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Abstract Stopping rule for multi-start local search is investigated for application
to structural optimization problems with moderately large number of local optima.
The size of attractor of an unknown local optimal solution is estimated using
the information of already obtained solutions. A stopping rule is defined using
the likelihood of obtaining the specific set of local optimal solutions. This way,
characteristics of the specific optimization problem is successfully incorporated.
The proposed rule is first verified using the mathematical problems in comparison
with the existing rule utilizing the estimated ratio of the total size of attractors to
the size of feasible domain. The rule is next applied to an optimization problem of
a plane frame under constraints on inter-story drift angle and stress against static
loads. Characteristics of the distribution of attractors of optimal solutions are also
investigated.

Keywords Multi-start local search · stopping rule · stress constraint · building
frame

1 Introduction

Among various problems of structural and multidisciplinary optimization (SMO),
it is natural to expect that there exist many local optimal solutions, if constraints
on various quantities such as stress, dynamic response, inelastic response, etc., are
considered. Although it is not always necessary to obtain the global optimal solu-
tion for an SMO problem, it is important to estimate the number of local optimal
solutions and the accuracy of the best solution obtained so far in the process of
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a multi-start strategy. For this purpose, various methods of global optimization
have been proposed (Le Riche and Haftka 2012; Törn and Z̆ilinskas 1989; Zabinsky
2003). Randomized algorithms can be successfully used for obtaining approximate
optimal solutions (Ohsaki 2001; Ohsaki and Katsura 2012).

For SMO problems, we do not have to expect so many local optima as observed
in mathematical test problems. Therefore, for problems with continuous functions
and variables, gradient based nonlinear programming (NLP) approaches can be
used to obtain a solution with good accuracy. However, a multi-start strategy
should also be used, because the solution obtained by NLP approach depends on
the initial solution.

For combinatorial problems with integer variables, heuristic approaches, which
do not require gradient information, are often used. Heuristic approaches are clas-
sified into population based approaches and those based on local search (LS),
which are also applied to multiobjective problems (Ohsaki 2008). The population
based approaches such as genetic algorithm (GA) and particle swarm optimiza-
tion (PSO) demand substantial computational cost, because the function values
of many solutions should be evaluated at each generation.

By contrast, computational cost of the methods based on LS, such as simulated
annealing (SA) and tabu search (TS), is rather small for a single trial, because
only one solution and its neighborhood solutions are evaluated at each iteration.
Furthermore, it is important to note that the solution is always improved from the
initial solution, although a multi-start strategy is necessary to obtain the global
optimal solution. Muselli (1997) compared the efficiency between consecutively
restarting searches and continuing searches with a single start for random search,
random walk, grid search, and various covering methods (Törn and Z̆ilinskas 1989).

The difficulty in multi-start strategy is that the number of local optimal solu-
tions including the global optimal solution is not known a priori. Therefore, several
stopping rules have been proposed for multi-start LS, and also for pure random
search (Dorea 1983; Dorea and Goncalves 1993; Hart 1998). A simple rule may be
defined based on the history of objective values; i.e., if the objective value is not
improved during the prescribed number of trials, then the multi-start process is
terminated, and the best solution obtained so far is conceived as the global optimal
solution.

Another strategy utilizes the attractor, which is the set of solutions leading
to each local optimal solution by carrying out an LS. If a sufficient amount of
attractor is obtained, then the multi-start process can be terminated. Lagaris
and Tsoulos (2008) used a variance of the number of expected optimal solutions
to define a stopping rule. The estimated number of local optimal solutions and
the expected ratio of covered attractor are also used (Lagaris and Tsoulos 2008;
Boender and Rinnooy Kan 1987). Zabinsky et al. (2010) proposed a criterion
based on trade-off between the computational cost and probability of obtaining
the global optimal solution. The number of attractors is usually counted by the
number of initial solutions. However, if we use a deterministic LS, then we can
include the intermediated solutions between the initial and final optimal solutions
as the attractors.

Several Bayesian approaches have been proposed assuming no prior informa-
tion is available for the number of solutions or the sizes of attractors. However,
it is important to note that the history of multi-start process, or the numbers of
attractors of already found solutions, should be utilized to make an accurate deci-
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sion for each specific problem. Zieliński (1981) proposed a method for minimizing
the Bayesian risk of the estimated number of remaining attractors. Although he
used the information of the known attractors, it is not used in the final form.

In this paper, a new stopping rule for multi-start LS is proposed for applica-
tion to SMO problems with moderately large number of local optima. The size
of attractor of an unknown local optimal solution is estimated from those of al-
ready obtained solutions, and a stopping rule is proposed using the likelihood of
obtaining the specific set of solutions. The proposed rule is first verified using
the mathematical problems in comparison with the existing rule utilizing the esti-
mated ratio of the total size of attractors to the size of feasible domain. The rule
is next applied to an optimization problem of a plane frame under constraints on
inter-story drift angle and stress against static loads.

2 Local search

We consider a deterministic method for improving a single solution to find a local
optimal solution. Combinatorial problem is considered for clear identification of
the local optima. The vector of m integer variables is denoted by x = (x1, . . . , xm).
The stopping rule proposed in next section can be used for any optimization
method based on LS; e.g., grid search, tabu search, and greedy method for lo-
cal improvement. However, we consider the basic LS, which is described as follows
for a problem of minimizing the objective function f(x):

Algorithm of local search (LS)

1. Sample an initial random point x0 from a uniform probability distribution in
the feasible domain. Set k = 0.

2. Enumerate all N neighborhood solutions of xk, denoted by yi = (yi
1, . . . , y

i
m)

(i = 1, . . . , N), and compute f(yi).
3. Select the best solution ymin, which has the smallest value of f(yi) among all

neighborhood solutions.
4. If f(xk) > f(ymin), let xk+1 ← ymin, k ← k+1, and go to 2; otherwise, output

xk as a local optimal solution and terminate the process.

There are several definitions of neighborhood solutions. Suppose xj can take
an integer value in the set {1, . . . , qj}, and, for simplicity, suppose the relation
1 < xk

j < qj is satisfied for the current value xk
j of xj . Then the following definitions

may be used for the neighborhood solutions yi (i = 1, . . . , N) of xk at the kth
step:

Moore neighborhood:

yi
j = {xk

j − 1, xk
j , xk

j + 1}, (j = 1, . . . , m) (1)

Neumann neighborhood:
(

yi
j = {xk

j − 1, xk
j , xk

j + 1} for j = j∗

yi
j = xk

j for j 6= j∗

(j∗ = 1, . . . , m)

(2)
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Fig. 1 Three types of neighborhood solutions; (a) Moore, (b) Neumann, (c) grid search (j∗ =
1).

Neighborhood for grid search:

(

yi
j = {1, . . . , qi} j = j∗

yi
j = xk

j for j 6= j∗

(j∗ ∈ {1, . . . , m})
(3)

The neighborhood solutions for the case m = 2 are illustrated in Fig. 1. Note that
the grid search finds the best solution among the neighborhood solutions in a fixed
direction. We use the Moore neighborhood in the following examples.

3 Stopping rule for multi-start LS

3.1 Existing stopping rule

Suppose we obtain w local optimal solutions x∗
1, . . . , x∗

w by carrying out LS t
times from randomly generated initial solutions. The number of LSs that find x∗

i

is denoted by ni, i.e., n1+· · ·+nw = t. Define Xi as attractor or region of attraction
of x∗

i (Zieliński 1981; Lagaris and Tsoulos 2008), which is the set of solutions that
leads to x∗

i by carrying out LS. For problems with integer variables, attractor and
feasible region are to be replaced by number of solutions in attractor and number
of feasible solutions, respectively.
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Fig. 2 Process of local search and definition of attractors (w = 2, n1 = 2, n2 = 3, t = 5,
T = 26).

If we use a deterministic LS, the same solution x∗
i is found when the LS is

started from any intermediate solution of the LS between the initial solution and
x∗

i . Therefore, all intermediate solutions along the path to x∗
i can be included in

Xi. The total number of solutions visited during the t trials of LS is denoted by
T , which is counted without duplication.

The definitions of parameters w, t, and T are summarized as follows for refer-
ence in the following parts:

– w: number of optimal solutions obtained by LS
– t: number of trials of LS, or number of initial solutions
– T : total number of solutions visited during t trials of LS, including initial,

optimal, and intermediate solutions along the path of LS

Figure 2 illustrates the process of LSs for a problem with two variables x = (x1, x2).
Two solutions x∗

1 and x∗
2 are found; i.e., w = 2. The solutions x∗

1 and x∗
2 are found

from two and three initial solutions {xS
11, x

S
12} and {xS

21, x
S
22, x

S
23}, respectively;

therefore, n1 = 2, n2 = 3, and t = n1 + n2 = 5. The two and three paths leading
to x∗

1 and x∗
2 have 10 and 16 solutions, respectively; therefore, T = 10 + 16 = 26.

The ratio of size si of Xi to the number of all feasible solutions, which is
called share of Xi (Zieliński 1981), is denoted by ci. Suppose the problem has h
local optimal solutions, which are not known a priori. Boender and Rinnooy Kan
(1987) derived the following estimate h̃ of the number of local optimal solutions
based on Bayesian approach, where the share of attractor of solution is supposed
to be uniformly distributed between 0 and 1 satisfying c1 + · · · + ch = 1, and the
intermediate solutions are not included in the attractors. Suppose we have found
w local optimal solutions during t trials; i.e., n1+ · · ·+nw = t. Then h̃ is estimated
as the mean value of posterior estimate of h as follows:

h̃ =
w(t − 1)

t − w − 2
(4)

The multi-start LS can be terminated if w is sufficiently close to h̃.
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The ratio Ω̃ of sum of size of attractors X1, . . . , Xw to the total feasible region
is also estimated as

Ω̃ =
(t − w − 1)(t + w)

t(t − 1)
(5)

It is noted by Boender and Rinnooy Kan (1987) that the convergence of h̃ is very
slow; therefore, they proposed another stopping rule of multi-start LS based on
(5):

Rule 1 (Boender and Rinnooy Kan 1987): Terminate multi-start LS if Ω̃ ≥ e1 is
satisfied, where e1 is a prescribed value slightly less than 1.

3.2 New stopping rules

Note again that the ratio ci of attractor is assumed to be uniformly distributed
between 0 and 1 in the Bayesian approaches for Rule 1; i.e., property of the problem
to be solved is not fully incorporated in the estimation. Here, we estimate ci based
on the record of multi-start LS. If si consists of the number of initial solutions
leading to x∗

i , then si = ni, s1 + · · · + sw = t, and ci = si/t. By contrast, if
si includes all intermediate solutions, then s1 + · · · + sw = T and ci = si/T are
satisfied. In the example of Fig. 2, s1 = 10 and s2 = 16; therefore, c1 = 10/26 and
c2 = 16/26. In the definitions of the following rules, the intermediate solutions are
included in the attractors; i.e., the total number of solutions in attractors is T ,
while t is used as the total number of trials.

Suppose there is another solution x∗
w+1 that has not been found. Let c

(k)
i

denote the ratio of size si of attractor Xi when there exist w + 1 local optimal
solutions with sw+1 = k; i.e.,

c
(k)
i =

si

T + k
, (i = 1, . . . , w),

c
(k)
w+1 =

k

T + k

(6)

Note that c
(k)
1 + · · ·+c

(k)
w+1 = 1 is satisfied from (6) and s1 + · · ·+sw = T . Since ni

is a random variable, it is written as Ni. Then the probability of finding solutions
x∗

1, . . . , x∗
w+1, respectively, N1, . . . , Nw+1 times in t trials is written as

P (k)
w (N1, . . . , Nw+1|c(k)

1 , . . . , c
(k)
w+1, w, t) =

t!
Qw+1

i=1 Ni!

w+1
Y

i=1

(c
(k)
i )Ni (7)

After ni times finding x∗
i (i = 1, . . . , w) and 0 time x∗

w+1 in t trials; i.e., n1 + · · ·+
nw = t and nw+1 = 0, the likelihood L

(k)
w for observing this event is computed as

L(k)
w = P (k)

w (N1 = n1, . . . , Nw = nw, Nw+1 = 0|c(k)
1 , . . . , c

(k)
w+1, w, t)

=
t!

Qw+1
i=1 ni!

w+1
Y

i=1

(c
(k)
i )ni

=
t!

Qw
i=1 ni!

w
Y

i=1

(c
(k)
i )ni

(8)
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The size sw+1 of attractor Xw+1 of x∗
w+1 is estimated based on the information

of the attractors that have already been found. From our preliminary investigation,
we found that the minimum value of s1, . . . , sw is too small as the estimate of sw+1,
while the maximum value is too large. Therefore, we first use a smoothing process.

The maximum and minimum numbers of attractors of the w solutions are
denoted by sU and sL, respectively. We assume that the sizes of attractors of
unknown solutions are uniformly distributed between sL and sU. Then, L̄w is

defined as the average value of L
(k)
w for k = sL, . . . , sU as

L̄w =
1

sU − sL + 1

sU
X

k=sL

L(k)
w (9)

The value of L
(k)
w when no solution is left, i.e., w = h, is denoted by L

(0)
w . The

following stopping rule is proposed using L̄w:

Rule 2: Terminate multi-start LS if L̄w/L
(0)
w is smaller than a specified small

positive value e2.

This way, the history of trials of LS is fully incorporated to L̄w and L
(0)
w that

are updated at each trial using (8) based on the updated ratios of attractors in
(6).

From (6) and (8), we obtain

c
(0)
i = ci, (i = 1, . . . , w),

L(0)
w =

t!
Qw

i=1 ni!

w
Y

i=1

(ci)
ni

(10)

Therefore, using (6) and si = ciT , L
(k)
w /L

(0)
w is reformulated as

L
(k)
w

L
(0)
w

=
w

Y

i=1

„

T

T + k

«ni

=

„

T

T + k

«t

=

„

1 − k

T + k

«t

= (1 − c
(k)
w+1)

t

(11)

which is equal to the probability of missing the (w + 1)th solution within t trials.
Using (9) and (11), we obtain

L̄w

L
(0)
w

=
1

sU − sL + 1

sU
X

k=sL

(1 − c
(k)
w+1)

t (12)
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In the example in Fig. 2 that has two local optima, sL = 10 and sU = 16, and

L̄w/L
(0)
w is computed using (11) as

L̄w

L
(0)
w

=
1

16 − 10 + 1

16
X

k=10

„

1 − k

26 + k

«5

= 0.08695 (13)

As shown in the numerical examples, L̄w depends significantly on the existence
of small and/or large attractor. Therefore, probability of finding another solution
is overestimated, if one solution has a very large attractor. Hence, we next assume
w possible choices of sw+1 as sw+1 = sj (j = 1, . . . , w), and define cj∗

i as

cj∗
i =

si

T + sj
, (i = 1, . . . , w) (14)

Using (14), Lj∗
w is computed as

Lj∗
w =

t!
Qw

i=1 ni!

w
Y

i=1

(cj∗
i )ni , (j = 1, . . . , w) (15)

and L̄∗
w is obtained as the mean value of Lj∗

w as

L̄∗
w =

1

w

w
X

j=1

Lj∗
w (16)

In a similar manner as (11) and (12), the likelihood ratio is obtained as

L̄∗
w

L
(0)
w

=
1

w

w
X

j=1

„

T

T + sj

«t

=
1

w

w
X

j=1

„

1 − sj

T + sj

«t

=
1

w

w
X

j=1

(1 − c
(sj)
w+1)

t

(17)

Using L̄∗
w, the following rule is proposed

Rule 3: Terminate multi-start LS if L̄∗
w/L

(0)
w is smaller than a specified small

positive value e3.

In the example in Fig. 2, L̄∗
w/L

(0)
w is computed using (17) as

L̄∗
w

L
(0)
w

=
1

2

"

„

1 − 10

26 + 10

«5

+

„

1 − 16

26 + 16

«5
#

= 0.1437 (18)
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4 Numerical examples

4.1 Mathematical problems

The proposed rule is verified using the mathematical problems in Voglis and La-
garis (2009). The TestN2 function (Lagaris and Tsoulos 2008) is also used. Note
that problems with too many local optima are not considered, because we attempt
to apply the rule to SMO problems with moderately large number of solutions.
The test functions are listed as follows, where Nopt is the number of local optima,
and xL and xU are the lower and upper bounds, respectively, of the variables:

Ackley’s function (Nopt = 121):

f(x) = 20 + e − 20e−0.2
√

a − eb/2, a =
1

3

2
X

i=1

x2
i , b =

2
X

i=1

cos(2πxi),

xL = −5, xU = 5

Guillin Hill’s function (Nopt = 25):

f(x) = 3 +
2

X

i=1

2(xi + 9)

xi + 10
sin

„

π

1 − xi + 0.1

«

, xL = 0, xU = 1

Holder function (Nopt = 85):

f(x) = −(cos x1 cos x2)e
(1−

√
x2

1+x2
2/π), xL = −20, xU = 20

Piccioni’s function (Nopt = 28):

f(x) = 0.5 +
sin(x2

1 + x2
2)

2 − 0.5

[1 + 0.001(x2
1 + x2

2)]
2

+ 0.1 sin(10x1) + 0.1 sin(10x2),

xL = −5, xU = 5

M0 function (Nopt = 64):

f(x) =
h

sin
“

2.2πx1 +
π

2

”

+ sin
“π

2
x2

2 +
π

2

”i (2 − x2)(3 − x1)

4
,

xL = −5, xU = 1

Test2N function n = 5 (Nopt = 32):

f(x) =
1

5

5
X

i=1

(x4
i − 16x2

i + 5xi), xL = −5, xU = 5

The variable xi is discretized with 100 equally spaced interval; i.e., xi is defined
in terms of the integer variable Ji ∈ {1, 2, . . . , 101} as

xi = xL + (Ji − 1)
xU − xL

100
(19)

Let S denote the number of trials of LS to find all local optima. The results
for six test functions are shown in Table 1. Since the number of local optima is
known for each problem as shown in Table 1, ten sets of trials are carried out
until all local optima are found. Although the numbers of solutions in Voglis and
Lagaris (2009) and Lagaris and Tsoulos 2008 are based on continuous variables,
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Table 1 Values when all solutions are found.

Nopt S Ω̃ L̄w/L
(0)
w L̄∗

w/L
(0)
w

Ackley’s 121 969.7 0.9806 0.02391 0.02003
Guillin Hill’s 25 3589.4 0.9999 0.00044 0.06901
Helder 85 443.1 0.9595 0.05069 0.03346
Piccioni’s 28 453.2 0.9942 0.01245 0.07872
M0 64 2923.1 0.9987 0.00533 0.01635
Test2N 32 125.1 0.9110 0.06020 0.09360

Table 2 Distribution of ratios of attractors.

Max. Min. Mean Std. Dev.
Ackley’s 0.0201 0.00275 0.00826 0.0030
Guillin Hill’s 0.5468 0.00012 0.04000 0.1084
Helder 0.0147 0.00844 0.01176 0.0014
Piccioni’s 0.1043 0.00431 0.03571 0.0344
M0 0.0484 0.00028 0.01562 0.0135
Test2N 0.0406 0.02439 0.03125 0.0038

Table 3 Values when stopping criteria are satisfied.

Nopt
95 (S) Nopt

98 (S) Nopt
995(S)

Ackley’s 116.4(523.9) 119.9(852.3) 121.0(1719.0)
Guillin Hill’s 10.7(50.8) 13.3(98.5) 18.7(272.6)
Helder 84.0(378.7) 84.8(604.4) 85.0(1210.0)
Piccioni’s 21.5(99.5) 25.0(181.0) 27.2(392.8)
M0 54.1(245.1) 58.5(418.5) 61.7(880.8)
Test2N 31.7(144.7) 32.0(231.0) 32.0(461.0)

N̄opt
02 (S) N̄opt

05 (S) N̄opt∗
02 (S) N̄opt∗

05 (S)
Ackley’s 119.9(930.7) 116.4(508.0) 119.5(836.8) 117.8(568.2)
Guillin Hill’s 11.6(64.6) 7.5(27.2) 24.7(4926.6) 23.9(2815.5)
Helder 84.9(558.3) 84.0(442.7) 84.7(484.8) 83.1(353.7)
Piccioni’s 27.1(287.5) 23.2(124.5) 27.6(671.7) 27.8(518.2)
M0 59.3(603.9) 53.9(250.2) 63.4(1817.3) 59.5(553.5)
Test2N 32.0(186.3) 31.4(125.9) 31.9(192.6) 31.8(145.9)

we confirmed that the same numbers are obtained after discretization by (19). The

value of Ω̃ is close to one for Guillin Hill’s, Piccioni’s, and M0, and L̄w/L
(0)
w has

small values for Guillin Hill’s and M0. However, L̄∗
w/L

(0)
w has the same order for

the six problems.

Distribution of the ratios ci of attractors is listed in Table 2 for the six problems.
Note that the minimum values are very small for Guillin Hill’s and M0, and the
standard deviation is large for Guillin Hill’s, Piccioni’s, and M0. It is seen from
the results in Tables 1 and 2 that Rules 1 and 2 are not effective for problems that
have local optima with small attractors.

Stopping criteria are defined with the parameter values e1 = 0.95, 0.98, and
0.995 for Rule 1, e2 = 0.02 and 0.05 for Rule 2, and e3 = 0.02 and 0.05 for Rule 3.
The results are shown in Table 3, where Nopt

95 is the average value of Nopt when
Ω̃ > 0.95 (Rule 1) is satisfied, and N̄opt

02 and N̄opt∗
02 are the average values of Nopt

when L̄w/L
(0)
w < 0.02 (Rule 2) and L̄∗

w/L
(0)
w < 0.02 (Rule 3), respectively, are
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Fig. 3 A three-span four-story plane frame.

satisfied. Other parameters are defined similarly. The value in parentheses is the
average number of trials to satisfy the stopping rule.

As expected, large portion of local optima is missed for Guillin Hill’s and M0, if
Rule 1 or 2 is used. It is possible to use a value of e1 close to 1 for Rule 1. However,
as seen in the fourth column in Table 3, the value of Nopt

995 is still less than N̄opt∗
02 for

Guillin Hill’s and M0, while large number of unnecessary trials should be carried
out for Ackley’s, Helder, and Test2N. By contrast, N̄opt∗

02 is close enough to Nopt;
i.e., Rule 3 gives better estimate of the number of local optimal solutions than
Rules 1 and 2. Although it is difficult to define the value of e3, it is important that
its appropriate value does not strongly depend on property of the problem to be
solved.

It is also seen from Table 3 that N̄opt∗
05 is slightly smaller than N̄opt∗

02 for all
problems except Piccioni’s, for which N̄opt∗

05 > N̄opt∗
02 is satisfied. This is because

Nopt depends on the initial random seed, and almost all solutions are found before

satisfying L̄∗
w/L

(0)
w < 0.05.

4.2 Optimization of plane frame

Multi-start local search is carried out for optimization of a three-span four-story
plane frame as shown in Fig. 3, where the numbers beside the beams and columns
are group numbers; i.e., there are six groups (ng = 6). The horizontal loads are
given as f1, . . . , f4 = 180, 210, 240, 270 (kN). Concentrated downward vertical
load of 70 kN representing the self-weight is applied at the beam-column joint and
the center of each beam.

The member section is assumed to be sandwich section with the height H; i.e.,
we consider wide-flange section neglecting the effect of web. The cross-sectional
areas A(i) (m2) of the members in the ith group are selected from the list of ns

different sections as

A
(i)
j = A

(i)
0 + 0.002Ji, (i = 1, . . . , ng; Ji ∈ {1, . . . , ns}) (20)

The values of A
(i)
0 (i = 1, . . . , ng) are given as 0.019, 0.007, 0.017, 0.007, 0.021,

0.007 (m2), and ns = 10 in the following example.
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Table 4 Values when stopping criteria are satisfied.

Nopt S Nopt
95 (S) Nopt

98 (S) Nopt
995(S)

θ = 0.010 12 1847.2 8.6(41.4) 11.2(70.8) 9.8(146.2)
θ = 0.011 15 2158.6 7.4(36.0) 8.6(65.2) 10.8(160.4)
θ = 0.012 10 696.2 6.0(29.8) 7.0(54.0) 7.4(112.6)

N̄opt
02 (S) N̄opt

05 (S) N̄opt∗
02 (S) N̄opt∗

05 (S)
θ = 0.010 9.6(72.2) 8.6(42.2) 10.6 (1101.4) 10.2 (268.4)
θ = 0.011 7.6(47.6) 5.2(18.8) 13.8(2409.0) 10.0(242.2)
θ = 0.012 6.6(42.4) 5.4(19.2) 8.4(376.2) 7.0(89.8)

The second moment of area I
(i)
j (m4) and section modulus Z

(i)
j (m3), of the

jth section of the members in the ith group are defined with respect to the cross-
sectional areas as

I
(i)
j = (H/2)2A

(i)
j

Z
(i)
j = I

(i)
j /(H/2) = (H/2)A

(i)
j

(21)

where H = 0.25 (m) in the following example.
The design variable vector consisting of the cross-sectional areas Ai (i =

1, . . . , ng) is denoted by A. Let Li denote the total length of members in the
ith group. The total structural volume is defined as

F (x) =
ng
X

i=1

AiLi (22)

which is minimized under constraints on inter-story drift angle and stress. The
upper-bound stress is 235 MPa, and the upper bound θ of inter-story drift angle
is varies parametrically as 0.010, 0.011, and 0.012. Moore neighborhood is used;
i.e., there are at most 36 = 729 neighborhood solutions at each step of local
search. Since the number of neighborhood solutions is very large, the Neumann
neighborhood may be used for practical application.

Five sets of multi-start local search are carried out from different random seeds,
where each set consists of 5000 trials of local search to find all local optimal
solutions. Note that Nopt has the same value for five trials, respectively, for three
gases of θ, and the average steps S for three cases are sufficiently smaller than the
total steps 5000; therefore, we assume all solutions have been found.

Table 4 shows the mean values among five sets when Rules 1 (e1 = 0.95, 0.98,
0.995), Rule 2 (e2 = 0.02, 0.05), and Rule 3 (e3 = 0.02, 0.05) are satisfied. Note
that Rule 1 with e1 = 0.95 is not appropriate, because Nopt

95 in Table 4 is too small
for all cases. Even for e1 = 0.995, the ratio of missing optimal solutions are not
small enough especially for θ = 0.011. By contrast, Rule 3 with e2 = 0.02 may
be appropriate as the termination rule for this frame, because N̄opt∗

02 is slightly
smaller than Nopt.

Table 5 shows the three best solutions for each case. As seen from the table,
there are several solutions that has the same or almost the same objective value.
Furthermore, the best solution has large number si of attractors, and the large
number ni of the trials to reach the solution. Table 6 shows 12 solutions obtained
from a set of 5000 trials for θ = 0.010. As seen from the table, the best solution is
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Table 5 Three best solutions for θ = 0.010, 0.011, and 0.012.

J1 J2 J3 J4 J5 J6 F (x) ni si

θ = 0.010 7 3 4 2 5 6 2.864 1410 3558
8 3 2 3 5 4 2.872 492 1040
8 3 3 3 4 4 2.872 504 1109

θ = 0.011 6 3 3 2 3 4 2.632 2140 4546
4 3 3 2 7 5 2.648 699 1508
5 3 3 3 5 3 2.656 142 290

θ = 0.012 3 3 4 2 4 4 2.480 2282 4949
3 3 3 2 5 4 2.480 193 673
4 3 5 2 2 3 2.488 1521 3133

Table 6 All 12 solutions obtained by a set of 5000 trials for θ = 0.010.

Rank J1 J2 J3 J4 J5 J6 F (x) ni si S
1 7 3 4 2 5 6 2.864 1410 3558 8
2 8 3 2 3 5 4 2.872 492 2040 1
2 8 3 3 3 4 4 2.872 504 1109 3
2 8 3 2 2 5 6 2.872 7 10 1351
5 6 2 4 2 7 5 2.888 1158 2949 2
5 6 3 3 2 8 7 2.888 14 23 19
5 6 3 3 3 8 5 2.888 86 161 76
5 6 3 4 2 7 7 2.888 30 65 160
9 7 3 7 2 3 6 2.896 364 839 5
9 7 3 6 2 4 6 2.896 582 1476 10
11 8 3 5 3 3 4 2.904 268 565 4
12 8 3 7 3 2 4 2.936 85 185 59

found at the 8th trial, and it is the most frequently obtained solution with largest
size of attractor. Therefore, for this frame optimization problem, the existence of
local optimal solution with small attractor may be neglected.

5 Conclusions

A new stopping rule for multi-start LS has been presented for application to struc-
tural optimization problems with moderately large number of local optima. The
conclusions obtained from this study are summarized as follows:

1. The proposed stopping rule incorporates the history of multi-start LS into its
definition. It has been shown through examples of mathematical test problems
that information such as the size of attractors of local optimal solutions of the
specific optimization problem is useful for improving accuracy of the stopping
rule. If a deterministic LS with integer variable is used, the intermediate solu-
tions between the initial and optimal solution can effectively be incorporated
in the attractor to the local optimal solution.

2. The ratio of likelihood of occurrence of the history of finding local optimal
solutions is computed based on two types of assumption; i.e., all solutions are
found, and there is one missing solution. The size of attractor of the missing
local optimal solution is estimated using those of the already found solutions.
It has been demonstrated in the numerical examples that the ratio of likelihood
of two cases can be a good measure for stopping rule. It has also been shown
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that the likelihood ratio is equivalent to the probability of missing the unknown
local optimal solution within the specific number of trials.

3. The proposed rule is applicable even to the case where small attractors exist,
because the small attractor has only slight effect on the definition of likelihood
ratio. Effect of large attractor is also alleviated by taking average value of
likelihood of obtaining the sequence of solutions corresponding to different
expected size of the attractor of unknown solution. The rule can be effectively
used for practical application to a frame optimization problem with discrete
variables, which has moderately large number of local optimal solutions.
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