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A Study on High-Level Cognitive Understanding of
Images towards Language∗

Bei LIU

Abstract

Nowadays, a large number of images are flooding our local memory and social im-
age sharing websites as a result of camera and smart phone’s popularization. Images
are becoming a more used way for expression compared with past days. Meanwhile,
language, as another important form of communication, is also attracting our attention
for research. The interaction between image and language is not unexplored yet though
we humans perform so many tasks that involve both modality. Though low-level cog-
nitive (e.g. facts) understanding of images is largely tackled and has achieved great
success, high-level cognitive understanding of images still remains a challenge.

In this research, we explore the importance of high-level cognitive understanding
towards language from two types of tasks: search-based problems and generation-
based problems. Different forms of languages are involved in these tasks, including
words of event, words of subjective adjective, stories and poems.

To bridge images and events, we tackle the problem of event summarization from
images, which aims to retrieve images to represent an event with high perceptual qual-
ity. Instead of directly searching for related images of a certain event, we propose to
find images that cannot misrecognized as its neighbor events, which we define three
types, namely sub-event, super-event and sibling-event. We analyze the reasons of
these misrecognitions and propose method to prevent from them accordingly.

In the research of learning subjective adjectives from images, we propose to dis-
tinguish relevant and irrelevant images in weakly-labeled data with a pairwise stacked
convolutional auto-encoder that can learn discriminative features by identifying a dom-
inant difference between them. We define pseudo-relevant and pseudo-irrelevant im-
age sets as results obtained from image search engines with query with or without the
subjective adjective.

∗Doctoral Thesis, Department of Social Informatics, Graduate School of Informatics, Kyoto Univer-
sity, KU-I-DT6960-26-0400, September 2018.
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To generate a story from a sequence of images towards human cognition, we take
emotion as an important factor that guides the generation of a story. The task is for-
mulated into two correlated tasks: generating sentences based on both visual contents
and emotions, and predicting possible emotions from images considering contextual
images in a sequence. An emotion conditioned story generation model is proposed
to guide image embedding learning and story decoder, while a RNN-based prediction
model is proposed to learn emotions of each image in a sequence considering contex-
tual images.

The task of poetry generation is challenging as writing a poem involves multiple
principles. The difficulties mainly drive from discovering the poetic clues from an im-
age (e.g., rose for love), and generating poems to satisfy both relevance to images and
the poeticness in language. We formulate the task of poem generation into two cor-
related sub-tasks by multi-adversarial training via policy gradient, through which the
cross-modal relevance and poetic language style can be ensured. To convey the poetic
clues from poems, we propose to learn a deep coupled visual-poetic embedding, in
which the poetic representation for objects, sentiments and scenes from images can be
jointly learned. Two discriminative networks are further introduced to guide the poem
generation, including a multi-modal discriminator and a poem-style discriminator.

To draw a brief conclusion, the work presented in this thesis have made the follow-
ing progress. (1) We proposed to analyze and understand images from the high-level
cognitive perspective; (2) We devised novel models and algorithms from two types of
tasks: search-based and generation-based; (3) Our work were verified with extensive
experiments. Encouraging results were obtained by comparison with state-of-the-art
baselines.

Keywords: Image, Language, High-Level, Cognitive Understanding.
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CHAPTER 1

INTRODUCTION

In this chapter, we first introduce the background of this doctor thesis from both the
social perspective and driving by technological development. Then, we will have an
overview of this research. Following that, we introduce tasks included in this thesis
and their motivations. We show the structure of this thesis in the last section.

1.1 Background

1.1.1 Image

Images are used all around the world today. With the widely use of digital camera and
smart phone, everyone becomes the master of image at anytime in anywhere. Images
have become a way of expression and a resource of inspiration. From the perspective
of image creators and users, images are taken and applied for different purpose. Some
images are used to transfer information and show facts, such as images reported in
some news and shown in some presentations. Some images are created to promote
viewers feelings, like encouraging images used by many public account in social net-
work and images for recreation. Some images are supposed to motivate user behavior,
such as promotional images used for political election and advertisement. There are
also some images taken only for recoding, sharing and memory.

1



1. Introduction

A picture is worth a thousand words, as the saying goes, most images play a role
of communication, whether they are used for fact, feeling promotion or behavior mo-
tivation. Image-based communication has advantages in terms of its efficiency (less
time necessary for understanding the content), perspicuity (able to view more contents
at the same time), and language-independence (comprehensible for speakers of any
language), while it cannot be correctly understood unless appropriate images are used
for the communication.

In the field of computer science, images can been studied for many years. Recent-
ly, success of deep learning technologies has brought the understanding of images by
computers to a human level. Image related tasks, such as image segmentation, object
recognition, object detection, scene recognition etc. have achieved approaching perfor-
mance or even outperform results. However, from human’s perspective, those tasks are
about facts of the images and more related to human recognition or low-level cognitive
understanding. How to make computer understand images in a high-level cognitive
way still remains a big challenge. Tasks that are related to high-level cognitive under-
standing of images include emotion prediction, aesthetic estimation, etc.

1.1.2 Language

When we talk about communication, another important word comes to our mind might
be “language”. As a matter of fact, when you are reading these words in this thesis,
you are taking part in one of the wonders of the natural world [3]. Language is an
aspect of human behavior and it is a set of symbols being used for communication.
Different types of language exist, including spoken language, written language. In this
thesis, when we mention language, we refer to it as written language. Among written
languages, words, sentences, paragraphs are all forms of it.

Also benefiting from deep learning, we have gained deeper understanding of lan-
guage recent year. From the perspective of perception, we can cast the understanding
of languages into three stages. We first learn how to use languages to represent. In this
stage, we get to know “dog” and “cat” both belong to “animal” and “travel in Kyoto” is
similar to “travel to Tokyo”. Then we learn to use language in tasks related to machine
intelligence, such as question and answer, conversation, etc. The highest stage is to
make machine cognitive by simulating human’s expression for our cognitions, such as
poem writing.

If we simulate computer’s understanding of images as a process of human percep-

2



1. Introduction

tion, we can imagine language understanding as a process of learning to write papers.
We first learn to record the fact, then to write the reasoning and arguments. When we
reach a certain level of writing standard, we will try to express ourselves with poem or
prose.

1.1.3 High-Level Cognitive Understanding of Images towards Lan-
guage

Most current image related tasks are focusing on images’ low-level cognitive under-
standing, which infers recognition tasks of vision computing. We use the term high-
level cognitive understanding of images to indicate image understanding in terms of
human cognition, such as emotion, aesthetic or poetic inspirations.

The interaction between image and language is conducted very often in our daily
life, even though we have not realized it. When we ask someone to imagine a picture
in his/her mind about a situation we tell them, when we try to describe some situation
you have seen with languages, we are performing a task that bridge the image and
language.

There are some researches to bridge image and language. Search based technologies
are first explored. Images and language (word or sentence) are first represented with
handcrafted or deep learning features [4, 5]. Then ranking algorithms are applied to re-
trieve the most similar images for a linguistic expression or the most similar language
for an image. Recently, generative technologies have promoted works to generate lan-
guages given images (image captioning [6], image paragraphing [7], visual storytelling
[8, 1], visual question and answer [9], visual response generation [10]) or generate im-
ages given language (image generation given keywords or sentence [11]).

In this research, we focus on image understanding towards language, especially
high-level cognitive understanding such as emotion, event, story and poetic inspira-
tions that require human’s understanding of images beyond fact recognition from im-
ages. Both search-based and generative methods are explored to mine the high-level
cognitive concepts we can get from images and represent it in languages. We will
explain the overview of this research in the next section.

3
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Figure 1.1. Framework of Doctoral Thesis.

1.2 Overview of the Research

The overall framework is shown in Figure 1.1. We use two dimensions to indicate
the connection between our topics. One is based on whether our understanding of
images is high-level cognitive or low-level cognitive. Many existing works have been
done to low-level cognitive understanding of images, such as object recognition from
images, scene recognition from images, image captioning and image paragraphing.
This doctoral thesis will concentrate on high-level cognitive understanding of images.
Another dimension classify language into two forms: words and sentences. We have
two topics concerning words while another two concerning sentences.

From the perspective of methods, our tasks can be distributed as in Figure 1.2. Event
summarization with images aims to search for images to present an event, and learning
subjective adjectives from images targets to re-rank images given words of a subjective
adjective to make the result more related. Visual storytelling tries to generate several
sentences for a sequence of images to form a story, and poetry generation from image
will automatically generate a poem given an image.
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Figure 1.2. Tasks in terms of method.

1.3 Motivation and Tasks

Since detailed motivations will be explained in the following chapters respectively, in
this section, we briefly introduce the motivation, target and approach of each task.

1.3.1 Event Summarization with Images

Using image summarization technology to summarize an image collection is often ori-
ented to users who own this image collection. However, people’s interest of sharing
images with others highlights the importance of cognition-aware summarization of
images by which viewers can easily recognize the exact event those images represent.
In this research, we address the problem of cognition-aware summarization of images
representing events, and propose to solve this problem and to improve perceptual qual-
ity of an image set by proactively avoiding misrecognization that an image set might
bring.

Three types of neighbor events that are possible to cause misrecognizations are dis-
cussed in this work, namely sub-event, super-event and sibling-event. We analyze the
reasons of these misrecognitions and then propose three criteria to prevent from them
accordingly. Combination of the criteria is used to generate summarization of images
that can represent an event with several images.

Our approach is empirically demonstrated with images from Flickr by utilizing their
visual features and related tags. Comparing with a baseline method, the result demon-
strates the effectiveness of our proposed methods.
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1.3.2 Learning Subjective Adjectives from Images

In this paper, we propose a method of learning subjective adjectives (i.e., adjectives
that express opinions and evaluations in natural languages [12]) from images retrieved
in image search engines with “subjective adjective noun pair” (ANP) queries. Since
there are a variety of subjective adjective-noun pairs that can be used in ANP queries,
we do not rely on labeled datasets that require a tremendous cost, but exploit results
from existing image search engines as weakly-labeled data, which contain labels with
a lot of errors.

To effectively distinguish relevant and irrelevant images in the weakly-labeled data,
we propose a pairwise stacked convolutional auto-encoder that can learn discrimina-
tive features by identifying a dominant difference between two sets of images, namely,
pseudo-relevant and pseudo-irrelevant image sets obtained from image search engines.

We conducted experiments with images from Flickr to evaluate the effectiveness of
our approach, and found that the proposed approach could effectively learn subjective
adjectives even without human-labeled data.

1.3.3 Visual Storytelling

Automatic generation of story from a sequence of images, i.e., visual storytelling, has
attracted extensive attention. Existing works focus on story generation based on visual
contents. However, even the same sequence of images will lead to different stories. In
this work, we take emotion as the important factor that guides the generation of story.

The task is formulated into two correlated sub-tasks: generating sentences based
on both visual contents and emotions, and predicting possible emotions from images
considering contextual images in a sequence.

We first propose an emotion conditioned story generation model to guide image
embedding learning and story decoder. Then we propose a RNN-based prediction
model to learn emotions of each image in a sequence considering contextual images.

1.3.4 Poetry Generation from Image

Automatic generation of natural language from images has attracted extensive atten-
tion. In this work, we take one step further to investigate generation of poetic language
(with multiple lines) to an image for automatic poetry creation.

This task involves multiple challenges, including discovering poetic clues from the
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image (e.g., hope from green), and generating poems to satisfy both relevance to the
image and poeticness in language level. To solve the above challenges, we formulate
the task of poem generation into two correlated sub-tasks by multi-adversarial train-
ing via policy gradient, through which the cross-modal relevance and poetic language
style can be ensured. To extract poetic clues from images, we propose to learn a deep
coupled visual-poetic embedding, in which the poetic representation from objects, sen-
timents ∗ and scenes in an image can be jointly learned. Two discriminative networks
are further introduced to guide the poem generation, including a multi-modal discrim-
inator and a poem-style discriminator.

To facilitate the research, we have released two poem datasets by human annota-
tors with two distinct properties: 1) the first human annotated image-to-poem pair
dataset (with 8,292 pairs in total), and 2) to-date the largest public English poem cor-
pus dataset (with 92,265 different poems in total). Extensive experiments are con-
ducted with 8K images, among which 1.5K image are randomly picked for evaluation.
Both objective and subjective evaluations show the superior performances against the
state-of-the-art methods for poem generation from images. Turing test carried out with
over 500 human subjects, among which 30 evaluators are poetry experts, demonstrates
the effectiveness of our approach.

1.4 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, a review of related works, es-
pecially some techniques that will be used in the following works, will be described.
Chapter 3 introduces topic of event summarization with images by analyzing the re-
lationship between events and proposing methods for image selection. Chapter 4 is
about how to learning subjective adjectives from images by first defining subjective
adjectives and our approach of pair-wise stacked convolutional auto-encoder. In Chap-
ter 5, we explain the task of visual storytelling and our proposal of introducing emotion
as an important factor for story generation from image sequence. Chapter 6 introduces
the task of poetry generation from images and our approach of incorporating visual-
poetic embedding and poem generation in adversarial way. Finally, Chapter 7 draws a
conclusion of this thesis and has a discussion about the future researches.

∗We consider both adjectives and verbs that can express emotions and feelings as sentiment words
in this research.
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CHAPTER 2

TECHNICAL PRELIMINARIES

In this chapter, we will introduce some technical background we have used in our four
researches.

2.1 Maximal Marginal Relevance

Maximal Marginal Relevance (MMR) is a criterion used in retrieval task and it aims
to reduce redundancy while maintaining query relevance in re-ranking retrieved doc-
uments or images [13]. Marginal relevance is defined as linear combination of high
relevance and minimal redundancy. A document is marked as high marginal relevance
if it is relevant to the query and contains minimal similarity to previously selected doc-
uments. And we target to maximize marginal relevance for each document Di in the
unselected document set as follows:

MMR = argmax
Di∈R\S

[
λSim1(Di,Q)− (1−λ )max

D j∈S
Sim2(Di,D j)

]
, (2.1)

where Q is a query or user profile, S is the subset of documents in the already selected
result list. R\S is the set difference, i.e., the set of as yet unselected documents. Sim1

is the similarity metric used in the document retrieval and relevance ranking between
documents and a query, and Sim2 can be the same as Sim1 or a different metric.
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2. Technical Preliminaries

2.2 Auto-Encoder

Encoder-decoder paradigm is used in many unsupervised feature learning method-
s, such as Predictability Minimization Layers [14], Restricted Boltzmann Machines
(RBMs) [15] and auto-encoders [16].

Here we briefly specify the auto-encoder (AE) framework and its terminology.
Encoder: a deterministic function fθ mapps an input vector x ∈ Rd into hidden

representation y ∈ Rd′ : y = fθ (x) = σ(Wx+b) with parameters θ = {W,b}, where
W is a d′×d weight matrix and b is an offset vector of dimensionality d′.

Decoder: the resulting hidden representation y is then mapped back to a recon-
structed d-dimensional vector z: z = fθ ′(y) = σ(W′y+b′) with θ ′ = {W′,b′}. The
two parameter sets are usually constrained to have tied weights between W and W′:
W′ = WT.

The parameters are optimized to minimize an appropriate cost function (e.g. mea-
sure square error) over the training set.

2.2.1 Denoising Auto-Encoder

Figure 2.1. The denoising auto-encoder architecture.

In order to make the trained representation robust to partial destruction of the input,
Vincent et al. [17] proposed denoising auto-encoders by introducing a corrupted ver-
sion of the input. As showed in Figure 2.1, during the encoder and decoder process, the
representation y is trained on the corrupted input x̃ instead of original input x, while
the cost function is measured between the reconstructed z and the uncorrupted input x.
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2.2.2 Convolutional Auto-Encoder

To deal with 2D image structure with auto-encoder and reduce redundancy in the pa-
rameters brought by global features, convolutional auto-encoder (CAE) is proposed
[18]. The weights are shared among all locations in one feature map of a channel and
the reconstruction is a linear combination of basic image patches based on the latent
code.

For the input x of k-th feature map (0 < k 6 H, H is the number of latent feature
maps), the representation is computed as yk = σ(x∗Wk +bk). Here σ is an activation
function and ∗ denotes the 2D convolution. The bias bk is broadcasted to the whole
map. The reconstruction is obtained with: z = σ(∑k∈H yk ∗ W̃k + c). W̃k denotes the
flip operation over both dimensions of the weights.

Mean squared error (MSE) between the input x and reconstructed z is used to mea-
sure the cost function that is be minimized. As in the standard neural networks, the
backpropagation algorithm is applied to compute the gradient of the cost function with
respect to the parameters. A max-pooling layer is used to obtain translation-invariant
representation.

2.2.3 Stacked Auto-Encoder

Deep networks can be trained by building several auto-encoders in a layer-wise way
[19]. The representation of the n-th layer is used as the input for the next (n+1)-th
layer and the (n+1)-th layer is trained after the n-th has been trained. This pair-wise
greedy procedure has shown significantly better generalization on a number of tasks
[20].

2.3 Recurrent Neural Network

Recurrent Neural Network (RNN) was created in the 1980’s but was recently becoming
popular from the rapid development of network design and increasing computational
power from graphic processing units. It is especially useful to deal with sequential data
and has gained great success in a large range of natural language processing related
tasks [6, 10, 4, 21, 9]. The most important feature of RNN is that each neuron in
RNN is able to use its internal memory to maintain information about the previous
input. Besides language, other sequential related tasks have also benefit from it, such
as sequence of images, sound, video and so on.
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(a) Long Short-Term Memory (b) Gated Recurrent Unit

Figure 2.2. Illustration of (a) LSTM and (b) GRU. (a) i, f and o are the input, forget
and output gates, respectively. c and c̃ denote the memory cell and the new memory
cell content. (b) r and z are the reset and update gates, and h and h̃ are the activation
and the candidate activation.

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are the two
mostly used units, as shown in Figure 2.2. LSTM contain information outside the
normal flow of the recurrent network in a gated cell. Similar to data in a computer’s
memory, the cell is able to store, write or read information. Through open or close
gates, the cell decides to what to store and when to allow reads, writes and erasures.
GRU is basically an LSTM without an output gate. At each time step, it fully writes
the contents from its memory cell to the larger net.

2.4 Adversarial Training

Adversarial Network was first proposed by Goodfellow et al. in [22] to estimate gen-
erative models. It consists of a generative model G that captures the data distribution,
and a discriminative model D that estimates the probability that a sample came from
the training data rather than G. An adversarial training process corresponds to a two-
player minimax game, where the generative model plays the role of counterfeiters,
trying to produce fake currency, while the discriminative model acts as the police, try-
ing to detect the counterfeit currency. In particular, the real data samples are labeled
as positive class (i.e., 1) while the generated fake samples are labeled as negative class
(i.e., 0), and D is trained as a two-class classifier. As a result, D captures the high-level
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Figure 2.3. An illustration of generative adversarial framework. The generative model
G takes as input a noise vector z and generate an image of human face, while the
discriminative model (D) first learns the difference between the real face images and
the generated images and then optimize G by switching the label of the generated
samples from 0 to 1.

difference between the distribution of real and fake samples, which is further used as a
guidance of G through back propagation by setting the label of generated samples to 1
(shown in Figure 2.3). Such a two-player minimax game can be formulated as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (2.2)

Using discriminators to optimize the distribution of data by constraining its high-
level feature is not only novel but also effective. Therefore, adversarial network is
widely used and has been proved being powerful for many fields, e.g., image transla-
tions [23, 24, 11], image inpainting [25], image caption [26] and storytelling [1].

13



2. Technical Preliminaries

Figure 2.4. An illustration of reinforcement learning system.

2.5 Reinforcement Learning

Reinforcement Learning (RL) [27, 28, 29] is a branch of machine learning in which
an agent learns from interacting with an environment. RL differs from standard super-
vised learning in that correct input/output pairs need not be presented, and sub-optimal
actions need not be explicitly corrected. Instead the focus is on performance, which
involves finding a balance between exploration (of uncharted territory) and exploita-
tion (of current knowledge). An RL framework allows an agent to learn from trial and
error. The RL agent receives a reward by acting in the environment and its goal is
learning to select the actions that maximize the expected cumulative reward over time.
In other words, the agent, by observing the results of those actions that it is taking in
the environment, tries to learn an optimal sequence of actions to execute in order to
reach its goal.

An RL system is composed of agent, environment, state, action and reward (as
shown in Figure 2.4). With riving interest in research works on deep learning in the
middle of the 2000s decade, the promise to use neural networks as function approxi-
mator both for the state value function and the action-value function in visual based RL
tasks came back. And such a mechanism benefits various of fields such as fine-grained
image recognition [30], object detection [31] and image caotion [32].
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CHAPTER 3

EVENT SUMMARIZATION WITH

IMAGES

3.1 Introduction

With the popularization of social networks and image-sharing communities such as
Facebook, Twitter, Flickr, Pinterest, and Instagram, images are becoming a more com-
mon way to express and share our daily life with friends. In addition to their informa-
tiveness and visual appeal, images play an important role as an online communication
tool. For example, a user can post several images to let his/her followers know about
a trip taken to Japan in summer with a description written in Chinese. As the saying
goes, A picture is worth a thousand words, and his/her friends can quickly grasp the us-
er’s experience even without reading the description carefully, and can save time spent
in social network communities, which continues to increase year after year. Moreover,
even non-Chinese speakers can understand a Chinese user’s updates only by looking
at the posted images. As seen in the example above, image-based communication has
advantages in terms of its efficiency (less time necessary to understand the content),
perspicuity (able to view more content at the same time), and language-independence
(comprehensible for speakers of any language), although it cannot be correctly un-
derstood unless appropriate images are used for the communication. Thus, the core
technology that enables efficient image-based communication is to automatically gen-
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erate a cognition-aware summary of images that can be accurately recognized by other
users.

In this work, we propose a way of tackling the problem of generating a cognition-
aware summary of images for a given event. Cognition-aware summaries of images
for an event are defined as those with high perceptual quality for the event, which is
defined as the accuracy and quickness to recognize an event by the summaries. For
the example of “traveling to Japan in summer”, we expect as output images that might
include “shinkansen bullet train”, “old Japanese temples”, and “the user wearing a
kimono”. In contrast, an image summary is not considered to be cognition-aware if
it contains images that cannot be recognized as “traveling to Japan in summer”, for
example, “cars in Japan” and “Japanese ships” (since their appearance is not much
different from those in other countries). As we discussed earlier, a cognition-aware
summary of images can enable language-independent, efficient communication in a
social network and has many applications including event-driven image thumbnails for
a personal image collection and a communication tool in multilingual communities.

Two main differences exist between our research and existing work on image sum-
marization. First of all, the purpose of our work is to improve the perceptual quality
of an image set, which differs from that of existing work, which is to extract an in-
formative overview of an image collection [33][34]. It follows that our approach also
differs from the approach used in image summarization. For example, Sinha et al. [35]
addressed the problem of summarizing personal images from life events and aimed to
best represent an image collection with its small representative subset. However, such
an image set does not necessarily have high perceptual quality, as their approach does
not consider other similar events in which a resulting image set can be misrecognized.
Suppose that a user wants to summarize images taken during his/her trip to the Kansai
area in Japan. When the summary consists of sights in Kyoto, Japanese food in Osaka,
a shinkansen train in Kobe, and women wearing kimono in Nara, one can easily mis-
recognize the summary as “trip to Kyoto” since images of Japanese food, shinkansen
trains, and women in kimono would also be common in images of Kyoto. While the
summary does not include any specific images of the Kansai area, it will be misrecog-
nized as a “trip to Japan” instead. From the viewpoint of perceptual quality, the image
set should be generated by taking into account the event’s neighbor event (e.g., “trip
to Kyoto”, “trip to Japan”) and minimizing possible misrecognitions (e.g., including
images of landmarks in several cities in Kansai). Therefore, we analyze the relation-
ship between events and summarize possible neighbor events that can easily cause
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misrecognition. Then we propose a method to prevent users from misrecognizing an
image set as neighbor events.

Three types of neighbor events are defined for those events that might cause mis-
recognition: sub-events, super-events and sibling-events. We study the reasons for
these misrecognitions and then put forth three criteria to minimize the misrecogni-
tions, namely, sub-event coverage, super-event coverage, and difference from sibling
events. A greedy algorithm is applied to integration of three criteria for generating
approximately optimal image set with high perceptual quality.

Experiments were conducted using a considerable number of images from Flickr,
and the experimental results showed that our proposed method was able to achieve
high perceptual quality in comparison with a baseline method, although the quality
highly depends on the queries used and size of the generated image sets. The result-
s also indicated that image summarization technologies are not always effective for
generating cognition-aware summarization of images.

Three contributions of this work are briefly described:

1. We raise the problem of cognition-aware summarization of images for a given
event from the standpoint of viewers who expect to find important points and
events from images, which is different from the problem addressed in existing
research on image summarization (Sections 3.1 and3.2),

2. We propose a way to solve the problem by using the method of generating an
image set with high perceptual quality by minimizing possible misrecognitions,
namely, sub-event, super-event and sibling-event misrecognition (Sections 3.3
and 3.4), and

3. We explain the effectiveness of implementing our approach in experiments using
a large number of images from Flickr. The results were evaluated and compared
with a baseline method based on an existing image summarization method (Sec-
tion 3.6).

We present a conclusion in Section 3.7.

3.2 Related Work

This research concerns two main problems: event representation and image summa-
rization. We review here other studies related to these two problems and point out the
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differences between them and our work.

3.2.1 Event Representation

Event representation has been explored in several different study fields for years. Lan-
guage and cognition have opened up the field of how the mind deals with the experi-
ence of events [36]. As in computer science, there are studies focusing on how to detect
and represent events in natural language, and with the evolution of social networking
systems (SNSs), some studies have been done on processing social events[37][38]. In
the multimedia domain, event detection has been widely researched with both videos
and images. Different approaches have been proposed to understand the structure of
complex events in videos [39][40].

In recent years, a lot of research has been done on the prediction of events from
images. Chen and Roy [33] proposed an approach to detect Flickr images depict-
ing events. Brenner and Izquierdo [41] incorporated different features to detect social
events from collaboratively annotated image collections. These studies solve the prob-
lem of detecting events and clustering images while not considering the characteristics
of events and the relationship between events. In this work, we focus more on how
to select cognition-aware images to represent an event by paying attention to the con-
cerned events’ relations.

3.2.2 Image Summarization

Most research on image summarization has focused on personal image collections.
Platt et al. [42] presented an overview of a user’s image collections generated by
an image clustering algorithm that considered time and color. Other features such as
time, location [43], social context features (such as tags and comments) [44], and blog
posts[45] were utilized to help with image summarization.

Unsupervised approaches were proposed in [46] for event clustering based on time
and image content. An event-clustering algorithm was developed to automatically seg-
ment images into events and sub-events for albuming based on date/time information
and color content of the images [47]. PageRank was employed to mine the most infor-
mative information from images of the same event in [48].

The metrics of a good image summarization differ. Sinha and Jain [44] proposed
generating a summary on the basis of three properties: relevance, diversity, and cover-
age. While Wen and Lin [49] focused on two metrics: representativeness and diversity.
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The goal of this work is different from the above studies on image summarization.
We focus more on the accurate recognition of a specific event from our generated
image set, which is emphasized on finding cognition-aware images.

3.3 Preliminaries

In this section, we will first define the events that we focused on and then explain the
problem we addressed in this research.

3.3.1 Events

A common definition of an event is “a segment of time at a given location that is
conceived by an observer to have a beginning and an end” [50]. Many studies have
focused on specific events such as current news items, sports events or earthquakes
[33][51][52].

In this research, we are tackling real life events, which are normal events related to
our everyday life, for example, a “football game”. We refer to some existing research
about general events [53], and define events in this work as:

Definition 1 (Event). An event involves human activities and can be specified with time
and location.

An event can be denoted with certain terms, e.g., “travel Japan” and “hiking sum-
mer”, where the terms “travel” and “hiking” represent activities, while “Japan” and
“summer” specify the location and time of each event.

Note that many terms can imply an activity depicted in images, including terms in
verb or noun form, since everything in the image can reflect what an image taker is
doing while taking that image. For example, the term “lavender” indicates a plant and
cannot be regarded as an activity in a common sense. However, if an image depicts
lavender, it means the image is taken when a user is viewing the lavender. As a result,
the term “lavender” also indicates the activity of “viewing lavender” by taking the
activity of the image taker into consideration. Therefore, in this research, the terms
describing the activities involved in an event are not restricted to verbs when the event
is shown with images.
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3.3.2 Problem Definition

The problem we tackle in this work can be defined as:

Definition 2 (Event Representation Problem). Given an event e ∈ E, a collection of
images P, and the size of an output image set n, return image summarization with an
image set Se ⊂ Pe of size n that maximizes perceptual quality,

where E represents all possible events, and Pe refers to images that are related to
event e among the whole image dataset P. Perceptual quality is defined as:

Definition 3 (Perceptual Quality). Perceptual quality of an image set for an event is
the metric that measures the accuracy and quickness of the image set being recognized
as the event.

Higher perceptual quality makes an image set easier to recognize as a certain event.
Image collection P is a large set of images that were taken by different users, while

Pe can be images of event e taken by many users as well as one user. Users can decide
an appropriate size of the output image set depending on their application, such as
thumbnails and cover images for a personal image library or SNS posts. As a matter
of fact, current SNSs also limit the number of images a user can upload for a new
update. For example, Twitter allows four images for each tweet, and Weibo (Chinese
twitter) permits up to nine images for each tweet. Although Facebook can accept
more images for one update, it can display around five images as a thumbnail for each
update. Therefore, a small image set is preferred, especially within the size of ten
or fewer images. Thus, we aim to produce a cognition-aware image set representing
events with image set size of fewer than nine images, which is often used as an upper
size limit when combining images using image editing softwares.

For each event e ∈ E, there are many neighbor events that may cause misrecogni-
tions.

Definition 4 (Neighbor Events). Neighbor events of an event are events that are similar
to the event and can easily cause misrecognitions.

The definition of misrecognition is as follows:

Definition 5 (Misrecognition). Misrecognition happens when something (such as an
event) is recognized as something else.

In order to find an image set with high perceptual quality, we should avoid neighbor
events that will cause misrecognition.
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3.4 Approach

In this section, we introduce our approach to generate an image set with high perceptual
quality.

3.4.1 Overview

As we mentioned in Section 3.1, our goal is to find an image set that represents an
event with high perceptual quality so that users can recognize that exact event after
viewing the image set. We introduce an assumption that:

Assumption 1. An image set that is not likely to be misrecognized as another event is
likely to be recognized accurately.

With this assumption, we propose a method to minimize misrecognitions from neigh-
bor events that can easily cause misunderstandings and to accordingly achieve high
perceptual quality. Sub-event coverage, super-event coverage, and the difference from
sibling events are used as quantized criteria, and they are proposed to prevent three
misrecognitions.

A combination of the three criteria is used to make the objective function, and a
greedy algorithm is applied to generate an approximate optimal image set.

We also propose to generate neighbor events by considering the relationship between
events. Visual features, including global and local features, and social features such as
tags attached to images are employed in our approach.

3.4.2 Misrecognition Situations

There are three types of misrecognitions that can occur when a user looks at an image
set and tries to determine which event it is, and they are mainly caused by three types
of corresponding neighbor events:

1. The first kind is sub-event misrecognition, which means users recognize an im-
age set of an event as a sub-event of the original event.

Definition 6 (Sub-Events). Event A is a sub-event of event B if A can only rep-
resent part of B.
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For example, the event “travel” consists of several sub-events such as “transport”
(actually it is “travel transport”, but we removed “travel” for simplification),
“shopping”, and “sightseeing”. Given the event “travel” to be recognized, an
image set that includes only images of “transport” will cover one single sub-
event of “travel”. This image set has a high possibility of being recognized
as “travel transport”. Intuitively, we can avoid sub-event misrecognitions by
generating an image set that covers as many sub-events as possible.

2. The second situation is called super-event misrecognition, which means an im-
age set is thought of a super-event of the original event.

Definition 7 (Super-Events). Event B is a super-event of event A if only part of
B can be represented by A.

Super-events correspond to sub-events. When an image set consists of only im-
ages that are common in its super-event, super-event misrecognition will occur.
For instance, super-events of “travel in Kyoto” are “Kyoto” (all the events that
can happen in Kyoto) and “travel”. Moreover, images of “sakura”, “temple”, and
“food” are often taken for the event “travel in Kyoto”. However, they can also
represent the event of “Kyoto”, which refers to all the activities that may happen
in Kyoto. If an image set only includes images of Kyoto but does not include
any images portraying travel, people prefer to treat it as its super-event “Kyoto”
when they cannot identify more specific content. A simple solution to avoid this
type of misrecognition is to cover all possible super-events within an image set.

3. Sibling-event misrecognition is the last type of misrecognition, and it indicates
the case where a user misrecognizes an image set of an event as its sibling-event.

Definition 8 (Sibling-Events). Event A is a sibling event of event B if A and B
can both represent different parts of the same super-event.

For example, an image set for “conference party” includes images of “people
communicating”, “dishes and desserts”, and “proposing a toast”, and all of them
can be recognized as “conference party”. However, without labels indicating
“conference party”, it will be difficult for a user to tell what kind of party the set
is about. Users may take it to be a “birthday party” if an image includes cakes.
“Birthday party” and “conference party” have the super-event “party”, so each
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of them presents a specific part of the event “party”. We can avoid this kind of
misrecognitions by using an image that does not imply a specific kind of sibling-
events, such as an image of people gathering rather than an image of a cake in
this example.

3.4.3 Sub-Event Coverage

In order to avoid the first type of misrecognition–sub-event misrecognition–we propose
the following assumption:

An image set that covers only a single or a few sub-events may cause sub-event
misrecognitions.

Under this assumption, an ideal image set should cover as many sub-events as possi-
ble. By using the example we used in Section 3.4.2, an image set that contains “trans-
port”, “food”, and “landscape” would be better to represent the event “travel” than one
that only contains “transport”. Thus, the sub-event coverage is used to evaluate how
likely an image set can prevent sub-event misrecognitions.

Figure 3.1 also shows an example of sub-event coverage. Image set (B) covers only
images of traveling in Kyoto, which is just one part of travel in Japan, and users might
easily perceive that the images represent “Kyoto travel in spring” rather than “Japan
travel in spring”, and this is a sub-event misrecognition. In contrast, if an image set, for
example (A), covers images of travel in different parts of Japan such as Kyoto, Tokyo
and Mt. Fuji, users will not be misled about the specific place, and the correct position
“Japan” can be easily ascertained.

The sub-event coverage can be measured by borrowing an idea in search result di-
versification, which aims to retrieve search results that cover as many topics as possible
in response to a given query [54]. The approach used in search result diversification is
to estimate the probability that all the topics will be covered with at least one search
result, and to find a set of search results that maximizes this probability. Therefore,
as with search result diversification, we estimate the probability that all the sub-events
will be covered with at least one image and try to find a set of images that maximizes
this probability. Thus, the sub-event coverage SubCov(S,e) is defined as follows:

SubCov(S,e) = ∑
v∈Sub(e)

P(v|e)(1−∏
s∈S

P(c = 0|s,v)), (3.1)

where e is a given event, S is an image set, Sub(e) refers to sub-events of event e, P(v|e)
is the probability that event e contains sub-event v as well, and P(c = 0|s,v) is the
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(A)

(B)

(1) Kyoto (2) Tokyo (3) Fuji

(4) Kyoto (5) Kyoto (6) Kyoto

Figure 3.1. Example of Sub-Event Coverage: image set with only images of “Kyoto”
(B) will indicate “Kyoto travel spring Japan”, which is a sub-event of “Japan spring
travel”, while an image set that covers different parts of Japan (A) will not have this
problem.

probability that image s does not present sub-event v with c (binary value) to indicate
whether it is presented (value 1) or not (value 0). We assume a unique distribution for
P(v|e) due to the lack of prior knowledge for this probability, i.e.,

P(v|e) = 1
|Sub(e)|

. (3.2)

An intuitive interpretation of this formula is that SubCov(S,e) becomes high if at
least one of the images in an image set S has high probability P(c = 1|s,v) for all the
sub-events of e.

Below, we discuss a method of estimating the probability P(c = 1|s,v), which is a
complement of P(c = 0|s,v), P(c = 1|s,v) = 1−P(c = 0|s,v). A basic assumption
here is that image s is likely to cover sub-event v if s is similar to images that were
taken in sub-event v. We used k-nearest neighbor distance k-NND(s,v), which is the
average distance of k-nearest neighbor images of image s in image set Pv, to measure
the similarity between image s and images of event v [55]. In addition to its simplicity,
the computation of the k-nearest neighbor distance is efficient, since k-nearest neighbor
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search has been extensively studied in the literature. We obtain the following formula
by taking the inverted distance of k-NND(s,v) with an exponential function:

P(c = 1|s,v) = exp(−λ ·k-NND(s,v)), (3.3)

where λ is used to control the shape of this distribution.
In summary, sub-event coverage SubCov(S,e) measures how likely an image set can

prevent sub-event misrecognitions. With a higher SubCov(S,e) value, image set S is
able to cover more sub-events of event e. An image set with high sub-event coverage is
expected to avoid sub-event misrecognitions and consequently achieve high perceptual
quality.

3.4.4 Super-Event Coverage

Super-event misrecognition can happen when images in an image set are only related to
part of the original event’s super-events and cannot cover all of them. This observation
led to an assumption that:

An image set that covers only one or a few super-events may cause super-event
misrecognitions.

An image set S that can prevent this type of misrecognition covers all the super-
events Sup(e) of event e with at least one image in the image set S. In the example
of image set (A) in Figure 3.2, when “travel” and “Kyoto” are both emphasized in
the image set, it will be easier to recognize both events and form the event “travel in
Kyoto”. Thus, we apply the algorithm of sub-event coverage in Equation 3.1 to each
super-event and compute the super-event coverage of original event SupCov(S,e), as
described in Equation (3.4).

SupCov(S,e) = ∑
u∈Sup(e)

P(u|e)(1−∏
s∈S

P(c = 0|s,u)). (3.4)

Only if an image set covers all super-events will it achieve high super-event cover-
age. For example, an image set with high super-event coverage for the event “travel in
Kyoto” would be one that has high sub-event coverage for both the events “travel” and
“Kyoto”. Higher super-event coverage guarantees that all super-events are covered by
an image set.
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Figure 3.2. Example of Super-Event Coverage: image set with only images of “Kyoto”
(B) will indicate “Kyoto”, which is a super-event of “Kyoto travel”, while an image set
that covers both “Kyoto” and “travel” (A) will not have this problem.

3.4.5 Difference from Sibling-Event

To avoid sibling-event misrecognition, we should not use images that present only a
few sibling-events.

An image similar to just a few sibling-events can cause sibling-event misrecogni-
tions.

Thus, images that are similar to all sibling-events or not similar to any sibling-event
under one super-event are preferable in order to avoid sibling-event misrecognition.
With images that are similar to all sibling-events under one super-event, our consider-
ation is that all the sibling-events should contain common features of the same super-
event. For example, to find images of “travel Japan”, an image that is common in
all sub-events of “travel” is generally sufficient to avoid sibling-event misrecognition.
However, since super-event coverage guarantees that all the super-events are covered in
the output image set, there is no necessity to use the idea again in preventing sibling-
event misrecognition. To this point, we propose a difference from sibling-events to
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Figure 3.3. Example of difference from sibling-events. Images of willow trees are
common in both Japan and China in spring, so an image set that includes an image
of a willow tree (A) is not as good as one that includes an image of women in ki-
mono (B), since an image of women in kimono is unique to Japan and will not cause
misrecognition.

avoid misrecognition from sibling-events. The formula is as follows:

SibDif(S,e) = 1−∏
s∈S

max
v∈Sib(e)

P(c = 1|s,v) (3.5)

where Sib(e) are all sibling-events of e under all its super-events. The distribution
for P(c = 1|s,v) is assumed to be equal, just as in Section 3.4.3, which measures the
probability that image s covers event v. For each image in an image set, we hope that
the maximum possibility of covering sibling-events is as small as possible. Note that
this criterion is used to complement sub-event coverage and super-event coverage.

As a result, images that are different from all sibling-events will rank higher. In the
example in Figure 3.3, willow trees are quite common in both “spring in China” and
“spring in Japan”, while they are not as common in other places; thus, images of willow
trees are often taken in spring in these two places. If we use an image of a willow tree
to represent the event “Japan spring travel”, users cannot decide where it is and may
think it is in China. Instead, images of women wearing kimono are most likely to be
taken in Japan, and it is much less common for other places to have similar images.
Thus, it will achieve a higher score than an image of willow trees in consideration of
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sibling-events of “Japan spring travel”.

3.4.6 Image Set Generation

By combining three criteria to avoid the three types of misrecognition, we generate
one objective function to measure to what extent an image set can minimize misrecog-
nitions. Sub-event coverage, super-event coverage, and the difference from sibling-
events are combined in order to maximized the objective function f (S,e).

f (S,e) = αSubCov(S,e)+βSupCov(S,e)+ γSibDif(S,e), (3.6)

where α , β , and γ are parameters that determine which criteria should be emphasized.
Our objective can now be reformulated as a problem of finding an image set of size

n for a given event e that maximizes the objective function f (S,e). Unfortunately,
finding an optimal image set is an NP-hard (Non-deterministic Polynomial-time hard)
problem.

Lemma 1. f (S,e) is NP-hard.

When images can belong to multiple image sets, there may not exist a single or-
dering of image sets such that the objective function of f (S,e) is maximized for all
possible S. The reason is that a set of images optimal for f (S′,e), where |S′| = n−1,
need not be a subset of the optimal value of f (S,e), where |S|= n.

Because the set function f (S,e) is monotonic and submodular (see the Appendix),
we can apply the greedy algorithm and guarantee that the result returns a (1− 1/e)-
approximation of the maximum[56], which often gives a good approximation to the
optimum. We start with an empty image set S and iteratively add an image p ∈ Pe to S
that maximizes f (S∪{p},e) until the size of the image set |S| reaches n. The greedy
algorithm is described in Algorithm 1.

3.5 Neighbor Event Generation

To find proper neighbor events that can easily cause misrecognition, we utilize images
of events and their surrounding social information such as tags.
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Algorithm 1 Greedy Algorithm for Image Set Generation
Require: User’s query, event: e;

A collection of images: P;
Size of final image set: n ∈ N;

Ensure: An image set of size n: S, |S|= n;
1: Generate e related image collection Pe

2: S = {}
3: for each i ∈ [1,n] do
4: p∗ = argmax

p∈Pe

f (S∪{p},e);

5: S = S∪{p∗};
6: Pe = Pe−{p∗};
7: end for
8: return S

3.5.1 Generating Sub-Events

According to the definition, sub-events are events that can present part of an event.
We need to find ones that can easily cause misrecognition. Our strategy of generating
sub-events is to add a keyword to the keyword set of the original event and to let the
added keyword specify a certain part of that event. As a result, our objective becomes
finding keywords to be added and in particular, keywords that can be easily confused
with the target event e. Added keywords are selected from tags of event Te if they
comply with two criteria of selected sub-events: they are relevant (representative and
visually similar) and irredundant.

A sub-event needs to be representative to event e because representative content is
likely to remind viewers of event e. For example, “travel Kyoto temple” is a represen-
tative sub-event of the event “travel Kyoto”, and images of “travel Kyoto temple” have
a high possibility to be regarded as “travel Kyoto”. Term frequency-inverted document
frequency (TF-IDF) is used to determine the importance of representative sub-events.
We first compute TF (in Pe)-IDF of all event-related tags Te [57]. A tag is denoted by
t, and tf-idf(t,e) represents its TF-IDF value.

Images of a sub-event that could cause misrecognition are usually visually similar to
images of the event. We calculate the visual similarity between e and each sub-event,
which is defined by the image similarity of events e and t, VisualSim(t,e). Visual sim-
ilarity between two events is obtained by measuring the Euclidean Distance between
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their visual features [58]. Suppose we have two events e1 and e2: images of them are
denoted by Pe1 and Pe2 . Visual features of each tag are obtained by taking the average
visual features of all images in Pe1 and Pe2 . Visual features of each tag are also obtained
from global visual features such as color (RGB and HSV), and local features with a
1000-D bag of visual words[59].

The relevance of a tag t to event e is the harmonic mean of its TF-IDF and visual
similarity value:

SubRel(t,e) =
2tf-idf(t,e)VisualSim(t,e)

tf-idf(t,e)+VisualSim(t,e)
(3.7)

To ensure that all selected sub-events are efficient and are able to cover many dif-
ferent aspects of the event, we need to reduce the redundancy of resulting sub-events.
Here, redundant sub-events refer to ones that describe almost the same content. For
instance, images of “spring Japan” and “spring Nihon” are basically the same. We
use context similarity between tags as a diversity metric, since tags that often appear
together with the same vector of tags are supposed to present the same content[60].
Context similarity, ContextSim(t1, t2), measures whether two tags are similar by con-
sidering their neighbor tags. For example, “cloud” and “sky” are often tagged with
the same set of tags in one image, such as “blue, water, tree”, and are therefore very
similar based on the tag context.

Then maximal marginal relevance (MMR) [13] is applied to find tags that balance
relevance with e and diversity from selected sub-event tag set We ⊂ Te, as shown in the
following formula:

MMRSub(t,e) = argmax
ti∈Te\We

[
θSubRel(ti,e)− (1−θ)max

t j∈We
ContextSim(ti, t j)

]
(3.8)

After finding several top sub-event tags with MMR, we generate sub-event v, whose
keyword set is denoted as Kv, by adding each sub-event tag to the original event’s
keyword set Ke, i.e.,

Sub(e) = {v|Kv = Ke∪{w}∧w ∈We} (3.9)

Thus, if “cherry” and “Tokyo” are the top tags generated by our method of finding
sub-events of “travel Japan”, corresponding sub-events will be “cherry travel Japan”
and “Tokyo travel Japan”.
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3.5.2 Generating Super-Events

In accordance with the idea of obtaining sub-events by adding one keyword to specify
a certain part of an event, super-events are generated by removing each keyword from
the original event’s keyword set Ke, since subsets with a smaller number of keywords
usually represent a more general concept than the original keyword set. Thus,

Sup(e) = {u|Ku ⊂ Ke∧|Ku|= |Ke|−1} (3.10)

where Ku is a keyword set of super-event u. For example, super-events of “travel
Japan” are “travel” and “Japan”.

3.5.3 Generating Sibling-Events

Sibling-events present different parts of an event’s super-event, and our objective is
to find those that are likely to cause misrecognition. We produce sibling-events by
specifying an event’s super-events with one more word. Similar to the case of sub-
event generation, the added word should satisfy the criteria of relevance (contextually
and visually similar) and irredundancy. For each super-event u of an event e, the absent
word k is one that generalizes the event, i.e.,

k ∈ Ke−Ku,(u ∈ Sup(e)). (3.11)

The added word should be contextually similar to the absent word in the context of a
super-event, because words with a similar context in images are often related to similar
contents in the images and will easily cause misrecognition. For example, “Kyoto” is
similar to “Nara” in the context of the event “travel”, since they are both related to the
contents of “temple” and “traditional”.

In addition, the added word should have a short distance with the absent word in
regard to visual features since similar visual features can more easily cause misrecog-
nition.

As a result, context similarity and visual similarity between words are combined to
compute the relevance, and for this combination, we use their harmonic mean:

SibRel(t,k) =
2ContextSim(t,k)VisualSim(t,k)

ContextSim(t,k)+VisualSim(t,k)
(3.12)

With only relevance as the criterion to generate sibling-events, we find that there
is some reduplication between sub-events and sibling-events. For example, “travel

32



3. Event Summarization with Images

Japan Tokyo” is one of the top sub-events of “travel Japan” because many people who
go to Japan for travel purposes will visit Tokyo (high TF value), and Tokyo travel is
highly related to Japan travel, while it is not frequent in other events (high TF and
IDF). However, we can understand that “travel Japan Tokyo” is almost the same event
as “travel Tokyo”, which is highly possible as a top sibling-event of “travel Japan”
when relevance is the only criterion. In order to exclude sibling-events such as “travel
Tokyo”, we utilize the Jaccuard distance to measure the dissimilarity of new added
word t (“Tokyo”) and abstract word k (“Japan”) in super-event u (“travel”) to ensure
that sibling-events that are similar to sub-events are excluded. The Jaccard index is
used to measure the concurrence of two words in an event by comparing the similarity
and diversity of images that contain each word as a tag. The tag Jaccard distance is the
complementary to the Jaccard index of tags:

TagJacDist(t,k,u) = 1− |Pt+u∩Pk+u|
|Pt+u∪Pk+u|

. (3.13)

A longer distance means two tags are not often tagged together in many images of an
event. Thus, they are better as sibling-events than those that are often tagged together,
under the same condition that they are contextual and visually similar to each other.

Thus, the new relevance computation comes to:

SibRel(t,k,u) =
2ContextSim(t,k)VisualSim(t+u,k+u)

ContextSim(t,k,u)+VisualSim(t+u,k+u) ·TagJacDist(t,k,u), (3.14)

by multiplying the original relevance by the Jaccard tag distance. In this case, “travel
China” will be ranked higher than “travel Tokyo” when finding sibling-events of “travel
Japan” under the super-event “travel”.

Semantic similarity, SemanticSim(t1, t2), is used for diversity because tags with the
same meaning should be avoided. We implement it by using path similarity, which
computes the semantic relatedness of words by counting the number of nodes along
the shortest path between words in the “is-a” hierarchies of Wordnet[61]. Let Wu ⊂ Tu

be the current sibling-event tag set under one of the super-events u. The target function
of the MMR algorithm is as follows:

MMRSib(t,u,e) = argmax
ti∈Tu\Wu

[
φSibRel(ti,k)− (1−φ)max

t j∈Wu
SemanticSim(ti, t j)

]
.(3.15)

With several top tags w with MMR Wu of each super-event u, we obtain sibling
events v of event e under u so that the keyword set of v is the result of adding w to u’s
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keyword set, i.e.

Sib(e,u) = {v|Kv = Ku∪{w}∧w ∈Wu}. (3.16)

As we have described, these methods to create neighbor events are based on our
requirement to find neighbor events that can easily cause misrecognition. We will
show the effectiveness of our method compared with the baseline method (TF-IDF) in
the next section.

3.6 Experiments

To evaluate the performance of our approach to avoid misrecognition as well as to eval-
uate the effectiveness of generating neighbor events, we conducted some experiments
by using images crawled from Flickr. We assessed the performance of neighbor event
generation and image set generation separately.

The image collection in our experiments consisted of more than 2.9 million images
crawled from Flickr, which were used as the entire image collection P.

3.6.1 Generating Neighbor Events

In this experiment, we tested 50 events (indicated in Table 3.1. We picked these events
from everyday life events by checking the frequently updated events in Flickr. Further-
more, the selected events are ones that have meaningful neighbor events (especially
super-events based on our method). Neighbor events of these events were generated
with our proposed method and a simple baseline method. In our method, parameters θ

and φ , which are used to balance the importance of similarity and diversity in generat-
ing sub-events and sibling-events, were set according to our preliminary experiments:

θ = 0.7,φ = 0.7.

As for the baseline, we used TF-IDF to rank tags, and we generated sub-events by
adding the top-ranked tags to a target event. Super-events were produced in the same
way as in our method, while sibling-events were generated by using sub-events of these
super-events with the TF-IDF method.

Table 3.4 lists some examples generated with our method and the baseline method.
From this table, we find that TF-IDF always generates duplicate events such as “travel
Japan landscape” and “travel spring landscape” for sibling-events. In addition, the
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ID Event

1 birthday party
2 bungee jump
3 car accident
4 company meeting
5 conference party
6 cook dinner
7 fashion show
8 football game
9 graduation ceremony
10 ice skating
11 playing golf
12 rock climbing
13 running on beach
14 sports game
15 sunset sea
16 walk dog
17 walk travel
18 wedding ceremony
19 road trip summer
20 summer hawaii
21 sunrise mountain
22 swim beach summer
23 travel canada autumn
24 travel japan spring
25 travel usa winter

ID Event

26 winter london
27 award ceremony
28 bar cocktail
29 bar concert
30 beach wedding
31 festival japan
32 island holiday
33 lavender france
34 outdoor hotspring
35 paris shopping
36 rainbow mountain
37 thunder city
38 travel hokkaido
39 travel london
40 yoga outdoor
41 boat autumn
42 christmas party
43 concert night
44 flight sunset
45 halloween costume
46 morning walk
47 spring bike
48 summer hiking
49 surf summer
50 thanksgiving dinner

Table 3.1. 50 events categorized based on whether the event is time-aware or location-
aware

resulting neighbor events are not necessarily ones that satisfy our definition of neighbor
events. For example, “travel spring flower” is more appropriate as a sub-event than a
sibling-event.

However, neighbor events resulting from our method can meet the needs of neighbor
event properties. For instance, “travel spring traditional” is a sibling-event of “travel
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Japan spring” under the super-event “travel spring”. We can imagine that travelers who
go to Japan in spring often visit some temples or shrines, which are all old buildings
and represent traditional things. It is easy to mix up travel in Japan with travel in
other traditional places. Let us take “travel Japan spring cherry” as another example.
Japan is very famous for its cherry blossoms that only bloom in spring. Everyone who
travels to Japan in spring will take images of the cherry blossoms. Hence, it is a very
important sub-event of “travel Japan spring”, and our method can create it while the
baseline method cannot.

Therefore, neighbor events generated by our method are closer to our expectation
and correspond to reality much better. In particular, our proposed method was probably
able to generate better sibling-events because we considered the absent term of each
super-event. In contrast, the baseline method using TF-IDF generated many duplicate
sibling-events probably due to the lack of consideration of the similarity between tags.

3.6.2 Generating Image Sets

After obtaining neighbor events that can easily cause misrecognition, we utilized them
in computing image sets using the baseline method and our method separately and in
combination. The perceptual quality of the generated image sets was evaluated with a
crowdsourcing service.

Baseline

VisualRank (VR) [62] was used as the baseline method to generate image sets. VR
is an algorithm that applies PageRank to images, and it can be used to mine the most
informative features from images that belong to the same event [48]. The formula of
VR is as follows: given n images, VR is recursively defined as

VR = dM∗×VR+(1−d)p, p =

[
1
n

]
n×1

. (3.17)

M∗ is the column normalized adjacency matrix M, where Mi, j is the similarity between
image pi and p j, which is computed by the Euclidean distance between visual features
of two images. In order to guarantee that the resulting image set does not include
the same images, we checked the visual similarity of each candidate image and added
images to ensure their similarity Euclidean distance is greater than 0.1.
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Figure 3.5. Value distribution of three criteria for event “travel Japan spring”.

Setup

We generated image sets with the 50 events listed in Table 3.1 and used five sizes of
image sets for each event. Each of these events had more than 100 related images from
our image collection. The average number of related images for each event was 307.

We applied five methods, including the baseline VR method and four variations of
our proposed method: an objective function with only sub-event coverage (SubCov),
only super-event coverage (SupCov), only the difference from sibling-events (SibDif),
and an objective function with a combination of three criteria (ALL), which maximizes
the value of f in Equation (3.6). After getting the ranking score of event-related images
with these five methods, we used the top several images to form an image set.

We conducted preliminary experiments and checked the distribution of three types
of scores for each candidate image of the event “travel Japan spring” as displayed in
Figure 3.5. The result showed that normalized scores were equally distributed from
0 to 1 for three criteria, which enabled us to give the same parameter to each of the
criteria and guarantee their equivalent importance in the target image set. As a result,
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three parameters in the objective function were set as follows:

α = 1/3,β = 1/3,γ = 1/3.

As mentioned in Section 3.3.2, an image set is usually not larger than nine images.
For this reason, we used five sizes of image sets, i.e. n = 1,3,5,7, and 9. In total, there
were 1250 image set (event, method, size of image set) combinations. The parameter
k of the k-nearest neighbor was set to 20, and the parameter λ was set to 25 in this
experiment based on our preliminary test.

We used a crowdsourcing service to evaluate the perceptual quality of each image set
in two steps: labeling events to generated image sets, and then obtaining the perceptual
quality of an image set by comparing the labeled event and the input event. Lancers ∗,
a crowdsourcing service in Japan, was used in our evaluation.

In the first task, five assessors were assigned to each image set, and they were asked
to label what they thought the images represent. According to the previous definition,
the perceptual quality of an image set is better weighted by the accuracy and quickness
of the user’s perception of an event by looking at an image set. In our experiment, we
focused on the accuracy component by setting the quickness at a certain level while
leaving the evaluation of quickness as an open issue due to practical difficulties. We
asked the assessors to label what events they could recognize from an image set in a
few seconds, including the time, location, and activity.

The perceptual quality of an image set was measured in the second step by evaluating
the agreement between the input event of the image set and the labels the assessors
added.

Definition 9 (Estimated Perceptual Quality). Estimated perceptual quality of an image
set S to represent an event e is the average agreement between the event e and events
ES, where ES denotes events that users can perceive from image set S.

The agreement between two events was measured on a three-point scale: mismatch
(score 0), partial match (score 1), and match (score 2). The assessor marked a label
as a match if the label had the same meaning as the event, while the assessor gave a
partial match to labels that partially overlapped keywords of the event. For example,
“travel Japan” is a partial match, while “spring Japan travel” is a match to the event
“travel Japan spring”.

∗http://www.lancers.jp/
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Method: VR 

Photo Size: 3 

Method: SibDif 

Photo Size: 3 

Method: ALL 

Photo Size: 3 

Figure 3.6. Image sets of event “walk dog” generated by different methods: VR (base-
line VisualRank), SibDif (difference from sibling-events), and ALL (combination of
three criteria).

To guarantee high quality of the assessment, we added a dummy event-label pair
every 9 pairs to make up one unit. The assessors gave scores in units and each of
them could assign scores for up to 100 units. Scores marked by assessors who made a
mistake on the dummy pair were excluded in the final result.

Results

Figure 3.6 shows image sets of the event “walk dog” generated by the VR, SibDif and
ALL methods. As we can see, VR gives very similar images but fails to cover all sub-
events such as “walk dog leash”. It also lacks differentiation from sibling-events such
as “raise dog” and “walk stroll”. SibDif successfully avoids misrecognition from these
sibling-events.

Figure 3.7 plots an overall comparison of the results of the five methods. The hori-
zontal axis is the number of images in the image set, and the vertical axis is the average
perceptual quality of each size, which is computed by the average score of agreement
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Figure 3.7. Perceptual quality of five methods: we applied each method to 50 events
in five different sizes of image sets: 1, 3, 5, 7, and 9.

between target events and labeled events. The overall trend is clear: perceptual quality
is gradually improved with more images in an image set. With more than five images,
the benefit of adding more images begins to decrease.

We conducted a three-way ANOVA (Analysis of Variance) to test whether there was
a difference between the effects of the methods, the sizes of an image set, and the events
and their interactions to the perceptual quality of an image set. The ANOVA showed a
significant difference in all of them: the type of method (F(4,2500) = 6.1, p < 0.01),
size of image set (F(4,2500) = 51.26, p < 0.01), and events (F(49,2500) = 35.5,
p < 0.01). Significant interactions were found among all combinations. These values
demonstrated that the perceptual quality of an image set varies with different sizes,
different methods perform in various ways, and events can affect the performance.

From Figure 3.7, we can also find that three criteria (SubCov, SupCov, and Sib-
Dif) show different performances with different image set sizes. The performance of
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Figure 3.8. Perceptual quality of several events in different sizes.

SubCov increases steadily until size five and stops rising, or even drops after adding
more images. This might be due to its coverage of good representative content of an
event. With too many images, high sub-event coverage will include images with less
important content, which confuses viewers.

SibDif is used as a supplementary criterion to avoid sibling-events. The result in-
dicates that the performance is unstable. Images that portray totally different events
will also intuitively achieve a high score with SibDif, which results in atypical images
and lower perceptual quality. However, it exhibits best performance with one image.
This may be attributed to the fact that it maximizes an event’s difference from sibling-
events that can cause misunderstandings, and users can easily figure out the right event
without hesitation.

ALL performs best for most image set sizes. It guarantees coverage of the important
content of an event and maximizes the difference from similar neighbor events. Com-
pared with the baseline method (VR), it demonstrates better performance with five or
fewer images. As discussed in the performance of sub-event coverage, having more
images can bring confusing and noisy information that may mislead viewers into per-
ceiving it as another event. To check whether it is true with ALL method, we check
four events and their performances of different sizes. As we can see from Figure 3.8,
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events that contain a few scenes such as “rock climbing” can be easily recognized in a
small image set, while events that are more abstract and contain many different scenes
gain better performance with more images. Therefore, more images do not necessarily
convey accurate information, so a properly sized image set is preferable.

Method of gener-
ating image set

Size of image set PQ(TF-IDF) PQ(our method)

VR

1 0.31 0.38
3 0.51 0.57
5 0.54 0.66
7 0.62 0.74
9 0.61 0.76

SubCov

1 0.31 0.45
3 0.54 0.58
5 0.50 0.70
7 0.53 0.68
9 0.57 0.67

SupCov

1 0.30 0.34
3 0.56 0.55
5 0.58 0.64
7 0.55 0.68
9 0.57 0.65

SibDif

1 0.19 0.47
3 0.30 0.41
5 0.43 0.61
7 0.47 0.56
9 0.53 0.68

ALL

1 0.30 0.45
3 0.49 0.63
5 0.55 0.71
7 0.61 0.68
9 0.65 0.76

Table 3.2. Comparison of perceptual quality of image sets generated by our proposed
method and TF-IDF method.

In addition, we compared the final perceptual quality of image sets for different
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neighbor events (generated by our proposed method and the TF-IDF method) to inves-
tigate whether the proposed neighbor events contribute to the final performance. The
results are given in Table 3.2. Those numbers indicate that our proposed method im-
proved the final performance of generating image sets with higher perceptual quality
by providing more suitable neighbor events.

In conclusion, our approach is able to generate image sets of a proper size with
higher perceptual quality compared with the baseline method.

3.6.3 Analysis of Events and Perceptual Quality

As indicated from the ANOVA, we can see that events play a role in affecting the per-
formance of perceptual quality. To see the relation between an image set’s perceptual
quality and event categories, especially regarding time and location, we classify all 50
events into four types based on whether the event is time-aware or location-aware.

The average perceptual quality of different types of events is shown in Figure 3.9
for five methods . This figure reveals that for all methods, perceptual quality is high-
est when time and location are not specified; in particular, SubCov reveals the best
performance. Time is more easily represented than location with images since the per-
ceptual quality performance of most methods is higher with time-aware events than
with location-aware events, except for SibDif. This result conforms to the fact that
time is not easily confused because human beings hold almost the same perception
about time, such as whether it is night or autumn. However, people see locations in
different ways and might mix them up with other similar locations. That also explains
why SibDif can better perform with location-aware events.

Moreover, ALL achieves high perceptual quality for most types of events except for
location-specified ones. This result demonstrates that our approach fails in presenting
location-aware events, although it can generate good cognition-aware image sets for
events in which time or location is not specified.

3.6.4 Image Set Size Selection

In our experiment, the size of an image set was given in advance. Now we propose
a method to automatically determine the appropriate size of an image set for a given
event. The size was compared with sizes we set in the previous experiment by balanc-
ing perceptual quality and small sizes.
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Figure 3.9. Perceptual quality of different types of events and methods. Here, “None”
corresponds to non-time specified or non-location specified, “time” to time-specified,
“location” to location-specified, and “time &location” to time specified and location
specified.

We can see from the comparison of perceptual quality at different sizes that the
benefit of adding another image begins to decrease after a certain size, which means
we can determine the appropriate size by finding the point where perceptual quality and
smallness of the image set size is balanced. Our approach is as follows; in every step
of the greedy algorithm shown in Algorithm 1, we check the objective function value
and compare it with previous values. If the benefit of the added image is smaller than
our required threshold σ , the iteration will end, and previous images will be returned
as a result.

Let Sk−1 and Sk be the result of the (k−1)-th and k-th iteration during the process of
the greedy algorithm. When another image p is added to image set Sk in the (k+1)-th
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Figure 3.10. Evaluation of image set size selection: sizes generated in automatical-
ly (yellow dots) and sizes selected manually by considering each event’s perceptual
quality and smallness of size(blue dots).

iteration, the following condition should be satisfied:

f (Sk∪{p},e)− f (Sk,e)
f (Sk,e)− f (Sk−1,e)

> σ (3.18)

Intuitively, we will stop the iteration of the greedy algorithm if the relative gain in
perceptual quality by adding one more image is small.

With the 50 events, we conducted an experiment with our proposed method and
generated the best size for each event. Here, we set the threshold σ = 0.5. The size
automatically computed by our method is called the selected size. We also select a size
from five sizes (1, 3, 5, 7, 9) in the image set generation experiment that has a relatively
high perceptual quality for a small size and call it the optimal size. A comparison of
these two sizes is shown in Figure 3.10.

From this result, we can see that the general trend between selected size and optimal
size is very similar. It demonstrates that our method can give an approximate size by
balancing both perceptual quality and size smallness.
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3.7 Conclusion and Future Work

In this research, we first proposed a method to achieve cognition-aware summarization
of images presenting events from the perspective of viewers rather than image takers.
To improve the perceptual quality of an image set, which is defined as the accuracy
and quickness of a users recognition of an event from the image set, we focused on
preventing misrecognition of neighbor events, which is different from the work in tra-
ditional research on image sets. The reasons for highly possible misrecognitions were
analyzed, and three criteria were raised to measure the degree of preventing them. A
greedy algorithm was then applied to generate image sets by maximizing the objective
function that combines the three criteria. We compared the performance of Visual-
Rank and our approach. The results showed that our proposed approach improved the
perceptual quality in different sizes of image sets.

Moreover, we analyzed the relationship between the perceptual quality of image
sets and event types considering time and location. The results indicated that time is
easier to express with images than location. Additionally, events that are not time-
or location-specified can be better perceived in images by users. We also conducted
an experiment to find the optimal sizes for image sets of events using our proposed
method, and the resulting image set sizes were compared with manually selected op-
timal sizes. We found that our method was able to give an approximate optimal size
under the premise of high perceptual quality and small image set size.

Additional work is needed to address this problem more comprehensively. Although
we have considered different factors of an event in the analysis, for example, time and
location, we did not make them distinct when generating neighbor events, which will
be part of our future work. Moreover, these factors should be taken into consideration
when analyzing the relationships between events.
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CHAPTER 4

LEARNING SUBJECTIVE ADJECTIVES

FROM IMAGES

4.1 Introduction

Understanding subjective adjectives (e.g. attributes and sentiment) from visual con-
tents has attracted considerable attentions recently [63, 64, 65, 66, 67]. This problem
is more subjective and holistic compared with other image processing problems, in-
cluding object detection, scene categorization, and textual analysis, and requires much
more knowledge about human perception and affection. In natural language, subjective
adjectives are defined as adjectives that express opinions and evaluations [12]. Learn-
ing subjective adjectives from images would enable machines to better understand the
connection between visual contents and human impression, and better simulate human
understanding and affection.

Although a lot of efforts have been made to learn subjective adjectives mainly with
supervised learning approaches (e.g. [64, 63]), it is difficult to apply the existing ap-
proaches to image searching; one of the typical applications of subjective adjective
understanding. The primary reason is the lack of training data for a wide variety of
noun-subjective adjective pairs in an image search. As seen from examples in Fig-
ure 4.1, the expression of a subjective adjective in images can be different for objects
appearing in them (for example, “happy” is expressed with an opening mouth and a
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(a) relevant image of “happy dog” (b) relevant image of “happy girl”

Figure 4.1. Two relevant images with the same “subjective adjective” but different
“nouns”.

hanging tongue for dogs, while it is expressed with the rising radian of the mouth for
girls). Thus, typical datasets for learning adjectives (e.g. [67, 65] ) consist of triplets
of a noun, an adjective, and a set of images that (1) include objects indicated by the
noun and (2) evoke a feeling of the quality of the adjective. Despite a large number of
possible noun-adjective pairs that can be used as search queries, which could be much
larger than nouns used in object recognition problems, the size of the existing datasets
is limited due to a tremendous cost required for human assessment. Therefore, the ex-
isting supervised learning paradigm cannot cover many of the potential noun-adjective
pairs, and cannot be used for simple image search applications.

In this work, we propose a method of learning subjective adjectives that can be used
without images labeled by human annotators, by exploiting results from existing im-
age search engines as weakly-labeled data. Given an “subjective adjective noun pair”
(ANP) query, we retrieve images from an image search engine by inputting the ANP
query and use them as pseudo-relevant images that can include both truly-relevant and
truly-irrelevant images. We also obtain pseudo-irrelevant images by inputting only
the noun in the ANP query. Since the pseudo-relevant and pseudo-irrelevant image
sets can contain irrelevant and relevant images, respectively, the key challenge in this
work is how to effectively learn subjective adjectives from such weakly-labeled data
containing labels with a lot of errors.

To address the challenge concerning weakly-labeled data, we propose a pairwise s-
tacked convolutional auto-encoder that can learn discriminative features from pseudo-
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relevant and pseudo-irrelevant image sets, and can effectively distinguish truly-relevant
and truly-irrelevant images in weakly-labeled data. Unlike conventional stacked con-
volutional auto-encoder [18], the pairwise stacked convolutional auto-encoder learns
a dominant difference shared by a majority of the pairs of a pseudo-relevant and a
pseudo-irrelevant image, and represents each image in a feature space where most
of the pairs exhibit similar differences. We can then effectively distinguish truly-
relevant images from truly-irrelevant ones in this feature space by assuming that a
pair of images that exhibit the dominant difference is a pair of a truly-relevant and a
truly-irrelevant image.

We conducted experiments with images from Flickr to evaluate the effectiveness of
our approach.

Three contributions of this work are summarized as follows:

1. We addressed the problem of the lack of training data for an image search with
ANP queries by utilizing existing image search engines as resources for weakly-
labeled data.

2. We proposed the pairwise stacked convolutional auto-encoder that identifies a
dominant difference between pseudo-relevant and pseudo-irrelevant image sets,
and can learn discriminative features for truly-relevant and truly-irrelevant im-
ages.

3. We conducted experiments with images from Flickr and demonstrated the effec-
tiveness of our approach with and without labeled data.

The rest of the work is organized as follows. We introduce studies that are related
to subjective adjective (sentiment, attribution, emotion, etc. ) analysis from images
and feature representation in Section 4.2. In Section 4.3, we define some of the termi-
nologies used as well as the problem of this research. In Section 4.4, we introduce our
framework of pairwise stacked convolutional auto-encoder for learning discriminative
features for subjective adjectives and how we use the learned feature to rank images.
In Section 4.5, we describe the experiments we conducted with images from Flickr
to evaluate the effectiveness of our approach. Finally, we present our conclusion in
Section 4.6.
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4.2 Related Work

The research on adjective analysis from images can be divided into two main parts in
case of visual computing technologies: handcrafted feature based and deep learning
feature-based approach.

In tradition, researchers in visual computing try to design handcrafted features to
represent images for different purposes. Related works to adjective analysis are sen-
timent analysis [67], aesthetic evaluation [68], interestingness prediction [69], etc. .
Borth et al. has made a significant progress in adjective analysis by proposing a mid-
level representation framework upon psychology and folksonomies. They also provide
a concept detector library based on their ontology.

Recently, deep neural network is widely used in learning robust features from a large
number of images [70, 71]. Although handcrafted features can better convey the ac-
tual features in a meaningful and intuitive way, deep neural network outperforms with
powerful effectiveness. For example, Narihira et al. [64] succeeded in building a visu-
al sentiment ontology from visual data and respects visual correlations along adjective
and noun semantics with a factorized CNN model. Jingwen et al. [63] proposed a deep
coupled adjective and noun neural network for visual sentiment analysis. However, all
those methods that try to learn good features about adjective require a large number
of labeled training images and the adjectives (either sentiment or attribute) are limited
to the labels in the training dataset. In the context of image search, it is unrealistic to
include all possible “adjective” and “noun” combinations, not to mention many labeled
images for all the queries.

4.3 Preliminaries

We will define some terminologies used in this research and introduce the problem
definition in way of a formula in this section.

4.3.1 Terminology Definitions

To better clarify our research, we will use two different terminologies to indicated
the images’ relevance to ANP query: “truly relevant” and “pseudo-relevant”. Truly
relevant images are defined as:
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Definition 10 ( Truly relevant images of an ANP query). Images that specifically con-
tain exactly object(s) of “noun” and are able to impress viewers with the quality of
“adjective”.

Search results of ANP queries are defined as pseudo-relevant images since they are
are not all truly relevant images for the three reasons we explain in Section 4.1.

Definition 11 (Pseudo-relevant images of ANP query). Search result images of ANP
query from existing image search engines (e.g. Flickr image search).

Since our focus in this research is features that are discriminative to “adjectives”, we
define truly irrelevant images to an ANP query as:

Definition 12 (Trully-irrelevant images of ANP query). Images that include the “noun”
but cannot impress users of the “adjective”.

Similarly, pseudo-irrelevant images are defined as:

Definition 13 (Pseudo-irrelevant images of ANP query). Search results of only “noun”
query from existing image search engines (e.g. Flickr image search).

4.3.2 Problem Definition

In this research, our target is to learn discriminative features for adjective from images
of ANP query and then use the learnt features to improve image ranking. An “adjective
noun pair” (ANP) query is denoted as q =< a,n >, where a is an adjective and n is a
noun. We use P = S(< a,n >) = {p1, p2, p3...}, |P|= m to denote top m search result
images of “adjective noun” query in image search engines (e.g. Flickr image search)
and Q = S(< n >) = {q1,q2,q3...}, |Q| = m to denote top m search result images
of “noun” query. Here P is defined as pseudo-relevant image set and Q is pseudo-
irrelevant image set. Have these above as input and k,k ∈ N, we aim to get output as
O = {(o1,1),(o2,2), ...},oi ∈ P, |O|= k.

With an ANP as the input, we can find pseudo-relevant image set P and pseudo-
irrelevant image set Q (suppose they are also regarded as inputs). The number of top
rankings is also given, denoted as k. Our target is to rank images in P to get the top k
images in a sequence based on these images’ relevance to the input ANP query.
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4.4 Approach

In this section, we will explain how we learn discriminative features of adjective
from images and how these features are used to measure relevance of images to ANP
queries.

As we have defined in Section 4.1, an image is relevant to an ANP query when the
content of the image includes exactly the “noun” (e.g. sky, cat, people) in the query
and we can feel the quality of the “adjective”(e.g. blue, cute, happy) from the image
as well. Intuitively, the problem of measuring the relevance of an image to an object
(“noun”) is similar to object recognition problem. However, when object and adjective
are combined to be measured, the problem becomes much more complicated, because
features that make an image relevant to an ANP query depend on both the “adjective”
keyword and the “noun” keyword. Traditional training ways that try to learn useful
features with supervised methods require a large number of images with ground truth
labels. However this is unrealistic for image search problems. Thus, we propose to
apply unsupervised approach to learn discriminative features of adjectives for a certain
object, and then use these learnt features to estimate relevance of an image to the ANP
query.

By applying unsupervised learning method to pseudo-relevant images, such as s-
tacked convolutional auto-encoder, it is able to learn representative feature for both
“adjective” and “noun”. However, features of “noun” are usually more significant
than features of “adjective”. The reason is that discriminative features of “adjective”
are usually very subtle [72]. Among all the representative features of ANP query, it
is difficult for us to distinguish the discriminative ones for “adjective”. For example,
hanging tongue is typical feature for “happy dog” while it will be easily to be dismissed
since the shape of mouth is more significant for most images of “dog”. For this reason,
we propose to compare pseudo-relevant images with pseudo-irrelevant images to bet-
ter learn discriminative features for “adjective” of a certain “noun”. Our assumption is
that:

Assumption 2. Discriminative features that help add the quality of “adjective” are
similar for one object (“noun”) in certain dimensions.

With this assumption, we can know that differences that represent discriminative
features are similar while differences of other features are not similar. As a result,
we can learn the discriminative features by comparing pseudo-relevant images and

54



4. Learning Subjective Adjectives from Images

pseudo-irrelevant images.
The main approach consists of three parts:

1. Make image pairs that consist of one image from pseudo-relevant images and
another from pseudo-irrelevant images,

2. Learn discriminative feature to represent differences between truly relevant im-
ages and truly irrelevant images from image pairs with our proposed pairwise
stacked convolutional auto-encoder,

3. Use the learnt discriminative features to rank images.

4.4.1 Image Pair Construction

In order to decrease the side effects of many noisy differences between two images, we
first conduct a image pair selection from the pseudo-relevant images and the pseudo-
irrelevant images. Since the discriminative features we aim to find are more about
“adjectives”, objects play a less important role in the difference between a truly rele-
vant image and a truly irrelevant image.

We utilize 16-layer deep neural network [71] to detect objects for all the images
in the pseudo-relevant and pseudo-irrelevant images. The algorithm to construct our
image pairs from two sets of images is shown in Algorithm 2.

Algorithm 2 Image Pair Construction Algorithm
Require: Pseudo-relevant images: P = {p1, p2, p3...}, |P|= m;

Pseudo-irrelevant images: Q = {q1,q2,q3...}, |Q|= m;
Top ten detected objects in each image: R(p) = {r1,r2,r3...}, |R(p)|= 10 for p ∈
P∪Q.

Ensure: A set of image pairs: {(pi,q j)}, pi ∈ P,q j ∈ Q.
1: T = {}
2: for each pi ∈ P do
3: q∗ = argmax

q∈Q
Sim(R(pi),R(q));

4: T = T ∪{(pi,q∗};
5: Q = Q−{q∗};
6: end for
7: return T
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Figure 4.2. The framework of pair-wise stacked convolutional auto-encoder architec-
ture.

Similarity of two sets of object is simply defined as the cosine similarity since the
detected objects are among a certain range of classes (1000 classes in ImageNet [73]).

4.4.2 Pair-Wise Stacked Convolutional Auto-Encoder

As we has explained, without a large number of labeled images for image search prob-
lems, we apply unsupervised learning method to learn representative features for ANP.
The overall architecture we use is stacked convolutional auto-encoder that is used to
learn representative features of images. The encoder-decoder paradigm is used in many
unsupervised feature learning methods, such as Predictability Minimization Layers
[14], Restricted Boltzmann Machines (RBMs) [15] and auto-encoder [16]. The basic
idea of auto-encoder is to learn a representation model by make the reconstructed out-
put as similar as the input. The input is first fed to the encoder which produces a lower
dimensional space (e.g. feature vector). Then the decoder module reproduces the in-
put from the dimensional space. The encoder and decoder are trained to minimize the
average reconstruction error. To deal with 2D image structure with auto-encoder and
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reduce redundancy in the parameters brought by global features, convolutional auto-
encoder (CAE) is proposed [18]. The weights are shared among all locations in one
feature map of a channel and the reconstruction is a linear combination of basic image
patches based on the latent code. Deep networks can be trained by building several
auto-encoder in a layer-wise way [19] and it is applied in many recent researches [74]
[75].

Since our target is more about the discriminative features for the “adjective” of a
certain “noun” and they are indicated by differences between image pairs, we propose
to modify the auto-encoder into pairwise way. Figure 4.2 shows the architecture of our
proposed pairwise stacked convolutional auto-encoder.

Suppose we have one image pair (a,b),a∈ P,b∈Q. Both images a and b are passed
through the network. The whole network consists of two main parts: encoding part in
the first half and decoding part in the second half. The encoding part and the decoding
part have the same number of processes in a stacked way. In other words, the first
encoding process is corresponding to the last decoding process. The output of lower
process serves as the input of next process. As we can see from Figure 4.2, suppose we
have three processes in the encoding part: Encoding process # 1, Encoding process #2,
and Encoding process #3. The three corresponding decoding processes are: Decoding
process #3, Decoding process #2, and Encoding process #1 in sequence. We use the
same number to indicate corresponding encoder and decoder.

The upper part of Figure 4.2 explains the detailed workflow of each encoding process
and decoding process. Each encoder consist of a convolutional layer to map the input to
several feature maps with different kernels (convolutional matrix) and a max-pooling
layer for spatial down-sampling. The decoder includes an up-sampling layer and a
deconvolutional layer. Suppose in the m-th encoding process, the input of image a is
denoted as ima and we have latent feature maps of number H. For the input ima of k-th
feature map (0 < k 6 H), the representation is computed as:

ym(k)
a = σ(ima ∗W m(k)+bm(k))

. Here σ is an activation function and ∗ denotes the 2D convolution. The bias bm(k) is
broadcasted to the whole map. The output of the 2D convolution is then applied with
max-pooling to down-sampling the latent representation to improve filter selection and
avoid overfitting by taking the maximum activity within input feature maps. The output
of m-th encoding process is then used as input of m+ 1-th encoding process. In its
corresponding m-th decoding process, up-sampling is first done to restore the max-
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pooled features. Suppose after unpooling process, for k-th feature map (0< k6H), we
have up-sampled output of last decoding process denoted as zm(k)

a . The reconstruction
is obtained with:

om
a = σ(∑

k∈H
zm(k)

a ∗W̃ m(k)+ c).

W̃ m(k) denotes the flip operation over both dimensions of the weights in the k-th feature
map of m-th encoding process.

In usual convolutional auto-encoder, mean squared error (MSE) between the input
and reconstructed output is used to measure the cost function that is to be minimized.
As in the standard neural networks, the backpropagation algorithm is applied to com-
pute the gradient of the cost function with respect to the parameters. As a result, the
representative features are learnt to reconstruct the input image as well as possible.

In our pair-wise auto-encoder, we are supposed to find the representative differences
between sets of image pairs and we hope our network can well reconstructed these
differences. Thus, in addition to computing cost function with reconstructed output and
original input, we also compare differences of the reconstructed output with differences
of original input. As we can see from Figure 4.2, for two images a and b in the
image pair, suppose the input of the m-th encoding process are denoted as ima and
imb respectively. We use d(ima , i

m
b ) to define the difference of these two images’ input

before passing them into the m-th encoding process through our network:

d(ima , i
m
b ) = ima − imb .

Similarly, we use om
a and om

b to represent the feature representation (reconstructed out-
put) after m-th decoding process for image a and image b through the network, and
their difference are denoted as d(om

a ,o
m
b ). We then define the squared-error loss be-

tween the two differences in k-th encoding process and k-th decoding process:

Lm
diff(a,b) = MSE(d(ima , i

m
b ),d(o

m
a ,o

m
b )).

For image a and image b, Mean Squared Error is also computed to measure the loss
between input and reconstructed output in m-th process:

Lm
content(a) = MSE(ima ,o

m
a ),

Lm
content(b) = MSE(imb ,o

m
b ).
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Suppose we have n encoding processes and n decoding processes, the total loss is
weighted sum of mean square errors in all corresponding encoding-decoding process-
es:

Ltotal = ∑
m∈(1,n)

(wm
diffL

m
diff(a,b)+wm

a Lm
content(a)+wm

a Lm
content(b)

where wm
diff is weighting factor to indicate the contribution of two image’ difference in

m-th process to the total loss. wm
a and wm

b indicate the importance of reconstruction of
image contents in m-th process for image a and b.

The backpropagation algorithm is applied to compute the gradient of the error func-
tion with respect to the parameters.

4.4.3 Image Ranking with Learnt Features

After optimization of lost function in our pairwise stacked convolutional neural net-
work, a series of parameters are learnt in the network. With these learnt parameters,
we are able to encoder an input image to some feature maps that can represent the
input images with most representative features. In the third step, we rank the pseudo-
relevant images with VisualRank [76] by defining the similarity between two images
using these encoded features maps. VisualRank will rank images that are have most
similar feature maps to other images in the tops.

The formula of VisualRank is shown as follows: given n images, VR is recursively
defined as

V R = dM∗×V R+(1−d)p,

where p =
[1

n

]
n×1. M∗ is the column normalized adjacency matrix M, where Mi, j

is the similarity between image pi and p j, which is computed by Euclidean distance
between visual features of two images. Visual features of each image is the encoded
feature maps after applying the trained encoders in our pairwise stacked convolutional
auto-encoder.

4.5 Experiment

We evaluate the proposed pairwise stacked convolutional auto-encoder on ten queries
with images we crawled from Flickr.

59



4. Learning Subjective Adjectives from Images

4.5.1 Datasets

Table 4.1. The queries we used in the experiment. (Ratio A: ratio of truly relevant
images in pseudo-relevant images, Ratio B: ratio of truly relevant images in pseudo-
irrelevant images)

Query Ratio A Ratio B
happy dog 0.785 0.18
tiny flower 0.688 0.3
clear sky 0.565 0.2

ancient city 0.865 0.2
falling snow 0.735 0.25
warm water 0.425 0.075
happy kids 0.83 0.3
dry flower 0.81 0.055

fluffy clouds 0.899 0.675
fresh flowers 0.78 0.6

In the experiment, because of the restricted images crawling from the search engines
(not allowed to crawl or a very limited number of permission), we decided to use
existing dataset that used in [67]. One advantage of using this dataset is that with the
labels for each images, we do not need to spend extra cost to evaluate whether an image
is relevant to a query or not in the evaluation phase. The images in the dataset are from
Flickr and the dataset include 1553 ANPs (Adjective Noun Pairs) with their images. In
order to make our dataset, we clustered all the ANPs based on nouns. The we selected
ten queries (ANPs as called in their research) with nouns that have many adjectives in
the cluster. We also considered the number of images for the queries to make sure that
each query have more than 1000 images. Table 4.1 lists all the queries we used in the
experiment.

To better simulate the ratio of truly relevant images in the pseudo-relevant image set
and pseudo-irrelevant image set as in the real search engines, we conducted a survey
of these ten queries in web image search engines (Google and Flickr). For each query,
we surveyed the ratio of truly relevant images to the query in the top 200 result images
with both pseudo-relevant images (results of the subjective adjective noun query) and
pseudo-irrelevant images (results of the noun query). We took the average number as
the simulation ratio as showed in Table 4.1. For each query, images of the query are
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Figure 4.3. Structure of neural network in experiment.

treated as truly relevant images and images of other ANPs with the same noun are
treated as truly irrelevant images (we also filtered some ANPs that have very similar
subjective adjectives, such as “excited kids” for “happy kids”). The pseudo-relevant
image dataset and pseudo-irrelevant image dataset were constructed by adding images
from the truly relevant images and truly irrelevant images with their numbers fit the
ratio we surveyed in real image search engines.

4.5.2 Network Structure

In the experiments, after experimental trial, we set four encoders and four decoders in
our pairwise stacked convolutional auto-encoder architecture. Figure 4.3 shows the of
each layer during encoding processes.

All the input images are first resized to 128× 128 in three channels (RGB) before
passing to the network. For the size of filters, we follow the idea of VGG net proposed
in [71], We use two 3× 3 filters for the first two convolutional layers. Two ReLU
layers are followed after each convolutional layer and a 2×2 max-pooling is done after
these two convolutions. Smaller filters help retain a lot of original pixel information
in the input since some differences between truly relevant images and truly irrelevant
images rely on those small details, and two continual convolutional layers can simulate
a larger filter that are used in many other networks. Max-pooling is also applied in the
third and fourth encoding processes. Size of input and output in each layer is also
shown in Figure 4.3. After several empirical tests, we finally set 32 filters for the first
two convolutional layers and double the number in the third and fourth convolutional
layers. As a result, the output of all the encoding processes as well as the input of
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decoders is sized to 128×14×14.
Each time for training, we have a batch of image pairs passing to the network to-

gether to get the optimized parameter and we set the batch number to 64. For all the
training image pairs, we have 20 times forward and backward processes (number of
epoch is set to 20).

To determine the layer in which input should be well reconstructed, we do experi-
ments on each layer by setting weights on layer to 1 and weights on layers to 0. The
most above layer turns out to be most proper with quickest converging and better re-
construction. This can be also well explained in a intuitive way. The higher layers
are more about abstract content while the lower layers are responsible for pixel-level
reconstruction. In our research, since we aim to find common features in most images
that are representative for ANP query and we do not care about pixel-level reconstruc-
tion, higher level features with more abstract contents should be reconstructed well.
Thus, we set w4

diff = 1 and w4
a = 1. Weights in all other layers are set to 0. In addi-

tion, we find that reconstruction of pseudo-relevant images among the image pairs is
enough to address the content reconstruction, and for better comparison with single s-
tacked convolutional auto-encoder, we set weights of reconstructing pseudo-irrelevant
images’ content to 0. Single stacked convolutional auto-encoder is trained by setting
w4

a = 1 and all other weights to 0.

4.5.3 Result

Table 4.2. Result of our approach and the precision of top 200 in image search engines
for two queries.

Query Precision@200* Accuracy of ours
happy dog 0.565 0.617
clear sky 0.785 0.802

* the mean precision of top 200 in image search
engines (Google image and Flickr)

Table 4.2 shows comparison of our approach and the mean precision of top 200 in
image search engines (Google image and Flickr) for two queries. We can see that our
approach could slightly outperform the current image search engine when the query is
a “subjective adjective noun” query.
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We consider much more space for improvement in this research. In the future, we
will take consideration of similar subjective adjectives when getting pseudo-relevant
images and pseudo-irrelevant images. Images in the dataset we use are not really truly
relevant images and truly irrelevant images. In that case, we consider to make our
own dataset that can perfectly match our research goal, such as sequence of images for
the same objects. Parameter is a very important factor to influence the performance
of deep neural network and we will need more trials to adjust them to make better
performance. Moreover, we will try to get visual representation of the learnt features
to have a better and intuitive understanding of what we have learnt with the network.

4.6 Conclusion

In this work, we propose to solve the problem of estimating relevance of images to
“subjective adjective noun” queries by first learning discriminative features of “sub-
jective adjective” from images with unsupervised deep convolutional auto-encoders
and then learn to measure the relevance. We propose pair-wise stacked convolution-
al auto-encoders to find discriminative features that can represent differences between
relevant images and irrelevant images. We show our conducted experiment and the
result is compared with precision of some image search engines. Finally we make a
discussion according to the result and we list some future plans.
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CHAPTER 5

VISUAL STORYTELLING

5.1 Introduction

Recent years, we have seen a bursting number of researches in bridging the gap be-
tween vision and language. Driven by the availability of large scale of pairing image
and natural language descriptions and successful use of recurrent neural network (RN-
N), encouraging progress has been made in language generation from images [6, 7, 77].
In this work, we tackle the problem of generating a story that consists of several sen-
tences from a sequence of images, i.e., visual storytelling. Compared with image cap-
tioning and paragraphing, visual storytelling is a more subjective task that requires
an overall understanding and connection of all images and aims to generate sentences
with consistent semantics.

Visual storytelling has been explored by several researches in recent years [78, 8,
4, 1, 79]. Compared with image description generation, visual storytelling is facing
with two problems. Firstly, the ordered sequence of images guides the content of the
stories, which means the same image will correspond to different contents when it
occurs in different sequences of images. Secondly, due to the fact that stories come
from the integration of visual contents and human understanding, human’s different
perception will lead to different stories even for the same sequence of images. Fig. 5.1
shows an example of different stories annotated by different user for the same sequence
of images. Most current related works deal with the first problem and they usually
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Annotator 1: 
(a) On Saturday we arrived at the stadium. we had waited all week for this adventure. 

(b) [male] was surprised to see a school friend of his. 

(c) It 's strange the things one will see in public sometimes. The kids wanted to take this picture. 

(d) The kids were really excited . they had talked about it all week. 

(e) We became fearful when the sky began to darken. We had not realized that there were 

weather warnings.

Annotator 2: 
(a) it was a nice evening to visit the stadium with the family. 

(b) The children were excited and ready to make friends with fellow spectators. 

(c) One eager young man painted his face in celebration. 

(d) As the evening progressed, the children grew giddy with anticipation. 

(e) A darkened sky and a commotion in the field meant the festivities were about to begin.

(a) (b) (c) (d) (f)

Figure 5.1. Example of stories annotated by different users for the same image. For
image (b), annotator 1 reads surprising from the kid’s face while annotator captures
excitement. For image (d), the kids are excited for annotator 1 while they are giddy for
annotator 2. Sentences for these two images contain different contents with different
emotion interpretation.

ignore the fact that human-level stories are resulted by not only visual contents, but
also other factors. Thus they result in stories with general sentences that are suitable for
many images. In this work, we mainly focus on the second problem. There are many
factors that influence our understanding of an image sequence. From the perspective of
human perception and affection, we consider emotion as one of the key factors. Given
the example of Fig. 5.1, different emotions for the image (b) and (d) cause different
sentences for these images and also affect the trend of whole story.

To generate a human-like story from an image sequence, we are facing with the
following three challenges. First of all, compared with existing works of generating
stories from image sequences, we have emotion as an additional input to the story gen-
eration. Secondly, to simulate human process of telling a story of an image sequence,
we require an image sequence corresponding to several different emotion sequences.
In addition, emotion of one image depends on not only visual content, but also its con-
textual images in a sequence. Thirdly, as a story generated from an image sequence
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conditioned by emotion, we require the generated story to satisfy image-relevance,
emotion-consistency and story-likeness.

To address the above challenges, we propose a coupled-RNN visual story generator
with image stream and emotion as input and the generated stories are further optimized
by policy gradient. Two discriminator networks aims to guarantee the generated sen-
tences are relevant to each corresponding image and in accordance with story language
style, and one similarity function is computed to measure consistency of generated s-
tory and input emotion. The two discriminators and emotion similarity function are
jointly used to provide rewards for story generation approximation. To predict several
emotions from one image, we propose to utilize conditioned variational auto-encoder
(CVAE) [80] to generate diverse but realistic emotions. In order to make the pre-
dicted emotions coherent in an image stream, we recurrently connect CVAEs of each
emotion prediction model to sequentially update the predicted emotions. we conduct
experiments on visual storytelling (VIST) dataset [8]. The generated stories are evalu-
ated in both objective and subjective ways. We define automatic evaluation metrics in
terms of image relevance, emotion relevance and expressiveness. User studies are also
conducted concerning these three metrics. Turing test is performed to test the human-
likeness of our generated stories. The contribution of this work can be concluded as
follows:

• We propose to introduce emotion as an important factor to generate story from
image stream. To the best of our knowledge, this is the first attempt to put for-
ward emotion for visual story generation, which enables a machine to generate
human-level stories.

• We incorporate an emotion prediction model which is able to predict diverse and
coherent emotions and a coupled-RNN story generator with image stream and
emotion as input, in which to discriminators and a similarity function provide
rewards for measuring image relevance, emotion relevance and story style.

• We conduct extensive experiments to demonstrate the effectiveness of our ap-
proach compared with several baselines in both objective and subjective evalua-
tion metrics.
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5.2 Related Work

There are many studies conducted on generating sentence(s) from images. We will
review them based on two categories: visual description generation and visual story-
telling.

5.2.1 Visual Description Generation

Visual description generation (image captioning and paragraphing) aims to find or gen-
erate sentence(s) to describe one image. It is first researched as a retrieval problem so
that sentences with similar semantic meaning will be searched [81, 82]. The prob-
lem of search-based generation is that it cannot provide accurate sentences for images.
Template filling method is thus proposed to overcome this problem [83].Recently, with
the development of deep neural network, integration of convolutional neural network
(CNN) and recurrent neural network (RNN) is boosting the sentence generation re-
search for readable human-level sentences [84, 85, 6, 7, 86]. Later on, generative
adversarial network (GAN) is utilized to improve generated sentences for different
problem settings [77, 26]. However, as we have addressed, the target of image descrip-
tion generation is to use sentence(s) to describe factual visual content while story is an
combination of visual contents and human subjective perception (emotion).

5.2.2 Visual Storytelling

Visual storytelling is a rather new topic but has attracted many attentions. Generat-
ing several sentences for the purpose of storytelling is more challengeable than visual
description for one image. Relationship between different visual contents need to con-
sidered to form a good story and sentences for a story have to be coherent. Similar to
visual description researches, early works mainly focus on search-based method to re-
trieve the most suitable sentence combination for an image sequence [78]. [4] proposes
a skip Gated Recurrent Unit to deal with semantic relation between image sequence
and generated sentences. Then methods leveraged by image captioning, especially
CNN-RNN framework is extended for story generation [8]. Recently, we have seen
some works that utilize reinforcement learning and generative network for better story
generation [1, 79, 87]. Though topic is introduced in [87], existing works still lack of
subjective perception of human when making stories, which we first introduce in this
paper.
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5.3 Approach

Our model can be considered as a encoder-decoder framework, implemented with a
hierarchical recurrent neural network structure. The encoders can be considered in two
main parts: one being a simple story generator, the other being our novel sequential
emotion generator.

In addition, we apply reinforcement learning with emotion reward to our model.

5.3.1 Overview

Given a photo sequence, we first extract the global features of each image with a VG-
G16 model. The outputs from the last fully connected layer (fc7) is utilized. We then
feed the image features to both the story generator and the emotion generator.

The story generator is an RNN with gated recurrent unit (GRU) as its cell. It is used
to generate the story feature of each image. At the i-th time step, we feed the GRU
the feature of the i-th image as its input, and takes the hidden state of the GRU cell as
its output. With the RNN, the coherence among photos is enhanced, which is crucial
to story generation. Therefore we consider the output the story feature of the current
image.

The emotion generator is a sequentialized conditional generative adversarial net-
work. It generates a creative yet plausible emotion for each image as it not only takes
the image as input, but also takes a random noise vector as input, which gives the mod-
el creativeness. It is based on the original CGAN. to the We added a GRU layer in
the generator. By adding the additional GRU layer, when generating each emotion, the
generator is aware of the previous emotions predicted. Therefore the output contains
contextual information as well. The generator is supervised by two discriminators, a
relevance discriminator and a consistency discriminator.

The outputs of both generator are concatenated and fed into a decoder RNN. It is a
language model that predicts the best possible sentence based on its input, in this case,
the story feature and the emotion feature of the current image.

We implemented reinforcement learning. The reward consists of three parts, image-
relevance, story-likeness and emotion-consistency. The first two parts, image-relevance
and story-likeness are scored by two separate discriminators. The emotion-consistency
is measured by comparing the emotion of the story that our model generates with the
emotion our model is given.
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5. Visual Storytelling

5.3.2 Emotion Generator

Our emotion generator is based on CGAN and follows the generator-discriminator
structure. The generator is a multi-layer perceptron, followed by a GRU:

It takes two inputs, the image features of the photo sequence and a sequence random
noise vector and learns to generate a creative yet plausible emotion vector. The GRU
in our generator enables it to generate context-aware emotions.

We implemented two levels of discriminators in our work. One being a instance-
level discriminator that measures the image-relevance of the generated emotions, while
the other being a sequence-level discriminator that measures the consisetency of the
generated story sequence.

The instance-level discriminator is composed of a multi-layer perceptron that takes
a emotion and a image feature as input, and learns to predict whether the input emotion
is the groundtruth emotion paired with the image, a random emotion picked from the
dataset or the generated emotion.

The story-level discriminator, on the other hand, is composed of a GRU layer, fol-
lowed by a multi-layer perceptron. It takes the whole emotion sequence as input, and
learns to predict whether the input emotions are a sequence from the dataset, a se-
quence of randomly picked emotions or a generated sequence.

The generator and the discriminators are jointly trained. Just like the original C-
GAN, when training the generator, we connect the generator and the discriminators
together and fix the discriminator.

5.3.3 Story Generator

We use a GRU as the story generator. The GRU is a type of RNN that defined as:
It contains a hidden state that serves as its memory and updates the hidden state

based on the current input, its reset gate and update gate, as well as the last hidden
state.

Since the RNN generates the output based on the current input and the previous
inputs, the output contains the contextual information of the current image. There-
fore, the coherence among photos is enhanced. Because coherence is a crucial part of
storytelling, we consider the output of the RNN the story feature of the input image.
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5. Visual Storytelling

5.3.4 Emotion Feature

We incorporate an emotion detection model for emotion extraction. Given a input sen-
tences, it predicts the most possible emoji to express the sentence. The probability
distribution on all possible emojis are utilized as the emotion feature in our experi-
ments.

5.3.5 Decoder

Given the predicted story feature and generated emotion feature, the decoder predicts
the best possible sentence. We use a RNN language model as decoder, which predicts
sentences by predicting each word according to the story and emotion feature, as well
as all the previously predicted words.

5.3.6 Reinforcement Learning

We incorporate reinforcement learning in our approach by considering our generator
as the agent, and each word picked as an action given the situation. The generated
is guided with a reward that consists of 3 parts, image-relevance, story-likeness and
emotion-consistency. The first two measurements are judged by two discriminators,
an instance-level discriminator that measures the image-relevance and a sequence-level
discriminator that measures the story-likeness, as discribed by [1]. The instance-level
discriminator is trained to discriminate paired sentences and images from randomly se-
lected sentences and generated sentences, while the story-level discriminator is trained
to discriminate real stories picked from the dataset from stories formed with randomly
selected sentences and stories generated by our generator.

5.4 Experiment

5.4.1 Dataset and Analysis

We conduct our experiments on the VIST dataset created by [8]. The VIST dataset
is created for the task of visual storytelling. It contains 81,743 photos obtained from
Flickr website with 20,211 image sequences arranged. Stories for each image sequence
are annotated through AMT (Amazons Mechanical Turk). Each sequence contains 5
images and most sequences has multiple annotations.
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5. Visual Storytelling

For preprocessing, we filtered out sequences with images that are no longer available
on Flicker, with 40,143 photos and 80,21 sequences remaining for training set, 5,055
photos and 1,011 sequences for testing set. In addition, we tokenized the sentences
and filtered out words with occurrence less than 4, creating a vocabulary with 10,698
words.

11%

19%

9%

13%
10%

10%

12%

16%

0 1 2 3 4 5 6 7

Figure 5.3. Distribution of emotions in the training dataset of VIST. Emotions are
extracted by DeepMoji and clustered into 8 types, in which a typical emoji is shown.

To investigate our proposal that emotions play an important role in stories, we make
an analysis to sentences in the VIST dataset from two perspectives. Firstly, we check
the diversity of emotions among annotated sentences. Figure 5.3 shows the emotion
(labeled by emojis) distribution in the training dataset. We can see that different e-
motions are equally distributed among all the sentences. Secondly, we investigate the
emotion difference of sentences for the same image. Suppose for each image, we have
n sentences annotated by n users for image i and m different emotions predicted from
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5. Visual Storytelling

these sentences. We compute diversity of emotions for the same image as:

D(i) = logn
m
n
+1,1 6 m 6 n,n > 1. (5.1)

D(i) is cast to range [0,1]. The average diversity of all sentences is 0.72 and this results
verifies our assumption that stories annotated by different users will include different
emotions.

5.4.2 Experiment Settings

In our experiments, we use the outputs from the fc7 layer of a pre-trained VGG16 mod-
el, which has 4096 dimensions, as our image features. The sizes of the hidden states of
the story encoder RNN and the language decoder RNN are 1,000 and 1,200 respective-
ly. We utilized DeepMoji [?] to extract emotion features for sentences. The emotion
features are of 64 dimensions and are embedded into a space with 200 dimensions.

5.4.3 Compared Methods

To investigate the effectiveness of the proposed methods, we compare the results of
our models with four baseline methods. We include several image/video captioning
models and the previous state-of-the-art model on story generation. The models are:

Sentence-Concat [6]: a classic method to incorporate the basic CNN encoder -
RNN decoder framework on the problem of image captioning. For story generation,
we simply concatenate individual outputs for each photo together for the complete
story.

Regions-Hierarchical [7]: a hierarchical recurrent neural network that generates
several sentences for single images.

SRT [1]: the current state-of-the-art which is the first to incorporates reinforcement
learning in the task of storytelling. We test their methods with two settings: SRT w/o
D and SRT w/ D for fair comparison with our model with and without discriminators.

Our Model: to examine the effectiveness of two discriminator and emotion affirma-
tion as rewards, we train our model with two settings. Pretrained model without critics
(Ours w/o critics) and with all critics (Ours).

5.4.4 Objective Evaluation Metrics

For objective evaluation, similar to other visual storytelling researches, we compare
the generated stories with reference stories and compute the language similarity with
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Method BLEU-1 BLEU-4 METEOR CIDEr

Sentence-Concat[6] 38.28 4.17 10.52 8.45

Regions-Hierarchical[7] 34.92 3.70 9.97 6.51

SRT w/o D[1] 40.88 4.49 11.03 9.79

SRT w/ D[1] 43.40 5.16 12.32 11.35

Ours w/o critics 47.0 5.4 11.5 7.0

Ours 47.1 5.5 11.6 7.4

Table 5.1. Automatic evaluation. All scores are reported as percentage (%).

some NLP metrics (e.g., METEOR, BLEU, CIDEr). METEOR and BLEU are eval-
uation metrics for machine translation whereas CIDEr is designed for image based
captioning tasks. The three metrics calculate scores based on the correlation between
the generated stories and the ground-truth stories. Note that the relevance here only in-
dicates the relevance between generated stories and reference stories and cannot reflect
whether the generated stories are really relevant to image sequence.

5.4.5 Results and Analysis

Table 5.1 shows the evaluation result of our method compared with baseline methods.
We can see that our approach achieves the highest score in BLEU-1 and BLEU-4.
Figure 5.4 shows some examples of our generated method compared with state-of-art
method and ground-truth stories annotated by users. We can see the comparison from
words in red and green that our approach is able to generate more expressive and more
concrete contents.

5.5 Conclusion

We introduce emotion as an important factor for the purpose of visual storytelling. Our
approach incorporate a cGAN based emotion generator and a CNN-RNN based story
generator. Image content and emotion are encoded and combined as input for story
decoder. Emotion affirmation and two discriminators provide rewards to optimize the
generated stories.
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State-of-art: The family went to the market for some food. The food was delicious. They food 
was great and everyone was having a great time. The beer was great and the food was great. 

The man is happy to see that he is going to eat.

Ours: With emotion: Everyone was waiting for the food to begin. We had a lot of food. The 
man and woman are seen laughing and conversing after the meal. The wine was very good. The 
man was seen doing a great job on the great day.

State-of-art:  The sky was a blue sky and it was clear to be in the sky. The mountain was 
beautiful. The mountain view was beautiful. The mountain was beautiful. The valleys were 

where all the people lived.

Ou rs :  The man went on a vacation to the mountains. The mountain was magnificent. The 
mountains were beautiful. I took a picture of a small village that was built in location. The 
mountains were gorgeous.

State-of-art: The speaker was presenting with his speech. The speaker is very motivating. The 

speaker is very motivating. He was very happy to have done a well earned. He was very happy.

Ours :  The presentation was ready for the conference. The first speaker was the first to be 
there and he opened the business. He also gets a chance to meet the boss. He was very happy. 
The speaker is finished and the award is placed on the table.

Figure 5.4. Example of stories generated by state-of-art method [1] and our approach.
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CHAPTER 6

POETRY GENERATION FROM IMAGE

6.1 Introduction

Researches that involve both vision and languages have attracted great attentions re-
cently as we can witness from the bursting works on image descriptions like image
caption and paragraph [26, 5, 7, 6]. Image descriptions aim to generate sentence(s) to
describe facts from images in human-level languages. In this work, we take one step
further to tackle a more cognitive task: generation of poetic language to an image for
the purpose of poetry creation, which has attracted tremendous interest in both research
and industry fields.

In natural language processing field, poem generation related problems have been
studied. In [88, 89], the authors mainly focused on the quality of style and rhythm.
In [90, 89, 91], these works have taken one more step to generate poems from topics.
Image inspired Chinese quatrain generation is proposed in [92]. In the industrial field,
Facebook has proposed to generate English rhythmic poetry with neural networks [88],
and Microsoft has developed a system called XiaoIce, in which poem generation is one
of the most important features. Nevertheless, generating poems from images in an end-
to-end fashion remains a new topic with grand challenges.

Compared with image captioning and paragraphing that focus on generating descrip-
tive sentences about an image, generation of poetic language is a more challenging
problem. There is a larger gap between visual representations and poetic symbols that
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6. Poetry Generation from Image

Description:
A falcon is eating during sunset. 
The falcon is standing on earth.

Poem:
Like a falcon by the night

Hunting as the black knight
Waiting to take over the fight
With all of it's mind and might

Figure 6.1. Example of human written description and poem of the same image. We
can see a significant difference from words of the same color in these two forms. In-
stead of describing facts in the image, poem tends to capture deeper meaning and
poetic symbols from objects, scenes and sentiments from the image (such as knight
from falcon, hunting and fight from eating, and waiting from standing).

can be inspired from images and facilitate better generation of poems. For example,
“man” detected in image captioning can further indicate “hope” with “bright sunshine”
and “opening arm”, or “loneliness” with “empty chairs” and “dark” background in po-
em creation. Fig. (6.1) shows a concrete example of the differences between descrip-
tions and poems for the same image.

In particular, to generate a poem from an image, we are facing with the follow-
ing three challenges. First of all, it is a cross-modality problem compared with poem
generation from topics. An intuitive way for poem generation from images is to first
extract keywords or captions from images and then consider them as seeds for poem
generation as what poem generation from topics do. However, keywords or captions
will miss a lot of information in images, not to mention the poetic clues that are im-
portant for poem generation [90, 91]. Secondly, compared with image captioning and
image paragraphing, poem generation from images is a more subjective task, which
means an image can be relevant to several poems from various aspects while image
captioning/paragraphing is more about describing facts in the images and results in
similar sentences. Thirdly, the form and style of poem sentences is different from that
of narrative sentences. In this research, we mainly focus on free verse which is an open
form of poetry. Although we do not require meter, rhyme or other traditional poetic
techniques, it remains some sense of poetic structures and poetic style language in po-
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6. Poetry Generation from Image

ems. We define this quality of poem as poeticness in this research. For example, length
of poems are usually not very long, specific words are preferred in poems compared
with image descriptions, and sentences in one poem should be consistent to one topic.

To address the above challenges, we collect two poem datasets by human annota-
tors, and propose poetry creation by integrating retrieval and generation techniques in
one system. Specifically, to better learn poetic clues from images for poem genera-
tion, we first learn a deep coupled visual-poetic embedding model with CNN features
of images, and skip-thought vector features [93] of poems from a multi-modal po-
em dataset (namely “MultiM-Poem”) that consists of thousands of image-poem pairs.
This embedding model is then used to retrieve relevant and diverse poems from a larg-
er uni-modal poem corpus (namely “UniM-Poem”) for images. Images with these
retrieved poems and MultiM-Poem together construct an enlarged image-poem pair
dataset (namely “MultiM-Poem (Ex)”). We further propose to leverage the state-of-
art sequential learning techniques for training an end-to-end image to poem model on
the MultiM-Poem (Ex) dataset. Such a framework ensures substantial poetic clues,
that are significant for poem generation, could be discovered and modeled from those
extended pairs.

To avoid exposure bias problems caused by long length of long sequence (all po-
em lines together) and the problem that there is no specific loss available to score a
generated poem, we propose to use a recurrent neural network (RNN) for poem gen-
eration with multi-adversarial training and further optimize it by policy gradient. Two
discriminative networks are used to provide rewards in terms of the generated poem’s
relevance to the given image and poeticness of the generated poem. We conduct exper-
iments on MultiM-Poem, UniM-Poem and MultiM-Poem (Ex) to generate poems to
images. The generated poems are evaluated in both objective and subjective ways. We
define automatic evaluation metrics concerning relevance, novelty and translative con-
sistence and conducted user studies about relevance, coherence and imaginativeness of
generated poems to compare our model with baseline methods. The contributions in
this research are concluded as follows:
• We propose to generate poems (English free verse) from images in an end-to-

end fashion. To the best of our knowledge, this is the first attempt to study the
image-inspired English poem generation problem in a holistic framework, which
enables a machine to approach human capability in cognition tasks.
• We incorporate a deep coupled visual-poetic embedding model and a RNN-

based generator for joint learning, in which two discriminators provide reward-
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s for measuring cross-modality relevance and poeticness by multi-adversarial
training.
• We collect the first paired dataset of image and poem annotated by human an-

notators, and the largest public poem corpus dataset. Extensive experiments
demonstrate the effectiveness of our approach compared with several baselines
by using both objective and subjective evaluation metrics, including a Turing
test from more than 500 human subjects. To better promote the research in po-
etry generation from images, we have released these datasets and our code on
Github∗.

6.2 Related Work

6.2.1 Poetry Generation

Traditional approaches for poetry generation include template and grammar-based
method [94, 95, 96], generative summarization under constrained optimization [89]
and statistical machine translation model [97, 98]. By applying deep learning ap-
proaches recent years, researches about poetry generation has entered a new stage.
Recurrent neural network is widely used to generate poems that can even confuse
readers from telling them from poems written by human poets [90, 99, 88, 21, 91].
Previous works of poem generation mainly focus on style and rhythmic qualities of
poems [88, 89], while recent studies introduce topic as a condition for poem genera-
tion [90, 99, 89, 91]. For a poem, topic is still a rather abstract concept without specific
scenarios. Inspired by the fact that many poems were created in a conditioned scenari-
o, we take one step further to tackle the problem of generating poems inspired by a
visual scenario. Compared with previous researches, our work is facing with more
challenges, especially in terms of multi-modal problems.

6.2.2 Image Description

Image captioning is first regarded as a retrieval problem which aims to search captions
from dataset for a given image [81, 82] and hence cannot provide accurate and proper
descriptions for all images. To overcome this problem, methods like template filling
[83] and paradigm for integrating convolutional neural network (CNN) and recurrent

∗https://github.com/bei21/img2poem
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6. Poetry Generation from Image

neural network (RNN) [84, 6, 85, 86] are proposed to generate readable human-level
sentences. Recently, generative adversarial network (GAN) is applied to generate cap-
tions based on different problem settings [26, 77]. Similarly to image captioning, im-
age paragraphing is going the similar way. Recent researches about image paragraph-
ing mainly focus on region detection and hierarchical structure for generated sentences
[7, 4, 78]. However, as we have addressed, image captioning and paragraphing aim to
generate descriptive sentences to tell the facts in images, while poem generation is
tackling an advanced form of linguistic form which requires poeticness and language
style constrains.

6.3 Approach

In this research, we aim to generate poems from images so that the generated poems
are relevant to input images and satisfy poeticness. For this purpose, we cast our
problem in a multi-adversarial procedure [22] and further optimize it with a policy
gradient [100, 101]. A CNN-RNN generative model acts as an agent. The parameters
of this agent define a policy whose execution will decide which word to be picked
as an action. When the agent has picked all words in a poem, it observes a reward.
We define two discriminative networks to serve as rewards concerning whether the
generated poem is a paired one with the input image and whether the generated poem
is poetic. The goal of our poem generation model is to generate a sequence of words
as a poem for an image to maximize the expected end reward. This policy-gradient
method has shown significant effectiveness to many tasks without non-differentiable
metrics [26, 102, 77].

As shown in Fig. (6.2), the framework consists of several parts: (1) a deep coupled
visual-poetic embedding model to learn poetic representations from images, and (2)
a multi-adversarial training procedure optimized by policy gradient. A RNN based
generator serves as agent, and two discriminative networks provide rewards to the
policy gradient.

6.3.1 Deep Coupled Visual-Poetic Embedding

The goal of visual-poetic embedding model [103, 104] is to learn an embedding space
where points of different modality, e.g. images and sentences, can be projected to. In
a similar way to image captioning problem, we assume that a pair of image and po-

83
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em shares similar poetic semantics which makes the embedding space learnable. By
embedding both images and poems to the same feature space, we can directly com-
pute the relevance between a poem and an image by poetic vector representations of
them. Moreover, the embedding feature can be further utilized to initialize a optimized
representation of poetic clues for poem generation.

The structure of our deep coupled visual-poetic embedding model is shown in left
part of Fig. (6.2). For the input of images, we leverage three deep convolutional neural
networks (CNNs) concerning three aspects that indicate important poetic clues from
images inspired from fine-grained problems [105], namely object (v1), scene (v2) and
sentiment (v3), after conducting a prior user study about important factors for poem
creation from images. We observed that concepts in poems are often imaginative and
poetic while concepts in the classification datasets we use to train our CNN models are
concrete and common. To narrow the semantic gap between the visual representation
of images and the textual representation of poems, we propose to fine-tune these three
networks with MultiM-Poem dataset. Specifically, frequent used keywords about ob-
ject, sentiment and scenes in the poems are picked as label vocabulary, and then we
build three multi-label datasets based on MultiM-Poem dataset for object, sentiment
and scenes detection respectively. Once the multi-label datasets are built, we fine-tune
the pre-trained CNN models on the three datasets independently, which is optimized by
sigmoid cross entropy loss as shown in Eq. (6.1). After that, we adopt the D-dimension
deep features for each aspect from the penultimate fully-connected layer of the CNN
models, and get a concatenated N-dimension (N = D× 3) feature vector v ∈ RN as
input of visual-poetic embedding for each image:

loss =
−1
N

N

∑
n=1

(tnlogpn +(1− tn)log(1− pn)), (6.1)

v1 = fObject(I), v2 = fScene(I),

v3 = fSentiment(I), v = (v1,v2,v3).
(6.2)

The output of visual-poetic embedding vector x is a K-dimension vector representing
the image embedding with linear mapping from image features:

x = Wv ·v+bv ∈ RK, (6.3)

where Wv ∈ RK×N is the image embedding matrix and bv ∈ RK is the image bias vec-
tor. Meanwhile, representation feature vector of a poem is computed by skip-thought
vectors[93], which is a popular unsupervised method to learn sentence embedding. We

84



6. Poetry Generation from Image

train skip-thought model on unpaired UniM-Poem dataset and use it to provide a better
sentence representation for poem sentences. Mean value of all sentences’ combined
skip-thought features (unidirectional and bidirectional) is denoted by t ∈ RM where
M is the combined dimension. Similar to image embedding, the poem embedding is
denoted as:

m = Wt · t+bt ∈ RK, (6.4)

where Wt ∈ RK×M for the poem embedding matrix and bt ∈ RK for the poem bias
vector. Finally, the image and poem are embedded together by minimizing a pairwise
ranking loss with dot-product similarity:

L = ∑
x

∑
k

max(0,α−x ·m+x ·mk)

+∑
m

∑
k

max(0,α−m ·x+m ·xk),
(6.5)

where mk is a contrastive (irrelevant unpaired) poem for image embedding x, and vice-
versa with xk. α denotes the contrastive margin. As a result, the model we trained
will produce higher dot-product similarity between embedding features of image-poem
pairs than similarity between randomly generated pairs.

6.3.2 Poem Generator as an Agent

A conventional CNN-RNN model for image captioning is used to serve as an agent.
Instead of using hierarchical methods that are used recently in generating multiple sen-
tences [7], we use a non-hierarchical recurrent model by treating the end-of-sentence
token as a word in the vocabulary. The reason is that 1) poems often consist of fewer
words compared with paragraphs; 2) there is lower consistent hierarchy between sen-
tences of poems, which makes the hierarchy much more difficult to learn. We also
conduct experiment with hierarchical recurrent language model as a baseline and we
will show the result in the experiment part.

The generative model includes CNNs for image encoder and a RNN for poem de-
coder. The reason of using RNN instead of CNN for languages is that it can better
encode the structure-dependent semantics of the long sentences which are widely ob-
served in poems. In this research, we apply Gated Recurrent Units (GRUs) [106] for
poem decoder for its simple structure and robustness to overfitting problem on less
training data. We use image-embedding features learned by the deep coupled visual-
poetic embedding model explained in Section 6.3.1 as input of image encoder. Suppose
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θ is the parameters of the model. Traditionally, our target is to learn θ by maximizing
the likelihood of the observed sentence y = y1:T ∈Y∗ where T is the maximum length
of generated sentence (including < BOS > for start of sentence, < EOS > for end of
sentence and line breaks) and Y∗ denotes a space of all sequences of selected words.

Let r(y1:t) denote the reward achieved at time t and R(y1:T ) is the cumulative reward,
namely R(yk:T ) = ∑

T
t=k r(y1:t). Let pθ (yt |y1:(t−1)) be a parametric conditional proba-

bility of selecting yt at time step t given all the previous words y1:(t−1). pθ is defined as
a parametric function of policy θ . The reward of policy gradient in each batch can be
computed as the sum over all sequences of valid actions as the expected future reward.
To iterate over sequences of all possible actions is exponential, but we can further write
it in expectation so that it can be approximated with an unbiased estimator:

J(θ) = ∑
y1:T∈Y∗

pθ (y1:T )R(y1:T ) = Ey1:T∼pθ

T

∑
t=1

r(y1:t). (6.6)

We aim to maximize J(θ) by following its gradient:

∇θ J(θ) = Ey1:T∼pθ

[
T

∑
t=1

∇θ logpθ (y1:t−1)

]
T

∑
t=1

r(y1:t). (6.7)

In practice the expected gradient can be approximated using a Monte-Cartlo sample by
sequentially sample each yt from the model distribution pθ (yt |y1:(t−1)) for t from 1 to
T . As discussed in [102], a baseline b can be introduce to reduce the variance of the
gradient estimate without changing the expected gradient. Thus, the expected gradient
with a single sample is approximated as follow:

∇θ J(θ)≈
T

∑
t=1

∇θ logpθ (y1:t−1)
T

∑
t=1

(r(y1:t)−bt). (6.8)

6.3.3 Discriminators as Rewards

A good poem for an image has to satisfy at least two criteria: the poem (1) is relevant
to the image, and (2) has some sense of poectiness concerning proper length, poem’s
language style and consistence between sentences. Based on these two requirements,
we propose two discriminative networks to guide the generated poem: multi-modal
discriminator and poem-style discriminator. Deep discriminative networks have been
shown of great effectiveness in text classification task [26, 77], especially for tasks that
cannot establish good loss functions. In this research, both discriminators we propose
have several classes including one positive class and several negative classes.
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Multi-Modal Discriminator. Multi-modal discriminator (Dm) is used to guide the
generated poem y related to corresponding image x. It is trained to classify a poem
into three classes: paired as positive examples, unpaired and generated as negative
examples. Paired includes ground-truth paired poems for the input images. Unpaired
poems are randomly sampled from unpaired poems of the input images in training
data. Dm includes a multi-modal encoder, modality fusion layer and a classifier with
softmax function:

c = GRUρ(y), (6.9)

f = tanh(Wx ·x+bx)� tanh(Wc · c+bc), (6.10)

Cm = softmax(Wm · f +bm), (6.11)

where ρ , Wx, bx, Wc, bc, Wm, bm are parameters to be learned, � is element-wise
multiplication and Cm denotes the probabilities over three classes of the multi-modal
discriminator. We utilize GRU-based sentence encoder for discriminator training. E-
q. (6.11) provides way to generate the probability of (x,y classified into each class as
denoted by Cm(c|x,y) where c ∈ {paired,unpaired,generated}.

Poem-Style Discriminator. In contrast with most poem generation researches that
emphasize on meter, rhyme or other traditional poetic techniques, we focus on free
verse which is an open form of poetry. Even though, we require our generated poems
have the quality of poeticness as we define in Section 6.1. Without making specific
templates or rules for poems, we propose a poem-style discriminator (Dp) to guide
generated poems towards human written poems. In Dp, generated poems will be clas-
sified into four classes: poetic, disordered, paragraphic and generated.

Class poetic is addressed as positive example of poems that satisfy poeticness. The
other three classes are all regarded as negative examples. Class disordered concerns
about the inner structure and coherence between sentences of poems and paragraphic
class uses paragraph sentences as negative examples. In Dp, we use UniM-Poem as
positive poetic samples. To construct disordered poems, we first construct a poem
sentence pool by splitting all poems in UniM-Poem. Examples of class disordered
are poems that we reconstruct by sentences randomly picked up with a reasonable
line numbers from poem sentence pool. Paragraph dataset provided by [7] is used as
paragraph examples.

A completed generated poem y is encoded by GRU and parsed to a fully connected
layer, and the probability of falling into four classes is computed by a softmax function.
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Formula of this procedure is as follow:

Cp = softmax(Wp ·GRUη(y)+bp), (6.12)

where η , Wp, bp are parameters to be learned. The probability of classifying generated
poem y to a class c is formulated as Cp(c|y) where c∈{poetic,disordered,paragraphic,generated}.

Reward Function. We define the reward function for policy gradient as a linear
combination of probability of classifying generated poem y for an input image x to
the positive class (paired for multi-modal discriminator Dm and poetic for poem-style
discriminator Dp) weighted by tradeoff parameter λ :

R(y|·) = λCm(c = paired|x,y)+(1−λ )Cp(c = poetic|y). (6.13)

6.3.4 Multi-Adversarial Training

Adversarial training is a minimax game between a generator G and a discriminator D
with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (6.14)

We propose to use multiple discriminators by reformulating G’s objective as:

min
G

maxF(V (D1,G), ...,V (Dn,G)), (6.15)

where we have n = 2, and F indicates linear combination of discriminators as shown
in Eq. (6.13).

The generator aims to generate poems that have higher rewards for both discrim-
inators so that they can fool the discriminators while the discriminators are trained
to distinguish the generated poems from paired and poetic poems. The probabilities
of classifying generated poem into positive classes in both discriminators are used as
rewards to policy gradient as explained above.

Multiple discriminators (two in this work) are trained by providing positive exam-
ples from the real data (paired poems in Dm and poem corpus in Dp) and negative
examples from poems generated from the generator as well as other negative forms
of real data (unpaired poems in Dm, paragraphs and disordered poems in Dp. Mean-
while, by employing a policy gradient and Monte Carlo sampling, the generator is
updated based on the expected rewards from multiple discriminators. Since we have
two discriminators, we apply a multi-adversarial training method that will train two
discriminators in a parallel way.
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Image and poem pair dataset (MultiM-Poem)

spreading his arms
dancing the floor
through the light

Towards
a new dawn

the morning sunrise
so beautiful to behold
glowing breath of light

back on its golden hinges
the gate of memory swings

and my heart goes into the garden
and walks with the olden things

burning base of sky
half the hemisphere high

a fire hour
crept upon by night

Poem Corpus Dataset (UniM-Poem)

in crescent form
a vasty crescent nigh two leagues across
from horn to horn the lesser ships within

the great without they did bestride as 't were
and make a township on the narrow seas

his little hands when flowers were seen
were held for the bluebell

as he was carried oer the green

in a brown gloom the moats gleam
slender the sweet wife stands

her lips are red her eyes dream
kisses are warm on her hands

this realm of rain
grey sky and cloud

it's quite and peaceful
safe allowed

Figure 6.3. Examples in two datasets: UniM-Poem and MultiM-Poem.

6.4 Experiments

6.4.1 Datasets

To facilitate the research of poetry generation from images, we collected two poem
datasets, in which one consists of image and poem pairs, namely Multi-Modal Poem
dataset (MultiM-Poem), and the other is a large poem corpus, namely Uni-Modal Poem
dataset (UniM-Poem). By using the embedding model we have trained, the image
and poem pairs are extended by adding the nearest three neighbor poems from the
poem corpus without redundancy, and an extended image and poem pair dataset is
constructed and denoted as MultiM-Poem (Ex). The detailed information about these
datasets is listed in Table 6.1. Examples of the two collected datasets can be seen in
Figure 6.3.

89



6. Poetry Generation from Image

Name #Poem #Line/poem #Word/line

MultiM-Poem 8,292 7.2 5.7
UniM-Poem 93,265 5.7 6.2

MultiM-Poem (Ex) 26,161 5.4 5.9

Table 6.1. Detailed information about the three datasets. The first two datasets are
collected by ourselves and the third one is extended by our embedding model.

For MultiM-Poem dataset, we first crawled 34,847 image-poem pairs in Flickr from
groups that aim to use images illustrating poems written by human. Five human as-
sessors majoring in English literature were further asked to evaluate these poems as
relevant or irrelevant by judging whether the image can exactly inspire the poem in a
pair by considering the associations of objects, sentiments and scenes. We filtered out
pairs labeled as irrelevant and kept the remaining 8,292 pairs to construct the MultiM-
Poem dataset.

UniM-Poem is crawled from several public online poetry websites, such as Poet-
ry Foundation†, PoetrySoup‡, best-poem.net and poets.org. To achieve robust model
training, a poem pre-processing procedure is conducted to filter out those poems with
too many lines (> 10) or too fewer lines (< 3). We also remove poems with strange
characters, poems in languages other than English and duplicate poems.

6.4.2 Compared Methods

To investigate the effectiveness of the proposed methods, we compare with four base-
line models with different settings. The models of show-and-tell [6] and SeqGan [77]
are selected due to their state-of-art results in image captioning. A competitive image
paragraphing model is selected, as its strong capability for modeling diverse image
content. Note that all the methods use MultiM-Poem (Ex) as the training dataset, and
can generate multiple lines as poems. The detailed experiment settings are shown as
follows:

Show and tell (1CNN): CNN-RNN model trained with only object CNN by VGG-
16 .

Show and tell (3CNNs): CNN-RNN model trained with three CNN features by

†https://www.poetryfoundation.org/
‡https://www.poetrysoup.com/
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VGG-16.
SeqGAN: CNN-RNN model optimized with a discriminator to tell from generated

poems and ground-truth poems. We use RNN for discriminator for fair comparison.
Regions-Hierarchical: Hierarchical paragraph generation model based on [7]. To

better align with poem distribution, we restrict the maximum lines to be 10 and each
line has up to 10 words in the experiment.

Our Model: To demonstrate the effectiveness of the two discriminators, we train
our model (Image to Poem with GAN, I2P-GAN) in four settings: pretrained model
without discriminators (I2P-GAN w/o discriminator), with multi-modal discrimina-
tor only (I2P-GAN w/ Dm), with poem-style discriminator only (I2P-GAN w/ Dp)
and with both discriminators (I2P-GAN).

6.4.3 Automatic Evaluation Metrics

Evaluation of poems is generally a difficult task and there are no established metrics
in existing works, not to mention the new task of generating poems from images. To
better address the performance of the generated poems, we propose to evaluate them
in both automatic and manual way.

We propose to employ three metrics for automatic evaluation, e.g., BLEU, novelty
and relevance. An overall score is computed by the three metrics after normalization.

BLEU. We use Bilingual Evaluation Understudy (BLEU) [107] score-based evalua-
tion to examine how likely the generated poems can approximate towards the ground-
truth ones following image captioning and paragraphing. It is also used in some poem
generation works [89]. For each image, we only use the human written poems as
ground-truth poems.

Novelty. By introducing discriminator Dp, the generator is supposed to introduce
words or phrases from UniM-Poem dataset and results in words or phrases that are
not very frequent in MultiM-Poem (Ex) dataset. We use novelty as proposed by [10]
to measure the number of infrequent words or phrases observed in the generated po-
ems. Two scales of N-gram are explored, e.g. bigram and trigram, as Novelty-2 and
Novelty-3. We first rank the n-grams that occur in the training dataset of MultiM-Poem
(Ex) and take the top 2,000 as frequent ones. Novelty is computed as the proportion of
n-grams that occur in training dataset except the frequent ones in the generated poem.

Relevance. Different from poem generation researches that have no or weak con-
strains to poem contents, we consider relevance of the generated poem to the given
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image as an important measurement in this research. However, unlike captions that
concern more about facts about images, different poems can be relevant to the same
image from various aspects. Thus, instead of computing relevance between generat-
ed poem and ground-truth poems, we define relevance between a poem and an image
using our learned deep coupled visual-poetic embedding (VPE) model. After map-
ping the image and the poem to the same space through VPE, linearly scaled cosine
similarity (0-1) is used to measure their relevance.

Overall. We compute an overall score based on the above three metrics. For each
value ai in all values of one metric a, we first linearly normalize it with following
method:

ai
′ =

ai−min(a)
max(a)−min(a)

. (6.16)

After that, we get average values for BLEU (e.g. BLEU-1, BLEU-2 and BLEU-3) and
novelty (e.g. Novelty-2 and Novelty-3). A final score is computed by averaging the
normalized values, to ensure equal contribution of different metrics.

However, in such an open-ended task, there are no particularly suitable metrics that
can perfectly evaluate the performance of generated poems. The automatic metrics
we use can be used as a guidance to some extent. To better illustrate the performance
of poems from human perception, we further conduct extensive user studies in the
follows.

6.4.4 Human Evaluation

We conducted human evaluation in Amazon Mechanical Turk. In particular, three
types of tasks are assigned:

Task1: to explore the effectiveness of our deep coupled visual-poetic embedding
model, annotators were requested to give a 0-10 scale score to a poem given an image
considering their relevance in case of content, emotion and scene.

Task2: this task aims to compare the generated poems by different methods (four
baseline methods and our four model settings) for one image on different aspects.
Given an image, the annotators were asked to give ratings to a poem on a 0-10 scale
with respect to four criteria: relevance (to the image), coherence (whether the poem is
coherent across lines), imaginativeness (how much imaginative and creative the poem
is for the given image) and overall impression.

Task3: Turing test was conducted by asking annotators to select human written
poem from mixed human written and generated poems. Note that Turing test was
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implemented in two settings, i.e., with and without images as references.
For each task, we have randomly picked up 1K images and each task is assigned to

three assessors. As poem is a form of literature, we also ask 30 annotators whose ma-
jors are related to English literature (among which ten annotations are English natives)
as expert users to do the Turing test.

6.4.5 Training Details

In the deep coupled visual-poetic embedding model, we use D = 4,096-dimension
“fc7” features for each CNN. Object features are extracted from VGG-16 [71] trained
on ImageNet [108], scene features from Place205-VGGNet model [109], and senti-
ment features from sentiment model[63].

To better extract visual feature for poetic symbols, we first get nouns, verbs and
subjective adjectives with at least five frequency in UniM-Poem dataset. Then we
manually picked adjectives and verbs for sentiment (including 328 labels), nouns for
object (including 604 labels) and scenes (including 125 labels). As for poem features,
we extract a combined skip-thought vector with M = 2,048-dimension (in which each
1,024-dimension represents for uni-direction and bi-direction, respectively) for each
sentence, and finally we get poem features by mean pooling. And the margin α is
set to 0.2 based on empirical experiments in [104]. We randomly select 127 poems
as unpaired poems for an image and used them as contrastive poems (mk and xk in
Eq. (6.5)), and we re-sample them in each epoch. Before adversarial training, we pre-
train a generator based on image captioning method [6] which can provide a better
policy initialization for generator. We empirically set the tradeoff parameter λ = 0.8
by conducting a comparable observation on automatic evaluation results from 0.1 to
0.9.

6.4.6 Evaluations

Retrieved Poems. We compare three kinds of poems considering their relevance to
images: ground-truth poems, poems retrieved with VPE and image features before
fine-tuning (VPE w/o FT), and poems retrieved with VPE and fine-tuned image fea-
tures (VPE w/ FT). Table 6.2 shows a comparison on a scale of 0-10 (0 means irrelevant
and 10 means the most relevant). We can see that by using the proposed visual-poetic
embedding model, the retrieved poems can achieve a relevance score above the aver-
age score (i.e., the score of five). And image features fine-tuned with poetic symbols
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Ground-Truth VPE w/o FT VPE w/ FT

Relevance 7.22 5.82 6.32

Table 6.2. Average score of relevance to images for three types of human written poems
on 0-10 scale (0-irrelevant, 10-relevant). One-way ANOVA revealed that evaluation on
these poems is statistically significant (F(2,9) = 130.58, p < 1e−10).

can improve the relevance significantly.
Generated Poems. Table 6.6 exhibits the automatic evaluation results of the pro-

posed model with four settings, as well as the four baselines proposed in previous
works. Comparing results of caption model with one CNN and three CNNs, we can
see that multi-CNN can actually help to generate poems that are more relevant to im-
ages. Regions-Hierarchical model emphasizes more on the topic coherence between
sentences while many human written poems will cover several topics or use different
symbols for one topic. SeqGAN shows the advantage of applying adversarial training
for poem generation compared with only caption models with only CNN-RNN while
lacking of generating novel concepts in poems. Better performance of our pre-trained
model with VPE than caption model demonstrates the effectiveness of VPE in extract-
ing poetic features from images for better poem generation. We can see that our three
models outperform in most of the metrics with each one performs better at one as-
pect. The model with only multi-modal discriminator (I2P-GAN w/ Dm) will guide
the model to generate poems towards ground-truth poems, thus it results in the highest
BLEU scores that emphasize the similarity of n-grams in a translative way. Poem-style
discriminator (Dp) is designed to guide the generated poem to be more poetic in lan-
guage style, and the highest novelty score of I2P-GAN w/ Dm shows that Dp helps to
provide more novel and imaginative words to the generated poem. Overall, I2P-GAN
combines the advantages of both discriminators with a rational intermediate score re-
garding BLEU and novelty while still outperforms compared with other generation
models. Moreover, our model with both discriminators can generate poems that have
highest relevance on our embedding relevance metric.

Comparison of human evaluation results are shown in Table 6.3. Different from
automatic evaluation results where Regions-Hierarchical performs not well, it gets a
slightly better result than caption model for the reason that sentences all about the
same topic tend to gain better impressions from users. Our three models outperform
the other four baseline methods on all metrics. Two discriminators promote human-
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6. Poetry Generation from Image

Method Rel Coh Imag Overall

Show and Tell (1CNN)[6] 6.31 6.52 6.57 6.67
Show and Tell (3CNNs)[6] 6.41 6.59 6.63 6.75

SeqGAN[77] 6.13 6.43 6.50 6.63
Regions-Hierarchical[7] 6.35 6.54 6.63 6.78

I2P-GAN w/o discriminator 6.44 6.64 6.77 6.85
I2P-GAN w/ Dm 6.59 6.83 6.94 7.06
I2P-GAN w/ Dp 6.53 6.75 6.80 6.93

I2P-GAN 6.83 6.95 7.05 7.18

Ground-Truth 7.10 7.26 7.23 7.37

Table 6.3. Human evaluation results of six methods on four criteria: relevance (Rel),
coherence (Coh), imaginativeness (Imag) and Overall. All criteria are evaluated on
0-10 scale (0-bad, 10-good).

Data Users Ground-Truth Generated

Poem w/ Image
AMT 0.51 0.49
Expert 0.60 0.40

Poem w/o Image
AMT 0.55 0.45
Expert 0.57 0.43

Table 6.4. Accuracy of Turing test on AMT users and expert users on poems with and
without images.

level comprehension towards poems compared with pre-trained model. The model
with two discriminators has generated better poems from images in terms of relevance,
coherence and imaginativeness. Fig. (6.4) shows one example of poems generated with
three baselines and our methods for a given image. More examples generated by our
approach can be referred in the supplementary material.

Turing Test. For the Turing test of annotators in AMT, we have hired 548 workers
with 10.9 tasks for each one on average. For experts, 15 people were asked to judge
human written poems with images and another 15 annotators were asked to do test
with only poems. Each one is assigned with 20 images and in total we have 600 tasks
conducted by expert users. Table 6.4 shows the probability of different poems being
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6. Poetry Generation from Image

selected as human-written poems for an given image. As we can see, the generated
poems have caused a competitive confusion to both ordinary annotators and experts
though experts can figure out the accurate one better than ordinary people. One inter-
esting observation comes from that experts are better at figuring out correct ones with
images while AMT workers do better with only poems.

6.5 Conclusion and Discussion

As the frontal work of poetry (English free verse) generation from images, we propose
a novel approach to model the problem by incorporating deep coupled visual-poetic
embedding model and RNN based adversarial training with multi-discriminators as
rewards for policy gradient. Furthermore, we introduce the first image and poem pair
dataset (MultiM-Poem) and a large poem corpus (UniM-Poem) to enhance researches
on poem generation, especially from images. Extensive experiments demonstrated
that our embedding model can approximately learn a rational visual-poetic embedding
space. Objective and subjective evaluation results demonstrated the effectiveness of
our poem generation model.

Generating poems from images is brand new topic that has attracted extensive inter-
est from researchers. There are two main challenges facing with this task. The first is
how to make machines better learn poetic clues from images. As we have discussed,
the poetic inspiration from images might need our past experiences which a machine
does not have. Something like a knowledge graph might be needed to simulate this
kind of experiences of human. The second is how to make expert-level poems like fa-
mous poets. This is also a challenge in many natural language processing tasks. A key
problem might be the lack of a perfect evaluation metric to make the machine aware
of good or bad poems. This is still an open question that will attracts more discussion
and researches.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this work, we proposed a very broad framework of high-level cognitive understand-
ing of images towards language. To this end, two common types of problems were
discussed in this framework, including search-based tasks and generation-based tasks.
Although our current research achievements cannot take into account all aspects of this
big problem, we have tackled the following particular sub-problems.

Event Summarization with Images. We propose to achieve cognition-aware sum-
marization of images presenting events from the perspective of viewers rather than im-
age takers. To improve the perceptual quality of an image set, we analyze relationship
of events in a hierarchical way and define three types of neighbor events that could be
easily recognized as the target event. The reasons for highly possible misrecognitions
are analyzed, and three criteria are raised to measure the degree to prevent from them.
We propose a greedy algorithm to generate image sets by maximizing the objective
function that combines the three criteria.

Learning Subjective Adjectives from Images. We propose to solve the problem
of estimating relevance of images to subjective adjective queries by first learning dis-
criminative features of subjective adjective from images with unsupervised deep con-
volution auto-encoders and then learn to measure the relevance. We propose pairwise
stacked convolutional auto-encoders to find discriminative features that can represent
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7. Conclusion and Future Work

differences between relevant images and irrelevant images.
Visual Storytelling. We propose to introduce emotion as an important factor to

generate story from image stream. We incorporate an emotion prediction model which
is able to predict diverse and coherent emotions and a coupled-RNN story generator
with image stream and emotion as input, in which two discriminators and a similarity
function provide rewards to measure image relevance, emotion relevance and story
style.

Poetry Generation from Image. We propose a novel approach to model the prob-
lem of poetry generation from image by incorporating deep coupled visual-poetic em-
bedding model and RNN-based adversarial training with multi-discriminators as re-
wards for policy gradient. Discriminator that addresses the relevance of generated
poem and input image and discriminator that deals with the poem language style of
generated poem are explored to improve the poem generator. We also introduce the
first image and poem pair dataset and a large poem corpus to enhance researches of
poem generation, especially from images.

Extensive experiments have been conducted to these tasks and the results have
demonstrated the effectiveness of our proposed approach compared with baseline meth-
ods.

7.2 Future Work

The proposed research framework in this theis is intended to inspire more interests
and attention in social informatics research, especially image and language related
researches. As another goal, we aim to improve machine’s understanding of images
from the perspective of human cognition. Accordingly, we have the following future
plan.

Multi-Modal Embedding. We feel and perceive the world with multiple ways.
Image and language are the two among them. Other types include but only limited to
are: sound, video, touch and taste. As long as the machine is able to stimulate each way
of sense, we could learn the embedding between or among them. Current researches
allow us to represent image, sound and language very well. How to better learn the
embedding space where we can directly match or compare different modality is a very
interesting direction.

Application Diversity. In this research, we tackle four tasks that try to bridge the
image and language in a high-level cognitive way. More research topics could be
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7. Conclusion and Future Work

involved, such as visual dialog that aims to automatically generate conversion to an
image or several images and visual question and answer that tries to automatically
generate answers to an image and related question. A very exciting vision is that ma-
chines could look at the world as we see, and understand the world as we understand.
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APPENDIX

A Proof for Section 3.4.6

As stated, Equation 3.6 is NP-hard, which prevents us from finding the best image set
that can maximize our function. Fortunately, this function is rich in structure, enables
a greedy algorithm to be applied, and solves the problem by finding a good approxi-
mation to the optimum. We prove the submodularity and monotonicity of the objective
function that admits the greedy algorithm.

A.1 Proof of Submodularity

According to [56], submodularity can be defined as follows.

Definition 14 (Submodularity). Given a finite ground set N, a set function 2N → R
is submodular if and only if for all sets S,T ⊂ N such that S ⊂ T , and d ∈ N \ T ,
f (S∪{d})− f (S)> f (T ∪{d})− f (T ).

Lemma 2. f (S,e) is a submodular function.

Proof. Intuitively, the objective function is submodular because an image set would
have already conveyed an event to the user, and therefore, the incremental gain for an
additional image is smaller. Let us now prove the submodularity mathematically.

The class of submodular functions is closed under non-negative linear combinations
based on the property of submodularity [110]. Three criteria in the function are all non-
negative; therefore, to prove the submodularity of function f , we only need to prove the
submodularity of each function individually. As proved in [54], functions SubCov(S,e)
and SupCov(S,e) are submodular. Let S,T be two arbitrary sets of images related by
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S⊂ T . Let m be an image not in T. S′ denotes S∪{m}, and T ′ for T ∪{m}.

SibDif(S′,e)−SibDif(S,e) =

∏
s∈S

max
v∈Sib(e)

P(c = 1|s,v) · (1−maxP(c = 1|m,v)) (7.1)

Similarly, the following formula is workable:

SibDif(T ′,e)−SibDif(T,e) =

∏
s∈T

max
v∈Sib(e)

P(c = 1|s,v) · ∏
s∈T\S

max
v∈Sib(e)

P(c = 1|s,v) · (1−maxP(c = 1|m,v))

For each image s and an event v, P(c= 1|s,v) is the probability that s covers v, which
means P(c = 1|s,v) has a value between 0 and 1. Thus,

∏
s∈T\S

max
v∈Sib(e)

P(c = 1|s,v)6 1 (7.2)

Therefore, we conclude that

SibDif(S′,e)−SibDif(S,e)> SibDif(T ′,e)−SibDif(T,e) (7.3)

As a result, the function SibDif(S,e) is submodular, and thus objective function
f (S,e) is also submodular.

A.2 Proof of Monotonicity

In calculus, if a function is monotonically increasing, it should satisfy the following
condition:

Definition 15 (Monotonic Increasing). Given a finite ground set N, a set function 2N→
R is monotonic increasing if and only if for all sets A,B⊂ N, A⊂ B, f (A)6 f (B).

Intuitively, a function is monotonic increasing when the function between ordered
sets can preserve the given order. In our case, with more images in an image set, the
perceptual quality of the image set is higher.

Lemma 3. f (S,e) is monotonic increasing.
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Proof. According to the definition of monotonic increasing, a non-negative linear com-
bination of monotonic increasing functions is also monotonic increasing based on the
property of adding inequalities (if a > b and c > d, then a+ c > d +d). Let us prove
each of the three criteria one by one. Let S,T be two arbitrary sets of images related
by S⊂ T . On the basis of the above demonstration, we can easily get:

SubCov(T,e)−SubCov(S,e) =

∑
v∈Sub(e)

P(v|e) · (∏
s∈S

(1−P(c = 1|s,v)))

· (1− ∏
s∈T\S

(1−P(c = 1|s,v))) (7.4)

Since the probability of an image that covers an event is between 0 and 1, we can
obtain:

SubCov(T,e)−SubCov(S,e)> 0 (7.5)

Thus, SubCov(S,e) and SupCov(S,e) are confirmed to be monotonic increasing.
In the case of difference from sibling-events SibDif(s,e), we can have:

SibDif(T,e)−SifDif(S,e) =

∏
s∈T

max
v∈Sib(e)

P(c = 1|s,v) · (1− ∏
s∈T\S

max
v∈Sib(e)

P(c = 1|s,v)) (7.6)

As clarified in the part where we prove submodularity, P(c = 1|s,v) is between 0
and 1 for every image s and event v, so the above formula can be deduced to be non-
negative, i.e.:

SibDif(T,e)−SibDif(S,e)> 0 (7.7)

Hence, function SibDif(s,e) is monotonic increasing as desired. We can safely draw
the conclusion that f (S,e) is monotonic increasing.

With the satisfaction of submodularity and monotonicity, we eventually confirm that
the greedy algorithm is a proper approach to generate an approximate image set to the
optimum image set.
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