

∥u∥Ḃs
p,r

=
(∑
j∈Z

2rjs∥∆̇ju∥rLp

) 1
r

< ∞.
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Proposition 2.2.17. The space Ḃs
p,r endowed with ∥ · ∥Ḃs

p,r
is a normed space.

Remark 2.2.18. The definition of the Besov space Ḃs
p,r is independent of the function

ϕ used for defining the blocks ∆̇j. Moreover, changing ϕ yields an equivalent norm. In
fact, if ϕ̃ is another dyadic partition of unity, then there exists an integer N0 such that
|j − j′| > N0 ⇒ Supp ϕ̃(2−j·) ∩ Supp ϕ(2−j′ ·) = ∅. Therefore,

2js∥ϕ̃(2−jD)u∥Lp = 2js
∥∥∥∥∥∥

∑
|j−j′|6N0

ϕ̃(2−jD)∆̇j′u

∥∥∥∥∥∥
Lp

6 C2N0|s|∑
j′

1[−N0,N0](j − j′)2j′s∥∆̇j′u∥Lp .

From Young’s inequality we get the result.
We also note that a distribution u of S ′

h belongs to Ḃs
p,r if and only if there exits some

non-negative sequence (cj)j∈Z and some constant C such that

∀ j ∈ Z, ∥∆̇ju∥Lp 6 Ccj2−js and ∥(cj)∥ℓr = 1.

Proposition 2.2.19. Let N be an integer. Consider a distribution u of S ′
h. Then ∥u∥Ḃs

p,r

is finite if and only if uN is finite. Furthermore, we have

∥uN∥Ḃs
p,r

= 2N(s− n
p

)∥u∥Ḃs
p,r
.

Remark 2.2.20. More generally, if λ is a positive number, then there exists a constant
C, depending only on s, such that

C−1λs−
n
p ∥u∥Ḃs

p,r
6 ∥u(λ·)∥Ḃs

p,r
6 Cλs−

n
p ∥u∥Ḃs

p,r
.

We highlight that having u in some homogeneous Besov space Ḃs
p,r yields information

about both low and high frequencies of u. Therefore, if s1 ̸= s2, then we can’t expect
any inclusion between the spaces Ḃs1

p,r and Ḃs2
p,r. But, we can state the following theorem,

which is comparable with Sobolev embedding theorem.

Theorem 2.2.21. Let s be any real number. Assume 1 6 p1 6 p2 6 ∞ and 1 6 r1 6

r2 6 ∞. Then, the space Ḃs
p1,r1 is continuously embedded in Ḃ

s−n( 1
p1

− 1
p2

)
p2,r2 .

As compared to standard homogeneous Sobolev space or Lp spaces for p < ∞, the
homogeneous Besov spaces contains more nontrival homogeneous functions. We have
such a result as follow:
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Proposition 2.2.22. Consider σ ∈ (0, n). Let p ∈ [1,∞]. Then, the function | · |−σ ∈
Ḃ

n
p

−σ
p,∞ .

Proposition 2.2.23. Let s1 and s2 are real numbers such that s1 < s2, θ ∈ (0, 1),
(p, r) ∈ [1,∞]2 and u ∈ S ′

h. Then there exists a constant C such that

∥u∥
Ḃ

θs1+(1−θ)s2
p,r

6 ∥u∥θḂs1
p,r

∥u∥1−θ
Ḃ

s2
p,r

and

∥u∥
Ḃ

θs1+(1−θ)s2
p,1

6
C

s2 − s1

(1
θ

+ 1
1 − θ

)
∥u∥θḂs1

p,∞
∥u∥1−θ

Ḃ
s2
p,∞
.

For investigating a series to be in Besov spaces, we have the following lemma.

Lemma 2.2.24. Consider an annulus C ′ and a sequence of functions (uj)j∈Z such that

Supp ûj ⊂ 2jC ′ and
∥∥∥(2js∥uj∥Lp)j∈Z

∥∥∥
ℓr
< ∞.

Let the series ∑
j∈Z

uj converges in S ′ to some u ∈ S ′
h. Then, u ∈ Ḃs

p,r and

∥u∥Ḃs
p,r

6 Cs
∥∥∥(2js∥uj∥Lp)j∈Z

∥∥∥
ℓr
.

Remark 2.2.25. The above convergence assumption concerns (uj)j<0. If (s, p, r) satisfies
the following condition:

s <
n

p
, or s = n

p
and r = 1, (2.2.9)

then, by Lemma 2.2.1, we have

lim
j→−∞

∑
j′<j

uj′ = 0 in L∞.

Therefore, ∑
j∈Z

uj converges to some u ∈ S ′ and when j → −∞, Ṡju tends to 0. In

particular, u ∈ S ′
h.

Theorem 2.2.26. Consider (s1, s2) ∈ R2 and 1 6 r1, r2, p1, p2 6 ∞. Let (s1, p1, r1)
satisfies the condition (2.2.9). Then, the space Ḃs1

p1,r1 ∩ Ḃs2
p2,r2 endowed with the norm

∥ · ∥Ḃs1
p1,r1

+ ∥ · ∥Ḃs2
p2,r2

is complete. Furthermore, it satisfies the Fatou property which
states:
Let (un)n∈N is a bounded sequence of Ḃs1

p1,r1 ∩ Ḃs2
p2,r2 . Then there exists an element u ∈
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Ḃs1
p1,r1 ∩ Ḃs2

p2,r2 and a subsequence uψ(n) such that:

lim
n→∞

uψ(n) = u in S ′ and ∥u∥Ḃsk
pk,rk

6 C lim
n→∞

inf ∥uψ(n)∥Ḃsk
pk,rk

for k = 1, 2.

Remark 2.2.27. If s > n/p (or s = n/p and r > 1), then Ḃs
p,r is no longer a Banach

space. This is because of a breakdown of convergence for low frequencies, which is called
infrared divergence.

There is a way to modify the definition of homogeneous Besov spaces so that we can
obtain a Banach space, with any regularity index. This is known as realizing homogeneous
Besov spaces. It emerges that realizations coincide with our definition when s < n/p, or
s = n/p and r = 1. In the other cases, realizations are defined up to a polynomial whose
degree depends on s− n/p and r. It goes without saying that solving partial differential
equations in such spaces is quite difficult.

Proposition 2.2.28. Let r and p are both finite. Then the space S0(Rn) of functions in
S(Rn) such that there Fourier transforms are supported away from 0 is dense in Ḃs

p,r(Rn).

Remark 2.2.29. When r = ∞, the closure of S0 for the Besov norm Ḃs
p,r is the set of

distributions in S ′
h such that

lim
j→±∞

2js∥∆̇ju∥Lp = 0.

It emerges that Besov spaces have good duality properties. Also, note that in Littlewood-
Paley theory, the duality on S ′

h translates, for φ ∈ S, into

⟨u, φ⟩ =
∑

|j−j′|61
⟨∆̇ju, ∆̇j′φ⟩ =

∑
|j−j′|61

∫
Rn

∆̇ju(y)∆̇j′(y)φ(y)dy.

For Lp space, by duality we can estimate the norm in Ḃs
p,r.

Proposition 2.2.30. Let 1 6 p, r 6 ∞ and s ∈ R. Define a continuous bilinear
functional on Ḃs

p,r × Ḃ−s
p′,r′ by:

Ḃs
p,r × Ḃ−s

p′,r′ −→ R

(u, φ) −→ ∑
|j−j′|61

⟨∆̇ju, ∆̇j′φ⟩.

Denote the set of functions φ ∈ S ∩ Ḃ−s
p′,r′ such that ∥φ∥Ḃ−s

p′,r′
6 1 by Q−s

p′,r′. Let u ∈ S ′
h,

then we have:
∥u∥Ḃs

p,r
6 C sup

φ∈Q−s
p′,r′

⟨u, φ⟩.
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The following proposition describe the action of Fourier multiplier on homogeneous
Besov spaces.

Proposition 2.2.31. Consider a smooth function σ on Rn \ {0} which is homogeneous
of degree m. Let (sk, pk, rk) ∈ R × [1,∞]2 (with k = {1, 2}) such that (s1 − m, p1, r1)
satisfies the condition 2.2.9. Then the operator σ(D) continuously maps Ḃs1

p1,r1 ∩ Ḃs2
p2,r2

into Ḃs1−m
p1,r1 ∩ Ḃs2−m

p2,r2 .

Remark 2.2.32. Note that, the proof of above Proposition is very simple compared with
the similar result on Lp spaces when p ∈ (1,∞). Moreover, Fourier multipliers do not
map L∞ into L∞ in general. From this point of view Besov spaces are much easier to
handle than classical Lp spaces or Sobolev spaces modeled on Lp.

Corollary 2.2.33. Assume (s1, p1, r1) and (s2, p2, r2) in R × [1,∞]2. Let (s1 + 1, p1, r1)
satisfies the condition (2.2.9). If v is a vector field with components in Ḃs1−1

p1,r1 ∩ Ḃs2−1
p2,r2

which is curl free (i.e. ∂jvk = ∂kv
j ∀ 1 6 j, k 6 n), then there exists a unique function

in Ḃs1
p1,r1 ∩ Ḃs2

p2,r2 such that ▽(a) = v and

C−1∥a∥Ḃsk
pk,rk

6 ∥v∥
Ḃ

sk−1
pk,rk

6 C∥a∥Ḃsk
pk,rk

for k = 1, 2,

where C a positive constant independent of v.

For the negative indicies, we have the characterization of homogeneous Besov spaces
in terms of operators Ṡj.

Proposition 2.2.34. Assume s < 0 and 1 6 p, r 6 ∞. Let u be a distribution in S ′
h.

Then,
u ∈ Ḃs

p,r ⇐⇒ (2js∥Ṡju∥Lp)j∈Z ∈ ℓr.

Furthermore, we have

C−|s|+1∥u∥Ḃs
p,r

6
∥∥∥(2js∥Ṡju∥Lp)j

∥∥∥
ℓr
6 C

(
1 + 1

|s|

)
∥u∥Ḃs

p,r
,

for some constant C depending only on n.

Now we give the result concerning the characterization of Besov spaces which do not
require spectral localization.

Theorem 2.2.35. Let s be a positive real number and (p, r) ∈ [1,∞]2. Then for some
constant, we have

C−1∥u∥Ḃ−2s
p,r

6
∥∥∥∥tset∆u∥Lp

∥∥∥
Lr(R+, dt

t
)
6 C∥u∥Ḃ−2s

p,r
∀ u ∈ S ′

h.
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Lemma 2.2.36. Let s be any positive number. Then

sup
t>0

∑
j∈Z

ts22jse−ct22j

< ∞.

Now, we will give a characterization of Besov spaces with positive indices in terms of
finite differences. For simplicity of the presentation, we only consider the case where the
regularity index s ∈ (0, 1).

Theorem 2.2.37. For any s ∈ (0, 1), (p, r) ∈ [1,∞]2 and u ∈ S ′
h, there exists a constant

C such that
C−1∥u∥Ḃs

p,r
6

∥∥∥∥∥∥τ−yu− u∥Lp

|y|s

∥∥∥∥∥
Lr(Rn; dy

|y|n )
6 C∥u∥Ḃs

p,r
.

For s = 1, we have the following characterization.

Theorem 2.2.38. Let (p, r) ∈ [1,∞]2 and u ∈ S ′
h. Then there exists a constant C such

that:
C−1∥u∥Ḃ1

p,r
6

∥∥∥∥∥∥τ−yu+ τyu− 2u∥Lp

|y|

∥∥∥∥∥
Lr(Rn; dy

|y|n )
6 C∥u∥Ḃ1

p,r
.

Remark 2.2.39. When we apply the above theorem for p = r = ∞, we get that the
space Ḃ1

∞,∞ coincides with the Zygmund class of functions u such that:

|u(x+ y) + u(x− y) − 2u(x)| 6 C|y|.

Now, we compare homogeneous Besov spaces with Lebesgue spaces.

Proposition 2.2.40. Let (p, q) ∈ [1,∞]2 such that p 6 q. Then the space Ḃ
n
p

− n
q

p,1 is
continuously embedded in Lq. Futhermore, if p is finite, then Ḃ

n
p

p,1 is continuously embedded
in the space C0 of continuous functions vanishing at infinity. Moreover, ∀ q ∈ [1,∞],
the space Lq is continuously embedded in the space Ḃ0

q,∞, and the space M of bounded
measures on Rn is continuously embedded in Ḃ0

1,∞.

The comparison between homogeneous Besov spaces with regularity index 0 and third
index 2 to Lebesgue space is given by following theorem.

Theorem 2.2.41. Let p ∈ (2,∞). Then, Ḃ0
p,2 is continuously included in Lp and Lp′ is

continuously included in Ḃ0
p′,2.

Theorem 2.2.42. Let p ∈ [1, 2]. Then, Ḃ0
p,p is continuously included in Lp and Lp

′ is
continuously included in Ḃ0

p′,p′.
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The generalization of refined Sobolev embedding is given in the next theorem.

Theorem 2.2.43. For any 1 6 q < p < ∞ and a positive real number α, there exists a
constant C such that

∥f∥Lp 6 C∥f∥1−θ
Ḃ−α

∞,∞
∥f∥θ

Ḃβ
q,q

with β = α
(
p

q
− 1

)
and θ = q

p
.

Theorem 2.2.44. For q ∈ (1,∞) and s ∈ (0, n/q), there exists a constant C such that

∥u∥Lp 6 C∥u∥
s− n

q

Ḃ
qs
n

∞,∞
∥u∥1− qs

n

Ẇ s
q

with ∥u∥Ẇ s
q

= ∥(−∆) s
2u∥Lq ,

where p = q
p

= 1 − qs
n
.

Now, we establish the so-called Gagliardo-Nirenberg inequalities.

Theorem 2.2.45. For any (q, r) ∈ (1,∞]2 and (σ, s) ∈ (0,∞)2 with σ < s, there exists
a constant C such that

∥u∥Ẇσ
p
6 C∥u∥θLq∥u∥1−θ

Ẇ s
r

with
1
p

= θ

q
+ 1 − θ

r
and θ = 1 − σ

s
.

2.2.3 Paradifferential Calculus

This subsection contains the introduction to paradifferential calculus. We mainly concen-
trate on product of distribution on S ′

h and their properties. First of all, we define the
Bony decomposition and for the same purpose let u and v be tempered distributions in
S ′
h. We have

u =
∑
j′

∆̇j′u and v =
∑
j

∆̇jv.

Definition 2.2.46. The homogeneous paraproduct of v by u is defined as follows:

Ṫuv =
∑
j

Ṡj−1u ∆̇jv.

The homogeneous remainder of u and v is defined by

Ṙ(u, v) =
∑

|k−j|61
∆̇ku ∆̇jv.

Remark 2.2.47. It is easy to note that when u, v ∈ S ′
h, then Ṫuv makes sense in S ′ and

Ṫ : (u, v) → Ṫuv is a bilinear operator. Also, the remainder operator Ṙ : (u, v) → Ṙ(u, v),
when restricted to sufficiently smooth distributions, is also bilinear.
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The main motivation for using the operators Ṫ and Ṙ is that, at least formally, the
following so-called Bony decomposition holds true:

uv = Ṫuv + Ṫvu+ Ṙ(u, v). (2.2.10)

The following theorem describe the continuity of homogeneous paraproduct operator
Y.

Theorem 2.2.48. Let s be a real number, (p, r) ∈ [1,∞]2 and (u, v) ∈ L∞ × Ḃs
p,r. Then

there exists a constant C such that

∥Ṫuv∥Ḃs
p,r

6 C1+|s|∥u∥L∞∥v∥Ḃs
p,r
.

Futhermore, if (s, t) ∈ R × (−∞, 0), (p, r1, r2) ∈ [1,∞]3 and (u, v) ∈ Ḃt
∞,r1 × Ḃs

p,r2 , then

∥Ṫuv∥Ḃs+t
p,r

6
C1+|s+t|

−t
∥u∥Ḃt

∞,r1
∥v∥Ḃs

p,r2
with

1
r

= min
{

1, 1
r1

+ 1
r2

}
.

Remark 2.2.49. By Lemma (2.2.24) and remark (2.2.25), the hypothesis of convegence
is satisfied whenever (s, p, r) or (s+ t, p, r) satisfies (2.2.9).

Lemma 2.2.50. Let B be a ball in Rn. Consider a positive real number s and (p, r) ∈
[1,∞]2. Let (uj)j∈Z be a sequence of smooth functions such that

Supp ûj ⊂ 2jB and ∥(2js∥uj ∥Lp)j∈Z∥ℓr < ∞

Let the series ∑
j∈Z

uj converges to u ∈ S ′
h. Then, there exists a constant C such that:

u ∈ Ḃs
p,r and ∥u∥Ḃs

p,r
6
C

s

∥∥∥(2js∥uj∥Lp)j
∥∥∥
ℓr(Z)

.

Remark 2.2.51. By Lemma (2.2.50), it follows that the hypothesis of convergence is
satisfied whenever (s, p, r) satisfies (2.2.9).

Remark 2.2.52. The above lemma fails in the limit case s = 0. In fact, let us fix a
non-zero function f ∈ Lp, spectrally supported in some ball B, and a nonnegative real α
such that αr > 1. Let

uj =

j
−α for j > 1

0 otherwise
.
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It is clear that

∀ j ∈ Z, Supp ûj ⊂ 2jB and ∥(∥uj∥Lp)j∈N∥ℓr < ∞.

If r > 1, then we can additionally set α < 1 so that the series ∑
j
uj diverges in S ′. If

r = 1, then the series converges to a nonzero multiple of f . As Ḃ0
p,1 is a strict subspace

of Lp, the function f need not be in Ḃ0
p,1. Thus, the lemma also fails in this case.

The following theorem gives the continuity of the reminder operator:

Theorem 2.2.53. Consider (s1, s2) ∈ R2 and (p1, p2, r1, r2) ∈ [1,∞]4. Suppose that

1
p

= 1
p1

+ 1
p2

6 1 and
1
r

= 1
r1

+ 1
r2

6 1.

Then there exists a constant C which satisfies the following inequalities:
Let (u, v) ∈ Ḃs1

p1,r1 × Ḃs2
p2,r2 and s1 + s2 be positive. Then, we have

∥Ṙ(u, v)∥
Ḃ

s1+s2
p,r

6
C |s1+s2|+1

s1 + s2
∥u∥Ḃs1

p1,r1
∥v∥Ḃs2

p2,r2
.

Let (u, v) ∈ Ḃs1
p1,r1 × Ḃs2

p2,r2. If r = 1 and s1 + s2 > 0, then we have

∥Ṙ(u, v)∥
Ḃ

s1+s2
p,∞

6 C |s1+s2|+1∥u∥Ḃs1
p1,r1

∥v∥Ḃs2
p2,r2

.

Remark 2.2.54. By Lemma (2.2.50) and the remark that follows it, the hypothesis of
the convergence is satisfied whenever (s1 + s2, p, r) or (s1 + s2, p,∞) satisfies (2.2.9).

We give few examples for product of paraproduct.

Corollary 2.2.55. Let (s, p, r) ∈ (0,∞) × [1,∞]2 satisfies (2.2.9). Then L∞ ∩ Ḃs
p,r is

an algebra. Furthermore, there exists a constant C, depending only on dimension n, such
that

∥uv∥Ḃs
p,r

6
Cs+1

s

(
∥u∥L∞∥v∥Ḃs

p,r
+ ∥u∥Ḃs

p,r
∥v∥L∞

)
.

Corollary 2.2.56. Let (s1, s2) ∈ (−n/2, n/2)2. If s1 + s2 is positive, then there exists a
constant C such that

∥uv∥
Ḃ

s1+s2− n
2

2,1
6 C∥u∥Ḣs1 ∥v∥Ḣs2 .

Remark 2.2.57. The constant in Corollary 2.2.56 may be bounded by

C min
{ 1
n− 2s1

,
1

n− 2s2
,

1
s1 + s2

}
,
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where C depends only on dimension n.

We state the following form of Hardy’s inequality

Theorem 2.2.58. Let s ∈ [0, n2 ) be a real number. Then, there exists a constant C such
that ∀ f ∈ Ḣs(Rn), ∫

Rn

|f(x)|2
|x|2s

dx 6 C∥f∥2
Ḣs . (2.2.11)

The following theorem gives the refined Hardy inequality.

Theorem 2.2.59. Consider a triplet of real numbers (s, p, q) such that

0 < s <
n

2 and 2 6 q <
2n
n2s < p 6 ∞.

Let u ∈ Ḃ
s−n( 1

2 − 1
q

)
q,2 . Then there exists a constant C such that

( ∫ |u(x)|2
|x|2s

dx
) 1

2
6 C∥u∥α

Ḃ
s−n( 1

2 − 1
p )

p,2

∥u∥1−α

Ḃ
s−n( 1

2 − 1
q )

q,2

with α = pq

p− q

(1
q

− 1
2 + s

n

)
.

Lemma 2.2.60. Let the assumptions be same as in Theorem 2.2.59. Let f, g ∈ Lp ∩ Lq.
Then there exists a constant C such that

⟨| · |−2s, fg⟩ 6 C∥f∥αLp∥g∥αLp∥f∥1−α
Lq ∥g∥1−α

Lq with α = pq

p− q

(1
q

− 1
2 + s

n

)
.

Remark 2.2.61. Theorem 2.2.59 fails for p = qc = 2n
n−2s . Since, if it was true, for any

function u with Fourier transform supported in C, we would have:

∫
Rd

|u(x)|2
|x|2s

dx 6 C∥u∥2
Ḃ0

2qc,2
6 C∥u∥2

L2qc (Rn). (2.2.12)

Particularly, the above inequality holds when u ∈ S(Rn) satisfies

supp û ⊂ B(ξ0, ε) ⊂ C.

Since, the inequality (2.2.12) is invariant under oscillation (i.e., under translation in the
Fourier space), we conclude that ∀ u ∈ S(Rn) such that supp û ⊂ B(0, ε), it is true. The
invariance under dilation implies that it is true for any function u ∈ S(Rn) such that
supp û ⊂ B(0, R) for any R > 0. By density, we obtain (2.2.12) ∀ u ∈ L2qc(Rn) , but
this implies that the singular weight |x|−2s belongs to L n

2s , which is false.
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Theorem 2.2.62. Assume a smooth function f on R which vanishes at 0. Let (s1, s2)
be a couple of positive real numbers and (p1, p2, r1, r2) ∈ [1,∞]4 and (s1, p1, r1) satisfies
the condition (2.2.9).

Let u ∈ Ḃs1
p1,r1 ∩ Ḃs2

p2,r2 ∩ L∞, then the function f ◦ u belongs to same space, and we
have, for k = 1 and k = 2,

∥f ◦ u∥Ḃsk
pk,rk

6 C(f ′, ∥u∥L∞)∥u∥Ḃsk
pk,rk

. (2.2.13)

Lemma 2.2.63. Let the hypothesis be the same as in Theorem 2.2.62. Define fj =
f(Ṡj+1u) − f(Ṡju). Then the series ∑

j∈Z
fj converges to f(u) in S ′ and we have

fj = mj∆̇ju with mj =
1∫

0

f ′(Ṡju+ t∆̇ju)dt.

Lemma 2.2.64. Consider a smooth function g from R2 to R. For j ∈ Z, define

mj(g) = g(Ṡju, ∆̇ju).

Let u be any bounded function. Then for all multi-index α

∀j ∈ Z, ∥∂αmj(g)∥L∞ 6 Cα(g, ∥u∥L∞)2j|α|.

Lemma 2.2.65. Consider a positive real number s and (p, r) ∈ [1,∞]2. Let (uj)j∈Z is a
sequence of smooth functions where ∑uj converges to some u in S ′

h and

Ns((uj)j∈Z) =
∥∥∥∥∥
(

sup
|α|∈{0,|s|+1}

2j(s−|α|)∥∂αuj∥Lp

)
j

∥∥∥∥∥
ℓr(Z)

< ∞.

Then there exists a constant Cs such that u ∈ Ḃs
p,r and ∥u∥Ḃs

p,r
6 CsNs(u).

Corollary 2.2.66. Consider a function f ∈ C∞
b (R) such that f(0) = 0. Let (s1, s2) ∈

(0,∞)2 and (p1, p1, r1, r2) ∈ [1,∞]4 such that (s1, p1, r1) satisfies (2.2.9).



Chapter 3

Global Attractor for Weakly
Damped and Forced mKdV
Equation

3.1 Introduction
We consider the modified Korteweg-de Vries (in short, mKdV) equation:

∂tu+ ∂3
xu± 2∂xu3 + γu = f, t > 0, x ∈ T, (3.1.1)

u(x, 0) = u0(x) ∈ Ḣs(T), (3.1.2)

where T is the one-dimensional torus, γ > 0 is the damping parameter and f ∈ Ḣ1(T)
is the external forcing term which does not depends on t. In equation (3.1.1), “+"
and “−" represent the focussing and defocussing cases, respectively. We consider the
inhomogeneous Sobolev spaces Hs = {f |∑k∈Z⟨k⟩2s|f̂(k)|2 < ∞} where ⟨·⟩ = (1 + | · |)
and the homogeneous Sobolev spaces Ḣs = {f ∈ Hs|f̂(0) = 0}. The mKdV equation
models the propagation of nonlinear water waves in the shallow water approximation. We
only consider the focussing case as the defocussing case follows with the same assertion.
Also, considering inhomogeneous Sobolev norm is very important as for homogeneous
Sobolev norm, Proposition 3.3.1 does not hold for more details (see appendix by Nobu
Kishimoto). From the arguments in [13], [12] and [15], the existence of global attractor for
equations (3.1.1)-(3.1.2) directly follows for s > 1 in Hs. In the present paper, we prove
the existence of global attractor below the energy space in Ḣs(T) for 1 > s > 11/12.

Miura [22],[23] and [24] studied the properties of solutions to the Korteweg-de Vries
(KdV) equation and its generalization. Miura [22] established the Miura transformation
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between the solutions of mKdV and KdV. Indeed, if u satisfies equation (3.1.1) with “ + ”
sign, then the function defined by

p = ∂xu+ iu2

satisfies the KdV equation, where i =
√

−1. Colliander, Keel, Staffilani, Takaoka and
Tao [8] presented the I-method and proved the existence of global solution for mKdV in
the Sobolev space Hs(T) for s > 1/2 by using the Miura transformation. However, the
Miura transformation does not work well for the weakly damped and forced mKdV. In
fact, if we consider the mKdV and KdV equations with the damping and forcing term
and apply the Miura transformation, we get

pt + pxxx − 6ippx + γp = (2iu+ ∂x)f − iγu2. (3.1.3)

It is clear from (3.1.3) that the Miura transformation does not transform the solution of
mKdV equation to the solution of KdV equation. For this reason, the results of damped
and forced KdV can not be directly converted to those of damped and forced mKdV by
the Miura transform unlike the case without damping and forcing terms.

The study of global attractor is important as it characterizes the global behaviour of
all solutions. The asymptotic behaviour of solutions below the energy space has not been
known, though the global well-posedness below the energy space is already proved for the
Cauchy problem of (3.1.1)-(3.1.2). To study the asympototic behaviour of the solution
of mKdV equation below energy space, we need to study the global attractor below
energy space. Chen, Tian and Deng [5] used Sobolev inequalities and a priori estimates
on ux, uxx derived by the energy method to show the existence of global attractor in
H2. Dlotko, Kania and Yang [9] considered more generalized KdV equation and showed
the existence for global attractor in H1. It is instructive to look at known results on
KdV, since KdV has been more extensively studied than mKdV. Tsugawa [29] proved
the existence of global attractor for KdV equation in Ḣs for 0 > s > −3/8 by using the
I-method. Later, Yang [31] closely investigated Tsugawa’s argument to bring down the
lower bound from s > −3/8 to s > −1/2.

Though mKdV has many common properties with KdV, there is a big difference
between KdV and mKdV in the structure of resonance. For KdV, we consider the
homogeneous Sobolev spaces instead of the inhomogeneous one, which eliminates the
resonant frequencies in quadratic nonlinearity (see Bourgain [4]). On the other hand,
for the homogeneous mKdV equation, to eliminate the resonant frequencies in cubic
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nonlinearity, we need to consider the reduced equation (or the renormalized equation)

∂tu+ ∂3
xu+ 6

(
u2 − 1

2π∥u∥2
L2

)
∂xu = 0. (3.1.4)

Without damping and forcing terms, the L2 norm of the solution is conserved. So,
the transformation from the original mKdV eqation to the reduced mKdV equation is
just the translation with constant velocity. But this is not the case with damped and
forced mKdV. The resonant structure of cubic nonlinearity is quite different from that
of quadratic nonlinearity. Therefore, in the mKdV case, we need to directly handle the
resonant trilinear estimate as well as the non-resonant trilinear estimate. In this respect,
it seems difficult to employ the modified energy similar to that used in [29],[31]. Especially,
the scaling argument is one of the main ingredient of the I method. So we need to
make the dependence of estimates on the scaling parameter λ also. Hence, the following
questions naturally arise: How should we treat the nonlinearity of mKdV equation with
the damping and forcing terms? When we can not use Miura transformation, how should
we treat mKdV equation ? To deal with such issues, we apply the I-method directly to
(3.1.5)-(3.1.6) in the present paper and prove the following result:

Theorem 3.1.1. Assume 11/12 < s < 1 and u0 ∈ Ḣs. Let S(t) is the semi-group
generated by the solution of mKdV. Then, there exists two operators L1(t) and L2(t) such
that

S(t)u0 = L1(t)u0 + L2(t)u0,

sup
t>T1

∥L1(t)u0∥H1 < K,

∥L2(t)u0∥Hs < Kexp(−γ(t− T1)), ∀ t > T1,

where K = K(∥f∥H1 , γ) and T1 = T1(∥f∥H1 , ∥u0∥Hs , γ).

In Theorem 3.1.1, the map L1 is uniformaly compact and L2 uniformly convergs to 0
in Hs. Therefore, from [28, Theorem 1.1.1], we get the existence of global attractor. For
the proof of Theorem 3.1.1, we consider the following equation:

∂tu+ ∂3
xu+ 6

(
u2 − 1

2π∥u∥2
L2

)
∂xu+ γu = F t > 0, x ∈ T, (3.1.5)

u(x, 0) = u0(x) (3.1.6)
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where

F = f

x+
t∫

0

∥u(τ)∥2
L2dτ

 .
If we put q(x, t) = u(x+

t∫
0

∥u(τ)∥2
L2dτ, t), then q satisfies Equations (3.1.5)-(3.1.6).

We divide this paper into six sections. In Section 2, we describe the preliminaries
required for the present paper. Section 3 descirbes the proof of trilinear estimate by
using the Strichartz estimate for mKdV equation proved by J. Bourgain [4]. Section 4
contains a priori estimates. We describe the proof of Theorem 3.1.1 in Section 5. Finally
in Section 6, some multilinear estimates are proved.

3.2 Preliminaries
In this section, we present the notations and definitions which are used throughout this
article.

3.2.1 Notations

In this subsection, we list the notations which we use throughout this paper. C, c are
the various time independent constants which depend on s unless specified. a+ and a−
represent a + ϵ and a − ϵ, respectively for arbitrary small ϵ > 0. A . B denotes the
estimate of the form A 6 CB. Similarly, A ∼ B denotes A . B and B & A.

Define (dk)λ to be normalized counting measure on Z/λ:
∫
φ(k)(dk)λ = 1

λ

∑
k∈Z/λ

φ(k).

Let f̂(k) and f̃(k, τ) denotes the Fourier transform of f(x, t) in x and in x and t,
respectively. We define the Sobolev space Hs([0, λ]) with the norm

∥f∥Hs = ∥f̂(k)⟨k⟩s∥L2((dk)λ),

where ⟨·⟩ = (1 + | · |). For details see [8],[29]. We define the space Xs,b embedded with
the norm

∥u∥Xs,b = ∥⟨k⟩s⟨τ − 4π2k3⟩ũ(k, τ)∥L2((dk)λdτ).

We often study the KdV and mKdV equation in Xs, 1
2 space but it hardly contorls the

norm L∞
t H

s
x see [4],[8],[29]. To ensure the continuity of the solution, we define a slightly
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smaller space with the norm

∥u∥Y s = ∥u∥
Xs, 1

2
+ ∥⟨k⟩sũ(k, τ)∥L2((dk)λ)L1(dτ).

Zs space is defined via the norm

∥u∥Zs = ∥u∥
Xs,− 1

2
+ ∥⟨k⟩s⟨τ − 4π2k3⟩−1ũ(k, τ)∥L2((dk)λ)L1(dτ).

For the time interval [t1, t2], we define the restricted spaces Xs,b and Y s embedded with
the norms

∥u∥Xs,b
([0,λ]×[t1,t2])

= inf{∥U∥Xs,b : U |([0,λ]×[t1,t2]) = u},

∥u∥Y s
([0,λ]×[t1,t2])

= inf{∥U∥Y s : U |([0,λ]×[t1,t2]) = u}.

We state the mean value theorem as follow:

Lemma 3.2.1. If a is controlled by b and |k1| ≪ |k2|, then

a(k1 + k2) − a(k2) = O

(
|k1|

b(k2)
|k2|

)
.

For details see [8, Section 4].

3.2.2 Rescaling

In this subsection, we rescale the mKdV equation. We can rewrite equations (3.1.5)-(3.1.6)
in λ-rescaled form as follow:

∂tv + ∂xxxv + 6
(
v2 − 1

2π∥v∥2
L2

)
∂xv + λ−3γv = λ−3g, (3.2.1)

v(x, t0) = vt0(x), (3.2.2)

where

g(x, t) = λ−1F (λ−1x, λ−3t),
vt0(x) = λ−1u(λ−1x, λ−3t0),

for initial time t0. If u is the solution of the equations (3.1.5)-(3.1.6), then v(x, t) =
λ−1u(λ−1x, λ−3t) is the solution of the equations (3.2.1)-(3.2.2). Rescaling is helpful in
proving the local in time result as well as a priori estimate.
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3.2.3 I-Operator

We define an operator I which plays an important role for the I-method. Let φ : R → R
be a smooth monotone R-valued function defined as:

φ(k) =

1 |k| < 1,
|k|s−1 |k| > 2.

Then, for m(k) = φ( k
N

), we define

m(k) =

1 |k| < N,

|k|s−1N1−s |k| > 2N,

where we fix N to be a large cut-off. We define the operator I as:

Îu(k) = m(k)û(k).

We can rescale the operator I as follow:

Î ′u(k) = m′(k)û(k),

where m′( k
λ
) = m(k). Let N ′ = N

λ
. Then

m′(k) =

1 |k| < N ′,

|k|s−1N ′(1−s) |k| > 2N ′.

We use the rescaled I-operator for proving the local results for mKdV equation in time.
Moreover, proving a priori estimate also use the same operator.

3.2.4 Strichartz Estimate

Strichartz estimate plays an important role for the proof of the trilinear estimate.
Bourgain in [4], proves the L4 Strichartz estimate for mKdV equation. In the present
article, we use the same estimate. We list the following result:

Proposition 3.2.2. Let b > 1
3 . Then, we have

∥u∥L4(R×T) . C∥u∥X0,b .
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3.2.5 Local-Wellposedness

In this subsection, we state the local result in time which can be proved by using the
contraction mapping. Let η(t) ∈ C∞

0 be a cut-off function such that:

η(t) =

1 if |t| 6 1,
0 if |t| > 2.

Suppose that
Dλ(t)f(x) =

∫
e2iπkxe−(2iπk)3tf̂(k)(dk)λ.

We assume the following well known lemmas:

Lemma 3.2.3.
∥η(t)Dλ(t)w∥

X1, 1
2
6 ∥w∥H1 .

Lemma 3.2.4. Let F ∈ X1,− 1
2 . Then

∥η(t)
∫ t

0
Dλ(t− t′)F (t′)dt′∥Y 1 6 ∥F∥Z1 .

For the proof of Lemmas 3.2.3 and 3.2.4 see [8].

Proposition 3.2.5. Let 1
2 6 s < 1. Then the IVP (3.2.1)-(3.2.2) is locally well-posed

for the initial data vt0 satisfying I ′vt0 ∈ Ḣ1(T) and I ′g ∈ Ḣ1(T). Moreover, there exists
a unique solution on the time interval [t0, t0 + δ] with the lifespan δ ∼ (∥I ′vt0∥H1 +
λ−3∥I ′g∥H1 + γλ−3)−α for some α > 0 and the solution satisfies

∥I ′v∥Y 1 . ∥I ′vt0∥H1 + λ−3∥I ′g∥H1 ,

sup
t06t6t0+δ

∥I ′v(t)∥H1 . ∥I ′vt0∥H1 + λ−3∥I ′g∥H1 .

Remark 3.2.6. Note that

g(x, t) = λ−1F (λ−1x, λ−3t)

= λ−1f

x+ 1
2π

t∫
0

∥I ′v∥2
L2


Proof. The proof of the Proposition 3.2.5 follows along the same lines as for KdV equation
given in [29] with the help of trilinear estimate given in Proposition 3.3.8. The only
difference arises in the estimate of g as it depends on unknown u. To deal with this issue,
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we define a new metric. Indeed, let

B = {w ∈ X1, 1
2 : ∥w∥

X1, 1
2
. C

(
∥I ′v0∥H1 + λ−3∥I ′g∥H1

)
}

and define the metric

d(w,w′) = ∥w − w′∥
X0, 1

2
+ ∥v − v′∥

X0, 1
2
,

for I ′v = w. As X0, 1
2 is reflexive, the ball B is complete with respect to the metric d for

details see [19, 9.14 and Lemma 7.3] . Therefore, it is enough to show

∥N(v, w) −N(v′, w′)∥Y 0 . ∥η(t)(P (v, w) − P (v′, w′))∥Z0

.
(
γλ−3 + λ0+

(
∥I ′v0∥H1 + λ−3∥I ′g∥H1

)2
+ λ−3∥I ′g∥H1

)
(
∥w − w′∥

X0, 1
2

+ ∥v − v′∥
X0, 1

2

)
,

where
N(w) = η(t)Dλ(t)I ′v0 − η(t)

∫
Dλ(t− t′)η(t′)P (t′)dt′

with
P (v, w) = 6I ′

(
v2 − 1

2π∥v∥2
L2

)
∂xv + γλ−3w − λ−3I ′g.

As the metric consist of both w and u terms, we consider the pair of equation as:

∂tv + ∂xxxv + 6
(
v2 − 1

2π∥v∥2
L2

)
∂xv + λ−3γv = λ−3g, (3.2.3)

∂tw + ∂xxxw + 6I ′
(
v2 − 1

2π∥v∥2
L2

)
∂x(I ′)−1w + λ−3γw = λ−3I ′g. (3.2.4)

The estimate of v in Hs follows from that of w in H1 because ∥v∥Hs . ∥w∥H1 . Therefore,
we do not need to assume extra condition on ball for the variable “v” .Let

g′(x, t) = λ−1F (λ−1x, λ−3t)

= λ−1f

x+ 1
2π

t∫
0

∥I ′v′∥2
L2


At first, we consider the external forcing term for Equation (3.2.3) as:
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∥I ′g − I ′g′∥
X0,− 1

2
. ∥I ′g − I ′g′∥L2

=
∣∣∣∣∣∣
∣∣∣∣∣∣λ−1I ′f

(
λ−1x+

∫ λ−3t

0
∥λv(λ·, λ3τ)∥2

L2dτ

)
−

λ−1I ′f

(
λ−1x+

∫ λ−3t

0
∥λv′(λ·, λ3τ)∥2

L2dτ

) ∣∣∣∣∣∣
∣∣∣∣∣∣
L2

.

∥∥∥∥∥λ−1
∫ 1

0

d

dθ
I ′f(λ−1x+ θα(t) + (1 − θ)β(t))dθ

∥∥∥∥∥
L2

where

α(t) =
∫ λ−3t

0
∥λv(λ·, λ3τ)∥2

L2dτ and β(t) =
∫ λ−3t

0
∥λv′(λ·, λ3τ)∥2

L2dτ.

Now from mean value theorem and the fact that translation is invariant, we get

∥I ′g − I ′g′∥L2 . ∥I ′g∥H1∥v − v′∥
X0, 1

2
.

Similarly for Equation (3.2.4), we get

∥g − g′∥L2 . ∥g∥H1∥v − v′∥
X0, 1

2
.

The nonlinear term can be estimated similar to the 4-linear estimate of Lemma 3.4.9.
Note that the 4-linear estimate has third order derivative on the other hand the nonlinear
term has only one. We can make the similar cases for the nonlinear term as given in
Integrals (1) − (3) and prove the estimate. Hence, we can use the contraction principle.
This shows that the solution u ∈ X1, 1

2 . We need to show that the solution belongs to Y 1.

But from Proposition 3.3.8, the nonlinear term of the integral equation belongs to Y 1.

In the same way, we can verify other two terms of integral equation by using Schwarz
inequality. Therefore, the solution u ∈ Y 1.

3.3 Trilinear Estimate
Define an operator J such that

Ĵ [u, v, w] = i
k

3
∑

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1 )̸=0

û(k1)v̂(k2)ŵ(k3) − ikû(k)v̂(k)ŵ(−k). (3.3.1)
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where û and ṽ denote the Fourier transforms in x variable and both x and t variables,
respectively. We establish the following trilinear estimate for J :

Proposition 3.3.1. Let s > 1
2 and u, v, w ∈ Xs, 1

2 are λ-periodic in x variable. Then, we
have

∥J [u, v, w]∥
Xs,− 1

2
6 Cλ0+∥u∥

Xs, 1
2
∥v∥

Xs, 1
2
∥w∥

Xs, 1
2
. (3.3.2)

Remark 3.3.2. We note that if u is real valued, then

J [u, u, u] =
(
u2 − 1

2π∥u∥2
L2

)
∂xu. (3.3.3)

yields the nonlinearity of mKdV. The first term and the second term of (3.3.1) can be
estimated in Hs for s > 1

4 and s > 1
2 , respectively. So, the bound s = 1

2 comes from the
second term.

Simple computations yield
(
u2 − 1

2π∥u∥2
L2

)
∂xu =i

∑
k1+k2+k3=k

(k1+k2 )̸=0

û(k1)û(k2)k3û(k3)

=i{
∑

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1 )̸=0

û(k1)û(k2)k3û(k3)

+
∑

k1+k2+k3=k
(k1+k2)(k3+k1) ̸=0

(k2+k3)=0

û(k1)û(−k3)k3û(k3)

+
∑

k1+k2+k3=k
(k1+k2)(k2+k3 )̸=0

(k3+k1)=0

û(−k3)û(k2)k3û(k3)

+
∑

k1+k2+k3=k
(k1+k2 )̸=0

(k2+k3)=(k3+k1)=0

k3û(k1)û(−k3)2}

=ik3{
∑

k1+k2+k3=k
(k1+k2 )̸=0

û(k1)û(k2)û(k3)}

− ik|û(k)|2û(k).

Remark 3.3.3. Note that the right hand side of the above formula is equivalent to Ĵ .
Therefore, the nonlinearity of mKdV equation can be control if we prove the Proposition
3.3.1 .
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Remark 3.3.4. If u is a complex-valued function, then we have only to consider
(

|u2| − 1
2π∥u∥2

L2

)
∂xu− i

2πIm⟨∂xu, u⟩L2u

instead of the left hand side of the above equality. This yield the nonlinearity of the
complex mKdV.

Proof of Proposition 3.3.1. We first consider the trilinear estimate corresponding to non
resonant frequencies. We claim that∥∥∥∥∥∥∥∥∥∥

i
k

3

∫
k1+k2+k3=k

(k1+k2)(k2+k3)(k3+k1 )̸=0

û1(k1)û2(k2)û3(k3)

∥∥∥∥∥∥∥∥∥∥
Xs,− 1

2

.
3∏
i=1

∥ui∥
Xs, 1

2
.

From duality, it is enough to show∣∣∣∣∣∣∣∣∣∣∣∣
∫

k1+k2+k3+k4=0
(k1+k2)(k2+k3)(k3+k1 )̸=0

⟨k1⟩
∫

4∑
i=1

τi=0

4∏
i=1

ũi(ki, τi)(dki)λdτi

∣∣∣∣∣∣∣∣∣∣∣∣
.

3∏
i=1

∥ui∥
Xs, 1

2
∥u4∥

X−s, 1
2
. (3.3.4)

Consider LHS of (3.3.4) and let the region of the first integration to be “ ∗ ” and region of
the second integration is denoted by “ ∗ ∗”. Define σi = τi − 4πk3

i for 1 5 i 6 4. Multiply
and divide by ⟨k4⟩

1
2 ⟨σ4⟩

1
2 to get∣∣∣∣∣∣

∫
∗

∫
∗∗

⟨k1⟩1⟨k4⟩s⟨σ4⟩− 1
2 ũ1ũ2ũ3(⟨k4⟩−s⟨σ4⟩

1
2 ũ4)

∣∣∣∣∣∣ . (3.3.5)

We divide this estimate into following four cases:

1. Let |σ4| = max{|σi| for 1 6 i 6 4}.

2. Let |σ3| = max{|σi| for 1 6 i 6 4}.

3. Let |σ2| = max{|σi| for 1 6 i 6 4}.

4. Let |σ1| = max{|σi| for 1 6 i 6 4}.

From the symmetry and the duality argument, it is enough to show for Case 1 because
other cases can be treated in the same way. As we know, k1 + k2 + k3 + k4 = 0 and
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τ1 + τ2 + τ3 + τ4 = 0, from simple calculations, we have

⟨σ4⟩ & 3(|k1 + k2||k2 + k3||k3 + k1|) ∼ 3(|k2 + k3||k3 + k4||k4 + k2|). (3.3.6)

From symmetry, we can assume that |k1| > |k2| > |k3|. Now we can again subdivide all
three cases into four cases:

1a |k1| ∼ |k2| ∼ |k3| ∼ |k4|

1b |k1| ∼ |k4| ≫ |k2| & |k3|

1c |k1| ∼ |k4| ∼ |k2| & |k3|

Remark 3.3.5. Note that there are other cases also but if we consider |k1| ≫ |k4|, the
derivative corresponding to |k4| get very small and the estimate is easy to verify.

Lemma 3.3.6. For Case 1a, we give the following proof:

Proof. Note that we wish to prove

∥∂xM(u, u, u)∥
Xs,− 1

2
. ∥u∥3

Xs, 1
2
, (3.3.7)

where
Fx[M(u, v, w)] =

∑
k1+k2+k3=k
|k1|∼|k2|∼|k3|

û(k1)v̂(k2)ŵ(k3),

and F denotes the Fourier transform in x variable. Hence,

∥∂xM(u, u, u)∥
Xs,− 1

2
∼

∫
k

⟨k⟩3

 ∞∫
−∞

⟨σ⟩−1 |Fx,t[M(u, u, u)]|2 dτ
 (dk)λ

 1
2

∼∥(⟨k⟩
1
2 |ũ|)3⟨σ⟩− 1

2 ∥L2(T×R),

where Fx,t is the Fourier transform in both x and t variables. Let ṽ(k, τ) = ⟨k⟩ 1
2 |ũ(k, τ)|.

Hence, we get

∥(⟨k⟩
1
2 |ũ|)3⟨σ⟩− 1

2 ∥L2(T×R) . ∥v3∥
X0,− 1

2
,

. ∥v3∥
L

4
3 (T×R)

,

From the duality of Strichartz’s estimate and Proposition 3.2.2, we get

∥(⟨k⟩
1
2 |ũ|)3⟨σ⟩− 1

2 ∥L2(T×R) . ∥v∥3
L4(T×R),
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. λ0+∥u∥3

X
s, 1

2
.

Therefore, we can handle Case 1a directly.

Case 1b. We assume that the size of the Fourier support of uj satisfies

|k1| ∼ |k4| ≫ |k2|, |k3|,
|σ4| & |k2 + k3||k3 + k4||k4 + k2|,
1
λ
6 |k2 + k3| 6 1. (3.3.8)

Remark 1. The restriction k1 + k2 + k3 + k4 = 0 and the assumption imply that
|k1| ∼ |k4|. But it does not follow that |k2| ∼ |k3| unless (3.3.8) additionally assumed.

We prove the following estimate of the quardlinear functional on R×λT with parameter
λ > 1.

Lemma 3.3.7. For the above conditions, we have∣∣∣∣∣∣
∫
∗

∫
∗∗

⟨k1⟩1⟨k4⟩s⟨σ4⟩− 1
2 ũ1ũ2ũ3(⟨k4⟩− 1

2 ⟨σ4⟩
1
2 ũ4)

∣∣∣∣∣∣
.(1 + λ0+) min{∥u2∥X1/4+,1/2∥u3∥X0,1/2 , ∥u2∥X0,1/2∥u3∥X1/4+,1/2} × ∥u1∥Xs,1/2∥u4∥X−s,1/2 .

(3.3.9)

Proof. We follow the argument in [8, Case 3 in the proof of Proposition 5 on page
733-734]. We first note that

|σ4| & |k2 + k3||k1|2. (3.3.10)

From the Plancherel theorem, inequality (3.3.10) and the Sobolev embedding, the left
side of (3.3.9) can be bounded by the following inequalities.∣∣∣∣∣∣

∫
∗

∫
∗∗

⟨k1⟩1⟨k4⟩s⟨σ4⟩− 1
2 ũ1ũ2ũ3(⟨k4⟩−s⟨σ4⟩

1
2 ũ4)

∣∣∣∣∣∣
.
∫
∗

∫
∗∗

⟨k1⟩s|¯̃u1(k1)|(|k2 + k3|−1/2|ũ2(k2)||ũ3(k3)|)|σ4|1/2|k4|−s|ũ4(k4)|dτ

. ∥Ds
xv1∥L4(R×λT)∥D−1/2

x (v2v3)∥L4(R×λT)∥v4∥X−s,1/2

. ∥v1∥Xs,1/3+∥D−1/4
x (v2v3)∥L4(R;L2(λT))∥v4∥X−s,1/2 , (3.3.11)



54 Global Attractor for Weakly Damped and Forced mKdV Equation

where ṽj = |ũj|. Furthermore, by the Plancherel’s theorem, 1/λ 6 |k2|+ |k3| 6 1, Schwarz
inequality and the Young’s inequality, we have

∥D−1/4
x (v2v3)∥L2(λT) .

∫
1/λ6|k23|61

|k23|−1/2

∣∣∣∣∣∣∣
∫

k23=k2+k3

ṽ2(k2)ṽ3(k3)

∣∣∣∣∣∣∣
2

.

 ∫
1/λ6|k23|61

|k23|−1

1/2 ∫
1/λ6|k23|61

∣∣∣∣∣∣
∫

k23=k2+k3

ṽ2(k2)ṽ3(k3)
∣∣∣∣∣∣
41/2

. (1 + log λ)1/2 min{∥v2∥2
L2(λT)∥v3∥2

H1/4+(λT), ∥v3∥2
L2(λT)∥v2∥2

H1/4+(λT)}. (3.3.12)

The integration in t over R of the squared left side of (3.3.12) yield

∥D−1/4
x (v2v3)∥L4(R;L2(λT)) . (1 + λ0+) min{∥v2∥2

L8(R;L2(λT))

∥v3∥2
L8(R;H1/4+(λT)), ∥v3∥2

L8(R;L2(λT))∥v2∥2
L8(R;H1/4+(λT)}

. (1 + λ0+) min{∥v2∥2
X0,1/2∥v3∥2

X1/4+,1/2 , ∥v2∥2
X0,1/2∥v3∥2

X1/4+,1/2}. (3.3.13)

Accordingly, from (3.3.11)-(3.3.13) we obtained the desire inequality (3.3.9).

Case 1c. Inequality (3.3.10) becomes

|σ4| & |k2 + k4||k1|2.

Therefore, we can estimate case 1c in the similar way as case 1b.

For the resonant part (the second term of operator J (3.3.1)), the proof is similar
to Lemma 3.3.6 with M defined in the formula (3.3.7) changes to the following:

Fx[M(u, u, u)] = |û(k)|2|û(k)|.

Now, we prove the trilinear estimate corresponding to the function space Zs:

Proposition 3.3.8. For s > 1
2 and u, v, w ∈ Xs, 1

2 , we have

∥J [u, v, w]∥Zs 6 Cλ0+∥u∥Y s∥v∥Y s∥w∥Y s . (3.3.14)



3.3 Trilinear Estimate 55

Proof. From Proposition 3.3.1, it is enough to show

∥⟨k⟩s⟨k⟩⟨σ⟩−1J [u, v, w]∥L2
(dk)k

L1
dτ

6 C∥u∥
Xs, 1

2
∥v∥

Xs, 1
2
∥w∥

Xs, 1
2
.

Similar to Proposition 3.3.1, we also divide this problem into the following four cases.

1. Let |σ| = max{|σ|, |σi| for 1 6 i 6 3}.

2. Let |σ1| = max{|σ|, |σi| for 1 6 i 6 3}.

3. Let |σ2| = max{|σ|, |σi| for 1 6 i 6 3}.

4. Let |σ3| = max{|σ|, |σi| for 1 6 i 6 3}.

Case 1 is the worst one. Indeed, otherwise we have by Schwarz’s inequality,

∥⟨k⟩s⟨k⟩⟨σ⟩−1∑
k

û1û2û3∥L2
(dk)k

L1
τ

.

∥∥∥∥∥∥∥
 ∞∫

−∞

1
⟨σ⟩2( 1

2 +ϵ)
dτ

 1
2
 ∞∫

−∞

⟨k⟩2s⟨k⟩2

⟨σ⟩2( 1
2 −ϵ)

∣∣∣∣∣∑
k

û1û2û3

∣∣∣∣∣
2

dτ

 1
2
∥∥∥∥∥∥∥
L2

(dk)λ

.

. C

∥∥∥∥∥ ⟨k⟩⟨k⟩s

⟨σ⟩( 1
2 −ϵ)

∑
k

û1û2û3dτ

∥∥∥∥∥
L2

(dk)k
L2

τ

,

and hence it reduces to the same proof as in Proposition 3.3.1. Therefore, we only have
to prove Case 1. From symmetry, assume that |k1| > |k2| > |k3|. We divide Case 1 into
further three cases as follow:

1a. |k1| ∼ |k2| ∼ |k3|.

1b. |k1| ≫ |k2| & |k3|.

1c. |k1| ∼ |k2| ≫ |k3|.

Case 1a. By the Schwarz’s inequality, we have

∞∫
−∞

⟨σ⟩−1|Ft,x[M(u, u, u)]|dτ

6

 ∞∫
−∞

⟨σ⟩−1−ϵdτ

 1
2
 ∞∫

−∞

⟨σ⟩−1+ϵ|Ft,x[M(u, u, u)]|2dτ
 1

2

,



56 Global Attractor for Weakly Damped and Forced mKdV Equation

where M is defined in (3.3.7). This case is reduces to Lemma 3.3.6.
Case 1b. In this case, we can clearly see that ⟨σ⟩ & |k2 + |k3||(⟨k⟩2 + ⟨σ⟩). Due to
symmetry, we can assume that |k| ∼ |k1|. By using Schwarz’s inequality, we get∣∣∣∣∣∑

k

⟨k⟩s⟨k⟩⟨σ⟩−1û1û2û3

∣∣∣∣∣
L2

(dk)k
L1

τ

.

∥∥∥∥∥∥∥
∑
k

 ∞∫
−∞

⟨k⟩2

⟨σ⟩2dτ

 1
2
 ∞∫

−∞

⟨k⟩2s |û1û2û3|2 dτ

 1
2
∥∥∥∥∥∥∥
L2

(dk)λ

.

As we can see
 ∞∫

−∞

⟨k⟩2

⟨σ⟩2dτ

 1
2

.

 ∞∫
−∞

⟨k⟩2

(⟨σ⟩ + |k2 + k3|⟨k⟩2)2dτ

 1
2

,

=
 ∞∫

−∞

⟨k⟩2

(|τ − k3| + |k1 + k2|⟨k⟩2)2dτ

 1
2

,

=

 k3∫
−∞

⟨k⟩2

(k3 − τ + |k2 + k3|⟨k⟩2)dτ


1
2

+
 ∞∫
k3

⟨k⟩2

(τ − k3 + |k2 + k3|⟨k⟩2)dτ
 1

2

. C|k2 + k3|−1/2.

Hence, from Hölder’s inequality, Proposition 3.2.2 and inequality (3.3.13), we get∥∥∥∥∥∑
k

|k2 + k3|−1/2⟨k⟩sû1û2û3

∥∥∥∥∥
L2

(dk)λ
L2

τ

∼
∥∥∥∥∥∑
k

(|k1|sû1)(|k2 + k3|−1/2û2û3)
∥∥∥∥∥
L2

(dk)λ
L2

τ

,

. ∥Ds
xu1∥L4

x,t
∥D− 1

2
x (u2u3)∥L4

x,t

. λ0+∥u1∥
Xs, 1

3 +∥u2∥
X

1
4 +, 1

2
∥u3∥

X0, 1
2
.

The estimate for the resonant term follows in the same way as Case 1a.

Let u = uL + uH where supp ûL(k) ⊂ {|k| ≪ N} and supp ûH(k) ⊂ {|k| & N}. We
prove the following corollary:

Corollary 3.3.9. Let 1 ≫ ϵ > 0. Let u, v, w ∈ Xs, 1
2 −ϵ. Then, the following three

estimates hold:
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1. If v, u are low and w is high frequency functions, then we have∥∥∥∥∥∥(uLvL −
∞∑

l=−∞
ûL(l)v̂L(−l))wH

∥∥∥∥∥∥
X1−2ϵ,− 1

2 +ϵ

. λ0+C min{∥uL∥
X

1
2 +ϵ, 1

2 −ϵ∥vL∥
X0, 1

2 −ϵ , ∥vL∥
X

1
2 +ϵ, 1

2 −ϵ∥uL∥
X0, 1

2 −ϵ}∥wH∥
X0, 1

2 − ϵ
2
.

2. If v, w are high and u is low frequency functions, then∥∥∥∥∥∥(uLvH −
∞∑

l=−∞
ûL(l)v̂H(−l))wH

∥∥∥∥∥∥
X1−2ϵ,− 1

2 +ϵ

. λ0+C min{∥uL∥
X

1
2 +ϵ, 1

2 −ϵ∥vH∥
X0, 1

2 −ϵ , ∥vH∥
X

1
2 +ϵ, 1

2 −ϵ∥uL∥
X0, 1

2 −ϵ}∥wH∥
X0, 1

2 − ϵ
2
.

3. If u, v and w all are high frequency functions, then∥∥∥∥∥∥(uHvH −
∞∑

l=−∞
ûH(l)v̂H(−l))wH

∥∥∥∥∥∥
X−2ϵ, 1

2 +ϵ

. λ0+∥uH∥
X0, 7

18 +ϵ∥vH∥
X0, 7

18 +ϵ∥wH∥
X0, 7

18 +ϵ .

Proof. 1. We know that

Fx

(uLvL −
∞∑

l=−∞
ûL(l)v̂L(−l))wH

 =
∑

k1+k2+k3+k4=0
k1+k2 ̸=0

(k1+k2)(k2+k3)(k3+k1 )̸=0

ûL(k1)v̂L(k2)ŵH(k3),

where Fx denotes the Fourier transform in the x variable. Hence, we need to show that∥∥∥∥∥∥∥∥∥∥
∑
k

eikx
∫

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1) ̸=0

⟨k1⟩1−2ϵûL(k1)v̂L(k2)ŵH(k3)

∥∥∥∥∥∥∥∥∥∥
X0,− 1

2 +ϵ

. C min{∥uL∥
X

1
2 +ϵ, 1

2 −ϵ∥vL∥
X0, 1

2 −ϵ , ∥vL∥
X

1
2 +ϵ, 1

2 −ϵ∥uL∥
X0, 1

2 −ϵ}∥wH∥
X0, 1

2 − ϵ
2
.
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From duality, it is enough to show∣∣∣∣∣∣∣∣∣∣∣∣
∫

k1+k2+k3=k
(k1+k2)(k2+k3)(k3+k1 )̸=0

∫
4∑

i=1
τi=0

⟨k4⟩1−2ϵũ1(k1)ũ2(k2)ũ3(k3)ũ4(k4)

∣∣∣∣∣∣∣∣∣∣∣∣
(3.3.15)

. C min{∥uL∥
X

1
2 +ϵ, 1

2 −ϵ∥vL∥
X0, 1

2 −ϵ , ∥vL∥
X

1
2 +ϵ, 1

2 −ϵ∥uL∥
X0, 1

2 −ϵ}∥wH∥
X0, 1

2 − ϵ
2
.

where u1 = uL, u2 = vL, u3 = wH and let u4 = uL+uH . Let σi = τi−4π2k3
i for 1 6 i 6 4.

We divide the proof into the following four cases:

1. Let |σ4| = max{|σi| for 1 6 i 6 4}.

2. Let |σ1| = max{|σi| for 1 6 i 6 4}.

3. Let |σ2| = max{|σi| for 1 6 i 6 4}.

4. Let |σ3| = max{|σi| for 1 6 i 6 4}.

It is enough to prove for Case 1 because other cases can be treated in the same way.
According to the given conditions, we have |k1|, |k2| ≪ N ′ and |k3| ∼ |k4| & N ′. So,
from (3.3.6), ⟨σ4⟩ & ⟨k4⟩2|k3 + |k4| and 1/λ 6 |k3 + k4| 6 1. Let the region for the first
integration is denoted as “ ∗ ” and the region of second integration is denoted as “ ∗ ∗”.
By using Plancherel’s theorem, Hölder’s inequality, for the term (3.3.15), we get∣∣∣∣∣∣

∫
∗

∫
∗∗

⟨k4⟩1−2ϵũ1ũ2ũ3ũ4

∣∣∣∣∣∣
.

∣∣∣∣∣∣
∫
∗

∫
∗∗

⟨k4⟩1−2ϵ⟨k4⟩−1+2ϵ(|k1 + k2|−1/2|ũ1||ũ2|)|ũ3|(|ũ4|⟨σ4⟩
1
2 −2ϵ)

∣∣∣∣∣∣ ,
. ∥D−1/2

x (v1v2)∥L4
x,t

∥v3∥L4
x,t

∥ṽ4⟨σ4⟩
1
2 −2ϵ∥L2

k,τ
.

for vj = |uj|. From Sobolev embedding, inequality (3.3.13) and Proposition 3.2.2, we get
the desired inequality.
2. We can prove this case along the similar line.
3. Form duality argument and Proposition 3.2.2, we get the desire estimate.

Lemma 3.3.10.
∥u∥L∞

x,t
. ∥u∥

X
1
2 +ϵ, 1

2 +ϵ . (3.3.16)
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Proof.
∥u∥2

L∞
t L2

x
= sup

t∈R
∥U(−t)u(t)∥2

L2
x
,

where U(t) = e−t∂3
x . By Sobolev embedding, we have

sup
t∈R

∥U(−t)u(t)∥2
L2

x
.
∫

sup
t∈R

|U(−t)u(t)|2dx

.
∫

⟨∂t⟩
1
2 +ϵ|U(−t)u(t)|2dx

∼ ∥u∥2
X0, 1

2 +ϵ .

Hence, we get
∥u∥2

L∞
t L2

x
. ∥u∥2

X0, 1
2 +ϵ .

3.4 A Priori Estimate
In this section, we show a priori estimate of the solution to the mKdV equation which are
needed for the proof of Theorem 3.1.1. The energy for the mKdV equation is given as:

E(u) =
∫

(∂xu)2 − (u)4dx. (3.4.1)

For the operator I ′, we have

E(I ′v) =
∫

(∂xI ′v)2 − (I ′v)4dx.

From equations (3.2.1)-(3.2.2), we obtain

d(E(I ′v))
dt =

[∫
(−∂2

xI
′v − (I ′v)3)(−∂3

xI
′v − ∂xI

′v3)
]

+
[∫

−λ−3∂2
xI

′vI ′g − λ−3(I ′v)3I ′g + 1
2(I ′v)4γλ−3

]
. (3.4.2)

For a Banach space X, we define the space L∞
T ′X via the norm:

∥u∥L∞
T ′X = sup

t∈[0,T ′]
∥u(t)∥X .

Multiply equation (3.2.1) by v and take L2 norm to obtain the following lemma:
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Lemma 3.4.1.

∥v(t)∥2
L2 . ∥v0∥L2 exp(−γλ−3t) + λ−3

γ
∥g∥2

L∞
t L2(1 − exp(−γλ−3t)).

We establish the following lemma:

Lemma 3.4.2. Let v is the solution of IVP (3.2.1)-(3.2.2) for t ∈ [0, T ′]. Then, we have

∥I ′v(T ′)∥2
L2exp(γλ−3T ′) 6 C1(∥v(0)∥2

L2 + 1
γ

∥g∥2
L2exp(γλ−3T ′)) (3.4.3)

and

∥I ′v(T ′)∥2
Ḣ1exp(γλ−3T ′) 6 C1

(
∥I ′v(0)∥2

Ḣ1 + 1
γ2 ∥I ′g∥2

L∞
T ′Ḣ

1exp(γλ−3T ′)

+∥v(0)∥6
L2 + 1

γ4 ∥g∥6
L2exp(γλ−3T ′)

)
+

∣∣∣∣∣∣∣
T ′∫
0

M(t)dt

∣∣∣∣∣∣∣ , (3.4.4)

where
M(t) = exp(γλ−3t)

∫
λT

{−∂2
xI

′v − (I ′v)3}{−∂xI ′v3 − ∂3
xI

′v}.

Proof. Similar to Lemma 3.4.1, we have

d

dt
∥v(T ′)∥2

L2exp(γλ−3T ′) =
(

−γλ−3∥v(t)∥L2 + 2λ−3
∫
λT
v(t)g(t)dx

)
exp(γλ−3T ′)

6
λ−3

γ
∥g∥2

L2exp(γλ−3T ′).

Intriguing over [0, T ′] and from the definition of operator I, we get (3.4.3).
From equations (3.2.1)-(3.2.2), we get

d
dt
(
E(I ′v(t))exp(γλ−3t′)

)
= d

dtE(I ′v(t))exp(γλ−3t′) + γλ−3E(I ′v(t))exp(γλ−3t′),

=
[∫

{−∂2
xI

′v − (I ′v)3}{λ−3I ′g − γλ−3I ′v − ∂3
xI

′v − ∂xI
′v3}

]
exp(γλ−3t′)

+ γλ−3exp(γλ−3t′)
∫ 1

2(∂xI ′v)2 − 1
4(I ′v)4,

=
[∫

(−∂2
xI

′v − (I ′v)3)(−∂3
xI

′v − ∂xI
′v3)

]
exp(γλ−3t′)

+
[∫

(−∂2
xI

′v − (I ′v)3)(λ−3I ′g − γλ−3I ′v)
]
exp(γλ−3t′)
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+ γλ−3exp(γλ−3t′)
∫ 1

2(∂xI ′v)2 − 1
4(I ′v)4,

=M(t′) +
[∫

−λ−3∂2
xI

′vI ′g − λ−3(I ′v)3I ′g − 1
2γλ

−3(∂xI ′v)2 + 3
4(I ′v)4γλ−3

]
exp(γλ−3t′).

Put the value of E, integrate over [0, T ′], take absolute value on both side and from
Gagliardo-Nirenberg inequality, we get

(
∥I ′v(T ′)∥2

Ḣ1 − ∥I ′v(T ′)∥4
L4

)
exp(γλ−3T ′)

=∥I ′v(0)∥2
Ḣ1 − ∥I ′v(0)∥4

L4 +
T ′∫
0

M(t′)dt′ +
T ′∫
0

[ ∫
−λ−3∂2

xI
′vI ′g − λ−3(I ′v)3I ′g

− 1
2γλ

−3(∂xI ′v)2 + 3
4(I ′v)4γλ−3

]
exp(γλ−3t′)dt′,

.∥I ′v(0)∥2
Ḣ1 − ∥I ′v(0)∥4

L4 +

∣∣∣∣∣∣∣
T ′∫
0

M(t′)dt′
∣∣∣∣∣∣∣+ λ−3

T ′∫
0

[
∥I ′g∥Ḣ1∥I ′v(t′)∥Ḣ1

+ ∥I ′v(t′)∥Ḣ1∥I ′v(t′)∥2
L2∥I ′g∥L2 − γ

1
2∥I ′v(t′)∥2

Ḣ1

+ γ
3
4∥I ′v(t′)∥Ḣ1∥I ′v(t′)∥3

L2

]
exp(γλ−3t′)dt′.

From Young’s inequality, we have

∥I ′v(T ′)∥2
Ḣ1exp(γλ−3T ′) . ∥I ′v(0)∥2

Ḣ1 + 1
γ2 ∥I ′g∥2

L∞
T ′Ḣ

1exp(γλ−3T ′)

+

∣∣∣∣∣∣∣
T ′∫
0

M(t′)dt′
∣∣∣∣∣∣∣+ C1∥I ′v(T ′)∥6

L2exp(γλ−3T ′)

+ C1

T ′∫
0

(
∥I ′v(t′)∥6

L2 + 1
γ2 ∥I ′v(t′)∥4

L2∥I ′g∥2
L2

)
γλ−3exp(γλ−3t′)dt′.

From inequality (3.4.3) we get
(

∥I ′v(t′)∥6
L2 + 1

γ2 ∥I ′v(t′)∥4
L2∥I ′g∥2

L2

)
. ∥I ′v(0)∥6

L2exp(−3γλ−3t′) + 1
γ3 ∥I ′g∥6

L2 .

and hence we obtain inequality (3.4.4).

Remark 3.4.3. For mKdV equation, we just consider the half part of damping term in
exp(γλ−3T ′) as compare to KdV equation.

We need to state the following Leibnitz rule type lemma:
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Lemma 3.4.4.

∥f(t)g(x, t)∥Xs,b . ∥f̂∥L1∥g∥Xs,b + ∥f∥Hb
t
∥⟨k⟩sg̃∥L2

(dk)λ
L1

dτ
.

Proof. Assume that τ = τ1 + τ2. Let σ = τ − k3, σ1 = τ1 and σ2 = τ2 − k3. Then

⟨σ⟩b = ⟨τ − k3⟩b . ⟨τ1⟩b + ⟨τ − τ1 − k3⟩b.

Hence

⟨σ⟩b⟨k⟩sF [f(t)g(x, t)] = ⟨σ⟩b⟨k⟩s
∫
τ1
f̂(τ1)g̃(k, τ − τ1)dτ1,

. ⟨k⟩s
∫
τ1

⟨τ1⟩b|f̂(τ1)g̃(k, τ − τ1)| + ⟨τ − τ1 − k3⟩b|f̂(τ1)g̃(k, τ − τ1)|dτ1.

After summing over k and taking L2 norm, we get

∥⟨σ⟩b⟨k⟩sF [f(t)g(x, t)]∥L2
k,τ

6 ∥⟨k⟩s⟨τ1⟩bf̂ ∗ g̃∥L2
t,k

+ ∥⟨k⟩s⟨τ − τ1 − k3⟩bf̂ ∗ g̃∥L2
t,k
.

From Young’s inequality in τ , we obtain

∥⟨k⟩s⟨τ1⟩bf̂ ∗ g̃∥L2
τ

+ ∥⟨k⟩s⟨τ − τ1 − k3⟩bf̂ ∗ g̃∥L2
τ
. ∥f̂∥L1∥g∥Xs,b + ∥f∥Hb

t
∥⟨k⟩sg̃∥L2

(dk)λ
L1

dτ
.

Similar to [29, Proposition 3.1], we finally have the following proposition:

Proposition 3.4.5. Let 1
2 6 s < 1. Let T > 0 is given, ϵ > 0 be sufficiently small and u

be a solution of IVP (3.1.5)-(3.1.6) on [0, T ]. Assume that N 1
2 (1−ϵ) > γ,N ϵ− > C6T and

(∥u(0)∥2
L2 + 1

γ2 ∥f∥2
L2exp(γT )) 6 N

1
6 (1−ϵ)C3

(∥Iu(0)∥2
Ḣ1 + 1

γ2 ∥If∥2
Ḣ1exp(γT )) 6 N

1
6 (1−ϵ)C3.

Then, we have

∥Iu(T )∥2
L2exp(γT ) 6 C4(∥u(0)∥2

L2 + 1
γ2 ∥f∥2

L2exp(γT )),

∥Iu(T )∥2
Ḣ1exp(γT ) 6 C4(∥Iu(0)∥2

Ḣ1 + ∥u(0)∥6
L2 + 1

γ4 ∥f∥6
L2exp(γT )

+ 1
γ2 ∥If∥2

Ḣ1exp(γT )) + (∥Iu(0)∥2
H1 + 1

γ2 ∥If∥2
H1exp(γT )),
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where C4 is independent of N and T.

Remark 3.4.6. Without loss of generality, we can replace f with F as F is just a
translation of f.

We can rescale Proposition 3.4.5 by taking λ = N
1
6 (1−ϵ), N ′ = N

λ
, T ′ = λ3T. Also, we

note that ∥I ′v∥2
Ḣ1 = λ−3∥Iu∥2

Ḣ1 , ∥I ′g∥2
L∞

T ′Ḣ
1 = λ−3∥If∥2

Ḣ1 . We rewrite Proposition 3.4.5
as following:

Proposition 3.4.7. Let 1
2 6 s < 1, T ′ > 0 is given and let v be a solution of IVP (3.2.1)-

(3.2.2) on [0, T ′]. Assume that λ3 > γ and that for suitable C6, C3 > 0, N ′−λ0− > C6T
′λ2

and

(∥v(0)∥2
L2 + 1

γ2 ∥g∥2
L2exp(γλ−3T ′)) 6 C3

(∥I ′v(0)∥2
Ḣ1 + 1

γ2 ∥I ′g∥2
L∞

T ′Ḣ
1exp(γλ−3T ′)) 6 C3.

Then, we have

∥I ′v(T ′)∥2
L2exp(γλ−3T ′) 6 C4(∥v(0)∥2

L2 + 1
γ2 ∥g∥2

L2exp(γλ−3T ′))

∥I ′v(T ′)∥2
Ḣ1exp(γλ−3T ′) 6 C4(∥I ′v(0)∥2

Ḣ1 + 1
γ2 ∥I ′g∥2

L∞
T ′Ḣ

1exp(γλ−3T ′)

+ ∥v(0)∥6
L2 + 1

γ4 ∥g∥6
L∞

T ′L
2exp(γλ−3T ′))

+ λ−2(∥I ′v(0)∥2
H1 + 1

γ2 ∥I ′g∥2
H1exp(γλ−3T ′)),

where C4 is independent of N ′, T ′ and λ.

Remark 3.4.8. Because of non homogeneity of non homogeneous Sobolev space, we
can not rescale the Proposition 3.4.5 into Proposition 3.4.7 with the order of rescaling
factor as λ−3 like the KdV equation. Also, if we consider the homogeneous Sobolev space,
the trilinear and multilinear estimates may not follows for counterexample see appendix.
Therefore, we consider the non homogeneous Sobolev space with the rescaling estimate
∥I ′v∥2

H1 . λ−1∥Iu∥2
H1 . We estimate L2 and Ḣ1 separately to prove Proposition 3.4.7 in

H1. Although, it is not necessary for our problem to have the separate estimates but for
the shake of general proof, we estimate it separately.
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Proof of Proposition 3.4.7. Take δ > 0 and j ∈ N such that δj = T ′ where δ ∼
(∥I ′v(0)∥H1 + ∥I ′g∥L∞

T ′H
1 + γλ−3)−α, α > 0. For 0 6 m 6 j, m ∈ Z, we prove

∥I ′v(mδ)∥2
Ḣ1exp(γλ−3mδ)

62C1(∥I ′v(0)∥2
Ḣ1 + ∥v(0)∥6

L2 + 1
γ2 ∥I ′g∥2

Ḣ1exp(γλ−3mδ)

+ 1
γ4 ∥g∥6

L2exp(γλ−3kδ)) + λ−2(∥I ′v(0)∥2
H1 + 1

γ2 ∥I ′g∥2
H1exp(γλ−3T ′))

64C1C3 + λ−2(∥I ′v(0)∥2
H1 + 1

γ2 ∥I ′g∥2
H1exp(γλ−3T ′)) (3.4.5)

by induction.
For m = 0, (3.4.5) hold trivially. We assume (3.4.5) hold true for m = l where

0 6 l 6 j − 1. From Lemma 3.4.2, we have

∥I ′v((l + 1)δ)∥2
Ḣ1exp(γλ−3(l + 1)δ) 6 C1(∥I ′v(0)∥2

Ḣ1 + ∥v(0)∥6
L2

+ 1
γ2 ∥I ′g∥2

Ḣ1exp(γλ−3(l + 1)δ) + 1
γ4 ∥g∥6

L2exp(γλ−3(l + 1)δ) +
∣∣∣∣∣
∫ (l+1)δ

0
M(t)dt

∣∣∣∣∣
Therefore, it suffices to prove∣∣∣∣∣∣∣

(l+1)δ∫
0

M(t)dt

∣∣∣∣∣∣∣+ . λ−2(∥I ′v(0)∥H1 + 1
γ2 ∥I ′g∥L∞

(l+1)δ
H1exp(γλ−3(l + 1)δ)).

If γ = 0 and f = 0 in Equation (3.4.2), then we have the following estimate:

Lemma 3.4.9. ∣∣∣∣∣∣∣
T ′∫
0

M(t)dt

∣∣∣∣∣∣∣ . λ0+N ′−1+∥Iu∥4
X

1, 1
2

T ′

+ λ0+N ′−2∥Iu∥6
X

1, 1
2

T ′

.

We prove Lemma 3.4.9 in last section.
Lemma 3.4.9 implies that∣∣∣∣∣∣∣

(l+1)δ∫
0

M(t)dt

∣∣∣∣∣∣∣ ∼
l∑

k=0

∣∣∣∣∣∣∣
(k+1)δ∫
kδ

M(x, t)dt

∣∣∣∣∣∣∣ ,
.(N ′)−1+λ0+

l∑
k=0

∥exp(1
4γλ

−3t)I ′v∥4
X

1, 1
2

([0,λ]×[kδ,(k+1)δ])
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+ (N ′)−2λ0+
l∑

k=0
∥exp(1

6γλ
−3t)I ′v∥6

X
1, 1

2
([0,λ]×[kδ,(k+1)δ])

.

From Proposition 3.4.4, we obtain∣∣∣∣∣∣∣
(l+1)δ∫

0

M(t)dt

∣∣∣∣∣∣∣
.(N ′)−1+λ0+

l∑
k=0

∥ ̂exp(γλ−3t)∥L1
[kδ,(k+1)δ]

∥I ′v∥4
X

1, 1
2

([0,λ]×[kδ,(k+1)δ])

+ (N ′)−1+λ0+
l∑

k=0
∥exp(γλ−3t)∥

H
1
2

[kδ,(k+1)δ]

∥⟨k⟩s ˜I ′v∥4
L2

[0,λ]L
1
[kδ,(k+1)δ]

+ (N ′)−2λ0+
l∑

k=0
∥ ̂exp(γλ−3t)∥L1

[kδ,(k+1)δ]
∥I ′v∥6

X
1, 1

2
([0,λ]×[kδ,(k+1)δ])

+ (N ′)−2λ0+
l∑

k=0
∥exp(γλ−3t)∥

H
1
2

[kδ,(k+1)δ]

∥⟨k⟩s ˜I ′v∥6
L2

[0,λ]L
1
[kδ,(k+1)δ]

.

From simple computations, we can verify that

max
06l6k

∥ ̂exp(γλ−3t)∥L1
[lδ,(l+1)δ]

. C exp(γλ−3(l + 1)δ)

and
max
06l6k

∥exp(γλ−3t)∥
H

1
2

[lδ,(l+1)δ]

. C exp(γλ−3(l + 1)δ)

are bounded. From the first inequality of Proposition 3.2.5, we have

∥I ′v∥4
X

1, 1
2

([0,λ]×[kδ,(k+1)δ])

+ ∥⟨∂x⟩I ′v∥4
L2

[0,λ]L
1
[kδ,(k+1)δ]

. ∥I ′v(kδ)∥4
H1

[0,λ]
+ (λ−3∥I ′g∥)4

L∞
(l+1)δ

H1
[0,λ]

.

(3.4.6)

∥I ′v∥6
X

1, 1
2

([0,λ]×[kδ,(k+1)δ])

+ ∥⟨∂x⟩I ′v∥6
L2

[0,λ]L
1
[kδ,(k+1)δ]

. ∥I ′v(kδ)∥6
H1

[0,λ]
+ (λ−3∥I ′g∥)6

L∞
(l+1)δ

H1
[0,λ]

.

(3.4.7)

Therefore, we have∣∣∣∣∣∣∣
(l+1)δ∫

0

M(t)dt

∣∣∣∣∣∣∣ . (C6λ
2T ′)−1

l∑
k=0

(∥I ′v(kδ)∥4
H1

[0,λ]
+ (λ−3∥I ′g∥)4

L∞
(l+1)δ

H1
[0,λ]

exp(γλ−3(l + 1)δ)).

(3.4.8)
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From inequalities (3.4.6),(3.4.7) and the assumption in Proposition 3.4.7, we get∣∣∣∣∣∣∣
(l+1)δ∫

0

M(t)dt

∣∣∣∣∣∣∣ . 2(C6λ
2T ′)−1C3(C2

1 + C3
1)(l + 1)(∥I ′v(0)∥H1

+ 1
γ2 ∥I ′g∥2

L∞
T ′H

1
[0,λ]

exp(2γλ−3(l + 1)δ)).

We choose C6 sufficiently large such that 2(C6T
′)−1C3(C2

1 +C3
1 )(l+1) 6 2(C6δ)−1C3(C2

1 +
C3

1) ≪ 1, which leads to Proposition 3.4.7.

3.5 Proof of Theorem 3.1.1
In this section, we describe the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. Let 0 < ϵ ≪ 12s− 11 be fixed. We choose T1 > 0 so that

exp(γT1) >(∥u0∥2
Hs + ∥u0∥6

L2)( 1
γ2 ∥f∥2

H1 + 1
γ4 ∥f∥6

L2)−1 max

{
γ

4(1−s)
1−ϵ , (C6T1)

2(1−s)
ϵ− ,

(
C3

2 ∥u0∥−2
Hs

) 12(s−1)
(1−ϵ)+12(s−1)

,
(
2C−1

3 γ−2∥f∥2
H1exp(γT1)

) 6(−2s+2)
1−ϵ

}
, (3.5.1)

which is possible as 6(−2s+2)
1−ϵ < 1. T1 depends only on ∥u0∥Hs , ∥f∥H1 and γ. Set

N = max

{
γ

2
1−ϵ , (C6T1)

1
ϵ− ,

(
C3

2 ∥u0∥−2
Hs

) −6
12(1−s)+(1−ϵ)

,
(
2C−1

2 γ−2∥f∥2
H1e2γT1

) 6
1−ϵ

}
.

(3.5.2)

From the choice of T1 and N , we know

N
1−ϵ

2 > γ, N ϵ− > C6T1,

and
∥Iu0∥2

H1 6 N2−2s∥u0∥2
Hs 6

C3

2 N
1−ϵ

6 −,

γ−2∥If∥2
H1e2γT1 6

C3

2 N
1−ϵ

6 −.

Hence, from Proposition 3.4.5, we gains

∥u(T1)∥2
Hs 6∥Iu(T1)∥2

H1
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6C3(∥Iu0∥2
H1exp(−γT1) + ∥u0∥6

L2exp(−γT1) + 1
γ2 ∥If∥2

H1 + 1
γ4 ∥f∥6

L2)

6C3(N2(1−s)(∥u0∥2
Hsexp(−γT1) + ∥u0∥6

L2exp(−γT1)) + 1
γ2 ∥f∥2

H1 + 1
γ4 ∥f∥6

L2).

From (3.5.1) and (3.5.2) , we get

N2(1−s)exp(−γT1)(∥u0∥2
Hs + ∥u0∥6

L2) < 1
γ2 ∥f∥2

H1 + 1
γ4 ∥f∥6

L2

which helps us give the bound

∥u(T1)∥2
Hs 6 2C3(

1
γ2 ∥f∥2

H1 + 1
γ4 ∥f∥6

L2) < K1,

where K1 depends only on ∥f∥H1 and γ.
In the next place, one can fix T2 > 0 and solve mKdV equation on time interval

[T1, T1 + T2] with initial data replaced by u(T1). Let K2 > 0 be sufficiently large such
that

K2exp(γt) >(∥u0∥2
Hs + ∥u0∥6

L2)( 1
γ2 ∥f∥2

H1 + 1
γ4 ∥f∥6

L2)−1 max

{
γ

4(1−s)
1−ϵ , (C6t)

2(1−s)
ϵ− ,

(
(C3)−12K1

) 12(s−1)
(1−ϵ)+12(s−1) ,

(
2C−1

3 γ−2∥f∥2
H1exp(γT1)

) 6(−2s+2)
1−ϵ

}
, (3.5.3)

for any t > 0. Set N2(1−s) = K2exp(γT2), then inequality (3.5.3) verifies the assumptions
in Proposition 3.4.5 and hence we obtain

∥Iu(T1 + T2)∥2
H1 6C4(N2(1−s)∥u(T1)∥2

Hsexp(γT2) + ∥u(T1)∥6
L2exp(−γT2) + 1

γ2 ∥f∥2
H1 + 1

γ4 ∥f∥6
L2)

6C4(K1K2 +K2
1 + 1

γ2 ∥f∥2
H1 + 1

γ4 ∥f∥6
L2) < K3.

For t > T1, we define the maps L1(t) and L2(t) as

L̂1(t)u0 = Ŝ(t)u0||ζ|<Nt , L̂2(t)u0 = Ŝ(t)u0||ζ|>Nt ,

where S(t)u0 = u(t) and Nt = (K2exp(γ(t− T1))− 1
2(1−s) .

It’s easy to see that for t > T1,

∥L1(t)u0∥2
H1 6 ∥Iu(t)∥2

H1 < K3,
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∥L2(t)u0∥2
Hs 6 N2s−2∥Iu(t)∥2

H1 < K−1
2 K3ezp(−γ(t− T1)).

Hence we obtain Theorem 3.1.1 by taking K = max{K
1
2
3 , K

− 1
2

2 K
1
2
3 }.

3.6 Multilinear Estimates
In this section, we prove the 4-linear and 6-linear estimates given in Lemma 3.4.9.

Proof of Lemma 3.4.9. For γ = 0 and g = 0 in (3.4.2), we have

dE
dt =

[∫
(−∂2

xI
′v − (I ′v)3)(−∂3

xI
′v − ∂xI

′v3)
]
,

E(I ′v(T )) − E(I ′v(0)) =
T∫

0

λ∫
0

∂3
xI

′v[(I ′v)3 − I ′v3]dxdt+
T∫

0

λ∫
0

∂x(I ′v)3[(I ′v)3 − I ′v3]dxdt,

=I ′
1 + I ′

2,

for any arbitrary T > 0. For an ϵ > 0 let wj ∈ Xs, 1
2 such that w|[0,λ]×[0,T ] = vj and

∥vj∥
X

s, 1
2

T

6 C∥wj∥
Xs, 1

2
6 C∥vj∥

X
s, 1

2 +ϵ

T

for 1 6 j 6 4. Let ηT (t) = η(t/T ) and let η̃ denotes
the Fourier transform only in t. From the Plancherel’s theorem, it suffices to prove the
following:

I ′
1 =

∫
R

λ∫
0

η(t)∂3
xI

′w[(I ′w)3 − I ′w3]dxdt,.
∫

k1+k2+k3+k4=0
(k1+k2)(k2+k3)(k3+k1 )̸=0

∫
η̃(τ1 + τ2 + τ3 + τ4)

∣∣∣∣⟨k1⟩3(Ĩ ′w1)
(

1 − m(k2 + k3 + k4)
m(k2)m(k3)m(k4)

)
(Ĩ ′w2)(Ĩ ′w3)(Ĩ ′w4)

∣∣∣∣(dki)λdτi
+
∫
Ω

∫ ∣∣∣∣∣∣⟨k1⟩3(Ĩ ′w1)
(

1 − m(k2 + k3 + k4)
m(k2)m(k3)m(k4)

)
(Ĩ ′w2)(Ĩ ′w3)(Ĩ ′w4)

∣∣∣∣(dki)λdτi,= I11 + I12,

where Ω = {k1 + k2 + k3 + k4 = 0 : |k1 + k2| ̸= 0, (|k2 + k3||(k3 + k1|) = 0} and
wi = wi(ki, τi). Let w = wL + wH where supp ŵL(k) ⊂ {|k| ≪ N ′} and supp ŵH(k) ⊂
{|k| & N ′}. From dyadic partition of |ki|, we let |ki| ∼ N ′

i . Let σi = τi − 4π2k3
i for

1 6 i 6 4. We can assume that ⟨σ4⟩ = max{⟨σi⟩, 1 6 i 6 4} as all other cases can be
treated in the same way. Let ∗ be the region of integration for I11. After substituting
w = wL + wH , we can write I11 as a sum of the following three integrals:
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Integral 1.

∫
∗

∫
η̃(τ1 + τ2 + τ3 + τ4)

∣∣∣∣∣∣⟨k1⟩3(Ĩ ′wH)

(
1 − m(k2 + k3 + k4)

m(k2)m(k3)m(k4)

)
(Ĩ ′wL)(Ĩ ′wL)(Ĩ ′wH)

∣∣∣∣∣∣(dki)λdτi. (3.6.1)

Integral 2.

∫
∗

∫
η̃(τ1 + τ2 + τ3 + τ4)

∣∣∣∣∣∣⟨k1⟩3(Ĩ ′wH)

(
1 − m(k2 + k3 + k4)

m(k2)m(k3)m(k4)

)
(Ĩ ′wL)(Ĩ ′wH)(Ĩ ′wH)

∣∣∣∣∣∣(dki)λdτi. (3.6.2)

Integral 3.

∫
∗

∫
η̃(τ1 + τ2 + τ3 + τ4)

∣∣∣∣∣∣⟨k1⟩3(Ĩ ′wH)

(
1 − m(k2 + k3 + k4)

m(k2)m(k3)m(k4)

)
(Ĩ ′wH)(Ĩ ′wH)(Ĩ ′wH)

∣∣∣∣∣∣(dki)λdτi. (3.6.3)

Remark 3.6.1. We omit other cases as they follows in the similar manner.

Integral 1. For this case, we have |k1| ∼ |k4| & N ′ and |k2| ∼ |k3| ≪ N ′. Hence, by
using mean value theorem, we get∣∣∣∣∣

(
1 − m(k2 + k3 + k4)

m(k2)m(k3)m(k4)

)∣∣∣∣∣ . |k2| + |k3|
|k4|

.

For Integral 1, we get

Integral 1 . N−1+2ϵ
4

∫
∗

∫
η̃(τ1 + τ2 + τ3 + τ4)(⟨k1⟩Ĩ ′wH⟨σ⟩

1
2 )
[
⟨k1⟩{(|k2|Ĩ ′wL)(Ĩ ′wL)+

(Ĩ ′wL)(|k3|Ĩ ′wL)}(⟨k1⟩Ĩ ′wH)⟨σ⟩− 1
2 )
]
.

Plancherel’s theorem, Schwarz’s inequality and Corollary 3.3.9(1) imply

Integral 1 . λ0+N ′−1+2ϵ∥I ′wH∥
X1, 1

2
∥I ′wL∥

X1, 1
2
(N3)− 1

2 ∥I ′wL∥
X1, 1

2
∥I ′wH∥

X1, 1
2
,
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. λ0+N ′−1+2ϵ∥I ′w∥4
X1, 1

2
.

Note that, we neglect (N3)− 1
2 as it is not contributing in the decay.

Integral 2. From given conditions, we have |k1| ∼ |k4| ≫ |k3| & N ′ and |k2| ≪ N ′.

Also, the definition of m implies m(k2) ∼ 1. Therefore,∣∣∣∣∣
(

1 − m(k2 + k3 + k4)
m(k2)m(k3)m(k4)

)∣∣∣∣∣ . m(k1)
m(k2)m(k3)m(k4)

∼ 1
m(k3)

. N ′−1+s|k3|1−s

. N ′−1|k3|.

For Integral 2, we get

Integral 2

. N ′−1+2ϵ
∫
∗

∫
η̃(τ1 + τ2 + τ3 + τ4)(⟨k1⟩Ĩ ′wH⟨σ⟩

1
2 )
[
⟨k1⟩(Ĩ ′wL)(|k3|Ĩ ′wH)(⟨k1⟩Ĩ ′wH)⟨σ⟩− 1

2 )
]
.

From Plancherel’s theorem, Schwarz’s inequality and Corollary 3.3.9(2), we have

Integral 2 . N ′−1+2ϵN
− 1

2
2 ∥I ′wL∥

X1, 1
2
∥I ′wH∥

X1, 1
2
∥I ′wH∥

X1, 1
2
∥I ′wL∥

X1, 1
2

. N ′−1+2ϵ∥I ′w∥4
X1, 1

2
.

Integral 3. Clearly, we have |k1| ∼ |k2| ∼ |k3| ∼ |k4| & N ′. Hence, from definition of
m, we have∣∣∣∣∣

(
1 − m(k2 + k3 + k4)

m(k2)m(k3)m(k4)

)∣∣∣∣∣ . m(k1)
m(k2)m(k3)m(k4)

∼ N ′−2s+2|k1|s−1

|k2|s−1|k3|s−1|k4|s−1 |k4||k4|−1

. N ′−2+2s|k2|1−s|k3|1−s|k4|1−s|k1|s−1|k4||k4|−1

. N ′−1|k4|,

for 1/2 6 s < 1. Therefore, Integral 3 implies

Integral 3
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. N ′−1+2ϵ
∫
∗

∫
η̃(τ1 + τ2 + τ3 + τ4)(⟨k1⟩Ĩ ′wH⟨σ⟩

1
2 )
[
(⟨k1⟩Ĩ ′wH)(⟨k1⟩Ĩ ′wH)(|k4|Ĩ ′wH)⟨σ⟩− 1

2 )
]
.

From Plancherel’s theorem, Schwarz’s inequality and Corollary 3.3.9(3), we have

Integral 3 . λ0+N ′−1+2ϵ∥I ′wH∥
X1, 7

18 +∥I ′wH∥
X1, 7

18 +∥I ′wH∥
X1, 7

18 +∥I ′wH∥
X1, 7

18 +

. λ0+N ′−1+2ϵ∥I ′w∥4
X1, 1

2
.

Remark 3.6.2. Note that[
k3

1

(
1 − m(k2 + k3 + k4)

m(k2)m(k3)m(k4)

)]
sym

=
4∑
j=1

k3
j − 1

m1m2m3m4

4∑
j=1

k3
jm

2
j

for details (see [8, Section 4]). Although, even after using symmetrization, we are not
able to improve the decay for the above 4-linear estimate for nonresonant frequencies.
Although, this symmetrization leads to the cancellation in the resonant case.

Hence, for the term I11, the estimate holds. For I12, we use the symmetrization as
follow:

Case 1. k2 + k3 = 0.

Case 2. k1 + k3 = 0.

Case 1. Clearly, we have k2 = −k3 and k1 = −k4. Therefore, from Remark 3.6.2, we
have [

k3
1

(
1 − m(k2 + k3 + k4)

m(k2)m(k3)m(k4)

)]
sym

=
4∑
j=1

k3
j − 1

m1m2m3m4

4∑
j=1

k3
jm

2
j ,

which vanishes for k1 = −k4 and k2 = −k3.

Case 2. This case is similar to Case 1.
Now, we consider I2. From the Fourier transformation, we get

I2 =
T∫

0

λ∫
0

∂x(I ′v)3[(I ′v)3 − I ′v3]dxdt,

.
∫

6∑
i=1

ki=0

∫
6∑

i=1
τi=0

∣∣∣∣∣⟨k1 + k2 + k3⟩(Ĩ ′v1)(Ĩ ′v2)(Ĩ ′v3)

(
1 − m(k4 + k5 + k6)

m(k4)m(k5)m(k6)

)
(Ĩ ′v4)(Ĩ ′v5)(Ĩ ′v6)

∣∣∣∣∣(dki)λdτi,
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We may suppose ⟨k1⟩ = max{⟨ki⟩, 1 6 i 6 3}. Putting v = vL+vH , we divide the integral
I2 into the following three integrals:

Integral 4.

∫
6∑

i=1
ki=0

∫
6∑

i=1
τi=0

(⟨k1⟩Ĩ ′vH)(Ĩ ′vL + Ĩ ′vH)(Ĩ ′vL + Ĩ ′vH)
(

1 − m(k4 + k5 + k6)
m(k4)m(k5)m(k6)

)

(Ĩ ′vL)(Ĩ ′vL)(Ĩ ′vH)(dki)λdτi.

Integral 5.

∫
6∑

i=1
ki=0

∫
6∑

i=1
τi=0

(⟨k1⟩Ĩ ′wH)(Ĩ ′vL + Ĩ ′vH)(Ĩ ′vL + Ĩ ′vH)
(

1 − m(k4 + k5 + k6)
m(k4)m(k5)m(k6)

)

(Ĩ ′vH)(Ĩ ′vH)(Ĩ ′vL)(dki)λdτi.

Integral 6.

∫
6∑

i=1
ki=0

∫
6∑

i=1
τi=0

(⟨k1⟩Ĩ ′vH)(Ĩ ′vL + Ĩ ′vH)(Ĩ ′vL + Ĩ ′vH)
(

1 − m(k4 + k5 + k6)
m(k4)m(k5)m(k6)

)

(Ĩ ′vH)(Ĩ ′vH)(Ĩ ′vH)(dki)λdτi.

Integral 4. Clearly, we have |k4|, |k5| ≪ N ′ and |k6| & N ′. Hence, the worst condition
is |k3|, |k2| ≪ N ′ and |k1| & N ′. The proof is the same as in I1. From the mean value
theorem, we get ∣∣∣∣∣

(
1 − m(k4 + k5 + k6)

m(k4)m(k5)m(k6)

)∣∣∣∣∣ . |k4| + |k5|
|k6|

. (3.6.4)

We may assume ⟨σ1⟩ = max{⟨σi⟩ : 1 6 i 6 6} as other cases can be treated in the same
way. Therefore,

⟨σ1⟩2ϵ = ⟨σ1⟩3ϵ⟨σ1⟩−ϵ . ⟨σ1⟩3ϵ⟨σ2⟩− ϵ
2 min{⟨σ3⟩− ϵ

2 , ⟨σ6⟩− ϵ
2 }. (3.6.5)
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From Plancherel’s theorem, Hölder’s inequality, Proposition 3.2.2, Lemma 3.3.10 and
inequalities (3.6.4) and (3.6.5), we get

Integral 4 . N ′−1∥F−1(⟨σ⟩3ϵ⟨k1⟩Ĩ ′vH)∥L4
x,t

∥F−1(⟨σ2⟩− ϵ
2 Ĩ ′vL)∥L∞

x,t
∥F−1(⟨σ3⟩− ϵ

2 Ĩ ′vL)∥L∞
x,t

∥F−1(⟨k4⟩Ĩ ′vL)∥L4
x,t

∥I ′vL∥L4
x,t

∥I ′vH)∥L4
x,t

. N ′−2∥I ′vH∥
X1, 1

3 +4ϵ∥I ′vL∥
X

1
2 +ϵ, 1

2 − ϵ
2
∥I ′vL∥

X
1
2 +ϵ, 1

2 − ϵ
2
∥I ′vL∥

X1, 1
3 +ϵ

∥I ′vL∥
X0, 1

3 +ϵ∥I ′vH∥
X1, 1

3 +ϵ .

We neglect extra derivatives corresponding to N2, N3 and N5 to get

Integral 4 . N ′−2∥I ′v∥6
X1, 1

2
.

Integral 5. Clearly, we have |k4|, |k5| & N ′ and |k6| ≪ N ′. Hence, the worst condition is
|k3| ≪ N ′ and |k1|, |k2| & N ′ as |k1| always have high frequency. From definition of m,
we get ∣∣∣∣∣

(
1 − m(k4 + k5 + k6)

m(k4)m(k5)m(k6)

)∣∣∣∣∣ .
∣∣∣∣∣ m(k1)
m(k4)m(k5)

∣∣∣∣∣ . N ′−1N5. (3.6.6)

From Plancherel’s theorem, Hölder’s inequality, Proposition 3.2.2, Lemma 3.3.10 and
inequalities (3.6.5) and (3.6.6), we get

Integral 5 . N ′−1∥F−1(⟨σ⟩3ϵ⟨k1⟩Ĩ ′vH)∥L4
x,t

∥I ′vH∥L4
x,t

∥F−1(⟨σ3⟩− ϵ
2 Î ′vL)∥L∞

x,t
∥I ′vH∥L4

x,t

∥F−1(⟨k5⟩Ĩ ′vH)∥L4
x,t

∥F−1(⟨σ6⟩− ϵ
2 Ĩ ′vH)∥L4

x,t

. N ′−1∥I ′vH∥
X1, 1

3 +4ϵ∥I ′vH∥
X0, 1

3 +ϵ∥I ′vL∥
X

1
2 +ϵ, 1

2 − ϵ
2
∥I ′vH∥

X0, 1
3 +ϵ

∥I ′vH∥
X1, 1

3 +ϵ∥I ′vL∥
X

1
2 +ϵ, 1

2 − ϵ
2
.

We neglect extra derivatives corresponding to N3 and N6 to get

Integral 4 . N ′−3∥I ′v∥6
X1, 1

2
.

Integral 6. Clearly, we have |k4|, |k5|, |k6| & N ′. Hence, the worst condition is |k3|, |k2| ≪
N ′ and |k1| & N ′.. From definition of m, we get∣∣∣∣∣

(
1 − m(k4 + k5 + k6)

m(k4)m(k5)m(k6)

)∣∣∣∣∣ .
∣∣∣∣∣ m(k1)
m(k4)m(k5)m(k6)

∣∣∣∣∣ . N ′−2|k5||k6|. (3.6.7)
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From Plancherel’s theorem, Hölder’s inequality, Proposition 3.2.2, Lemma 3.3.10 and
inequalities (3.6.5) and (3.6.7), we get

Integral 6 . N ′−2∥F−1(⟨σ⟩3ϵ⟨k1⟩Ĩ ′vH)∥L4
x,t

∥F−1(⟨σ2⟩− ϵ
2 Ĩ ′vL)∥L∞

x,t
∥F−1(⟨σ3⟩− ϵ

2 Ĩ ′vL)∥L∞
x,t

∥F−1(⟨k4⟩Ĩ ′vH)∥L4
x,t

∥F−1(⟨k5⟩Ĩ ′vH)∥L4
x,t

∥I ′vH)∥L4
x,t

. N ′−2∥I ′vH∥
X1, 1

3 +4ϵ∥I ′vL∥
X

1
2 +ϵ, 1

2 − ϵ
2
∥I ′vL∥

X
1
2 +ϵ, 1

2 − ϵ
2
∥I ′vH∥

X1, 1
3 +ϵ

∥I ′vH∥
X1, 1

3 +ϵ∥I ′vH∥
X0, 1

3 +ϵ .

We neglect extra derivatives corresponding to N2 and N3 to get

Integral 4 . N ′−3∥I ′v∥6
X1, 1

2
.

Remark 3.6.3. Note that the sexalinear term does not depend on the scaler parameter
λ.

Appendix
The following example is given by Prof. Nobu Kishimoto which explain why we need
to use the inhomogeneous Soblev norm in place of homogeneous norm. In fact, for
homogeneous norm the Proposition 3.3.1 does not hold. Define the space Ẋs, 1

2 via the
norm

∥u∥
Ẋs, 1

2
= ∥|k|s⟨τ − 4π2k3⟩bũ(k, τ)∥L2((dk)λ,dτ).

Examples 3.6.4. Assume λ > 1 and
√
λ ∈ Z/λ. Let λT = R/λZ. We define the

functions v1, v2, v3 on λT × R by

ṽ1(k, τ) = 1[−1,1](τ − 4π2k3) · 1{1/λ}(k),
ṽ2(k, τ) = 1[−1,1](τ − 4π2k3) · 1{−2/λ}(k),
ṽ3(k, τ) = 1[−1,1](τ − 4π2k3) · 1{

√
λ}(k).

We have

∥v1∥
Ẋs, 1

2
∼ ∥v2∥

Ẋs, 1
2

∼
(1
λ

)s
λ− 1

2 = λs−
1
2 ,

∥v3∥
Ẋs, 1

2
∼ (

√
λ)sλ− 1

2 = λ
s
2 − 1

2 .
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We see that∣∣∣∣J̃ [v1, v2, v3](
√
λ) − 1

λ
, τ)

∣∣∣∣
∼

√
λ

∣∣∣∣∣∣
∫
τ1+τ2+τ3=τ

∫
k1+k2+k3=

√
λ−λ−1

(k1+k2)(k2+k3)(k3+k1 )̸=0

3∏
j=1

ṽj(kj, τj)(dk1)λ(dk2)λdτ1dτ2

∣∣∣∣∣∣
& λ−3/21[−1,1](τ − 4π2(

√
λ− λ−1)3 + 4π2M),

where
M = 3

(1
λ

+ −2
λ

)(−2
λ

+
√
λ
)(√

λ+ 1
λ

)
,

so that |M | ∼ 1. Hence, we have

∥J [v1, v2, v3]∥
Ẋs, 1

2
& λ− 3

2 · (
√
λ)sλ− 1

2 = λ
s
2 −2.

Therefore, if the trilinear estimate

∥J [v1, v2, v3]∥
Ẋs, 1

2
. λ0+∥v1∥

Ẋs, 1
2
∥v2∥

Ẋs, 1
2
∥v3∥

Ẋs, 1
2

were true, it would imply that

λ
s
2 −2 . (λ−s− 1

2 )2λ
s
2 − 1

2 ⇔ λ2s . λ
1
2 + (λ > 1).

For large λ, this holds only if s 6 1
4 + .
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Appendix A

Proof Of The Uniqueness For KdV
Equation

Definition A.0.1. Let ϕ ∈ C∞
0 (R) with ϕ ≡ 1 on [−1, 1] and Suppϕ ⊆ [−2, 2]. Let

T < T ∗. We define ϕT = ϕ( t
T

) and ϕT ∗ = ϕ( t
T ∗ ).

Definition A.0.2.

||u||XT
= inf

ω
{||ω||Xs,b

: ω ∈ Xs,b, u(t) = ω(t), t ∈ [0, T ] in Hs}.

Lemma A.0.3. If s 6 0 and b ∈ (1
2 , 1) then for any δ ∈ (0, 1), we have

||ϕ(δ−1t)F ||Xs,b
6 cδ

1−2b
2 ||F ||Xs,b

,

||ϕ(δ−1t)
∫ t

0
W (t− t

′)F (t′)dt′ ||Xs,b
6 cδ

1−2b
2 ||F ||Xs,b−1 .

Proposition A.0.4. Let a, b ∈ (0, 1
2) with a < b and δ ∈ (0, 1), then for f ∈ Xs,−a we

have
||ϕδF ||Xs,−b

6 δ
(b−a)

4(1−a) ||F ||Xs,−a .

Lemma A.0.5. For given s ∈ (−3
4 , 0] ∃ b ∈ (1

2 , 1) and a ∈ (0, 1
2) with a < b and a, b are

sufficiently close to 1
2 , such that

||B(F, F )||Xs,−a 6 c||F ||2Xs,b
.

Proof. First of all, we will rewrite the estimate. Let ρ = −s ∈]0, 3
4). From the definition

of ||.||Xs,b
for F ∈ Xs,b = X−ρ,b, we have

f(ξ, τ) = (1 + |τ − ξ3|)b(1 + |ξ|)−ρf̂(ξ, τ) ∈ L2(R2).
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and ||f ||L2
ξ
L2

τ
= ||F ||Xs,b

= ||F ||X−ρ,b
.

As we know that
̂∂x(F 2)(ξ, τ) = cξ(F̂ ∗ F̂ ).

So the bilinear estimate can be written as

||B(F, F )||Xs,−a
= ||(1 + |τ − ξ

3|)−a(1 + |ξ|)−ρ
∂̂xF 2||L2

ξ
L2

τ

= c||(1 + |τ − ξ
3|)−a(1 + |ξ|)−ρ

ξ(F̂ ∗ F̂ )||L2
ξ
L2

τ

=

∣∣∣∣∣∣∣∣ ξ

(1 + |τ − ξ3|)a(1 + |ξ|)ρ
×

∫ ∫
f(ξ1, τ1)(1 + |ξ1|)ρ

(1 + |τ1 − ξ3
1|)b

f(ξ − ξ1, τ − τ1)(1 + |ξ − ξ|)ρ

(1 + |τ − τ1 − (ξ − ξ1)3|)b
dξ1dτ1

∣∣∣∣∣∣∣∣
L2

ξ
L2

τ

6 c||F ||2
Xs,b

.

Now for s = 0, by using Cauchy-Schwartz inequality, we will get∣∣∣∣∣∣∣∣ ξ

(1 + |τ − ξ3|)a
×

∫ ∫
f(ξ1, τ1)

(1 + |τ1 − ξ3
1|)b

f(ξ − ξ1, τ − τ1)
(1 + |τ − τ1 − (ξ − ξ1)3|)b

dξ1dτ1

∣∣∣∣∣∣∣∣
L2

ξ
L2

τ

6

∣∣∣∣∣
∣∣∣∣∣ ξ

(1 + |τ − ξ3|)a
×

(∫ ∫
dξ1dτ1

(1 + |τ − τ1 − (ξ − ξ1)3|)2b(1 + |τ1 − ξ3
1|)2b

) 1
2
∣∣∣∣∣
∣∣∣∣∣
L∞

ξ
L∞

τ

∣∣∣∣∣
∣∣∣∣∣
(∫ ∫

|f(ξ1, τ1)|2|f(ξ − ξ1, τ − τ1)|2

) 1
2
∣∣∣∣∣
∣∣∣∣∣
L2

ξ
L2

τ

So to prove the lemma we just need to show that the first term is finite, which we will
prove in the following proposition.

Proposition A.0.6. If b ∈ (1
2 ,

3
4 ], a ∈ (0, 1

2) and b′ ∈ (1
2 , b], then there exists c > 0 such

that

ξ

(1 + |τ − ξ3|)a ×
(∫ ∫ dξ1dτ1

(1 + |τ − τ1 − (ξ − ξ1)3|)2b′ (1 + |τ1 − ξ3
1 |)2b′

) 1
2

6 c

Proof. We know that, for l > 1
2 ∃ c > 0 such that

∫ ∞

−∞

dx

(1 + |x− a|)2l(1 + |x− b|)2l 6
c

(1 + |a− b|)2l .

Science, b′
> 1

2 , the above inequality implies that

∫ ∞

−∞

dτ1

(1 + |τ − τ1 − (ξ − ξ1)3|)2b′ (1 + |τ1 − ξ3
1 |)2b′

6
c

(1 + |τ − ξ3 + 3ξξ1(ξ − ξ1)|2b
′ )
.
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To integrate with respect to ξ1, we will change the variable.

µ = λ− ξ3 + 3ξξ1(ξ − ξ1), then dµ = 3ξ(ξ − 2ξ1)dξ1.

and
ξ1 = 1

2

{
ξ ±

√
4τ − ξ3 − 4µ

3ξ

}
.

Therefor,
|ξ(ξ − 2ξ1)| = c

√
|ξ||
√

4τ − 4ξ3 − 4µ|

and
dξ1 = c

dµ√
|ξ||

√
4τ − 4ξ3 − 4µ|

.

Combine these identities, we will get

c

(1 + |τ − ξ3 + 3ξξ1(ξ − ξ1)|2b
′ )

6
1

|
√
ξ|

∫ ∞

−∞

dµ

(1 + |µ|)2b′ |
√

4τ − 4ξ3 − 4µ|
6

c

|ξ| 1
2 (1 + |4τ − ξ3|) 1

2
.

Hence by using the identity. For l > 1
2 ∃ c > 0 such that

∫ ∞

−∞

dx

(1 + |x− a|)2(1−l)(1 + |x− b|)2l 6
c

(1 + |a− b|)2(1−l) ,

we will get
|ξ| 3

4

(1 + |4τ − ξ3|) 1
2 (1 + |τ − ξ3|)a

.

The above term is finite for b 6 3
4 and a ∈ (0, 1

2).

Hence, by using the above proposition, we are done.

Theorem A.0.7. Let s ∈ (−3
4 , 0]. Then ∃ b ∈ (1

2 , 1) such that for any u0 ∈ Hs(R) ∃ T =
T (||u0||Hs > 0) with T (δ) → ∞ as δ → ∞ and a unique solution of the KdV equation on
the time interval [−T, T ].

Proof. Let u1 and ϕT ∗u2 be two solutions of the KdV equation where u1is the solution
we obtained and ϕT ∗u2 be the solution of the integral equation associated to the KdV
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equation. Let u0 be the initial data. For M > 0, let

||u1||Xs,b
, ||ϕT ∗u2||Xs,b

6M.

We can assume that M > 1 and T < 1. Also assume that T ∗ < T . Now consider,

u1 − ϕT ∗u2 = ϕT (t)W (t)u0 − ϕT (t)
2

∫ t

0
W (t− t

′)ϕ2
T (t′)∂xu2

1(t
′)dt′

−ϕT ∗(t)W (t)u0 − ϕT ∗(t)
2

∫ t

0
W (t− t

′)ϕ2
T ∗(t′)∂xϕT ∗u2

2(t
′)dt′

,

For t ∈ [0, T ∗]

= −ϕT ∗(t)
2

∫ t

0
W (t− t

′)ϕ2
T ∗(t′)∂x(u2

1(t
′) − ϕT ∗u2

2(t
′))dt′

. (1)

Now for any ϵ > 0, ∃ ω ∈ Xs.b, such that for t ∈ [0, T ∗]

ω(t) = u1 − ϕT ∗u2

and by the definition of ||.||XT ∗

||ω(t)||Xs,b
6 ||u1 − ϕT ∗u2||XT ∗ + ϵ.

Now (1) can be restated as

ω
′ = −ϕT ∗(t)

2

∫ t

0
W (t− t

′)ϕ2
T ∗(t′)∂x(ω(t′))(u1(t

′) + ϕT ∗u2(t
′))dt′

,

As we can see for t ∈ [0, T ∗]
ω

′ = ω = u1 − ϕT ∗u2.

Now.

||u1−ϕT ∗u2||XT ∗ 6 ||ω′ ||Xs.b
= ||ϕT

∗(t)
2

∫ t

0
W (t−t′)ϕ2

T ∗(t′)∂x(ω(t′))(u1(t
′)+ϕT ∗u2(t

′))dt′ ||Xs,b
.

Now we can use the second part of lemma (3) for F = ϕ2
T ∗∂x(ω)(u1 + ϕT ∗u2). So we will

get
||ω′ ||Xs.b

6 CT ∗( (1−2b)
2 )||ϕ2

T ∗∂x(ω)(u1 + ϕT ∗u2)||Xs,b−1 .
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Now use proposition (4) for F = ∂x(ω)(u1 + ϕT ∗u2). While using proposition 4 for the
space ||.||Xs,b−i

, we will replace −b by b− 1. For b ∈ (0, 1
2).

||ω′||Xs.b
6 CT ∗( (1−2b)

2 )+( (1−b−a)
4(1−a) )||∂x(ω)(u1 + ϕT ∗u2)||Xs,−a

6 CT ∗( (1−2b)
2 )+( (1−b−a)

4(1−a) )(||∂x(ωu1)||Xs,−a + ||∂x(ωϕT ∗u2)||Xs,−a).

Let p = ( (1−2b)
2 ) + ( (1−b−a)

4(1−a) ). Now by using lemma (5), we will get

||ω′ ||Xs.b
6 CT ∗p(||ω|||Xs,b

||u1||Xs,b
+ ||ω|||Xs,b

||ϕT ∗u2||Xs,b
)

6 CT ∗pM(||u1 − ϕT ∗u2||XT ∗ + ϵ)

||u1 − ϕT ∗u2||XT ∗ 6
ϵ

1 − CT ∗pM

We have, p = ( (1−2b)
2 ) + ( (1−b−a)

4(1−a) ).
For a ∈ (0, 1

2), b ∈ (1
2 , 1), p is positive and hence we are done.
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Appendix B

A Counterexample

The following example is given by Prof. Nobu Kishimoto which explain why we
need to use the inhomogeneous Soblev norm in place of homogeneous norm. In fact, for
homogeneous norm the Proposition 3.3.1 does not hold. Define the space Ẋs, 1

2 via the
norm

∥u∥
Ẋs, 1

2
= ∥|k|s⟨τ − 4π2k3⟩bũ(k, τ)∥L2((dk)λ,dτ).

Examples B.0.1. Assume λ > 1 and
√
λ ∈ Z/λ. Let λT = R/λZ. We define the

functions v1, v2, v3 on λT × R by

ṽ1(k, τ) = 1[−1,1](τ − 4π2k3) · 1{1/λ}(k),
ṽ2(k, τ) = 1[−1,1](τ − 4π2k3) · 1{−2/λ}(k),
ṽ3(k, τ) = 1[−1,1](τ − 4π2k3) · 1{

√
λ}(k).

We have

∥v1∥
Ẋs, 1

2
∼ ∥v2∥

Ẋs, 1
2

∼
(1
λ

)s
λ− 1

2 = λs−
1
2 ,

∥v3∥
Ẋs, 1

2
∼ (

√
λ)sλ− 1

2 = λ
s
2 − 1

2 .

We see that∣∣∣∣J̃ [v1, v2, v3](
√
λ) − 1

λ
, τ)

∣∣∣∣
∼

√
λ

∣∣∣∣∣∣
∫
τ1+τ2+τ3=τ

∫
k1+k2+k3=

√
λ−λ−1

(k1+k2)(k2+k3)(k3+k1 )̸=0

3∏
j=1

ṽj(kj, τj)(dk1)λ(dk2)λdτ1dτ2

∣∣∣∣∣∣
& λ−3/21[−1,1](τ − 4π2(

√
λ− λ−1)3 + 4π2M),
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where
M = 3

(1
λ

+ −2
λ

)(−2
λ

+
√
λ
)(√

λ+ 1
λ

)
,

so that |M | ∼ 1. Hence, we have

∥J [v1, v2, v3]∥
Ẋs, 1

2
& λ− 3

2 · (
√
λ)sλ− 1

2 = λ
s
2 −2.

Therefore, if the trilinear estimate

∥J [v1, v2, v3]∥
Ẋs, 1

2
. λ0+∥v1∥

Ẋs, 1
2
∥v2∥

Ẋs, 1
2
∥v3∥

Ẋs, 1
2

were true, it would imply that

λ
s
2 −2 . (λ−s− 1

2 )2λ
s
2 − 1

2 ⇔ λ2s . λ
1
2 + (λ > 1).

For large λ, this holds only if s 6 1
4 + .
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Appendix C

A Counterexample

The following example is given by Prof. Nobu Kishimoto which explain why we
need to use the inhomogeneous Soblev norm in place of homogeneous norm. In fact, for
homogeneous norm the Proposition 3.3.1 does not hold. Define the space Ẋs, 1

2 via the
norm

∥u∥
Ẋs, 1

2
= ∥|k|s⟨τ − 4π2k3⟩bũ(k, τ)∥L2((dk)λ,dτ).

Examples C.0.1. Assume λ > 1 and
√
λ ∈ Z/λ. Let λT = R/λZ. We define the

functions v1, v2, v3 on λT × R by

ṽ1(k, τ) = 1[−1,1](τ − 4π2k3) · 1{1/λ}(k),
ṽ2(k, τ) = 1[−1,1](τ − 4π2k3) · 1{−2/λ}(k),
ṽ3(k, τ) = 1[−1,1](τ − 4π2k3) · 1{

√
λ}(k).

We have

∥v1∥
Ẋs, 1

2
∼ ∥v2∥

Ẋs, 1
2

∼
(1
λ

)s
λ− 1

2 = λs−
1
2 ,

∥v3∥
Ẋs, 1

2
∼ (

√
λ)sλ− 1

2 = λ
s
2 − 1

2 .

We see that∣∣∣∣J̃ [v1, v2, v3](
√
λ) − 1

λ
, τ)

∣∣∣∣
∼

√
λ

∣∣∣∣∣∣
∫
τ1+τ2+τ3=τ

∫
k1+k2+k3=

√
λ−λ−1

(k1+k2)(k2+k3)(k3+k1 )̸=0

3∏
j=1

ṽj(kj, τj)(dk1)λ(dk2)λdτ1dτ2

∣∣∣∣∣∣
& λ−3/21[−1,1](τ − 4π2(

√
λ− λ−1)3 + 4π2M),
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where
M = 3

(1
λ

+ −2
λ

)(−2
λ

+
√
λ
)(√

λ+ 1
λ

)
,

so that |M | ∼ 1. Hence, we have

∥J [v1, v2, v3]∥
Ẋs, 1

2
& λ− 3

2 · (
√
λ)sλ− 1

2 = λ
s
2 −2.

Therefore, if the trilinear estimate

∥J [v1, v2, v3]∥
Ẋs, 1

2
. λ0+∥v1∥

Ẋs, 1
2
∥v2∥

Ẋs, 1
2
∥v3∥

Ẋs, 1
2

were true, it would imply that

λ
s
2 −2 . (λ−s− 1

2 )2λ
s
2 − 1

2 ⇔ λ2s . λ
1
2 + (λ > 1).

For large λ, this holds only if s 6 1
4 + .
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