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Abstract. Thickness constraint is an important geometrical constraint
in topology optimization methods. I present a novel approach of the
thickness constraint based on the Fictitious Physical Model (FPM). The
FPM is formulated using the similarity of the dispersive coefficient in
high order homogenization. The thickness constraint is represented us-
ing the solutions of the linear partial deferential equation system. Its
design sensitivity is derived using the adjoint variable method. Numeri-
cal example is shown to confirm the validity and utility of the proposed
method using the level set-based topology optimization method. The
main advantage of the proposed method is the allowance of thickness
constraint violations during the optimization procedure. Furthermore,
the thickness is computed without computing minimum distances from
the boundaries of target shape.
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tion, fictitious physical model

1 Introduction

Topology optimization has been widely used in industrial products, such as au-
tomobiles, trains and airplanes, because it is a powerful design tool to obtain
creative design solutions with high performance. However, a design solution ob-
tained by topology optimization requires an interpretation process by design
engineers considering the manufacturing process. One of the most important
manufacturability considerations in the design optimization process is consider-
ing the minimum and maximum thickness constraint. The minimum length scale
constraint in topology optimization is proposed [5, 3] to avoid obtaining too com-
plex structural members which may cause severe increase of manufacturing cost.
The methods for maximum length scale constraint are also proposed [2]. How-
ever, these methods force design solution to fall into local optimal solution. That
is, the initial configuration influences the obtained optimal solutions.

On the other hand, the concept of the fictitious physical model (FPM) [6] for
representing geometrical constraint can be avoid such issues. Therefore, the main
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aim of this paper is to formulate a FPM for representing the thickness constraint.
Additionally, the proposed FPM is applied to the topology optimization method.
First, I formulate the FPM to represent thickness by the solutions of a linear
partial differential equation. Additionally, its validity is discussed using a numer-
ical example. Second, I briefly discuss a level set-based topology optimization
method. Next, an optimization problem considering the thickness constraint is
formulated by using the proposed FPM. Finally, a numerical example is provided
to confirm the proposed topology optimization method.

2 Formulation of the Fictitious Physical Model

The basic concept of the fictitious physical model (FPM) is an evaluation method
of target geometrical features by using the solution of a partial differential equa-
tion system. For instance, an area having very high stress may be predicted as
a small shape feature, because the stress concentration is occurring around a
small hole. However, the displacement field is not appropriate to evaluate the
size of the material domain, because stress is dependent on much other infor-
mation, such as boundary conditions and other domain shapes. In general, it is
pretty difficult to precisely evaluate thickness or size of a structural member by
using usual physical phenomena, because the physical features are dependent on
much other information. Therefore, this paper presents a FPM and a thickness
function hf representing a solution of the FPM.

First of all, we clarify the requirements of the thickness function hf . The
evaluation of thickness of a structural member must be satisfied as follows:

1. The thickness function hf is a monotonic function or linear function of the
local thickness.

2. A parallel translated shape is equivalently evaluated to original shape. That
is, the distribution of the function hf in a parallel translated shape is equiv-
alent to distribution of the function hf in the original shape.

3. A rotated shape is equivalently evaluated to original shape. That is, the
distribution of the function hf in a rotated shape is equivalent to rotated
distribution of the function hf in the original shape.

Here, the local thickness is defined as the thickness of the target structural
member at the local position. We note that the local thickness is not equivalent to
local size. For example, a small hole of material domain is not small thickness. Of
course, the small hole can be also evaluated by considering an opposite situation.

Next, we formulate the FPM for the thickness evaluation. We consider a
reference domain ΩR consisting of a material domain Ω and a void domain
ΩR \Ω. We assume that the reference domain ΩR is sufficiently huge to contain
the target material domain. Here, we focus on the similarity of the geometrical
features of dispersive coefficient in periodic homogenization. As proofed in Allaire
and Yamada’s work [1], dispersive coefficient values in k　 times scaled unit cell
are equivalent to k2 times values of the original dispersive coefficient. Based
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on this feature and the similarity, the fictitious physical model is formulated as
follows: {

−div
(
ã∇χi − ei1Ω

)
+α(1− 1Ω)χi = 0 in ΩR

χi = 0 on ∂ΩR

(1)

where χi ∈ H1(ΩR) are i-th fictitious state variables, ei are the canonical bases
of Rd, ã > 0 is the diffusion coefficient and α is the damping coefficient. The
characteristic function 1Ω ∈ L∞(ΩR) is defined as

1Ω(x) =

{
1 for x ∈ Ω

0 for x ∈ D \Ω.
(2)

We introduce a parameter a for the diffusion coefficient satisfied as ã := ah2
0,

where the characteristic length in the FPM is defined as the target thickness
h0 > 0. The damping coefficient must be set to a large value to force the values
of state variables χi into zero almost everywhere in the void domain. We remark
that the details of the formulation are found based on the author’s intuition　
and trial and error approach.

Next, we define the thickness function hf ({χ}1≤i≤d) as follows:

hf ({χ}1≤i≤d) :=

 1

h0

(
d∑

i=1

∂χi(x)

∂xi

)−1

− h0a

1Ω , (3)

where we set the damping coefficient α as follows:

α :=
4

a
(4)

Then, the parameter of the proposed FPM is the non-dimensional diffusion pa-
rameter a only. The parameter a should be set sufficiently small, because the
damping coefficient α is set to keep off effect from the surrounding domain and
boundary of the reference domain ∂Ω. The detailed features of the thickness
function hf ({χ}1≤i≤d) are discussed in the next subsection.

Additionally, to avoid numerical singularity, I introduce the function fh de-
fined as follows:

fh ({χ}1≤i≤d) := h2
0

(
d∑

i=1

∂χi(x)

∂xi

)
(5)

That is, thickness should be evaluated by the function fh on behalf of the thick-
ness function hf in numerical computations. I note that the function fh is equiv-
alent to

1
hh

h0
+ a

.

in the material domain Ω. Therefore, the function fh has monolithic relationship
in Ω.

I note that the sensitivity for the topology optimization is easily derived
because the thickness is formulated by the solutions of the standard linear partial
differential equation.
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3 Numerical Validation of the Proposed FPM

The two-dimensional reference domain ΩR shown in the Figure 1 is considered.
The gray area and white area represent material domain and void domain, re-

Fig. 1. Material distribution for the validation

spectively. The parameters of the fictitious physical model are set to h0 = 0.1
and a = 0.2. The domain is discretized using triangular elements and we use P2
finite elements whose maximal length is 0.03. Then, the obtained distributions
of the fictitious variables and the thickness function are shown in Figure 2.

(a) The state variable χ1 (b) The state variable χ2 (c) The thickness function
hf (χ1, χ2)

Fig. 2. Distribution of the fictitious variables and the thickness function

Here, let us check the validity of the proposed model based on the obtained
results qualitatively. To begin with, we focus on the domains Ω1, Ω2 and Ω3,
which are ring shape with different thickness. We remark that a ring shape has a
constant thickness. Therefore, the thickness function hf (χ1, χ2) must be valued
as a constant value in each ring shape. Based on Figure 2, we confirm that
the value of the thickness function hf (χ1, χ2) in the ring shapes is constant.
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Additionally, these values monotonously decrease with increasing thicknesses.
Therefore, the proposed model satisfies the condition 1 defined in the above
subsection.

Next, we focus on the domains Ω1 and Ω4, which are the same ring shape
and located in different positions. That is, the domain Ω4 is a parallel translated
shape from domain Ω1. The values of those thickness functions hf (χ1, χ2) are
equivalent, as shown in Figure 2. Therefore, the proposed model satisfies the
condition 2 defined in the above subsection.

In the third step, we focus on the domains Ω1 and Ω5, which are the same
ring shape. These locations and angles are different. That is, the domain Ω5 is
rotated and parallel translated from domain Ω1. The values of those thickness
functions hf (χ1, χ2) are also equivalent, as shown in Figure 2. Therefore, the
proposed model satisfies the condition 3 defined in the above subsection.

4 Formulation of Topology Optimization Problem with
Thickness Constraint

The basic concept of the topology optimization is replacement of a structural
design optimization problem with a material distribution problem, which is rep-
resented by fixed design domain and the characteristic function 1Ω . Then, a
standard topology optimization problem is formulated as follows:

inf
1Ω

F (1Ω) =

ˆ
D

f(x)1Ω dΩ (6)

subject to: G(1Ω) =

´
Ω
1Ω dΩ´
Ω

dΩ
− Vmax ≤ 0 (7)

where F , G and Vmax are objective function, constraint function concerning the
volume constraint and upper limit of the volume constraint, respectively. The
thickness constraint should be imposed for every point in the material domain
as follows:

hmin ≤ h(x) ≤ hmax in Ω (8)

where hmin and hmax are the lower and upper limit of the thickness constraint,
respectively. The constraint is replaced by the following equation because the
thickness is evaluated by the function fh in the FPM using the lower limit fhmin

and upper limit fhmax.

fhmin ≤ fh ({χ}1≤i≤d) ≤ fhmax in Ω (9)

Additionally, the thickness constraint is evaluated by the integral in the mate-
rial domain Ω to replace a scalar functional by the distributed function in the
optimization process.
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In the level set-based topology optimization method [7, 4], the structural
boundaries are represented by the iso-surface of the level set function ϕ(x):

1 ≤ ϕ(x) > 0 for x ∈ Ω \ ∂Ω
ϕ(x) = 0 for x ∈ ∂Ω

0 > ϕ(x) ≤ −1 for x ∈ D \Ω
(10)

The characteristic function is redefined by using the level set function ϕ(x) as
follows:

1ϕ :=

{
1 for ϕ(x) ≥ 0

0 for ϕ(x) < 0
(11)

Then, the topology optimization problem with the volume constraint and thick-
ness constraint is formulated as

inf
ϕ

F (ϕ) =

ˆ
D

f(x)1ϕ dΩ (12)

subject to: G(ϕ) =

´
Ω
1ϕ dΩ´
Ω

dΩ
− Vmax ≤ 0 (13)

fhmin ≤ fh ({χ}1≤i≤d) ≤ fhmax in Ω (14)

− div
(
ã∇χi − ei1ϕ

)
+α(1− 1ϕ)χi = 0 in ΩR (15)

χi = 0 on ∂ΩR (16)

I note that the reference domain ΩR is defined to contain the fixed design domain
D.

In the level set-based topology optimization, the shape and topology changes
during the optimization procedure are represented as an evolution of the level
set function ϕ. That is, introducing fictitious time t, the shape and topology
evolution is obtained by solving the following reaction-diffusion equation:

∂ϕ

∂t
= −K2

(
L′ − τ∇2ϕ

)
(17)

where K is a coefficient of proportionality and L′ is design sensitivity including
constraints, i.e., the topological gradient of the Lagrangian of the optimization
problem. The regularization parameter τ is set to a small value. The details are
discussed in Yamada’s work [7].

5 Numerical Example of the Proposed Topology
Optimization Method

A numerical example is provided to confirm the utility of the proposed method.
In the example, the isotropic linear elastic material has Young’s modulus =
210GPa and Poisson’s ratio = 0.31. The regularization parameter τ is set to
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Fig. 3. Fixed design domain and the boundary conditions

1 × 10−5. The upper limit of the volume constraint Gmax is set to 0.5. Figure
3 shows the fixed design domain and boundary conditions. The traction is set
to t = (0, 1000)N . Here, we consider the minimum mean compliance problem.
That is, the objective function is set to

F :=

ˆ
Γt

t · u dΓ, (18)

where Γt and u are boundary imposed traction t and the displacement field,
respectively. The fixed design domain is discretized using a structural mesh and
a four-node quadrilateral plane stress element whose length is 0.01m. Figure
4 shows obtained optimal configurations. Cases (a) and (b) are an obtained
configuration without constraint and considering upper limit of the thickness,
respectively. As shown in Figure 4, both results are smooth and similar feature.

(a) Thickness constraint free (b) Considering thickness constraint

Fig. 4. Obtained optimal configurations

Although Case (a) includes thick　 parts, Case (b) does not include any thick
part. Therefore, the proposed method provides appropriate optimal configura-
tions considering the thickness constraint.
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6 Conclusions

This paper proposed a new method of thickness constraint for topology optimiza-
tion using the FPM. First, the FPM is formulated to represent the thickness of
the material domain. The topology optimization problem with the thickness con-
straint is formulated using the proposed FPM. I confirmed the usefulness of the
proposed method by the numerical example.
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