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Abstract

A general method for evaluating the order of infinitesimal mechanism is pre-
sented for 3-dimensional bar-joint mechanism, which is defined as assembly
of rigid bars connected to nodes by hinges with arbitrarily inclined direc-
tions. Compatibility conditions of translations and rotations are derived at
bar-ends with respect to the generalized displacements consisting of displace-
ments and rotations of nodes and bars. Degree of kinematic indeterminacy is
computed using singular value decomposition of the linearized compatibility
matrix. The order of infinitesimal mechanism is determined by the existence
condition of higher-order coefficients of the generalized displacements with
respect to the path parameter of deformation. The coefficients are obtained
in a similar manner as stability analysis of geometrically nonlinear struc-
tures, where symbolic computation software package is used for analytical
derivation of equations. The detailed procedure of analysis is shown through
the numerical examples of a two-bar and a four-bar linkages, and the results
are verified using a finite element analysis software.
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1. Introduction

A linkage mechanism that can have infinitesimal deformation without
external load is called infinitesimal mechanism. By contrast, a mechanism
is called finite mechanism if it can have large deformation without external
load. We consider bar-joint mechanism consisting of rigid bars connected by
revolute joints, or hinges for brevity, in arbitrary directions.

A bar-joint mechanism has order [1, 2, 3]. Tarnai [1] defined the order
of pin-jointed bar mechanism as: An infinitesimal mechanism is of order
n (n ≥ 1) if there exists a system of infinitesimal displacements of joints
such that the coefficients of series expansion of elongation vanishes up to or-
der n in all bars, but the (n + 1)th coefficient does not vanish in at least one
member. Generalized Maxwell’s rule and the method using singular value
decomposition (SVD) [4] have been presented for evaluating the property of
mechanism; however, they cannot distinguish first order and higher order
mechanisms. Most of the previous studies considering the order of mech-
anisms focus on planar bar-joint systems. Chen [5] defined local mobility
and global mobility, where first-order local mobility is equivalent to the con-
dition for first-order mechanism, and global mobility corresponds to finite
mechanism. He proposed an approach to find the order of local mobility in
a general form; however, specific compatibility conditions for simple linkages
are used.

Stability of bar-joint systems is also studied in the field of prestressed
structures [6, 7], structural rigidity [8], and combinatorial rigidity [9]. If we
regard the unstable linkage mechanism as a structure at a singular point
of equilibrium state, we can use various general methods of stability anal-
ysis. For the estimation of high-order instability of structure near the sin-
gular point of equilibrium under static loads, Koiter’s asymptotic expansion
method can be applied [10, 11, 12]. The expansion method can also be used
when singular points are multiple [13]. Salerno [2] determined the order of
planar bar-joint mechanisms by the condition that the coefficients of series
expansion of strains of the bars with respect to the path parameter of de-
formation become zero, and showed that the method can also be applied
when the number of unstable modes, which is also called degree of freedom
of mechanism, is greater than one. Garcea et al. [14] used Green’s strain
measure to truncate the higher-order terms.

There exist some analytical approaches to evaluation of the order of 3-
dimensional mechanisms of bars connected by hinges, for example, Bricard
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linkages, Goldberg linkages, etc. [15]. Chen et al. [16] showed the existence of
the bifurcation point on the deformation path of a 6R Bricard linkage. How-
ever, they used explicit compatibility conditions of the specific linkage mecha-
nism, and no general procedure was developed. A general linkage mechanism
with links and hinges in arbitrary directions in 3-dimensional space can be
modeled as bars connected by inclined revolute joints [17, 18]. However, they
considered only infinitesimal deformation when obtaining mechanism solving
an optimization problem that is regarded as a limit analysis problem based
on the lower bound theorem.

It is not straightforward to extend the standard series expansion, which
has been used in Refs. [2, 3] to generate bar-joint mechanism of a structure
with ideal pin-jointed bars (truss structure), to general 3-dimensional mech-
anism. Since large rotation is not a vector value, many studies have been
done on large deformation analysis of frames, e.g., [19, 20, 21]. Therefore,
to propose an expansion method for the mechanisms of 3-dimensional bar-
joint frames with hinges, we must consider an approach to express the large
rotation and compatibility condition of revolute joint.

In this paper, we present a general method for evaluating the order of
general 3-dimensional bar-joint mechanism, which is defined as assemblies
of rigid bars connected to nodes by hinges in arbitrary directions. In Sec.2,
nonlinear compatibility conditions of translations and rotations are derived
at bar-ends with respect to the generalized displacements including displace-
ments and rotations of nodes and bars. We propose the definition of the
bar-ends using the translation and rotation at the center of bar, which is
effective because we consider only rigid displacement and rotation of bars
rather than considering deformation of bars in [19, 20, 21]. In Secs. 3 and
4, the compatibility conditions are expanded with respect to the path pa-
rameter of deformation, and the order of mechanism, as mentioned above
in reference to [1], is determined by the existence condition of higher-order
coefficients. Note that the terms infinitesimally rigid and infinitesimally flex
are used in the field of structural rigidity; however, in this paper, we use the
terminologies in structural mechanics. The detailed procedure of the anal-
ysis is shown through the numerical examples of a two-bar and a four-bar
linkages [22].
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(a) (b)

Figure 1: Definition of global coordinates, unit vectors in local coordinates, and bar rota-
tion; (a) before deformation, (b) after deformation.

2. Compatibility equations of bar-joint mechanism with arbitrarily
inclined hinges

2.1. Translation and rotation of nodes and bars

We consider a bar-joint mechanism with arbitrarily inclined hinges. Let
K and M denote the set of indices of nodes (joints) and bars. Note that
it is not necessary to have hinges at all bar-ends; i.e., some bars are rigidly
connected to nodes.

The initial coordinates of node k ∈ K in undeformed state and the length
of bar i ∈ M are denoted by Xk ∈ R3 and Li, respectively. Nodes at two
ends of the ith bar are denoted as ki1, ki2 ∈ K. We define the reference frame
of undeformed state using the unit vector t1

i directed from the center of bar i
to node ki2 and unit vectors t2

i and t3
i satisfying t1

i × t2
i = t3

i and t2
i × t3

i = t1
i

as shown in Fig. 1(a). The vectors directing from the center of bar i to both
ends connected to nodes ki1 and ki2 are denoted by ri1 and ri2, respectively;
i.e.,

ri1 = −Li

2
t1
i , ri2 =

Li

2
t1
i (1)

Note that the vectors ri1 and ri2 have the same length Li/2.
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Deformation of bar-joint mechanism is defined by translation and rotation
of nodes and bars. The translation vector of node k in the direction of global
coordinates (x1, x2, x3) is denoted by U k = (U1

k , U2
k , U3

k )> ∈ R3. The rotation
vector of node k around global axes is denoted by Θk = (Θ1

k, Θ
2
k, Θ

3
k)

> ∈ R3.
The translation vector V i = (V 1

i , V 2
i , V 3

i )> ∈ R3 of the center of bar i is
defined similarly.

The rotation vector Φi = (Φ1
i , Φ

2
i , Φ

3
i )

> at the center of bar i is defined
by the unit vector bi of the axis of rotation and the angle φi as

Φi = φibi (2)

We define the reference frame tl∗
i (l = 1, 2, 3) in deformed state, as shown in

Fig. 1(b), by rotating tl
i (l = 1, 2, 3) around the axis bi by the angle φi as

follows [23, 24]:

tl∗
i = bi(bi · tl

i) + [tl
i − bi(bi · tl

i)] cos φi − (tl
i × bi) sin φi (3)

The vectors r∗
i1 and r∗

i2 are defined similarly by rotating ri1 and ri2, respec-
tively, along the axis bi by the angle φi.

Note that a different formulation for large rotation is possible, e.g., using
Euler parameters. However, it is known based on Euler’s theorem of rotation
of reference frame [24] that any pair of reference frames with the same origin
can be transformed with each other by a single rotation along an axis. Fur-
thermore, continuously varying configuration is investigated by carrying out
series expansion from the initial undeformed state, and the parameters should
be uniquely defined from the initial and final configurations. Therefore, we
use the formulation in (3) involving three independent parameters.

Assuming that the center of bar i and nodes ki1 and ki2 move indepen-
dently, let ∆U i1 and ∆U i2 ∈ R3 denote the vectors of translational incom-
patibility at two ends of bar i. The vectors of rotational incompatibility at
two bar-ends are denoted by ∆Θi1 and ∆Θi2 ∈ R3.

If the bars are rigidly connected to nodes, the compatibility conditions
are given as

∆U ij = U kij
− (V i + r∗

ij) + rij = 0 (j = 1, 2, i ∈ M) (4)

∆Θij = Θkij
− Φi = 0 (j = 1, 2, i ∈ M) (5)

2.2. Inclined hinge at bar-end

We add rotational degrees of freedom at bar-ends, where arbitrarily in-
clined hinges are expected to exist [18]. In the example of four-bar mecha-
nism, we add two hinges at bar ends connected to a node as shown in Fig. 2
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Figure 2: Illustration of hinges at bar-ends.

to clearly investigate symmetry properties of nodal displacements and self-
equilibrium force modes. Since the directions of two hinges at a node are the
same, the two hinges can easily be combined to obtain a model with a single
hinge at each node by regarding summation of rotational angles of the two
hinges as the rotation angle of the single hinge.

The rotation vector Θk of node k is defined by the unit vector nk of the
axis of rotation and the angle θk as

Θk = θknk (6)

Let f ij denote the direction vector of the hinge between node kij and bar i.

The direction vectors fn
ij and f b

ij after rotations of nodes and bars, respec-
tively, are computed as

f b
ij = bi(bi · f ij) + [f ij − bi(bi · f ij)] cos φi − (f ij × bi) sin φi (7)

fn
ij = nkij

(nkij
· f ij) + [f ij − nkij

(nkij
· f ij)] cos θkij

−(f ij × nkij
) sin θkij

(8)
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The compatibility conditions are given as the collinearity of vectors fn
ij

and f b
ij, which is expressed using the vector product as [24, 25]

eij = f b
ij × fn

ij = 0 (9)

Note that (9) defines three equations; however, the independent two compo-
nents of (9) should be used. Such components are formally written as

e
(2)
ij = (e1

ij, e
2
ij)

> = 0 (10)

The condition (5) is to be replaced by (10) if a hinge exists at the jth end
of bar i, which means that number of constraints is reduced by one, when a
hinge is placed at a bar end.

The compatibility conditions are combined into G = 0. Accordingly, the
vector G is called incompatibility vector. Similarly, the generalized displace-
ment vector W is defined as an assemblage of U , Θ, V , and Φ. Note that
φi and bi are functions of Φ, and θk and nk are functions of Θ.

Let m0, n0, and s denote the numbers of bars, nodes, and constrained
degrees of freedom, respectively. When we have h hinges, the numbers of
components of W and G, denoted by n and m, respectively, are determined
as n = 6n0 + 6m0 − s and m = 12m0 − h.

3. Derivation of first-order infinitesimal mechanism and self-equilibrium
forces

3.1. Condition of first-order infinitesimal mechanism

In this and next sections, we show a general method to analyze ”incompat-
ibiliy function” using series expansion for any kind of mechanisms including
the specific mechanism defined in the previous section.

Deformed configuration of a bar-joint mechanism is defined in terms of
the generalized displacement vector W . Following the standard procedure
of geometrically nonlinear analysis, the vector W is parameterized in terms
of a path parameter ξ [12].

In the following, we use ( )′ to indicate the derivative with respect to ξ,
and adopt summation convention when an index is repeated in one term.

The incompatibility vector G is a function of W (ξ) as G(W (ξ)). If the
bar-joint system has a mechanism such that it deforms without external load,
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there exists a non-zero W satisfying the following compatibility condition
along the path of deformation:

G(W (ξ)) = 0 (11)

We omit the argument ξ for simple expression of equations. Differentiat-
ing (11) with respect to ξ, we obtain

∂Gs

∂Wi

W ′
i = 0 (s = 1, . . . ,m) (12)

Evaluating at ξ = 0, (12) is written simply as

ΓW ′ = 0 (13)

where Γ ∈ Rm×n is a constant matrix of which the (s, i) component Γsi is
defined as

Γsi =
∂Gs

∂Wi

∣∣∣∣
ξ=0

(14)

In the following, all variables are evaluated at the undeformed state ξ = 0.
If any non-zero W ′ satisfying (13) is found, the bar-joint system has at least
first-order infinitesimal mechanism.

Since Γ is derived by differentiation of the compatibility conditions with
respect to the generalized displacements, it may be regarded as a generalized
compatibility matrix. Therefore, generalized self-equilibrium force vector is
defined as the vector F ∈ Rm satisfying

F>Γ = 0 (15)

which is also expressed as

Fs
∂Gs

∂Wi

= 0 (i = 1, . . . , n) (16)

It is easily seen that the components of F corresponding to translational
incompatibility in G are regarded as the bar-end forces.

3.2. Singular value decomposition of Γ

Using SVD, Γ is decomposed as [26]

Γ = BΣH> (17)
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Defining r = rank(Γ), p = n− r, and q = m− r, we can express matrices Σ,
H , and B as

Σ =

[
diag(λ1, . . . , λr) Or×p

Oq×r Oq×p

]
∈ Rm×n (18)

H = [η1, . . . , ηn] ∈ Rn×n (19)

B = [β1, . . . , βm] ∈ Rm×m (20)

where the singular values are ordered as λ1 ≥ · · · ≥ λr, and H and B are
orthogonal matrices consisting of singular vectors.

Post-multiplying H to both sides of (17), we obtain

Γηj =

{
λjβj (j = 1, . . . , r)
0 (j = r + 1, . . . , n)

(21)

Furthermore, pre-multiplying B> to both sides of (17), we have

β>
i Γ =

{
λiη

>
i (i = 1, . . . , r)

0> (i = r + 1, . . . ,m)
(22)

Let im(Γ) and ker(Γ) be the column space and the null space [26] of Γ.
Then (21) shows that β1, . . . , βr are the bases of im(Γ), and ηr+1, . . . , ηr+p

are the bases of ker(Γ). Similarly, we can find from (22) that η1, . . . , ηr are
the bases of the row space im(Γ), and βr+1, . . . , βr+q are the bases of the left

null space ker(Γ>).
Eq. (13) shows that an first-order infinitesimal mechanism W ′ is ex-

pressed as a linear combination of the bases of ker(Γ). Therefore, the vectors
ηr+1, . . . , ηr+p represent the first-order infinitesimal mechanism modes, and
p is the number of mechanisms, which is equal to the number of kinematic
indeterminacy.

Similarly, (15) shows that the generalized self-equilibrium force vector
F is written as a linear combination of the bases βr+1, . . . , βr+p of ker(Γ>),
where q is the number of self-equilibrium modes, which is equal to the number
of statical indeterminacy.

For simplicity, hereinafter we reverse the order of singular values and
vectors; i.e., we rename ηn, . . . , η1 as η1, . . . , ηn, βm, . . . , β1 as β1, . . . , βm

and λ1, . . . , λr as λr, . . . , λ1, respectively.
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4. Conditions of higher-order infinitesimal mechanisms

Assuming that a frame has a single first-order infinitesimal mechanism
mode, i.e., p = 1 and W ′ = η1, we investigate the existence of higher order
terms of the mechanism.

The generalized displacement vector W (ξ) is expressed as a linear com-
bination of the right singular vectors as

W = ξη1 + α2η2 + · · · + αnηn (23)

where η1 is a first-order infinitesimal mechanism mode and αj(ξ) (j =
2, . . . , n) are the coefficients of the basis vectors for the row space of im(Γ).
Note that αj(ξ) is a function of the path parameter ξ.

Pre-multiplying η>
1 to the both sides of (23), we have

η>
1 W = ξ (24)

Differentiating the both sides of (24) successively with respect to ξ, we obtain

η>
1 W ′ = 1 (25)

η>
1 W ′′ = η>

1 W ′′′ = · · · = 0 (26)

Assuming the first-order infinitesimal mechanism W ′ is obtained, we in-
vestigate the condition for existence of second order mechanism. Differenti-
ation of (12) with respect to ξ leads to

∂2Gs

∂Wi∂Wj

W ′
iW

′
j +

∂Gs

∂Wi

W ′′
i = 0 (s = 1, . . . ,m) (27)

From (27), W ′′ is determined as the solution of the following set of linear
equations:

ΓW ′′ = g(2) (28)

where g(2) ∈ Rm is a constant vector calculated from W ′ as

g(2)
s = − ∂2Gs

∂Wi∂Wj

∣∣∣∣
ξ=0

W ′
iW

′
j (s = 1, . . . ,m) (29)

If there exists W ′′ satisfying (28), the bar-joint mechanism is at least
second order. Note that (28) has the solution W ′′ if and only if g(2) ∈ im(Γ);
i.e., g(2) is orthogonal to all basis vectors of ker(Γ>). Conditions for existence
of W ′′ for the cases q = 0 and q ≥ 1, respectively, are summarized as follows:
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(a) q = 0
In this case, ker(Γ>) has no basis and (28) always has a solution.

(b) q ≥ 1
The bases of ker(Γ>) are self-equilibrium force modes β1, . . . , βq; thus
W ′′ exists when the following equations hold:

β>
i g(2) = 0 (i = 1, . . . , q) (30)

Note that we can regard g(2) as a second-order generalized strain vector
generated by W ′. Therefore, (30) indicates that the works done by the
forces β1, . . . , βq against the strain g(2) vanish.

When one of the conditions (a) and (b) is satisfied, we can obtain W ′′ by
pre-multiplying β>

i (i = q + 1, . . . ,m) to both sides of (28) as

W ′′ = α′′
p+1ηp+1 + · · · + α′′

nηn (31)

α′′
p+i =

β>
q+ig

(2)

λi

(i = 1, . . . , r) (32)

Therefore, each of (a) and (b) is a sufficient condition for existence of second
order infinitesimal mechanism.

We can investigate the condition for existence of third order infinitesimal
mechanism in the same manner. Differentiating (27) with respect to ξ, we
have

∂3Gs

∂Wi∂Wj∂Wk

W ′
iW

′
jW

′
k + 3

∂2Gs

∂Wi∂Wj

W ′′
i W ′

j +
∂Gs

∂Wi

W ′′′
i = 0 (s = 1, . . . ,m)

(33)
From (33), we obtain a set of equations for W ′′′ as

ΓW ′′′ = g(3) (34)

where g(3) ∈ Rm is a constant vector calculated from W ′ and W ′′ as

g(3)
s = − ∂3Gs

∂Wi∂Wj∂Wk

∣∣∣∣
ξ=0

W ′
iW

′
jW

′
k − 3

∂2Gs

∂Wi∂Wj

∣∣∣∣
ξ=0

W ′′
i W ′

j (s = 1, . . . ,m)(35)

The conditions for existence of W ′′′ is same as that of W ′′, where (30) for
(b) is replaced with

β>
i g(3) = 0 (i = 1, . . . , q) (36)
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When W ′′′ exists, we can calculate it as

W ′′′ = α′′′
p+1ηp+1 + · · · + α′′′

n ηn (37)

α′′′
p+i =

β>
q+ig

(3)

λi

(i = 1, . . . , r) (38)

The conditions for existence of forth and higher order infinitesimal mecha-
nisms can be derived in the same manner.

Finally, the deformation including higher order terms can be expressed
in a series expansion form as

W = W ′ξ +
1

2!
W ′′ξ2 +

1

3!
W ′′′ξ3 + · · · (39)

We can successively determine the terms up to arbitrary orders in (39), if
the mechanism evaluated above is a finite mechanism.

Although derivation of
∂Gs

∂Wi

,
∂2Gs

∂Wi∂Wj

, and
∂3Gs

∂Wi∂Wj∂Wk

involves very

complicated differentiation, it can be done systematically using a symbolic
computation software package. Furthermore, if a general form is derived for a
beam element with hinges and springs at bar ends, then it can be assembled to
a frame with many bars. In the following examples, a symbolic computation
software package Maple [27] Ver. 16 is used for analytical derivations of
equations.

5. Numerical examples

5.1. Example 1: two-bar linkages

Orders of infinitesimal mechanism are evaluated for two models 1A and
1B as shown in Fig. 3. In both models, two bars with the same length are
connected at node 2, which is indicated by a filled square. All translational
and rotational components except rotation around Y-axis are constrained at
node 1, and all translational components except X-directional displacement
are constrained at node 3. Furthermore, each model has a hinge at the end
of bar 2 connected to node 2, as indicated with dashed line in Fig. 3. The
difference in two models is the direction of the hinge; the axis of the hinge
of model 1A is parallel to Y-axis, while the axis of the hinge of model 1B is
inclined 45 degrees from X-axis and Y-axis in XY-plane.

In both models, m0 = 2, n0 = 3, h = 1, s = 7, m = 23, and n = 23. SVD
of Γ is carried out to find that r = rank(Γ) = 22 for both models. Thus, they
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Table 1: Vectors W ′, W ′′, and W ′′′ of the two-bar linkages.
model 1A model 1B

W ′ (= η1) W ′′ W ′′′ W ′ (= η1) W ′′ W ′′′

U1
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

U2
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

U3
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

Θ1
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

Θ2
1 0.3922 0.0000 0.0139 0.2626 0.0000 -

Θ3
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

U1
2 0.0000 -0.1538 0.0000 0.0000 -0.0690 -

U2
2 0.0000 0.0000 0.0000 0.0000 0.0000 -

U3
2 -0.3922 0.0000 0.0464 -0.2626 0.0000 -

Θ1
2 0.0000 0.0000 0.0000 0.0000 0.0000 -

Θ2
2 0.3922 0.0000 0.0139 0.2626 0.0000 -

Θ3
2 0.0000 0.0000 0.0000 0.0000 0.0000 -

U1
3 0.0000 -0.3077 0.0000 0.0000 -0.1379 -

U2
3 0.0000 0.0000 0.0000 0.0000 0.0000 -

U3
3 0.0000 0.0000 0.0000 0.0000 0.0000 -

Θ1
3 0.0000 0.0000 0.0000 -0.5252 0.0000 -

Θ2
3 -0.3922 0.0000 -0.0139 -0.2626 0.0000 -

Θ3
3 0.0000 0.0000 0.0000 0.0000 -0.1379 -

V 1
1 0.0000 -0.0769 0.0000 0.0000 -0.0345 -

V 2
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

V 3
1 -0.1961 0.0000 0.0232 -0.1313 0.0000 -

Φ1
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

Φ2
1 0.3922 0.0000 0.0139 0.2626 0.0000 -

Φ3
1 0.0000 0.0000 0.0000 0.0000 0.0000 -

V 1
2 0.0000 -0.2308 0.0000 0.0000 -0.1034 -

V 2
2 0.0000 0.0000 0.0000 0.0000 0.0000 -

V 3
2 -0.1961 0.0000 0.0232 -0.1313 0.0000 -

Φ1
2 0.0000 0.0000 0.0000 -0.5252 0.0000 -

Φ2
2 -0.3922 0.0000 -0.0139 -0.2626 0.0000 -

Φ3
2 0.0000 0.0000 0.0000 0.0000 -0.1379 -
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Table 2: Vectors β1, g(2) and g(3) of the two-bar linkages
model 1A model 1B

β1 g(2) g(3) β1 g(2) g(3)

∆U1
11 0.0000 0.0769 0.0000 0.0000 0.0345 0.0000

∆U2
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆U3
11 0.0000 0.0000 -0.0302 0.0000 0.0000 -0.0091

∆U1
12 0.0000 -0.0769 0.0000 0.0000 -0.0345 0.0000

∆U2
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆U3
12 0.0000 0.0000 0.0302 0.0000 0.0000 0.0091

∆U1
21 0.0000 0.0769 0.0000 0.0000 0.0345 0.0000

∆U2
21 0.0000 0.0000 0.0000 0.0000 -0.0690 0.0000

∆U3
21 0.0000 0.0000 0.0302 0.0000 0.0000 -0.0091

∆U1
22 0.0000 -0.0769 0.0000 0.0000 -0.0345 0.0000

∆U2
22 0.0000 0.0000 0.0000 0.0000 0.0690 0.0000

∆U3
22 0.0000 0.0000 -0.0302 0.0000 0.0000 0.0091

∆Θ1
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆Θ2
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆Θ3
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆Θ1
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆Θ2
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆Θ3
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

e1
21 0.0000 0.0000 0.0000 0.7071 0.0000 -0.0272

e2
21 -1.0000 0.0000 0.0000 0.7071 0.0000 -0.1902

∆Θ1
22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆Θ2
22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

∆Θ3
22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Figure 3: Models 1A and 1B of two-bar linkage.

have one first-order infinitesimal mechanism mode and one self-equilibrium
force mode, because p = q = 1. The infinitesimal mechanism mode vector
W ′ (= η1), the self-equilibrium mode vector β1, and the vector g(2) of both
models are shown in Tables 1 and 2.

Evaluating the second order condition (30), we find that β>
1 g(2) = 0.0000

is satisfied for both models 1A and 1B, and the second order terms W ′′ are
calculated as shown in Table 1.

For model 1A, the third order condition β>
1 g(3) = 0.0000 of (36) is also

satisfied by the vector g(3) shown in Table 2, and we obtain W ′′′ as shown in
Table 1. However, for model 1B, β>

1 g(3) = −0.1537; therefore, W ′′′ does not
exist. Consequently, we can determine that the infinitesimal mechanism of
model 1A is at least third order, and the infinitesimal mechanism of model
1B is second order.

5.2. Example 2: four-bar linkage

Next, we consider a square model in XY-plane as shown in Fig. 4, which
has four bars connected at four nodes. This model is known as a Bennett 4R
linkage [15]. Each bar has hinges at both ends, and the axes of the hinges
are defined at the initial state in the global coordinate system as follows:
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Figure 4: Four-bar linkage.

f 11 = f 42 =


√

2
3

0√
1
3

 , f 12 = f 21 =


0√

2
3

−
√

1
3



f 22 = f 31 =

 −
√

2
3

0√
1
3

 , f 32 = f 41 =


0

−
√

2
3

−
√

1
3


Although the physical model has only four hinges, the numerical model

has eight hinges; i.e., there exist a pair of hinges in the same direction at a
node. This way, the boundary conditions are easily assigned at nodes, and
symmetry properties of deformation can be clearly observed. Note again that
the rotation angles of two parallel hinges can be added to combine two hinges
to one.

The support conditions are shown in Fig. 4, where m0 = 4, n0 = 4,
h = 8, and s = 14; thus, the numbers of rows and columns of matrix Γ are
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Table 3: Vectors W ′, W ′′ and W ′′′ of the four-bar linkage.
W ′ (= η1) W ′′ W ′′′

U1
1 -0.1715 0.0294 0.0849

U2
1 0.0000 0.0000 0.0000

U3
1 0.0000 0.0000 0.0000

Θ1
1 0.0000 0.0000 0.0000

Θ2
1 -0.2425 -0.1248 -0.0441

Θ3
1 0.0000 0.0000 0.0000

U1
2 0.0000 0.0000 0.0000

U2
2 0.1715 0.0294 -0.0849

U3
2 0.0000 0.3328 0.0000

Θ1
2 0.2425 -0.1248 0.0441

Θ2
2 0.0000 0.0000 0.0000

Θ3
2 0.0000 0.0000 0.0000

V 1
1 -0.0857 0.0147 0.0424

V 2
1 0.0857 0.0147 -0.0424

V 3
1 0.0000 0.1664 0.0000

Φ1
1 0.2425 -0.1248 0.0120

Φ2
1 -0.2425 -0.1248 -0.0120

Φ3
1 0.1715 0.0000 0.0312
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Table 4: Vectors βj (j = 1, · · · , 7), g(2), and g(3) of bar 1 of four-bar linkage.

β1 β2 β3 β4 β5 β6 β7 g(2) g(3)

∆U1
11 -0.1313 -0.2462 -0.0191 0.0768 -0.0098 0.1245 0.1278 0.0147 0.0580

∆U2
11 -0.0879 0.0418 0.1806 -0.1825 -0.0680 -0.0029 -0.2249 -0.0147 0.0580

∆U3
11 -0.1996 0.0988 -0.0330 0.0986 0.1066 -0.1034 0.0301 -0.0416 0.0000

∆U1
12 0.1313 0.2462 0.0191 -0.0768 0.0098 -0.1245 -0.1278 -0.0147 -0.0580

∆U2
12 0.0879 -0.0418 -0.1806 0.1825 0.0680 0.0029 0.2249 0.0147 -0.0580

∆U3
12 0.1996 -0.0988 0.0330 -0.0986 -0.1066 0.1034 -0.0301 0.0416 0.0000

e1
11 0.2615 0.2625 -0.0024 -0.0049 -0.2147 0.0226 0.4424 0.0416 0.0107

e2
11 0.2674 -0.0418 -0.0805 -0.0222 0.0200 0.0100 -0.1089 0.0000 -0.0321

e1
12 0.1124 -0.1863 0.0338 -0.0970 -0.0350 0.0959 -0.1775 0.0000 0.0321

e2
12 -0.2035 -0.1712 0.3403 -0.2292 -0.3798 0.2804 0.2364 0.0416 -0.0107

-0.2

-0.1

 0

 0.1

 0.2

 0  0.2  0.4  0.6  0.8  1

Figure 5: Nodal displacements with respect to path parameter; solid line: U1
1 , dashed line:

U2
2 , chain line: U3

2 .

m = 40 and n = 34, respectively. From the SVD of Γ, we obtain r = 33, and
consequently, p = n − r = 1 and q = m − r = 7 are determined. Therefore,
the model has one first-order infinitesimal mechanism mode W ′ (= η1) and
seven self-equilibrium force modes βj (j = 1, · · · , 7). The components of
W ′ corresponding to nodes 1, 2 and bar 1 are shown in Table 3, and the
components of βj (j = 1, · · · , 7) and g(2) corresponding to bar 1 are shown

in Table 4. We confirmed all of the seven equations β>
j g(2) = 0 (j = 1, . . . , 7)
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Figure 6: Errors in compatibility conditions with respect to path parameter; solid line:
∆U1

11, dashed line: ∆U3
12, chain line: e1

11.

of the second order condition (30) are satisfied to obtain non-zero solution of
W ′′. We can find that the equations of the third order condition β>

j g(3) =
0 (j = 1, · · · , 7) are also satisfied, and we can obtain W ′′′ in the same manner.

The nodal displacements are plotted with respect to the path parameter in
Fig. 5, where solid, dashed, and chain lines are U1

1 , U2
2 , and U3

2 , respectively.
The errors in compatibility conditions are plotted with respect to the path
parameter in Fig. 6, where solid, dashed, and chain lines are ∆U1

1 , ∆U3
2 , and

e1
1, respectively. As seen from Fig. 6, the errors in compatibility conditions

are sufficiently small.
The same four-bar mechanism is analyzed using Abaqus Ver. 6.14 [28].

Forced deformation in positive and negative y-direction are applied at nodes
2 and 4, respectively. The shape at U2

2 = 0, 0.08, 0.16, and 0.24 are shown
in Figs. 7(a)-(d), where the short cylinders show the hinges. It is confirmed
that all sectional forces and reactions vanish during deformation.

The variations of U1
1 U3

2 are plotted with respect to U2
2 in Figs. 8 and 9,

respectively, where solid and dashed lines are the results of series expansion
and Abaqus, respectively. It is seen from the figures that the series expansion
has good accuracy when the deformation is not very large.

6. Conclusion

We have presented a general method for determining the order of deforma-
tion of bar-joint mechanisms with arbitrarily inclined hinges. The conclusions
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(a) (b)

(c) (d)

Figure 7: Results of large deformation analysis at U2
2 = 0, 0.08, 0.16, and 0.24 computed

using Abaqus.

drawn from this study are summarized as follows:

1. The conditions for existence of higher order terms of the infinitesimal
mechanisms have been derived by successively differentiating the com-
patibility conditions of displacements and rotations of nodes and bars

-0.2

-0.15

-0.1

-0.05

 0

 0  0.05  0.1  0.15  0.2

Figure 8: Variation of U1
1 with respect to U2

2 ; solid line: series expansion, dashed line:
large deformation analysis.
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 0.15

 0.2

 0.25

 0  0.05  0.1  0.15  0.2

Figure 9: Variation of U3
2 with respect to U2

2 ; solid line: series expansion, dashed line:
large deformation analysis.

with respect to the path parameter of deformation. Compatibility con-
ditions at hinge are derived as the collinearity of the direction vectors
of hinges after undergoing rotation of the node and bar connected to
the hinge.

2. Generalized self-equilibrium force has been defined as the left singu-
lar vector corresponding to a zero singular value. It is seen from the
derived conditions that the infinitesimal mechanism has higher-order
terms if the higher-order generalized strain vector is orthogonal to all
generalized self-equilibrium force vectors.

3. The complex formulas for higher-order terms can be systematically
derived using a symbolic computation software package. If formulas
are derived for a bar element with hinges at bar-ends, then the order
of mechanism with several bars can be evaluated systematically.

4. Accuracy of the proposed method has been confirmed by comparing
the large deformation of a four-bar mechanism computed using a finite
element analysis software. It has also been shown that error in compat-
ibility vector computed using third order expansion is negligibly small
when the deformation is not very large.
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