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The minimum specific on-resistance of 4H-SiC{0001} unipolar devices as a function of the breakdown voltage was updated based on latest studies
on intrinsic physical properties, such as impact ionization coefficients. Both punch-through (PT) and nonpunch-through (NPT) structures were
considered, because a PT structure generally gives a lower on-resistance at a given breakdown voltage. The minimum specific on-resistance of
1 kV 4H-SiC devices can be as low as 0.20 mΩ cm2 at room temperature. An analytical expression for the relationship between the specific on-
resistance and breakdown voltage is given. © 2018 The Japan Society of Applied Physics

Among various wide bandgap semiconductors, silicon car-
bide (SiC) exhibits several technological advantages, such as
the availability of large-diameter (150 mm) wafers and wide
range doping control of n- and p-type conductivity via either
in situ doping or ion implantation.1–6) A long carrier lifetime
due to its indirect band structure is another inherent advan-
tage of SiC for the development of ultrahigh-voltage bipolar
devices.7–10) Recent progress in SiC technology has triggered
the production of 600–1700 V Schottky barrier diodes
(SBDs) and metal-oxide-semiconductor field effect transis-
tors (MOSFETs). 3300 V SiC devices have also been
produced and implemented into high-power modules for
traction applications.11)

In development of SiC (and other wide bandgap semicon-
ductors) power devices, the specific on-resistance (Ron_sp)
experimentally obtained has often been compared with the
“unipolar limit” of the material, which is a strong function of the
breakdown voltage, to discuss the technological maturity.12–16)

The unipolar limit of one material has also been used to
compare the potential of different materials.17–19) In general, the
unipolar limit is defined by the trade-off relationship between
the specific resistance of a drift layer and the breakdown voltage
(VB).

20) However, unipolar limits of wide bandgap semiconduc-
tors previously reported have been rather inaccurate and the
unipolar limit is different in different papers. This problem is
mainly caused by the following reasons: (i) the intrinsic physical
properties of a material such as mobility (μ) and critical electric
field strength (Ecrit) have not been well clarified. In addition,
these properties were often assumed to be independent of the
doping density, although, both are strongly doping-dependent.
(ii) The unipolar limit has usually been calculated for a NPT
structure by the following equation.20)
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Here, εs is the permittivity of the semiconductor. However, it is
well known that a PT structure usually gives a significantly
lower drift resistance than an NPT structure at a given
breakdown voltage;21) further, NPT structures have almost
never been employed for production of power devices.
Therefore, the unipolar limit of wide bandgap semiconductors
must be revisited while taking account of these factors.
Although a similar analysis has been published,2) the physical

properties adopted in the previous analysis is not the latest and
more updated results are presented in this paper. Furthermore,
basic device physics behind the obtained results is discussed.
In this study, the author examined the unipolar limit of 4H-

SiC{0001} power devices, considering the latest physical
properties and PT structures. Here, the 4H polytype of SiC is
the most promising among many polytypes owing to its high
electron mobility, high critical electric field strength, and the
availability of single crystalline wafers of reasonably high
quality.1,2) 4H-SiC devices on nonbasal planes such as (1120)
are less attractive because of the lower critical field strength
along 〈1120〉22,23) and the difficulty in the growth of large
ingots. Thus, this study focuses on 4H-SiC unipolar devices
fabricated on {0001}. An n-type drift region is exclusively
considered since p-type SiC-based unipolar devices exhibit
much higher on-resistance due to the low hole mobility and
incomplete ionization of acceptors at room temperature. It
should be noted that a “super-junction” structure,24) the specific
on-resistance of which can be remarkably reduced by specially-
designed structures, is not considered in this study.
Figure 1 depicts the critical electric field strength of 4H-SiC

〈0001〉 as a function of the doping density, which was calculated
by using the latest impact ionization coefficients. The impact
ionization coefficients are given by the following equations.25)
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Fig. 1. Critical electric field strength of 4H-SiC〈0001〉 as a function of the
doping density, which was calculated using the latest impact ionization
coefficients.25) Nonpunch-through (NPT) p+n junctions are considered.
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where E is the electric field strength in the unit of V cm−1.
The critical field strength significantly increases by increasing
the doping density, as in the case of other semiconductors:
The critical field strengths are 2.00, 2.50, and 3.34, and
5.01MV cm−1 at doping densities of 1× 1015, 1× 1016,
1× 1017, and 1× 1018 cm−3, respectively, at room
temperature.26) One should also consider that this critical
electric field strength is valid only in the case of NPT
structures. When the targeted device possesses a PT structure,
the breakdown voltage must be determined by either calcula-
tion of ionization integral20) or device simulation. The author
confirmed that the ionization integral and device simulation
(Synopsis, DESSIS) give an almost identical breakdown
voltage for a given structure of SiC.
Figure 2 schematically plots the profiles of the electric field

strength inside a drift layer at breakdown for (a) NPT and (b)
PT structures. Here, it was assumed that the drift layer is
uniformly doped along the depth. In the case of the NPT
structure, the maximum electric field strength at breakdown
(Emax) is equivalent to Ecrit at the doping density and the
thickness of the drift layer is designed to be the maximum
width of the space-charge region. Thus, the breakdown voltage
of this junction and the minimum drift resistance are uniquely
determined once the doping density is given. The situation is
more complicated in the case of PT structures shown in
Fig. 2(b). There exist many combinations of the doping density
and thickness of the drift layer which yield the same breakdown
voltage. Furthermore, Emax is slightly higher than Ecrit at the
same doping density because the thickness of the space-charge
region is smaller than that of the NPT structure. It has been
suggested that the drift resistance becomes a minimum when
the electric field strength at the edge of the drift region, which is
denoted by Eedge in Fig. 2(b), is equal to (1/3)Emax under an
assumption that the critical electric field strength and mobility
are independent of the doping density.21) Therefore, the author
calculated the drift resistance and breakdown voltage for
various PT structures, where the thickness of a drift layer
was gradually varied while keeping the doping density constant
so that Eedge was changed in the range from about 0.2Emax to
0.4Emax. Then this calculation was repeated by changing the
doping density step-by-step. Based on this extensive calcula-
tion, a best trade-off relationship between the drift resistance
and the breakdown voltage (a lowest drift resistance at a

specified breakdown voltage) was determined. In this calcula-
tion, the breakdown voltage for each PT structure was
determined by calculating the ionization integral using the
impact ionization coefficients given by Eqs. (2) and (3).
Regarding the electron mobility of 4H-SiC, it is known

that the mobility along 〈0001〉 (μ//) is about 14%–17% higher
than that perpendicular to 〈0001〉 (μ⊥).

27) In the author’s
group, Hall effect measurements were performed on n-type/
p-type multi-epitaxial layers grown on a 4H-SiC(1120)
substrate. The intermediate p-type layer was grown for
electrical isolation of the top n-type layer from the n-type
substrate. Long Hall-bar configurations were formed along
〈0001〉 and [1100] on the same epitaxial samples, and the
Hall mobility was extracted by assuming a Hall scattering
factor of unity. For example, the electron mobility along
〈0001〉 was determined to be 912 cm2 V−1 s−1, whereas that
along [1100] was 784 cm2 V−1 s−1 at a donor density of
2.4× 1016 cm−3, indicating 16% higher mobility along
〈0001〉. Almost the same anisotropy (16% difference) in
electron mobility was observed for epitaxial layers with
donor densities of 8.1× 1016 and 1.6× 1017 cm−3. These
results and the mobility data obtained from conventional 4H-
SiC{0001} samples are plotted by open squares and closed
circles, respectively, in Fig. 3. Since the donor density
dependence of electron mobility perpendicular to 〈0001〉 in
4H-SiC has been established,2,28) the electron mobility along
〈0001〉, which determines the drift resistance of 4H-SiC
{0001} devices, was calculated by using the following
equation, assuming that the 16% difference is maintained
irrespective of the donor density.

Fig. 2. (Color online) Profiles of the electric field strength inside a drift layer at breakdown for (a) nonpunch-through (NPT) and (b) punch-through (PT)
structures.

Fig. 3. Donor density dependence of electron mobility in 4H-SiC. The
mobilities along 〈0001〉 (μ//) and perpendicular to 〈0001〉 (μ⊥) experimen-
tally obtained are plotted by open squares and closed circles, respectively.
The dashed line denotes the fitting curve for μ⊥ experimentally obtained.2)

The solid line represents the donor density dependence of μ//, assuming that
μ// is 16% higher than μ⊥ irrespective of the donor density.
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In this equation, the donor density ND is given in the unit of
cm−3. Note that this curve is shown by a solid line in Fig. 3.
Another issue, which needs care, is incomplete ionization

of dopants. The unipolar limit of a wide bandgap semicon-
ductor has often been calculated by assuming complete
ionization of dopants in previous reports. However, this is
not correct because incomplete ionization of dopants at room
temperature is rather common in wide bandgap semiconduc-
tors. The drift resistance is determined by the carrier density,
whereas the electric field profile and thereby the breakdown
voltage are determined by the doping density (not the carrier
density). Therefore, the dopant ionization ratio, which is also
dependent on the doping density, must be considered. In
lightly-doped 4H-SiC, the ionization energies of nitrogen
donors are 61 and 126 meV for a nitrogen atom substituting
at the hexagonal and cubic sites, respectively.2,29) In this
study, the dependence of the ionization energies on the donor
density2) was also considered. The free electron density as a
function of the nitrogen donor density in 4H-SiC was
calculated at room temperature (300 K). As a result, nearly
complete (>98%) ionization of donors is expected when the
nitrogen density is below about 3× 1016 cm−3. The ioniza-
tion ratio of nitrogen donors decreases to about 80% or lower
when the nitrogen density exceeds 2× 1017 cm−3. This
dependence was appropriately considered in the calculation
of the on-resistance.
Taking account of the donor density dependences of

electron mobility along 〈0001〉 and the free electron density,
the specific on-resistances and breakdown voltage were
calculated for both NPT and PT structures. Figure 4 depicts
the trade-off relationship between the specific on-resistance
of the drift layer and breakdown voltage in 4H-SiC{0001}
unipolar devices. The results for the NPT and optimum PT
structures are plotted by red dashed and solid lines, respec-
tively. For comparison, the relationship calculated by as-
suming a fixed critical electric field strength of 2 or
3MV cm−1 and a mobility of 1000 cm2 V−1 s−1, which
have often been used in previous publications, is shown by
blue dashed or solid lines, respectively. The “Si limit”20) is

also indicated by a black dashed line. As expected, the
optimum PT structure yields a lower on-resistance than the
NPT structure by 20%–25% at a given breakdown voltage.
The on-resistance of the NPT structure (updated) is close to
that assuming a fixed critical field strength of 3 MV cm−1 in
the relatively low-voltage (<600 V) region and is close to
that assuming a 2MV cm−1 in the ultrahigh-voltage
(>10 kV) region. This reflects the donor density dependence
of the critical electric field strength shown in Fig. 1, where
the critical field strength is approximately 3MV cm−1 in the
1016 cm−3 range and is about 2 MV cm−1 in the low
1015 cm−3 range. The real “SiC limit”, which should be
defined by the on-resistance—breakdown voltage relation-
ship for the optimum PT structure of 4H-SiC (red solid line in
Fig. 5), is as low as 0.20, 2.5, 39 mΩ cm2 for 1, 3, and 10 kV
devices, respectively. This “SiC limit” can approximately be
expressed by the following fitting equation:
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Here, the unit of VB is V. The power exponent of the VB

term (2.28) is larger than 2 which is expressed in Eq. (1). This
result again originates from the doping density dependence of
the critical electric field strength. For achieving a higher
breakdown voltage, the doping density of a drift layer must
be reduced. This results in the decrease of critical electric
field, as shown in Fig. 1, leading to the more rapidly-
increasing on-resistance.
Figure 5 shows the donor density and thickness of the drift

layer versus breakdown voltage for the NPT and optimum PT
structures in 4H-SiC{0001} unipolar devices. As described in
the introduction, the donor density and thickness for the NPT
structure can be uniquely determined, provided that the
accurate critical electric field strength as a function of doping
density is given, and these are plotted by black solid and
dashed lines, respectively. In the optimum PT structures
which yield the best trade-off relationship shown by the red
solid line in Fig. 4, the donor density and thickness are shown
by red and blue solid lines, respectively. The donor density
for the optimum PT structure is slightly lower than that for
the NPT structure at a specified breakdown voltage, while the
drift-layer thickness for the PT structure is significantly
smaller than that for the NPT structure.
As indicated in Fig. 2, the electric field strength at the drift-

layer end (Eedge) is expressed by xEmax (0< x⩽ 1). The

Fig. 4. (Color online) Trade-off relationship between the specific on-
resistance of the drift layer and breakdown voltage in 4H-SiC{0001}
unipolar devices. The results for the nonpunch-through (NPT) and optimum
punch-through (PT) structures are plotted by red dashed and solid lines,
respectively. For comparison, the relationship calculated by assuming a fixed
critical electric field strength of 2 or 3 MV cm−1 and a mobility of
1000 cm2 V−1 s−1 is shown by blue dashed or solid line, respectively. The
“Si limit”20) is also indicated by a black dashed line.

Fig. 5. (Color online) Donor density and thickness of the drift layer versus
breakdown voltage for the NPT and optimum PT structures in 4H-SiC{0001}
unipolar devices.
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present analysis revealed that the x value for the optimum PT
structure in 4H-SiC{0001} unipolar devices is approximately
0.26 for 1–3 kV devices and is about 0.30 for 10–20 kV
devices. Under a simple assumption that the critical field
strength and mobility are independent of the doping density,
it can be extracted mathematically that x= 1/3(≈0.33) gives
the optimum PT structure.21) However, the present study
demonstrates that the optimum PT structure is obtained for
x = 0.26–0.30. When various PT structures having the same
breakdown voltage are compared, a lower x value means a
higher doping density. Since the maximum electric field
strength at breakdown increases by increasing the doping
density as in the case of Fig. 1, the structure with a lower x
value is more favorable than the PT structure with x≈ 0.33.
This is the reason why the x values smaller than 0.33 yield
the optimum PT structure in reality.
In summary, the trade-off relationship between the specific

on-resistance and breakdown voltage in 4H-SiC{0001}
unipolar devices was updated based on latest physical
properties of the material. Optimum PT structures give about
20%–25% lower on-resistance than NPT structures at a
specified breakdown voltage. The minimum specific on-
resistances of 1 and 10 kV 4H-SiC devices are as low as
0.20 and 39 mΩ cm2, respectively, at room temperature. An
analytical expression for the “SiC limit” was given. Although
the on-resistance determined by the “SiC limit” is low, actual
SiC power MOSFETs have exhibited much higher specific
on-resistance, mainly due to poor channel mobility.
Significant improvement of the channel mobility is crucial
to reach the full potential of SiC.
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