
An exact algorithm for the unrestricted block relocation
problem∗

Shunji Tanakaa,∗, Fumitaka Mizunob

aInstitute for Liberal Arts and Sciences, Kyoto University
Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

bDepartment of Electrical Engineering, Kyoto University
Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Abstract

The purpose of this study is to propose an exact algorithm for the unrestricted
block relocation problem with distinct priorities. In this problem, a storage area
is considered where blocks of the same size are stacked vertically in tiers. Be-
cause we can access only topmost blocks, relocations of blocks are required when
other blocks are retrieved. The objective is to minimize the total number of such
relocations necessary for retrieving all the blocks one by one according to a spec-
ified order. In the restricted version of this problem, only the topmost block above
the target block is relocatable. On the other hand, no such restriction is imposed
on the unrestricted problem, which is considered in this study. We also assume
that each block is assigned a distinct retrieval priority and the retrieval order of
blocks is unique. To improve the efficiency of a branch-and-bound algorithm for
this problem, we propose several dominance properties to eliminate unnecessary
nodes in the search tree. Furthermore, we propose a new lower bound of the to-
tal number of relocations. The effectiveness of the proposed exact algorithm is
verified by numerical experiments for benchmark instances in the literature.

Keywords: block relocation problem, container relocation problem, exact
algorithm, dominance properties, lower bound

∗E-mail: tanaka@kuee.kyoto-u.ac.jp
∗Preliminary versions of this study were presented at 2015 IEEE International Conference

on Automation Science and Engineering (IEEE CASE 2015), August 2015, and 2015 IEEE In-
ternational Conference on Industrial Engineering and Engineering Management (IEEM 2015),
December 2015.

Preprint submitted to Computers & Operations Research January 24, 2019

stack
bay

Figure 1: Containers stored in a container yard equipped with a gantry crane

1. Introduction

1.1. Background
This paper addresses a retrieval problem of stacked items that typically arises

in container terminals. Containers that have arrived at a container terminal via
sea or land transport are stored temporarily in yards of the container terminal and
wait for future transport there. Due to space limitations, containers are stacked
vertically as illustrated in Figure 1. Here, each column of containers is referred
to as a stack, and a single row of stacks is referred to as a bay. When retrieval
of a container is requested, a gantry crane picks it up from a bunch of containers
and puts it on a truck for further transport. However, only the topmost contain-
ers of the stacks are accessible from the crane, so that containers above the target
container should be relocated (reshuffled) to other places beforehand. Such con-
tainers are usually relocated to other stacks in the same bay because crane travel
across bays is more time-consuming than that within the same bay. To determine
destination stacks of the containers, we need to take future retrieval into consid-
eration; otherwise, relocated containers may block the next target container and
cause further relocations. Reduction of such unproductive relocations is crucial
for improving the throughput of container handling in a sea port. For this rea-
son, the container relocation problem or the block(s) relocation problem has been
extensively studied in the literature. For the sake of generality, we refer to a con-
tainer as a block throughout this paper. Accordingly, our problem is referred to as
the block relocation problem, or, simply the BRP.

1.2. Formal description and classification of the block relocation problem
The BRP in this study is formally described as follows. Consider a bay com-

posed of S stacks. The s-th stack (1 ≤ s ≤ S) is referred to as stack s. In this

2

1 2 3 4 stack

108

1

4

2

3 6

5

7

9

T

1

2

3

tier

Figure 2: A bay with S = 4, T = 3, and N = 10. The number in each block is its priority value

bay, N blocks of the same size are stored in tiers. Due to the crane height, the
number of blocks in each stack (the stack height) is limited to T . Each block is
given a unique integer priority value between 1 and N, and the block with priority
i is referred to as block i. An example of a bay with S = 4, T = 3 and N = 10 is
illustrated in Figure 2. All the blocks should be retrieved from the bay one by one
in the increasing order of their priorities, which is achieved by the following two
types of crane operations:

• Relocation

The topmost block of a stack is moved to the top of another stack whose
height does not reach the limit.

• Retrieval

The block to be retrieved next is removed from the bay if it is on the top of
a stack.

We need not consider any retrieval explicitly because we can safely assume that
blocks are retrieved as soon as they become retrievable. Therefore, a solution
is represented by a sequence of relocations. The objective of the BRP is to find
a shortest feasible sequence of relocations that retrieves all the blocks from the
bay. An example of an optimal solution for the bay configuration in Figure 2 is
presented in Figure 3. The total number of relocations is four, and the solution
is expressed by the following sequence of relocations: Block 3 is relocated from
stack 1 to stack 4, block 7 is relocated from stack 3 to stack 1, block 6 is relocated
from stack 2 to stack 1, and block 9 is relocated from stack 3 to stack 2.

The BRP can be classified from two aspects. The one is priorities of blocks. In
the problem with distinct priorities, all the priority values are different. It follows
that the retrieval order is uniquely determined. On the other hand, some blocks

3

1 2 3 4

108 4

2 3

7

1

2

3 3

9

5

6

1

(a) Block 3 is relo-
cated from stack 1 to
stack 4

1 2 3 4

10

1

4 5

7

9

1

2

3

3

8

2

6

(b) Block 1 is re-
trieved

1 2 3 4

10 4 5

7

1

2

3

3

7

8

2 9

6

(c) Block 7 is relo-
cated from stack 3 to
stack 1

6

1 2 3 4

10 4 5

7

1

2

3

3

8

2 9

66

(d) Block 6 is relo-
cated from stack 2 to
stack 1

1 2 3 4

8 4

2

1

2

3

37

6

10 5

9

(e) Blocks 2 and 3
are retrieved

1 2 3 4

8 51

2

3 66

97

10

9

4

(f) Blocks 9 is relo-
cated from stack 3 to
stack 2

1 2 3 4

108 4 51

2

3

7

6

9

(g) All the remaining
blocks are retrieved

Figure 3: An example of an optimal solution for the bay configuration in Figure 2. The solution is
expressed by the following sequence of relocations: (1) block 3 is relocated from stack 1 to stack
4, (2) block 7 is relocated from stack 3 to stack 1, (3) block 6 is relocated from stack 2 to stack 1,
(4) block 9 is relocated from stack 3 to stack 2

are assigned the same priority value in the problem with duplicate priorities, and
the retrieval order among them is arbitrary. In other words, the retrieval order is
given not among individual blocks but among groups of blocks. The other aspect
concerns relocatable blocks. In the unrestricted problem, all topmost blocks are
relocatable, while in the restricted problem we can relocate only the topmost block
of the stack where the block to be retrieved next is stored. According to this
definition, however, it is still unclear which blocks are relocatable in the restricted
problem with duplicate priorities, because the block to be retrieved next is not
uniquely determined. To avoid this ambiguity, it is assumed that once the block to
be retrieved next is determined from those with the highest (smallest) priority, it
cannot be changed until it is retrieved.

1.3. Literature review
There are rich studies on the BRP and related problems as surveyed by Lehn-

feld and Knust [1]. With regard to the complexity of the problem, Blasum et
al. [2] proved the NP-completeness of the tram problem that is similar to the BRP
with duplicate priorities. This problem aims to retrieve tram cars of different types

4

from sidings of a depot in a specified order without any relocations. For the prob-
lem of minimizing the total number of relocations, Caserta et al. [3] proved the
NP-hardness, following the results by König et al. [4].

Kim and Hong [5] first considered the BRP in the form explained in 1.2. They
proposed a depth-first branch-and-bound algorithm and a greedy heuristic for the
restricted problem with duplicate priorities. After this research, various heuris-
tic and exact algorithms have been developed. Wan et al. [6] provided a binary
ILP formulation and several greedy heuristics for the restricted BRP with distinct
priorities. They also considered the dynamic version of the BRP where blocks
dynamically arrive at the bay. Caserta et al. [7] proposed a binary matrix rep-
resentation of bay configurations and constructed a greedy look-ahead heuristic
using it. Their heuristic is also referred to as the min-max heuristic. Caserta and
Voß [8] and Caserta et al. [9] applied a metaheuristic algorithm called the Corridor
Method to the restricted BRP with distinct priorities. Lee and Lee [10] proposed
a three-phase heuristic to minimize crane operation time for the restricted BRP
with distinct priorities where multiple bays were considered. Ünlüyurt and Aydın
[11] proposed a depth-first branch-and-bound algorithm and greedy heuristics for
the restricted BRP with distinct priorities. As [10], they considered minimization
of crane operation time. Caserta et al. [3] derived binary ILP formulations of
the restricted and unrestricted BRPs with distinct priorities, respectively. Forster
and Bortfeldt [12] constructed a metaheuristic based on a tree search for the un-
restricted BRP with duplicate priorities. Zhu et al. [13] proposed a depth-first
iterative deepening A∗ (IDA∗) algorithm as well as several greedy heuristics for
the restricted and unrestricted BRPs with distinct priorities. Petering and Hus-
sein [14] proposed an MILP formulation for the unrestricted BRP with distinct
priorities. They also proposed the LA-N heuristic by extending the look-ahead
heuristic in [7]. Jovanovic and Voß [15] proposed a chain heuristic for the re-
stricted BRP with distinct priorities, which improves the look-ahead heuristic by
introducing a heuristic function that takes into account future relocations. Ze-
hendner and Feillet [16] proposed a branch-and-price algorithm for the restricted
BRP with distinct priorities. Expósito-Izquierdo et al. [17] applied a best-first A∗

algorithm for the restricted and unrestricted BRPs with distinct priorities, and pro-
posed a domain-specific knowledge based heuristic for the unrestricted BRP with
distinct priorities. The same authors [18] later improved their exact algorithm for
the restricted BRP with distinct priorities and corrected a mistake in the formula-
tion of the restricted BRP proposed in [3]. Jin et al. [20] proposed a look-ahead
heuristic that employs a tree search for the unrestricted problem with distinct pri-
orities. Zehendner et al. [21] also corrected the mistake in the formulation [3] and

5

improved it for the restricted BRP with distinct priorities. Lin et al. [22] proposed
a heuristic for the restricted BRP with duplicate priorities. In this problem, they
considered multiple bays and assumed a crane with multiple spreaders capable of
moving more than one container simultaneously. Eskandari and Azari [19] cor-
rected the formulation in [3] and proposed some cuts to improve it. Tanaka and
Takii [23] improved the lower bound in [13] and proposed a depth-first branch-
and-bound algorithm for the restricted BRP with distinct and duplicate priorities.
Ku and Arthanari [24] proposed another depth-first branch-and-bound algorithm
for the restricted BRP with distinct priorities. Recently, Zhang et al [25] con-
sidered the unrestricted BRP with distinct priorities that allows batch moves to
relocate/retrieve several blocks at a time, and proposed a metaheuristic based on a
tree search. After the first submission of this paper, some related papers were pub-
lished. Tricoire et al. [26] proposed efficient greedy and metaheuristic algorithms
for the unrestricted BRP with distinct priorities. They also proposed a new lower
bound as a generalization of the lower bound by Forster and Bortfeldt [12], and
applied it in their branch-and-bound algorithm. In spite of the fact the new lower
bound is always tighter than the lower bound in [12], the average computation
time of the branch-and-bound algorithm with the former was almost always longer
than that with the latter. de Melo da Silva et al. [27] considered a special class
of the BRP with duplicate priorities with two priority values, that is, blocks are
composed of only two groups. They also considered a lexicographic bi-objective
problem whose secondary objective is the expected number of relocations of the
forthcoming retrieval. Galle et al. [28] proposed another ILP formulation of the
restricted BRP with distinct priorities based on binary encoding of bay configura-
tions [7]. Their formulation currently yields the best IP approach for this class of
problem.

Relocation of items is studied not only as the BRP but also in various forms.
In the dynamic or online BRP [29, 30] incoming blocks as well as outgoing blocks
are considered as in [6]. A stochastic version of the BRP is also studied in [31].
The ship stowage problem [32–37] also considers incoming and outgoing contain-
ers, but assumes that they are transported from ports to ports by a container vessel.
When a container is unloaded from the vessel at its destination port, those placed
above are unloaded together and then loaded again with containers transported
from there. Slabs in place of containers are considered in the slab stack shuffling
problem [38–44]. In addition to this difference in blocks, relocations are treated in
different ways: Relocated slabs are moved back to the original stack in the same
order immediately after the target slab is retrieved, or slabs are relocated at most
once (a sufficient number of empty stacks are assumed). The pre-marshalling or

6

Table 1: Exact approaches for the BRP in the literature

Reference Method
Restricted Unrestricted

Distinct Duplicate Distinct Duplicate
Kim and Hong [5] b&b X X
Wan [6] ILP X
Ünlüyurt and Aydın [11] b&b X
Caserta et al. [3] ILP X X
Zhu et al. [13] IDA∗ X X
Petering and Hussein [14] MILP X
Zehendner and Feillet [16] b&p X
Expósito-Izquierdo et al. [17] A∗, ILP X X
Expósito-Izquierdo et al. [18] b&b X
Zehendner et al. [21] ILP X
Eskandari and Azari [19] ILP X
Tanaka and Takii [23] b&b X X
Ku and Arthanari [24] b&b X
Tricoire et al. [26] b&b X
de Melo da Silva et al. [27] b&b X†

Galle et al. [28] ILP X
This study b&b X X

† BRP with only two priority values

re-marshalling problem [45–59] does not consider retrieval operations. It aims
to rearrange blocks into a desirable configuration only by relocations. Here, de-
sirable means that no relocations are necessary for retrieving blocks. A similar
problem is studied under the name of Blocks World [60, 61].

1.4. Purpose of this study
Among the existing studies for the BRP, exact approaches are summarized

in Table 1. For the unrestricted BRP with distinct priorities, the ILP and MILP
approaches in [3, 14] are not competitive with dedicated exact algorithms [13,
17]. In [14], instances with up to only 9 blocks were solved to optimality, while
instances with more than 30 blocks were considered in [13, 17]. For the restricted
BRP, the branch-and-bound algorithm in [23] seems to be the fastest so far.

The primary purpose of this study is to construct an efficient exact algorithm
for the unrestricted BRP with distinct priorities. We also improve our previous
exact algorithm [23] for the restricted BRP with distinct priorities. The frame-

7

work of the algorithm is the same as those in [13, 23]. Although Zhu et al. [13]
called their algorithm an (iterative deepening) A∗ algorithm, we prefer a branch-
and-bound algorithm for describing ours because it traverses the search tree not in
best-first but depth-first order. To reduce the size of the search tree in this branch-
and-bound algorithm, we first propose several dominance properties. These dom-
inance properties tell us that some partial sequences of relocations never appear in
an optimal sequence, or, at least an optimal sequence without them exists. There-
fore, they enable us to eliminate unnecessary nodes in the search tree. For the
pre-marshalling problem, dominance properties have already been proposed and
employed [55, 59]. However, they are not applicable to the BRP directly be-
cause the pre-marshalling problem does not take into account retrieval of blocks.
This fact motivated us to develop novel dominance properties specific to the BRP.
Next, we propose a new lower bound of the total number of relocations based on
the lower bound by Forster and Bortfeldt [12]. It also contributes to improving the
efficiency of the branch-and-bound algorithm. The effectiveness of the proposed
algorithm is demonstrated by computational experiments for benchmark instances
in the literature.

The remainder of this paper is organized as follows. First, notation and def-
initions used throughout this paper are provided in Section 2. Next, an outline
of the exact algorithm is presented in Section 3. Then, the dominance proper-
ties are derived in Section 4 to eliminate unnecessary nodes in the search tree of
the branch-and-bound algorithm. How to ensure their consistency is discussed
in Section 5. The new lower bound is proposed in Section 6. In Section 7, the
effectiveness of the proposed algorithm is demonstrated by computational experi-
ments. Finally, the results obtained in this study and future research directions are
described in Section 8.

2. Notation and definitions

In this section we introduce the notation and definitions used throughout this
paper. They are summarized in Table 2.

The position of block i in a configuration C is denoted by (Si(C), Ti(C))
when it is placed in the Ti(C)-th tier of stack Si(C). The total number of blocks
in stack s and the total number of blocks in the bay are denoted by Ns(C) and
N(C)(:= ∑

S
j=1 N j(S)), respectively. The set of indices of stacks is denoted by

S (:= {1,2, . . . ,S}). The set of indices of slack stacks whose height is lower
than T is denoted by S slack(C)(:= {s ∈S | Ns(C) < T}). The priority of the
block in the t-th tier of stack s is denoted by Pst(C). Since it is assumed that

8

Table 2: Notation and Definitions

(Si(C),Ti(C)) The position of block i in C . Block i is stored in the Ti(C)-th
tier of stack Si(C).

Ns(C) The number of blocks in stack s in C .
N(C) The total number of blocks in the bay in C . N(C) :=

∑
S
j=1 N j(C).

S The set of indices of stacks. S := {1,2, . . . ,S}.
S slack(C) The set of indices of slack stacks in C . S slack(C) := {s ∈

S | Ns(C)< T}.
Pst(C) The priority of the block in the t-th tier of stack s in C .

(SPst(C)(C),TPst(C)(C)) = (s, t).
Ptop

s (C) The priority of the block on the top of stack s in C .
Ptop

s (C) := PsNs(C)(C).
Qs(C) The priority of stack s in C . Qs(C) := min1≤t≤Ns(C)Pst(C) if

Ns(C)> 0. Otherwise, Qs(C) := ∞.
f ∗(C) The minimum number of relocations necessary for retrieving

all blocks from C . The optimal value for C .
(i,s,d) The relocation that relocates block i from stack s to stack d.
Lisd The relocation mapping. The configuration obtained by ap-

plying (i,s,d) to C is given by Lisd(C).
R The retrieval mapping. The configuration obtained by remov-

ing all retrievable blocks from C is given by R(C).
target block The block to be retrieved next. The block with the highest

(smallest) priority in the bay.
blocking block A block under which a block with a higher (smaller)

priority is placed. Block i is a blocking block if i >
min1≤t<Ti(C)PSi(C)t(C).

BB relocation A relocation (i,s,d) such that i > Qs(C)∧ i > Qd(C).
BG relocation A relocation (i,s,d) such that i > Qs(C)∧ i < Qd(C).
GB relocation A relocation (i,s,d) such that i < Qs(C)∧ i > Qd(C).
GG relocation A relocation (i,s,d) such that i < Qs(C)∧ i < Qd(C).
i ∈ C Block i is present in C .
Ca ≤ Cb Ca dominates Cb.

9

block i has priority i, we have (SPst(C)(C),TPst(C)(C)) = (s, t). The priority of
the topmost block of stack s is denoted by Ptop

s (C)(:= PsNs(C)(C)). The high-
est (smallest) priority in stack s is referred to as the priority of stack k and de-
noted by Qs(C)(:= min1≤t≤Ns(C)Pst(C)). If stack s is empty, Qs(C) is defined
by Qs(C) := ∞. The minimum number of relocations necessary for retrieving all
blocks from C is denoted by f ∗(C). As long as the configuration C currently
considered is obvious, (C) is omitted in the above notations: Si is used in place
of Si(C), Ns in place of Ns(C), and so on.

An operation of relocating block i from stack s to stack d (6= s) is denoted
by a triplet (i,s,d). It is also denoted by a mapping Lisd defined over a set of
configurations: The new configuration obtained by applying relocation (i,s,d) to
C is given by Lisd(C). The new configuration obtained by removing all retrievable
blocks one by one from C is denoted using a mapping R as R(C). Configuration C
is said to be minimal when no blocks can be retrieved from C , that is, C = R(C).

The block with the highest (smallest) priority in the bay is referred to as the
target block. The target block is the block to be retrieved next. Block i is said to be
a blocking block if i > min1≤t<Ti PSit , that is, a block with a higher (smaller) pri-
ority is placed under it. According to [12], a relocation is classified into BB, BG,
GB, and GG relocations. The first B or G means whether the relocated block is a
blocking block (B) or not (G), and the second B or G means whether it becomes
a blocking block after relocation (B) or not (G).

If block i is present in C , we write i ∈ C . Relocation (i,s,d) is feasible for a
minimal C if i ∈ C , Si(C) = s, Ti(C) = Ns(C), and Nd(C)< T are all satisfied.
Relocation (i,s,d) is admissible for a minimal C if either it is feasible for C or
i /∈ C holds. For ease of notation, Lisd(C) is defined by Lisd(C) := C for i /∈ C .
Relocation (i,s,d) is infeasible for a minimal C when it is not admissible for C .

A (partial) solution of the BRP is given by a sequence of relocations (i1,s1,d1),
(i2,s2,d2), . . . , (in,sn,dn). We say that this sequence is feasible for a minimal C if,
for any k = 1, . . . ,n, relocation (ik,sk,dk) is feasible for configuration Ck−1 where
Ck := R◦Likskdk(Ck−1) and C0 := C . Similarly, it is admissible if, for any k = 1,
. . . , n, relocation (ik,sk,dk) is admissible for configuration Ck−1. In addition, it is
infeasible if it is not admissible.

A configuration Ca dominates a configuration Cb or Ca ≤ Cb, if both the fol-
lowing conditions are satisfied:

(i) i ∈ Cb and Si(Cb) = Si(Ca) hold for any i ∈ Ca,

(ii) Ti(Cb) < Tj(Cb) holds for any i, j ∈ Ca satisfying Si(Ca) = S j(Ca) and

10

1 2 3 4

108 4

6

5

7

9

1

2

3

Figure 4: A configuration dominating the configuration in Figure 2. Blocks 1–3 are missing, but
the other blocks are placed as in Figure 2

Ti(Ca)< Tj(Ca).

This definition implies that if Ca ≤ Cb holds, Ca is the same configuration as Cb
except for blocks i with i /∈ Ca and i ∈ Cb. Figure 4 illustrates an example of a
configuration dominating the configuration in Figure 2.

First, we will give the following two lemmas.

Lemma 1. Consider two configurations Ca and Cb satisfying Ca ≤ Cb. Then,
R(Ca)≤ R(Cb) holds.

Proof. Obvious.

Lemma 2. Consider two minimal configurations Ca and Cb satisfying Ca ≤ Cb.
If a relocation (i,s,d) is feasible for Cb, it is admissible for Ca and Lisd(Ca) ≤
Lisd(Cb) holds.

Proof. If i ∈ Ca, block i should be on the top of stack s in Ca. Otherwise, there
exists a block j that satisfies S j(Ca) = s and Ti(Ca) < Tj(Ca). This block should
also be above block i in stack s in Cb from the definition of Ca ≤ Cb, so that
relocation (i,s,d) is infeasible for Cb. However, it contradicts the feasibility of
relocation (i,s,d) for Cb. Thus Si(Ca) = s and Ti(Ca) = Ns(Ca) hold if i ∈ Ca.
Furthermore, Nd(Ca) ≤ Nd(Cb) < T holds from Ca ≤ Cb and the feasibility of
relocation (i,s,d) for Cb. Therefore, relocation (i,s,d) is feasible for Ca if i ∈
Ca, and Lisd(Ca) ≤ Lisd(Cb) holds in this case. If i /∈ Ca, relocation (i,s,d) is
admissible for Ca and Lisd(Ca) = Ca from the definition of Lisd . Thus, Lisd(Ca)≤
Lisd(Cb) holds also in this case.

Corollary 1. f ∗(Ca) ≤ f ∗(Cb) holds if two minimal configurations Ca and Cb
satisfy Ca ≤ Cb.

11

1 2 3 4

108 4

6

7

1

2

3

9

5

(a) (3,1,4) (no block
is relocated)

1 2 3 4

108 4

6

7

1

2

3

9

5

(b) No block is re-
trieved

1 2 3 4

10 4

6

5

7

1

2

3

8

7

9

(c) (7,3,1)
1 2 3 4

4 51

2

3

8

66

67 9

10

(d) (6,2,1)

1 2 3 4

108 4 5

9

1

2

3

7

6

(e) No block is re-
trieved

1 2 3 4

8 51

2

3 66

97

10

9

4

(f) (9,3,2)

1 2 3 4

108 4 51

2

3

7

6

9

(g) All the remaining
blocks are retrieved

Figure 5: Sequence (3,1,4), (7,3,1), (6,2,1), (9,3,2) in Figure 3 applied to the configuration in
Figure 4

Proof. From Lemmas 1 and 2, an optimal sequence for Cb is admissible for Ca.

Figure 5 confirms that the optimal sequence (3,1,4), (7,3,1), (6,2,1), (9,3,2)
in Figure 3 for the configuration in Figure 2 (Cb) is admissible for the configura-
tion in Figure 4 (Ca), which dominates Cb. We note that every intermediate con-
figuration in Figure 5 dominates the corresponding configuration in Figure 3 as
Lemmas 1 and 2 claim. In this case, a sequence (7,3,1), (6,2,1), (9,3,2) with
only three relocations is feasible for Ca and f ∗(Ca)< f ∗(Cb) holds.

Suppose that a feasible sequence of nb relocations for a minimal C yields Cb
and there exists another admissible sequence of na relocations for C that yields
Ca. If na ≤ nb and Ca ≤ Cb, f ∗(C) ≤ na + f ∗(Ca) ≤ nb + f ∗(Cb) holds from
Corollary 1. Thus the former sequence is not better than the latter, and we say that
the former sequence is dominated by the latter sequence, or, the latter dominates
the former. If na < nb, the former sequence is never optimal. In this case, we say
that the former is strictly dominated by the latter.

3. Exact algorithm

In this section we describe an outline of the proposed exact algorithm.

12

Algorithm 1 Exact algorithm
1: procedure SOLVE(C)
2: C ← R(C)
3: LB← LOWERBOUND(C)
4: X ← HEURISTIC(C)
5: UBtent← LB
6: while UBtent < |X | do
7: X ← BRANCHANDBOUND(UBtent,X , /0,C)
8: UBtent← UBtent +1
9: return X

3.1. Outline of algorithm
The framework is basically the same as those in [13, 23]. The main loop of

the exact algorithm is described as Algorithm 1. It first computes the initial lower
bound LB (line 3), and next initializes the current best solution X by a greedy
heuristic explained later (line 4). Then, the tentative upper bound UBtent is ini-
tialized by LB (line 5), and the algorithm searches for a solution whose objective
value is equal to UBtent by a branch-and-bound algorithm (line 7). If such a so-
lution is found, the algorithm returns X as an optimal solution and terminates
(lines 6 and 9). Otherwise, the optimal value is greater than UBtent. Hence, UBtent

is increased by one (line 8) and the branch-and-bound algorithm is applied again.
In the branch-and-bound algorithm, an optimal sequence of relocations is

searched for from first to last. Thus, a node at depth k in the search tree repre-
sents a configuration reached by k relocations from the initial configuration. An
example of the search tree is provided in Figure 6. We note that the same con-
figuration as the initial one is obtained by sequence (3,2,3), (3,3,2): relocating
block 3 from stack 2 to stack 3 and then stack 3 to stack 2. Obviously, such a
(partial) sequence is never optimal. In other words, sequence (3,2,3), (3,3,2)
is strictly dominated, and we can eliminate the node. We also note that two se-
quences (6,1,3), (3,2,1) and (6,1,3), (3,2,3) (sequences (3,2,1) and (3,2,3) in
practice) yield the same configuration. In this case, each of the two sequences is
dominated by the other, and we can eliminate either node, but not both. We will
first derive several dominance properties in Section 4 to detect such a dominated
sequence and eliminate the corresponding node. Since some of these properties
only tell us whether a sequence is dominated or not, we will explain in Section 5
which of the two sequences (3,2,1) and (3,2,3) is adopted as well as how to
ensure consistency among the dominance properties.

13

Algorithm 2 Branch-and-bound algorithm
1: procedure BRANCHANDBOUND(UBtent, X , X cur, C cur)
2: A ← /0
3: for all feasible relocations (i,s,d) do
4: X child←X cur∪{(i,s,d)}
5: if X child is not dominated then
6: C child← R◦Lisd(C

cur)
7: if N(C child) = 0 then
8: return X child

9: LBchild← LOWERBOUND(C child)
10: if |X child|+LBchild = UBtent−1 then
11: X heur← HEURISTIC(C child)
12: if |X child|+ |X heur|< |X | then
13: X ←X child∪X heur

14: if |X |= UBtent then
15: return X
16: if |X child|+LBchild ≤ UBtent then
17: A ←A ∪{(LBchild,X child,C child)}
18: Sort the elements of A in the nondecreasing order of the first key
19: for all (LBchild,X child,C child) ∈A do
20: X ← BRANCHANDBOUND(UBtent,X ,X child,C child)
21: if |X |= UBtent then
22: return X
23: return X

14

7

6

5

2

3

4 7

6

3

45

2

1

7

6

3

45

2

7

6

3

45

21

1

7

6 3

45

2

7

6

3

45

2

7

6

3

45

2

457

6

7

6

1 2

3

5 4457

6

(6,1,3) (3,2,3)

(7,1,3)
(3,2,3)

(3,2,1)
(6,1,2)(6,3,1) (6,1,3)

(2,2,3)

(3,3,2)

457

3

6

Figure 6: An example of the search tree in the branch-and-bound algorithm

In the branch-and-bound algorithm, Algorithm 2 is called recursively, where
X is the current best sequence of relocations, X cur the partial sequence of relo-
cations, and C cur the configuration obtained by X cur. To branch from the current
node, all feasible relocations for C cur are generated (line 3). Each of them is ap-
pended to X cur (line 4) in order to obtain a sequence X child for a child node.
Then, whether it is dominated or not is checked (line 5). More specifically, the
existence of a dominating sequence for every subsequence of X child ending at its
last element is checked to see whether X child can be eliminated or not. Unless
X child is dominated, the corresponding configuration C child is also generated (line
6). If no block is left in C child (line 7), X child is a feasible solution, so that the
algorithm returns it (line 8). Otherwise, a lower bound is computed (line 9). Only
child nodes whose lower bound is less than the current upper bound are added to
list A (lines 16–17). To improve the current best solution, the greedy heuristic in
3.2 is applied to C child when |X child|+LBchild = UBtent−1 (lines 10–15). This
condition aims to:

15

1. filter out unpromising child nodes with a large lower bound,
2. avoid applying the heuristic to the same node more than once.

Suppose that the heuristic is applied to the nodes whose lower bound is small
enough to satisfy |X child|+LBchild ≤ UBtent−K for some fixed integer K. Be-
cause the branch-and-bound algorithm is repeatedly employed with UBtent in-
creased, the heuristic should have already been applied to the same nodes at a
previous iteration if |X child|+LBchild ≤ (UBtent−1)−K. It follows that we only
need to consider nodes with |X child|+LBchild = UBtent−K, and K is chosen as
1 in the algorithm. After child nodes at depth (k+1) are generated, they are tra-
versed one by one (lines 19–22). Thus the depth-first strategy is adopted in this
branch-and-bound algorithm. Among the nodes at depth (k+1), the one with the
smallest lower bound is traversed first (line 18). When a solution whose objective
value is equal to UBtent is found, the algorithm immediately terminates (lines 14
and 15, and lines 21 and 22).

3.2. Greedy heuristic
The heuristic used for computing upper bounds is a slightly simplified version

of PU2 in [13]. This heuristic determines the source and destination stacks of the
next relocation as follows:

1. Determine the source stack s. Let sT := argmin j∈S Q j (the target block is
placed in stack sT).

(a) If a BG relocation exists for the topmost block Ptop
sT of stack sT, s := sT.

(b) If no BG relocation exists for block Ptop
sT , but a GG relocation of an-

other topmost block Ptop
s′ enables it, s := s′. If there is more than one

candidate for stack s′, the stack with the largest Ns′ is chosen.
(c) Otherwise, s := sT.

2. Determine the destination stack d.

(a) If a BG or GG relocation exists for block Ptop
s , the stack d with the

highest (smallest) stack priority Qd is chosen among those satisfying
Ptop

s < Qd .
(b) If no BG or GG relocation exists for block Ptop

s , let stacks d′ and d′′ be
the slack stacks with the lowest (largest) and the second lowest (second
largest) stack priorities, respectively.
(i) If Nd′ = T −1 and stack d′′ does exist, d := d′′.

(ii) Otherwise, d := d′.

16

Algorithm 3 Greedy heuristic
1: procedure HEURISTIC(C)
2: X ← /0
3: while N(C)> 0 do
4: sT← argmin j∈S Q j(C)
5: smax← argmax j∈S slack(C)Q j(C)

6: s← sT

7: i← Ptop
s (C)

8: if i > Qsmax(C) then
9: B← /0

10: for all j ∈S \{sT} do
11: if i < min1≤k≤N j(C)−1 Pjk(C)∧Ptop

j (C)< Qsmax(C) then
12: B←B∪{ j}
13: if B 6= /0 then
14: s← argmax j∈B N j(C)

15: i← Ptop
s (C)

16: if i < Qsmax(C) then
17: d← argmin j∈S slack(C)∧Q j(C)>i Q j(C)

18: else if Nsmax(C)< T −1∨|S slack(C)|= 1 then
19: d← smax

20: else
21: d← argmax j∈S slack(C)\{smax}Q j(C)

22: X ←X ∪{(i,s,d)}
23: C ← R◦Lisd(C)

24: return X

17

In this procedure, 2(a) chooses the destination stack that minimizes the change of
the stack priority. On the other hand, 2(b) chooses the stack that possibly delays
future relocations of block Ptop

s . 2(b)(i) tries not to fill stack d′ in order to accept
a BG or GG relocation in the future.

Algorithm 3 describes the heuristic in more detail. The source stack and thus
the block to be relocated is determined on lines 6–15, and its destination stack
is determined on lines 16–21. The algorithm first tries to relocate Ptop

sT (lines 6
and 7). If Ptop

sT > Qsmax = max j∈S slack Q j holds (line 8), no BG relocation exists
for this block. In this case, the algorithm checks whether a GG relocation of
the topmost block in a stack j 6= sT enables it (lines 9–12). If such a block is
found, it is relocated where ties are broken by the stack height (lines 13–15).
Otherwise, block Ptop

sT is relocated. Next, the destination stack of the block (block
i) is determined. If a BG or GG relocation exists for this block (line 16), the stack
with the highest (smallest) priority is chosen, as long as the relocation remains
BG or GG, respectively (line 17). If no BG or GG relocation exists, the stack with
the lowest (largest) priority is chosen, as long as this relocation does not make
the stack full (lines 18–19). If it makes that stack full, the stack with the second
lowest (largest) priority is chosen (line 21).

4. Dominance properties

As presented in the preceding section, the proposed branch-and-bound algo-
rithm checks dominance properties (line 5 in Algorithm 2) to suppress generation
of unnecessary nodes in the search tree. A simple example is sequence (3,2,3),
(3,3,2) in Figure 6, which relocates block 3 from stack 2 to stack 3 and immedi-
ately relocates it back to stack 2. Because the same configuration as the original
one is generated, we need not consider this sequence in the search tree. In other
words, this sequence is dominated. Some dominance properties have already been
proposed for the pre-marshalling problem [55, 59]. However, they are not appli-
cable directly to our problem due to existence of block retrieval. Indeed, the above
example is not always true for the BRP: Sequence (6,1,3), (6,3,1) is not dom-
inated in Figure 6 because block 1 is retrieved after relocation (6,1,3). In this
section, we propose several dominance properties specific to the unrestricted BRP
that take into account retrieval of blocks appropriately. Some of them are also
applicable to the restricted BRP, and we employ them to improve our previous
algorithm [23].

The dominance properties are classified into three types. Theorems 1–3 con-
cern a pair of transitive relocations. Theorems 1 and 2 assert that a pair of reloca-

18

tions from stack A to stack B and from stack B to stack C can be combined into
one relocation from stack A to stack C, whereas Theorem 3 claims that the pair
can be replaced by another pair from stack A to stack D and from stack D to stack
C. Theorems 4 and 5 are for a pair of independent relocations. If block X is relo-
cated from stack A to stack B and then block Y is relocated from stack C to stack
D, their order can be interchanged. The last two theorems, Theorems 6 and 7 are
on retrieval of a block. If block X is retrieved after it is relocated from stack A
to stack B, it need not be relocated (Theorem 6), or, it can be relocated to another
stack C (Theorem 7). In the following, a feasible sequence (i1,s1,d1), (i2,s2,d2),
. . . , (in,sn,dn) for a minimal configuration C is assumed, and Ck (k = 0, . . . ,n) are
defined by

Ck :=

{
R◦Likskdk(Ck−1), 1≤ k ≤ n,
C , k = 0.

(1)

Our goal is to provide conditions for the existence of a sequence dominating se-
quence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn).

4.1. Dominance properties for transitive relocations
First, three dominance properties on a pair of transitive relocations are pro-

vided.

Theorem 1. (Transitive Relocation Rule A) Sequence (i2,s2,d2), . . . , (in−1,sn−1,dn−1),
(i1,s1,dn) or (i2,s2,d2), . . . , (in−1,sn−1,dn−1) strictly dominates sequence (i1,s1,d1),
(i2,s2,d2), . . . , (in,sn,dn) if all the following conditions are satisfied:

(TA1) sn = d1, in = i1,

(TA2) i1 /∈ {i2, . . . , in−1},

(TA3) s1 /∈ {s2,d2, . . . ,sn−1,dn−1},

(TA4) Ns1(Cn−1) = Ns1(C)−1.

Proof. First, suppose that dn 6= s1. From (TA3) and (TA4), stack s1 is not affected
by sequence (i1,s1,d1), . . . , (in−1,sn−1,dn−1) for C after block i1 is relocated
to stack d1. The configuration of stack s1 in C1, . . . , Cn−1 is the same as that
in C except the absence of block i1. It follows that block i1 does not interfere
any retrieval caused by this sequence for C , even if it is not relocated to stack
d1. Furthermore, from (TA2), block i1 is not relocated by sequence (i2,s2,d2),

19

1 2 3

42

5

7

1

2

3

4

3

6 9

8

5

(a) (5,2,3)

2

1 2 3

46

5

1

2

3

4

7 8 3

9

7

(b) (7,1,4)

7

1 2 3

6

5

1

2

3

4

8

7 9

3

4

(c) (7,4,1)

3

1 2 3

61

2

3

4

7

5

49

58

(d) (5,3,4)

3

2

1 2 3

61

2

3

4

7 8

5

49

7

(e) (7,1,4)

1 2 3

461

2

3

4

7

5

78

9

(f) (7,4,1)

1 2 3

61

2

3

4

97

8

(g) (5,2,4)

Figure 7: An example of Theorem 1. (a)–(d): dominated sequence (5,2,3), (7,1,4), (7,4,1),
(5,3,4), (e)–(g): dominating sequence (7,1,4), (7,4,1), (5,2,4)

. . . , (in−1,sn−1,dn−1). Thus this sequence is admissible for C . If the resulting
configuration is denoted by Ĉn−1, it satisfies Ĉn−1 ≤ Li1d1s1(Cn−1). Therefore,
from Lemmas 1 and 2 as well as (TA1), we obtain

R◦Li1s1dn(Ĉn−1)≤ R◦Li1s1dn ◦Li1d1s1(Cn−1)

= R◦Li1d1dn(Cn−1) = R◦Linsndn(Cn−1) = Cn. (2)

This inequality implies that sequence (i2,s2,d2), . . . , (in−1,sn−1,dn−1), (i1,s1,dn)

is admissible for C and the resulting configuration R ◦ Li1s1dn(Ĉn−1) dominates
Cn.

It is easy to see that the above argument also holds true when dn = s1. In
this case, sequence (i2,s2,d2), . . . , (in−1,sn−1,dn−1) strictly dominates sequence
(i1,s1,d1), (i2,s2,d2), . . . , (in−1,sn−1,dn−1), (in,sn,dn).

In the example of Figure 7, sequence (5,2,3), (7,1,4), (7,4,1), (5,3,4) satis-
fies the conditions in Theorem 1, and is dominated by sequence (7,1,4), (7,4,1),
(5,2,4). In this case, the dominating sequence is not feasible but admissible.
Moreover, the resulting configuration is not identical to that by the dominated
sequence.

Theorem 2. (Transitive Relocation Rule B) Sequence (i1,s1,dn), (i2,s2,d2), . . . ,
(in−1,sn−1,dn−1) strictly dominates sequence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn)
if all the following conditions are satisfied:

20

(TB1) sn = d1, in = i1,

(TB2) i1 /∈ {i2, . . . , in−1},

(TB3) dn /∈ {s1,d1, . . . ,sn−1,dn−1},

(TB4) Ndn(Cn−1) = Ndn(C).

Proof. From (TB4) and the feasibility of relocation (in,sn,dn) for Cn−1, Ndn(C) =
Ndn(Cn−1)<T holds. This inequality ensures the feasibility of relocation (i1,s1,dn)

for C , so that Ĉ1 is defined by Ĉ1 := R◦Li1s1dn(C). Because (TB3) and (TB4) im-
ply that stack dn is not affected by sequence (i1,s1,d1), . . . , (in−1,sn−1,dn−1) for
C , block i1 does not interfere any retrieval caused by this sequence for C , even
if it is relocated to stack dn beforehand. Moreover, from (TB2), block i1 is not
relocated by sequence (i2,s2,d2), . . . , (in−1,sn−1,dn−1). Therefore, this sequence
is admissible for Ĉ1. If the resulting configuration is denoted by Ĉn−1, it satisfies
Ĉn−1 ≤ Li1d1dn(Cn−1). By noting (TB1), we obtain

Ĉn−1 = R(Ĉn−1)≤ R◦Li1d1dn(Cn−1) = Cn. (3)

This completes the proof.

An example of Theorem 2 is presented in Figure 8, where sequence (6,2,3),
(8,1,2), (6,3,4) is dominated by sequence (6,2,4), (8,1,2).

Theorem 3. (Transitive Relocation Rule C) Sequence (i1,s1,d′1), (i2,s2,d2), . . . ,
(in−1,sn−1,dn−1,) (i1,d′1,dn) dominates sequence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn)
if all the following conditions are satisfied:

(TC1) sn = d1, in = i1,

(TC2) i1 /∈ {i2, . . . , in−1},

(TC3) d′1 /∈ {s1,d1,s2,d2, . . . ,sn−1,dn−1,dn},

(TC4) Nd′1
(Cn−1) = Nd′1

(C)< T .

Proof. From (TC4), relocation (i1,s1,d′1) is feasible for C . Thus let us define
Ĉ1 := R ◦ Li1s1d′1

(C). Because (TC3) and (TC4) imply that stack d′1 is not af-
fected by sequence (i1,s1,d1), . . . , (in−1,sn−1,dn−1) for C , block i1 does not
interfere any retrieval caused by this sequence for C , even if it is relocated to

21

1

1 2 3

4

27

1

2

3

4

3

6

9

8

5

6

(a) (6,2,3)

8

1 2 3

4

27

1

2

3

4

3 95

6

8

(b) (8,1,2)

6

1 2 3

4

27

1

2

3

4

3 95

8 6

(c) (6,3,4)

3

1

1 2 3

4

27

1

2

3

4

6

9

8

5

6

(d) (6,2,4)

1 2 3

4

7

1

2

3

4

9

8

5

6

8

(e) (8,1,2)

Figure 8: An example of Theorem 2. (a)–(c): dominated sequence (6,2,3), (8,1,2), (6,3,4), (d)
and (e): dominating sequence (6,2,4), (8,1,2)

stack d′1 instead of stack d1. Moreover, from (TC2), block i1 is not relocated
by sequence (i2,s2,d2), . . . , (in−1,sn−1,dn−1). Therefore, this sequence is ad-
missible for Ĉ1. If the resulting configuration is denoted by by Ĉn−1, it satisfies
Ĉn−1 ≤ Li1d1d′1

(Cn−1). By noting (TC1), we obtain

R◦Li1d′1dn(Ĉn−1)≤ R◦Li1d′1dn ◦Li1d1d′1
(Cn−1) = R◦Li1d1dn(Cn−1) = Cn. (4)

It follows that sequence (i1,s1,d′1), (i2,s2,d2), . . . , (in−1,sn−1,dn−1), (i1,d′1,dn)

is admissible for C , and the resulting configuration R ◦Li1d′1dn(Ĉn−1) dominates
Cn.

In the example of Figure 9, sequence (7,1,2), (4,1,4), (7,2,4) is dominated
by sequence (7,1,3), (4,1,4), (7,3,4).

4.2. Dominance properties for independent relocations
Next, two dominance properties on a pair of independent relocations are pre-

sented.

Theorem 4. (Independent Relocation Rule A) Sequence (i2,s2,d2), . . . , (in,sn,dn),
(i1,s1,d1) dominates sequence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn) if all the fol-
lowing conditions are satisfied:

(IA1) {s1,d1}∩{s2,d2, . . . ,sn,dn}= /0,

22

1 2 3

21

2

3

4

3 9

856

7 7

4

(a) (7,1,2)

1 2 3

4

21

2

3

4

9

56

7

8

4 3

(b) (4,1,4)

1 2 3

4

1

2

3

4

5 8

77

3 9

6

(c) (7,2,4)

1 2 3

21

2

3

4

9

856

7 7

4 3

(d) (7,1,3)

4

1 2 3

4

21

2

3

4

3 9

56

7

8

(e) (4,1,4)

1 2 3

1

2

3

4

7

86 5

79

(f) (7,3,4)

Figure 9: An example of Theorem 3. (a)–(c): dominated sequence (7,1,2), (4,1,4), (7,2,4),
(d)–(f): dominating sequence (7,1,3), (4,1,4), (7,3,4)

(IA2) Ns1(Cn−1) = Ns1(C)−1.

Proof. From (IA1) and (IA2), stack s1 is not affected by sequence (i1,s1,d1), . . . ,
(in−1,sn−1,dn−1) for C after block i1 is relocated to stack d1. The configura-
tion of stack s1 in C1, . . . , Cn−1 is the same as that in C , except the absence of
block i1. Therefore, block i1 does not interfere any retrieval caused by sequence
(i1,s1,d1), . . . , (in−1,sn−1,dn−1) for C , even if it is not relocated to stack d1.
Hence (i2,s2,d2), . . . , (in,sn,dn) is admissible for C . Let us denote the resulting
configuration by Ĉn−1. If i1 /∈ Ĉn−1, it is obvious that relocation (i1,s1,d1) is ad-
missible for Ĉn−1, and R◦Li1s1d1(Ĉn−1) = Ĉn−1 ≤ Cn holds. If i1 ∈ Ĉn−1 and i1 ∈
Cn, block i1 is on the top of stack d1 in Cn and Nd1(Cn) = Nd1(C)+1≤ T holds,
so that relocation (i1,s1,d1) is feasible for Ĉn−1 from Nd1(Ĉn−1) ≤ Nd1(C) =

Nd1(Cn)−1 < T . Furthermore, R◦Li1s1d1(Ĉn−1)≤ R◦Linsndn(Cn−1) = Cn holds.
If i1 ∈ Ĉn−1 and i1 /∈ Cn, i1 ∈ Cn−1 holds; otherwise, block i1 should also be re-
trieved by sequence (i2,s2,d2), . . . , (in−1,sn−1,dn−1) for C because block i1 does
not interfere any retrieval even if it is not relocated to stack d1, which contradicts
i1 ∈ Ĉn−1. Because block i1 is retrieved by the retrieval from Linsndn(Cn−1), reloca-
tion (i1,s1,d1) is feasible for Ĉn−1 from Nd1(Ĉn−1)≤ Nd1(C) = Nd1(Cn−1)−1 <

T . Therefore, R ◦Li1s1d1(Ĉn−1) ≤ R ◦Linsndn(Cn−1) = Cn holds also in this case.
To summarize, (i2,s2,d2), . . . , (in,sn,dn), (i1,s1,d1) is admissible for C and the
resulting configuration R◦Li1s1d1(Ĉn−1) dominates Cn.

23

1 2 3

1

2

3

4

39

8 56

7

4

9

(a) (9,1,2)

1 2 3

1

2

3

4

3

8 56

7

4

9 7

(b) (7,3,4)

1 2 3

1

2

3

4

3

5

7

4

9 7

6 8

(c) (7,3,4)

1 2 3

1

2

3

4

5

9 7

6 89

(d) (9,1,2)

Figure 10: An example of Theorems 4 and 5. (a) and (b): dominated sequence (9,1,2), (7,3,4),
(c) and (d): dominating sequence (7,3,4), (9,1,2)

Theorem 5. (Independent Relocation Rule B) Sequence (in,sn,dn), (i1,s1,d1),
. . . , (in−1,sn−1,dn−1) dominates sequence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn) if
all the following conditions are satisfied:

(IB1) {sn,dn}∩{s1,d1, . . . ,sn−1,dn−1}= /0,

(IB2) Nsn(Cn−1) = Nsn(C),

(IB3) Ndn(Cn−1) = Ndn(C).

Proof. From (IB1), (IB2) and (IB3), stacks sn and dn are unaffected by sequence
(i1,s1,d1), . . . , (in−1,sn−1,dn−1) for C . Therefore, sequence (in,sn,dn), (i1,s1,d1),
. . . , (in−1,sn−1,dn−1) is admissible for C from the feasibility of relocation (in,sn,dn)

for Cn−1. If the resulting configuration is denoted by Ĉn, Ĉn≤ Linsndn(Cn−1) holds,
and we obtain

Ĉn = R(Ĉn)≤ R◦Linsndn(Cn−1) = Cn. (5)

This completes the proof.

Figure 10 illustrates an example of Theorems 4 and 5. Both the theorems are
applicable and sequence (9,1,2), (7,3,4) is proved to be dominated by sequence
(7,3,4), (9,1,2).

24

4.3. Dominance properties for retrieval
Finally, two dominance properties on retrieval are proved.

Theorem 6. (Retrieval Rule A) Sequence (i2,s2,d2), . . . , (in,sn,dn) strictly domi-
nates sequence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn) if all the following conditions
are satisfied:

(RA1) i1 /∈ {i2, . . . , in−1, in},

(RA2) i1 ∈ Cn−1∧ i1 /∈ Cn,

(RA3) s1 /∈ {s2,d2, . . . ,sn,dn},

(RA4) |Vs1(C)|= |Vs1(Cn−1)|.

Proof. From (RA4), the priority of block i1 is higher (smaller) than the other
blocks in stack s1 in C . Thus these blocks should appear in Linsndn(Cn−1), because
(RA2) implies that block i1, which should be retrieved before them, is retrieved by
the retrieval from Linsndn(Cn−1). Furthermore, from (RA3), no block is relocated
from or to stack s1 by sequence (i2,s2,d2), . . . , (in,sn,dn). Therefore, the block
configuration of stack s1 in C1, . . . , Cn−1, and Linsndn(Cn−1) is the same as that
in C except the absence of block i1. It follows that block i1 does not interfere
any retrieval caused by sequence (i1,s1,d1), . . . , (in,sn,dn) for C even if it is
not relocated to stack d1, except the retrieval from Linsndn(Cn−1). Because (RA1)
ensures that block i1 is not relocated by sequence (i2,s2,d2), . . . , (in,sn,dn), this
sequence is admissible for C . By further noting that no block is placed on block
i1 by this sequence for C , we can see that block i1 is retrieved also in the resulting
configuration, so that it dominates Cn.

Figure 11 provides an example of Theorem 11 where sequence (4,1,2), (7,4,3)
is dominated by sequence (7,4,3).

Theorem 7. (Retrieval Rule B) Sequence (i1,s1,d′1), (i2,s2,d2), . . . , (in,sn,dn)
dominates sequence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn) if all the following con-
ditions are satisfied:

(RB1) i1 /∈ {i2, . . . , in−1, in},

(RB2) i1 ∈ Cn−1∧ i1 /∈ Cn,

(RB3) d′1 /∈ {s1,d1, . . . ,sn,dn},

25

1 2 3

1

2

3

4

3

8

56

74

9

4

(a) (4,1,2)

1 2 3

1

2

3

4

7

9

4

7

8

36 5

(b) (7,4,3)

1 2 3

1

2

3

4

7

9

4

7

8

36 5

(c) (7,4,3)

Figure 11: An example of Theorem 6. (a) and (b): dominated sequence (4,1,2), (7,4,3), (c):
dominating sequence (7,4,3)

(RB4) Nd′1
(C)< T ,

(RB5) Qd′1
(C)> i1.

Proof. From (RB5), blocks in stack d′1 in C are not retrieved before block i1 that,
from (RB2), should be retrieved by the retrieval for Linsndn(Cn−1). Thus these
blocks should appear in Linsndn(Cn−1). Furthermore, from (RB3), no block is relo-
cated from or to stack d′1 by sequence (i1,s1,d1), . . . , (in,sn,dn) for C . It follows
that the block configuration of stack d′1 in C , C1, . . . , Cn−1, and Linsndn(Cn−1)
is the same. This fact together with the feasibility of relocation (i1,s1,d′1) for
C from (RB4) ensures that block i1 does not interfere any retrieval caused by se-
quence (i1,s1,d1), . . . , (in,sn,dn) for C even if it is relocated to stack d′1 instead of
stack d1, except the retrieval from Linsndn(Cn−1). Therefore, sequence (i1,s1,d′1),
(i2,s2,d2), . . . , (in,sn,dn) is admissible for C . By further noting that no block is
placed on block i1 by this sequence for C , we can see that block i1 is retrieved
also in the resulting configuration, so that it dominates Cn.

In Figure 12, sequence (4,1,2), (7,4,1) dominates sequence (4,1,3), (7,4,1)
and vice versa according to Theorem 7. Therefore, not both of the sequences
should be forbidden in the branch-and-bound algorithm as noted in 3.1.

4.4. Dominance properties for the restricted BRP
Although Theorems 1–7 are originally meant for the unrestricted BRP, some

of them are applicable also to the restricted BRP. However, it should be noted that

26

2

1 2 3

1

2

3

4

38

5 6

7

910

4 4

(a) (4,1,2)

1 2 3

1

2

3

4

3

5

7

910

4

6

87

(b) (7,4,1)

2

1 2 3

1

2

3

4

38

5 6

7

910

4

4

(c) (4,1,3)

1 2 3

1

2

3

4

3

5

7

910

4

6

87

(d) (7,4,1)

Figure 12: An example of Theorem 7. (a) and (b): sequence (4,1,2), (7,4,1), (c) and (d): se-
quence (4,1,3), (7,4,1). The two sequences dominate each other

source stacks of relocations are uniquely determined in the restricted BRP. For
example, in Theorem 1, sequence (i2,s2,d2), . . . , (in−1,sn−1,dn−1), (i1,s1,dn) is
admissible for C in the case of the unrestricted BRP. In order for this sequence to
be admissible for the restricted BRP, the target block should be in stack s1 when
relocation (i1,s1,dn) is performed. However, it is not the case in general and the
sequence can be infeasible. In view of this, only Theorems 2 and 7 are applicable
to the restricted BRP. Theorem 2 holds without any modification, whereas (RB4)
should be replaced by the following condition in Theorem 7:

(RB4’) Nd′1
(C)≤ Nd1(C).

In (RB2) of Theorem 7, block i1 in stack d1 is assumed to be retrieved from
Linsndn(Cn−1). It follows that block i1 becomes the target block at some point,
and only blocks above it are relocatable after that in the restricted BRP. To con-
sider an admissible dominating sequence, all the blocks relocated to (from) stack
d1 after block i1 in sequence (i1,s1,d1), (i2,s2,d2), . . . , (in,sn,dn) should also
be relocated to (resp. from) stack d′1, Therefore, we should consider sequence
(i1,s1,d′1), (i2,s

′
2,d
′
2), . . . , (in,s

′
n,d
′
n) instead of sequence (i1,s1,d′1), (i2,s2,d2),

. . . , (in,sn,dn), where, for k = 2, . . . , n.

s′k =

{
d′1, sk = d1,

sk, sk 6= d1,
d′k =

{
d′1, dk = d1,

dk, dk 6= d1.
(6)

27

4

1 2 3

1

2

3

4

3 8

5 6 9

1

4

7 23

(a) (3,1,2)

4

1 2 3

1

2

3

4

8

5 4

23

8

6

7

9

(b) (8,4,2)

4

1 2 3

1

2

3

4

5 4

8

9

8

3 7

6

(c) (8,2,4)

1

4

1 2 3

1

2

3

4

3 8

5 6 94

7 2

3

(d) (3,1,3)

4

1 2 3

1

2

3

4

8

5 6 4

2

3

8

7

9

(e) (8,4,3)

4

1 2 3

1

2

3

4

8

5 6 4

3

87

9

(f) (8,3,4)

Figure 13: An example of Theorem 7 for the restricted BRP. (a)–(c): sequence (3,1,2), (8,4,2),
(8,2,4), (d)–(f): sequence (3,1,3), (8,4,3), (8,3,4). The two sequences dominate each other

To make this sequence admissible, stack d′1 should be as slack as stack d1, which
is ensured by Nd′1

(C)≤ Nd1(C).
In the example of Figure 13, two sequences dominate each other as in Fig-

ure 12. Please note that the relocations of block 8 are changed according to the
change in the destination stack of block 3.

5. Consistency of dominance properties

The theorems in the preceding section enable us to eliminate unnecessary
nodes in the search tree of the branch-and-bound algorithm. However, they should
be employed carefully so as not to exclude all optimal sequences. In the example
of Figure 6, sequence (3,2,1) dominates sequence (3,2,3) and vice versa accord-
ing to Theorem 7 with n = 1, meaning that it is not sufficient to simply forbid
dominated sequences. Two sequences dominate each other also in Figures 12 and
13. In this section we explain how to break such ties in the conditions to ensure
the consistency of the dominance properties.

Theorems 1, 2, and 6 (Transitive Relocation Rules A and B, Retrieval Rule A)
give strong dominance properties in the sense that they ensure the existence of a
strictly dominating sequence with fewer relocations. On the other hand, the rest
of the theorems only give weak dominance properties, and we should break ties

28

consistently so as not to forbid all optimal sequences. The consistency is ensured
based on stack priorities. In Theorem 3, ties are broken by adding the following
condition:

(TC5) d1 ∈ {s2,d2, . . . ,sn−1,dn−1}∨Qd′1
(C)> Qd1(C).

Condition d1 ∈ {s2,d2, . . . ,sn−1,dn−1} in (TC5) together with (TC3) means that
we prefer a stack d′1 such that no block is relocated from or to stack d′1 by sequence
(i2,s2,d2), . . . , (in,sn,dn). If no block is relocated from or to stack d1, either, a
stack d′1 with the lower (larger) priority is preferred (Qd′1

(C) > Qd1(C)). If a
preferred stack d′1 exists, sequence (i1,s1,d1), . . . , (in,sn,dn) is forbidden. The
same applies to Theorem 7, and

(RB5’) (d1 ∈ {s2,d2, . . . ,sn,dn}∧Qd′1
(C)> i1)∨Qd′1

(C)> Qd1(C)

is checked instead of (RB5). Condition Qd′1
(C) > Qd1(C) in (RB5’) implies

(RB5) because from (RB1) and (RB2), block i1 is retrieved before any block
in stack d1 of C by sequence (i1,s1,d1), . . . , (in,sn,dn), so that i1 < Qd1(C) <
Qd′1

(C) should hold.
Ties in Theorems 4 and 5 can be broken by adding the following conditions,

respectively:

(IA3) Qs1(C)> Qsn(Cn−1).

(IB4) Qs1(C)> Qsn(Cn−1).

However, even if ties are broken appropriately in this manner, Theorems 4 and 5
are possibly inconsistent with each other. Figure 14 illustrates an example. In this
case, Q1 = 3 > Q4 = 2 and sequence (8,1,2), (10,3,5), (5,4,5) satisfies (IA1)–
(IA3). Hence it is dominated by sequence (10,3,5), (5,4,5), (8,1,2), and the
former sequence is eliminated. However, Q3 = 4 > Q4 = 2 and the latter satisfies
(IB1)–(IB4), so that it is also eliminated. To avoid this kind of inconsistency,
only either Theorem 4 or Theorem 5 should be used. According to results of
computational experiments, there was no significant difference in the performance
of the two theorems. Thus Theorem 4, which is a little simpler than Theorem 5,
was used in our proposed algorithm.

To break ties in Theorem 7 for the restricted BRP, (RB4’) and (RB5’) are
combined into

(RB4”) Nd′1
(C)< Nd1(C) ∨ (Nd′1

(C) = Nd1(C)∧Qd1(C)< Qd′1
(C)).

In (RB4”), ties are broken by the stack height first, and next the stack priority.

29

1 2 3 4

10

8

4

6

91

2

3

5

2 113

7

5

8

(a) (8,1,2)

10

1 2 3 4

8

4

6

91

2

3

5

2 113

7

5

10

(b) (10,3,5)

1 2 3 4

8

41

2

3

5

2 113

7 10

9

5 5

6

(c) (5,4,5)

10

1 2 3 4

8

4

6

91

2

3

5

2 113

7

5

10

(d) (10,3,5)

1 2 3 4

41

2

3

5

2 113

7 10

9

8 5 5

6

(e) (5,4,5)

1 2 3 4

10

4

6

91

2

3

5

2 113

8 5

87

(f) (8,1,2)

Figure 14: An example of sequences for which (IA1)–(IA3) and (IB1)–(IB4) become inconsistent.
(a)–(c): sequence (8,1,2), (10,3,5), (5,4,5), (d)–(f): sequence (10,3,5), (5,4,5), (8,1,2). The
former sequence is eliminated and the latter is adopted according to (IA1)–(IA3), whereas the
former is adopted and the latter is eliminated according to (IB1)–(IB4)

6. New lower bound

One of the primary contributions of this study is the dominance properties in
Section 4. The other is a new lower bound of the total number of relocations. It
is an extension of the lower bound by Forster and Bortfeldt [12]. Kim and Hong
[5] utilized the total number of blocking blocks as a lower bound in their branch-
and-bound algorithm because a blocking block should be relocated at least once
in order to retrieve the block with a higher priority under it. Forster and Bortfeldt
[12] showed that it can be increased by one if a BG relocation does not exist for
any topmost blocking block. In this section we further improve it by relaxing
the condition for the increment. In the following, a minimal configuration is as-
sumed, and the lower bound by Kim and Hong [5] (the total number of blocking
blocks) and that by Forster and Bortfeldt [12] are denoted by LB-KH and LB-FB,
respectively.

6.1. LB-FB: Lower bound by Forster and Bortfeldt [12]
As a preparation, we investigate LB-FB in detail. If LB-KH is equal to the

optimal value, every relocation in an optimal sequence should decrease blocking
blocks by one. In other words, an optimal sequence should be composed only
of BG relocations. Because only topmost blocks are relocatable at first, the first
relocation in the sequence is a BG relocation of a topmost blocking block. It

30

1 2 3

10

8

1

4

2

36

5

791

2

3

4

Figure 15: A configuration for which LB-FB succeeds in improving LB-KH. LB-KH = 2,
LB-FB = 3, and gray blocks are blocking blocks

follows that the optimal value should be greater than LB-KH if a BG relocation
does not exist for any topmost blocking block. In this case, LB-KH+1 is a valid
lower bound and LB-FB is given by LB-KH+ 1. Otherwise, LB-FB is equal to
LB-KH. In summary, LB-KH is increased by one if

min
s∈S

Qs<Ptop
s

Ptop
s > max

s∈S
Qs (7)

is satisfied. The lefthand side of (7) denotes the highest (smallest) priority of
the topmost blocking blocks. In the configuration in Figure 15, the total number
of blocking blocks (gray blocks) is 2 and hence LB-KH = 2, whereas LB-FB =
LB-KH+ 1 = 3 because the highest (smallest) priority of the topmost blocking
blocks is 6 and the lowest (largest) stack priority is 4.

6.2. Proposed lower bound LB-N
In the proposed lower bound, a similar idea to LB-FB is exploited to check

whether a BG relocation exists or not. The difference from LB-FB is that block-
ing blocks above the target block are checked. We first identify candidates for
their destination stacks. Suppose that the target block is in the tT-th tier of stack
sT. That is, the target block is block PsTtT . Then, any stack j ∈S slack \ {sT} is
obviously a candidate destination stack. Even if N j = T , stack j can be a can-
didate, provided that its topmost block is a blocking block and there exists a BG
relocation for it. Therefore, the set of indices of candidate destination stacks is
given by

D =

{
j ∈S \{sT} | N j < T ∨Q j < Ptop

j < max
s∈S slack

Qs

}
. (8)

31

Algorithm 4 Procedure for checking whether a BG relocation is possible or not
1: procedure BGRELOCATION(sT, tT, C)
2: set D by (8)
3: for all j ∈D do
4: q j← Q j(C)

5: for i = 1 to NsT(C)− tT do
6: p← PsT,NsT(C)−i+1
7: d← argmin j∈D∧q j>p q j
8: if d does not exist then
9: return False

10: qd ← p
11: return True

In (8), Q j < Ptop
j means that the topmost block of stack j is a blocking block, and

Ptop
j < maxs∈S slack Qs ensures that a BG relocation exists for this block. One may

think that maxs∈S slack Qs should be replaced by maxs∈S Qs because the topmost
blocking block of stack j can be relocated to stack s′ even when Ns′ = T , if the
topmost block of stack s′ is relocated beforehand. Suppose that such a stack s′ sat-
isfying Qs′ > maxs∈S slack Qs exists. Because the topmost block of stack s′ should
also be relocated by a BG relocation, its priority Ptop

s′ satisfies Qs′′ > Ptop
s′ > Qs′

where stack s′′ is the destination stack of this BG relocation. However, Ns′′ = T
holds from Qs′′ > Qs′ > maxs∈S slack Qs, and hence a BG relocation should exist
for the topmost blocking block Ptop

s′′ of stack s′′ to relocate it beforehand. By re-
peatedly applying this argument, we can see that no BG relocation exists for the
topmost blocking block of stack j. Thus stacks j with Ptop

j > Q j > maxs∈S slack Qs
are excluded from the candidate destination stacks.

Next, let us consider the priorities of the candidate destination stacks. We
should take into account the effect of relocating blocks other than those above
the target block. Because these relocations are BG relocations, they do not affect
the priorities of their source stacks, while they always make the priorities of their
destination stacks higher (smaller). It follows that the current priorities of the
candidate destination stacks yield lowest possible values (upper bounds) of their
actual priorities. Since our purpose here is to obtain a lower bound of the total
number of relocations, we can safely assume that the priorities of the candidate
destination stacks j ∈D are given by their current values Q j.

Now, let us check whether a BG relocation exists or not for the blocks above

32

Algorithm 5 Proposed lower bound LB-N
1: procedure LB-N(C)
2: while N(C)> 0 do
3: sT← argmins∈S Qs(C)
4: tT← argmin1≤t≤NsT(C)PsTt(C)

5: if BGRELOCATION(sT, tT,C) = False then
6: return LB-KH+1
7: Remove blocks PsTt(C) (tT ≤ t ≤ NsT(C)) from C
8: C ← R(C)

9: return LB-KH

the target block, blocks PsTNsT
, PsT,NsT−1, . . . , PsT,tT+1 in this order. According to

Lemma 1 in Tanaka and Takii [23], it can be checked easily if the height limit is
ignored. Specifically, a BG relocation exists for any block above the target block
if Algorithm 4 is feasible. If it is infeasible, that is, d is not found on line 7, a BG
relocation does not exist for some block. In this case, LB-KH can be increased by
one. The time complexity of this algorithm is given by O((NsT − tT) logS) if the
candidate destination stacks are sorted in the increasing order of their priorities
beforehand. It is because this order is kept unchanged even if qd is updated on
line 10, and d can always be found in O(logS) time on line 7.

We apply this check in the framework of LB3 by Zhu et al. [13]. If no BG
relocation exists for some block above the target block, LB-KH is increased by
one. Otherwise, the blocks above the target block are removed from the current
configuration together with the target block. Then, the same check is applied to
the blocks above the new target block. This procedure is repeated until it is proved
that LB-KH can be increased by one, or all the blocks are removed. The algorithm
for computing the proposed lower bound LB-N is presented in Algorithm 5.

The validity of LB-N is verified as follows. Let us consider a minimal con-
figuration C and denote the target block in C by block x. Let us also denote by
C ′, the configuration obtained by removing the blocks above block x as well as
block x itself, and by block x′, the target block in C ′. Then, it suffices to show
that if f ∗(C) =LB-KH, a BG relocation exists for any block above block x′ in
C ′ because the contraposition holds. From f ∗(C) =LB-KH, all relocations in
an optimal sequence should be BG relocations, so that all blocking blocks in C
including those above block x are relocated by BG relocations. Because BG re-
locations for these blocks always make the priorities of their destination stacks

33

1 2 3 4

10

8

1

42

3

6

5

7 9

1

2

3

(a) Initial configura-
tion. Block 1 is the
target block. D =
{4}

1 2 3 4

10

8

1

42

3

6

5

7 9

1

2

3

(b) Relocation of
block 3 to stack 4 is
a BG relocation

1 2 3 4

10

8

426

5

7 9

1

2

3

(c) Blocks 3 and 1
are removed. Block
2 is the next target
block. D = {1,4}

1 2 3 4

10

8

426

5 7 9

1

2

3

(d) Relocation of
block 5 to stack 1 is
a BG relocation

1 2 3 4

10

8

426

7 9

1

2

3

5

(e) No BG relocation
exists for block 7

Figure 16: An example of calculation of LB-N for a configuration for which LB-N = 4 is greater
than LB-FB(= LB-KH = 3)

higher (smaller), the actual priorities of the destination stacks of blocks above
block x′ in C are not lower (larger) than than those in C ′. It follows that a BG
relocation should exist for any block above block x′ also in C ′.

It is not difficult to show that LB-N always dominates LB-FB. If (7) is satis-
fied,

Ptop
sT ≥ min

s∈S
Qs<Ptop

s

Ptop
s > max

s∈S
Qs ≥max

s∈D
Qs (9)

holds. It follows that the procedure in Algorithm 4 is infeasible for the topmost
block Ptop

sT = PsTNsT
of stack sT, so that LB-N = LB-KH+1.

Figure 16 illustrates the procedure of LB-N. We note that LB-FB = LB-KH =
3 for the configuration in (a). First, we check block 3 above the target block 1.
The set of indices of candidate destination stacks in (8) is D = {4} because no
BG relocation exists for the topmost blocking block 5 of stack 2, and the topmost
block 8 of stack 3 is not a blocking block. Because the relocation of block 3 to
stack 4 (∈ D) is a BG relocation (b), we remove this block and then the target
block. Now, block 2 becomes the target block and D = {1,4} (c). Thus we check
block 5, and it can be relocated to stack 1 by a BG relocation (d). We next check

34

block 7, for which no BG relocation is possible (e). Finally, it is proved that
LB-KH can be increased by one and LB-N is given by LB-KH+1 = 4.

6.3. Speed-up of lower bound computation
A lower bound is computed at every node in the search tree of the branch-and-

bound algorithm. Compared to LB-KH that can be computed incrementally in
O(1) time from that for the parent node, LB-N needs a longer computation time.
Here, we show that we need not compute LB-N at some nodes, where we can
obtain a lower bound in O(1) time.

Let us denote LB-KH and LB-N for C by LB-KH(C) and LB-N(C), respec-
tively. Let us also denote by C parent and C cur the configurations represented by
the parent and current nodes, respectively. Because C cur is obtained by relocat-
ing one block in C parent, f ∗(C cur)+ 1 ≥ LB-N(C parent) should hold due to the
validity of LB-N(C parent) as a lower bound. Therefore, if both LB-N(C parent) =
LB-KH(C parent)+1 and LB-KH(C cur) = LB-KH(C parent)−1 hold, we obtain

f ∗(C cur)≥ LB-N(C parent)−1 = LB-KH(C parent) = LB-KH(C cur)+1. (10)

This relation means that LB-KH(C cur)+1 is a valid lower bound for C cur and it
always dominates LB-N(C cur) from the definition of LB-N. In this case, LB-KH(C cur)+
1 can be used as a lower bound instead of LB-N(C cur).

7. Computational experiments

In this section we examine the effectiveness of the proposed exact algorithm
by computational experiments.

7.1. Benchmark instances
We used two sets of benchmark instances in the literature. The first one is the

dataset in [9, 3]2. The instances are characterized by two parameters: the number
of stacks S and the number of blocks in every stack H. Thus the total number
of blocks is N = SH, and both S and H range from 3 to 10. The set contains 40
instances for each combination of S and H. The stack height limit T was set to
T := H + 2. These instances are referred to as CVS instances. The second set
derives from [13]. Since the web site of the authors no longer exists, it is mirrored

2Downloadable from https://www.bwl.uni-hamburg.de/en/iwi/forschung/

projekte/dataprojekte/brp-instances-caserta-etal-2012.zip.

35

in our web page3. The instances in this set are characterized by S, T , and N. They
range from 6 to 10, from 3 to 7, and from S(T −1) to ST −1, respectively. The set
contains 100 instances for each combination of S, T , and N. Among them, 9000
instances with T ≤ 6 were used because it is too time-consuming to solve all 3500
instances with T = 7. These instances are referred to as ZQLZ instances.

7.2. Algorithm specifications
The proposed exact algorithm was coded in C. The source code is available

from our aforementioned web page. The computational experiments were con-
ducted on a desktop computer with an Intel Core i7-6700 3.4GHz CPU and 8GB
RAM. The time limit was set to 1800 seconds for each instance.

To describe the exact algorithm, “T”, “I”, “R”, “FB”, and “N” are used, which
stand for:

T Transitive Relocation Rules A, B, and C (Theorems 1–3) are used,

I Independent Relocation Rule A (Theorem 4) is used,

R Retrieval Rules A and B (Theorems 6 and 7) are used,

FB LB-FB is used as a lower bound,

N LB-N is used as a lower bound.

For example, “FB” is the naive algorithm that employs LB-FB as a lower bound,
and “TIR/N” stands for the algorithm that employs LB-N, Transitive Relocation
Rules A–C (T), Independent Relocation Rule A (I), and Retrieval Rules A and B
(R).

We also improved the exact algorithm in Tanaka and Takii [23] for the re-
stricted BRP with distinct priorities by the dominance rules. In this case, “T” and
“R” stand for:

T Transitive Relocation Rule A (Theorem 2) is used.

R Retrieval Rule B (Theorem 7) is used.

3https://sites.google.com/site/shunjitanaka/brp.

36

7.3. Results for CVS instances
First, the unrestricted BRP is investigated through computational results for

the CVS instances. They are summarized in Table 3. In this table, “%imp”
presents the percentages of instances for which the initial lower bound is given
not by LB-KH but by LB-KH+ 1. For example, LB-FB is equal to LB-KH+ 1
for the initial configurations of 0.425×40 = 17 instances with S = 6 and H = 6,
whereas LB-N = LB-KH+ 1 for all these 40 instances. The difference between
LB-FB and LB-N is significant when S is large. LB-FB becomes less efficient
as S becomes larger, because the lefthand side of (7) becomes smaller so that (7)
is less often satisfied. In contrast, LB-N is not affected by S, and it is almost al-
ways better than LB-KH when H ≥ 5. This result verifies the effectiveness of the
proposed lower bound LB-N.

In Table 3, the column “opt” denotes the number of instances solved to opti-
mality within the time limit, and “ave” and “max” the average and maximum com-
putation times in seconds, respectively. In addition, the average objective value
by the greedy heuristic and the average optimal (or best) value are provided in
the columns “HEUR” and “UB”, respectively. The results of the exact algorithms
in [17, 26] are also presented in the table, although only the number of instances
solved to optimality is provided in [17]. In [26], several combinations of lower
bounds, upper bounds, and branch-and-bound algorithms were tested. For a fair
comparison, we picked up the best result for each group of the instances, in terms
of the number of instances solved to optimality and the average computation time.
Please also note that average computation time in [26] is over instances solved
to optimality, in contrast to ours over 40 instances. It is verified from the table
that the dominance rules and the new lower bound bring a significant improve-
ment of the exact algorithm. Indeed, the number of instances solved to optimality
increases and the computation time is decreased from the naive algorithm FB.
The greedy heuristic yields near-optimal solutions for small-sized instances with
H = 3. However, the gap from the optimal value increases as H increases, and
it reaches an average of 6.3 relocations for instances with H = S = 6. It seems
difficult to obtain a good solution for such instances by a simple greedy heuristic.
With regard to the exact algorithms in the literature, FB already outperforms the
A∗ algorithm in [17] and yields a similar performance to the branch-and-bound
algorithms in [26] (note that a time limit of 24 hours was imposed in [17], in con-
trast to 1800 seconds in [26] and our case). Since our proposed algorithm TIR/N
obviously outperforms FB, we can conclude that TIR/N outperforms the existing
algorithms in [17, 26].

More detailed results of the proposed exact algorithm are presented in Table 4.

37

This table provides the number of instances solved to optimality and the average
computation time in seconds with and without the three types of dominance rules,
to examine their effects as well as that of the new lower bound. The results in
this table indicate that both the dominance rules and the new lower bound yield
significant improvements from the naive algorithm FB. It is observed from the
results of T/N and I/N that the independent relocation rule becomes more effective
than the transitive relocation rules as the number of stacks increases. This can be
explained as follows. The total number of combinations of two relocations is
S2(S−1)2, and the number of two independent relocations among them is S(S−
1)(S−2)(S−3). The independent relocation rule eliminates half of them at best.
On the other hand, the number of transitive relocations is S2(S− 1). Even if
all of them are eliminated by the transitive relocation rules, the latter are less
effective than the former when S is large, because S(S− 1)(S− 2)(S− 3)/2 >
S2(S− 1). Unlike these two types of rules, the retrieval rules did not greatly
affect the efficiency of the algorithm. R/N was even slower than N for some
instances due to computational efforts required for applying the dominance rules.
Nevertheless, TIR/N was always a little faster than TI/N. It is because the program
codes for checking the dominance rules are mostly composed of common parts.
Hence, applying the retrieval rules in addition to the other rules requires only a
small computational effort.

Next, the restricted BRP is investigated through computational results for the
CVS instances. In Table 5, our previous algorithm in [23] and an improved one
TR using the dominance rules are compared. We also present the results of four
existing exact approaches: the branch-and-price algorithm [16], the A∗ algorithm
[17], and the IP approaches [21, 28]. It should be noted that the average compu-
tation time in [21, 28] is over non-trivial instances solved to optimality: Lower
and upper bounds are computed for each instance in pre-processing, and it is con-
sidered as a non-trivial instance when the LB/UB gap is not zero. With regard to
[16, 17], only the number of instances solved to optimality is shown in the table.
It is because average computation time in [16] is provided separately for the root
node and inner nodes of the search tree, which makes it difficult to evaluate overall
computation time. Moreover, computation time is not reported in [17]. Among the
four approaches, the IP approach by Galle et al. [28] succeeded in solving more
instances to optimality than [16, 17, 21]. Our previous algorithm [23] solved fur-
ther more instances to optimality in spite of a shorter time limit of 1800 seconds
(the time limit in [28] was set to 1 hour). The dominance rules improved it and
TR solved nine more instances to optimality. Although the improvement was not
so significant as that for the unrestricted BRP, we can see that TR yields the best

38

performance among these approaches.
There are several studies on the exact approaches to the restricted BRP whose

results are not presented in Table 5. Expósito-Izquierdo et al. [18] corrected a
mistake in the ILP formulation in [3]. They also proposed a branch-and-bound
algorithm that is considerably faster than their previous A∗ algorithm [17]. Es-
kandari and Azari [19] corrected the mistake in the ILP formulation in [3] as well,
and introduced some cuts to further improve it. Ku and Arthanari [24] proposed
another branch-and-bound algorithm. However, these four approaches were ap-
plied to only 5 out of 40 instances in each instance group, so that their results are
not included in Table 5. To examine them, computation times by these approaches
are summarized in Tables 6 and 7. We also present, in the same tables, computa-
tion times by our previous algorithm [23], TR in this study, and the IP approach
[28]. Among the approaches in [18, 19, 24, 28], the branch-and-bound algorithm
[18] seems to be the fastest for most of the instances in Table 6, although com-
putation times by the IP approach [28] are available only for non-trivial instances
(not marked with an asterisk). For the instances in Table 7, only results by the two
IP approaches [19, 28] are available, and we can see that [28] is faster than [19].
On the other hand, our previous algorithm and TR took less than 0.01 seconds for
every instance in these tables, thus outperforming the other approaches in terms
of computation time.

7.4. Results for ZQLZ instances
In Table 8, results for the ZQLZ instances are summarized. The number of

instances is shown in the column “n”. We can again verify that the dominance
rules and the new lower bound considerably improve the efficiency of the exact
algorithms. Unlike the CVS instances, the ZQLZ instances seem to be easier to
solve as restricted BRPs than as unrestricted BRPs, regardless of S. The reason
for it is not clear, but the two sets are different in the fill rate: 2S slots are not filled
with blocks in the CVS instances (T = H + 2), whereas at most S slots are not
filled in the ZQLZ instances. This difference could have affected the efficiency of
the exact algorithms.

Zhu et al. [13] proposed IDA∗ algorithms for the restricted and unrestricted
BRPs. With regard to the restricted BRP, our previous algorithm [23] outperforms
their algorithm, as already reported in [23]. However, the comparison is not easy
on the unrestricted BRP only from limited information in [13]. Nevertheless, we
try to draw as fair a comparison as possible. According to the detailed results
obtained from the authors’ web page before it was closed, their algorithm IDA∗-
U solved 5307 instances out of 9000 to optimality, when the maximum number

39

of nodes generated in the search tree was limited to 230. They also proposed a
better algorithm named IDA∗-UM that employs a memory dominance technique
to eliminate the same configurations in the search tree. Unfortunately, they im-
posed a very short time limit of 1 second on it in order to use it not as an ex-
act algorithm but as a metaheuristic. According to the results presented in [13],
IDA∗-UM solved 4868 instances to optimality within this time limit. On the other
hand, TIR/N solved to optimality 8135 instances when the maximum number of
generated nodes was limited to 230, and 5472 instances within 0.01 seconds. Al-
though the Pentium4 3.0GHz CPU in [13] is considerably slower than ours, we
can conclude from these facts that our proposed algorithm outperforms IDA∗-U
and IDA∗-UM in [13].

8. Conclusion

In this paper we proposed an exact algorithm for the unrestricted BRP with
distinct priorities. For this purpose, we derived three types of dominance proper-
ties to eliminate unnecessary nodes in the search tree. We also improved the lower
bound by Forster and Bortfeldt [12]. These enabled us to solve a larger number
of benchmark instances to optimality than the existing exact algorithms in the lit-
erature. Some of the dominance properties are applicable also to the restricted
BRP, and they contributed to improving our previous exact algorithm in [23] for
this class of problem. Now, we can efficiently solve to optimality the unrestricted
and restricted BRPs with distinct priorities. However, to the best of the authors’
knowledge, no good exact algorithm exists for the unrestricted BRP with dupli-
cate priorities. To handle duplicate priorities, the proposed dominance properties
should be modified. It might be possible to derive specific properties to this class
of problem. The proposed lower bound should also be extended. These topics are
left for future research.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP15K01187.

References

[1] Lehnfeld J, Knust S. Loading, unloading and premarshalling of stacks in stor-
age areas: Survey and classification. Eur J Oper Res 2014;239:297–312.

40

[2] Blasum U, Bussieck MR, Hochstättler W, Moll C, Scheel H-H, Winter T.
Scheduling trams in the morning. Math Methods Oper Res 1999;49:137–148.

[3] Caserta M, Schwarze S, Voß S. A mathematical formulation and com-
plexity considerations for the blocks relocation problem. Eur J Oper Res
2012;219:96–104.

[4] König FG, Lübbecke M, Möhring R, Schäfer G, Spenke I. Solutions to
real-world instances of PSPACE-complete stacking. Lect Notes Comput Sci
2007;4698:729–740.

[5] Kim KH, Hong G-P. A heuristic rule for relocating blocks. Comput Oper Res
2006;33:940–954.

[6] Wan Y-w, Liu J, Tsai P-C. The assignment of storage locations to containers
for a container stack. Nav Res Logist 2009;56:699–713.

[7] Caserta M, Schwarze S, Voß S. A new binary description of the blocks relo-
cation problem and benefits in a look ahead heuristic. Lect Notes Comput Sci
2009;5482:37–48.

[8] Caserta M, Voß S. Corridor selection and fine tuning for the corridor method.
Lect Notes Comput Sci 2009;5851:163–175.

[9] Caserta M, Voß S, Sniedovich M. Applying the corridor method to a blocks
relocation problem. OR Spectr 2011;33:915–929.

[10] Lee Y, Lee Y-J. A heuristic for retrieving containers from a yard. Comput
Oper Res 2010;37:1139–1147.

[11] Ünlüyurt T, Aydın C. Improved rehandling strategies for the container re-
trieval process. J Adv Transp 2012;46:378–393.

[12] Forster F, Bortfeldt A. A tree search procedure for the container relocation
problem. Comput Oper Res 2012;39:299–309.

[13] Zhu W, Qin H, Lim A, Zhang H. Iterative deepening A∗ algorithms for the
container relocation problem. IEEE Trans Autom Sci Eng 2012;9:710–722.

[14] Petering MEH, Hussein MI. A new mixed integer program and extended
look-ahead heuristic algorithm for the block relocation problem. Eur J Oper
Res 2013;231:120–130.

41

[15] Jovanovic R, Voß S. A chain heuristic for the Blocks Relocation Problem.
Comput Ind Eng 2014;75:79–86.

[16] Zehendner E, Feillet D. A branch and price approach for the container relo-
cation problem. Int J Prod Res 2014;52:7159–7176.

[17] Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega JM. A domain-
specific knowledge-based heuristic for the Blocks Relocation Problem. Adv
Eng Infor 2014;28:327–343.

[18] Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega JM. An exact ap-
proach for the Blocks Relocation Problem. Expert Syst Appl 2015;42:6408–
6422.

[19] Eskandari H, Azari E. Notes on mathematical formulation and complexity
considerations for blocks relocation problem. Scientia Iranica. Transaction E:
Industrial Engineering 2015;22(6):2722–2728.

[20] Jin B, Zhu W, Lim A. Solving the container relocation problem by an im-
proved greedy look-ahead heuristic. Eur J Oper Res 2015;240:837–847.

[21] Zehendner E, Caserta M, Feillet D, Schwarze S, Voß S. An improved math-
ematical formulation for the blocks relocation problem. Eur J Oper Res
2015;245:415–422.

[22] Lin D-Y, Lee Y-J, Lee Y. The container retrieval problem with respect to
relocation. Transp Res Part C 2015;52:132–143.

[23] Tanaka S, Takii K. A faster branch-and-bound algorithm for the block relo-
cation problem. IEEE Trans Autom Sci Eng 2016;13:181–190.

[24] Ku D, Arthanari TS. On the abstraction method for the container relocation
problem. Comput Oper Res 2016;68:110–122.

[25] Zhang R, Liu S, Kopfer H. Tree search procedures for the blocks relocation
problem with batch moves. Flex Serv Manuf J 2016;28:397–424.

[26] Tricoire F, Scagnetti J, Beham A. New insights on the block relocation prob-
lem. Comput Oper Res 2018;89:127–139.

42

[27] de Melo da Silva M, Erdoğan G, Battarra M, Strusevich V. The
Block Retrieval Problem. Eur J Oper Res 2017. available online. DOI:
10.1016/j.ejor.2017.08.048

[28] Galle V, Barnhart C, Jaillet P. A new binary formulation of the restricted
container relocation problem based on a binary encoding of configurations,
Eur J Oper Res 2017. available online. DOI: 10.1016/j.ejor.2017.11.053

[29] Akyüz MH, Lee C-Y. A mathematical formulation and efficient heuristics for
the dynamic container relocation problem. Nav Res Logist 2014;61:101–118.

[30] Zehendner E, Feillet D, Jaillet P. An algorithm with performance guarantee
for the Online Container Relocation Problem. Eur J Oper Res 2017;259:48–
62.

[31] Ku D, Arthanari TS. Container relocation problem with time windows for
container departure. Eur J Oper Res 2016;252:1031–1039.

[32] Avriel M, Penn M. Exact and approximate solutions of the container ship
stowage problem. Comput Ind Eng 1993;25:271–274.

[33] Avriel M, Penn M, Shpirer N, Witteboon S. Stowage planning for container
ships to reduce the number of shifts. Ann Oper Res 1998;76:55–71.

[34] Avriel M, Penn M, Shpirer N. Container ship stowage problem: complex-
ity and connection to the coloring of circle graphs. Discrete Appl Math
2000;103:271–279.

[35] Dubrovsky O, Levitin G, Penn M. A genetic algorithm with a compact
solution encoding for the container ship stowage problem. J Heuristics
2002;8:585–599.

[36] Tierney K, Pacino D, Jensen RM. On the complexity of container stowage
planning problems. Discrete Appl Math 2014;169:225–230.

[37] Wang N, Zhang Z, Lim A. The stowage stack minimization problem with
zero rehandle constraint. Lect Notes Comput Sci 2014;8482:456–465.

[38] Tang L, Liu J, Rong A, Yang Z. An effective heuristic algorithm to minimise
stack shuffles in selecting steel slabs from the slab yard for heating and rolling.
J Oper Res Soc 2001;52:1091–1097.

43

[39] Tang L, Liu J, Rong A, Yang Z. Modelling and a genetic algorithm solution
for the slab stack shuffling problem when implementing steel rolling sched-
ules. Int J Prod Res 2002;40:1583–1595.

[40] Singh KA, Srinivas, Tiwari SMK. Modelling the slab stack shuffling prob-
lem in developing steel rolling schedules and its solution using improved Par-
allel Genetic Algorithms. Int J Prod Econ 2004;91:135–147.

[41] Tang L, Ren H. Modelling and a segmented dynamic programming-based
heuristic approach for the slab stack shuffling problem. Comput Oper Res
2010;37:368–375.

[42] Cheng X, Tang L. A scatter search algorithm for the slab stack shuffling
problem. Lect Notes Comput Sci 2010;6145:382–389.

[43] Kim B-I, Koo J, Sambhajirao HP. A simplified steel plate stacking problem.
Int J Prod Res 2011;49:5133–5151.

[44] Tang L, Zhao R, Liu J. Models and algorithms for shuffling problems in steel
plants. Nav Res Logist 2012;59:502–524.

[45] Lee Y, Hsu N-Y. An optimization model for the container pre-marshalling
problem. Comput Oper Res 2007;34:3295–3313.

[46] Lee Y, Chao S-L. A neighborhood search heuristic for pre-marshalling ex-
port containers. Eur J Oper Res 2009;196:468–475.

[47] Caserta M, Voß S. A corridor method-based algorithm for the pre-
marshalling problem. Lect Notes Comput Sci 2009;5484:788–797.

[48] Choe R, Park T, Oh M-S, Kang J, Ryu KR. Generating a rehandling-free
intra-block remarshaling plan for an automated container yard. J Intell Manuf
2011;22:201–217.

[49] Huang S-H, Lin T-H. Heuristic algorithms for container pre-marshalling
problems. Comput Ind Eng 2012;62:13–20.

[50] Bortfeldt A, Forster F. A tree search procedure for the container pre-
marshalling problem. Eur J Oper Res 2012;217:531–540.

44

[51] Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega M. Pre-Marshalling
Problem: Heuristic solution method and instances generator. Expert Syst Appl
2012;39:8337–8349.

[52] Voß S. Extended mis-overlay calculation for pre-marshalling containers.
Lect Notes Comput Sci 2012;7555:86–91.

[53] van Brink M van der Zwaan R. A branch and price procedure for the con-
tainer premarshalling problem. Lect Notes Comput Sci 2014;8737:798–809.

[54] Wang N, Jin B, Lim A. Target-guided algorithms for the container pre-
marshalling problem. Omega 2015;53:67–77.

[55] Zhang R, Jiang Z-Z, Yun WY. Stack pre-marshalling problem: A heuristic-
guided branch-and-bound algorithm. Int J Ind Eng 2015;22:509–523.

[56] Hottung A, Tierney K. A biased random-key genetic algorithm for the con-
tainer pre-marshalling problem. Comput Oper Res 2016;75:83–102.

[57] Wang N, Jin B, Zhang Z, Lim A. A feasibility-based heuristic for the con-
tainer pre-marshalling problem. Eur J Oper Res 2017;256:90–101.

[58] Jovanovic R, Tuba M, Voß S. A multi-heuristic approach for solving the
pre-marshalling problem. Cent Europ J Oper Re 2017;25:1–28.

[59] Tierney K, Pacino D, Voß S. Solving the pre-marshalling problem to opti-
mality with A∗ and IDA∗. Flex Serv Manuf J 2017;29:223–259.

[60] Gupta N, Nau DS. On the complexity of blocks-world planning. Artif Intell
1992;56:223–254.

[61] Slaney J, Thiébaux S. Blocks World revisited. Artif Intell 2001;125:119–
153.

45

Ta
bl

e
3:

C
om

pu
ta

tio
na

lr
es

ul
ts

fo
rC

V
S

in
st

an
ce

s
(T

=
H
+

2,
un

re
st

ri
ct

ed
)

H
S

N
In

iti
al

L
B

H
E

U
R

U
B

E
xa

ct
A

lg
or

ith
m

s
L

B
-F

B
L

B
-N

FB
T

IR
/N

[1
7]

a
[2

6]
b

%
im

p
%

im
p

op
t

av
e

m
ax

op
t

av
e

m
ax

op
t

op
t

av
e

3

3
9

45
.0

80
.0

5.
27

5
4.

97
5

40
0.

00
0.

00
40

0.
00

0.
00

40
40

0.
00

4
12

45
.0

77
.5

6.
25

0
6.

02
5

40
0.

00
0.

00
40

0.
00

0.
00

40
40

0.
00

5
15

20
.0

72
.5

7.
07

5
6.

85
0

40
0.

00
0.

00
40

0.
00

0.
00

40
40

0.
00

6
18

25
.0

72
.5

8.
45

0
8.

27
5

40
0.

00
0.

00
40

0.
00

0.
00

40
40

0.
00

7
21

15
.0

67
.5

9.
30

0
9.

10
0

40
0.

00
0.

00
40

0.
00

0.
00

40
40

0.
00

8
24

12
.5

87
.5

10
.6

50
10

.3
00

40
0.

00
0.

02
40

0.
00

0.
00

40
40

0.
00

4

4
16

50
.0

92
.5

10
.8

50
9.

72
5

40
0.

00
0.

01
40

0.
00

0.
00

40
40

0.
00

5
20

32
.5

87
.5

13
.2

50
12

.2
50

40
0.

00
0.

03
40

0.
00

0.
00

40
40

0.
00

6
24

27
.5

90
.0

14
.2

75
13

.2
25

40
0.

02
0.

67
40

0.
00

0.
01

40
40

0.
04

7
28

10
.0

97
.5

16
.3

00
15

.3
75

40
0.

06
1.

92
40

0.
00

0.
01

5
40

0.
19

5

4
20

45
.0

10
0.

0
16

.3
00

14
.7

00
40

0.
11

2.
23

40
0.

00
0.

09
40

40
0.

19
5

25
47

.5
10

0.
0

20
.7

00
17

.4
25

40
8.

39
29

3.
88

40
0.

08
2.

08
25

40
19

.9
4

6
30

25
.0

10
0.

0
23

.8
50

20
.8

00
40

27
.7

8
70

2.
94

40
0.

10
2.

00
1

40
50

.7
3

7
35

12
.5

95
.0

25
.7

00
22

.5
75

38
11

9.
63

18
00

.0
0

40
0.

72
20

.2
0

1
37

10
.4

6
8

40
17

.5
10

0.
0

28
.4

25
25

.6
00

37
19

2.
26

18
00

.0
0

40
3.

15
10

8.
39

0
37

89
.2

3
9

45
15

.0
10

0.
0

31
.5

75
28

.3
50

37
24

4.
85

18
00

.0
0

40
2.

17
57

.1
0

0
36

16
9.

18
10

50
7.

5
10

0.
0

34
.2

00
30

.8
25

30
59

3.
64

18
00

.0
0

40
2.

85
32

.8
2

0
30

16
2.

69

6
6

36
42

.5
10

0.
0

34
.1

00
27

.8
00

28
73

2.
47

18
00

.0
0

40
47

.9
5

73
1.

50
0

24
29

2.
13

10
60

10
.0

10
0.

0
48

.9
50

41
.9

25
5

16
36

.0
1

18
00

.0
0

28
68

9.
04

18
00

.0
0

0
5

27
0.

12

10
6

60
50

.0
10

0.
0

95
.5

75
76

.6
50

0
18

00
.0

0
18

00
.0

0
0

18
00

.0
0

18
00

.0
0

0
0

—
10

10
0

35
.0

10
0.

0
13

2.
07

5
11

5.
15

0
0

18
00

.0
0

18
00

.0
0

0
18

00
.0

0
18

00
.0

0
0

0
—

a
Ja

va
SE

7,
ru

n
on

an
In

te
lC

or
e

2
D

uo
E

85
00

3.
16

G
H

z
C

PU
w

ith
4G

B
R

A
M

,t
im

e
lim

it
of

24
ho

ur
s.

b
C

++
,r

un
on

tw
o

In
te

lX
eo

n
E

5-
26

50
v2

2.
60

G
H

z
C

PU
s

w
ith

64
G

B
R

A
M

in
pa

ra
lle

l,
tim

e
lim

it
of

18
00

se
co

nd
s.

T
he

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

is
ov

er
in

st
an

ce
s

so
lv

ed
to

op
tim

al
ity

.

46

Ta
bl

e
4:

E
ff

ec
to

fd
om

in
an

ce
ru

le
s

an
d

ne
w

lo
w

er
bo

un
d

fo
rC

V
S

in
st

an
ce

s
(T

=
H
+

2)

H
S

N
FB

N
T

/N
I/

N
R

/N
T

I/
N

T
IR

/N
op

t
av

e
op

t
av

e
op

t
av

e
op

t
av

e
op

t
av

e
op

t
av

e
op

t
av

e

3

3
9

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
4

12
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

5
15

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
6

18
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

7
21

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
8

24
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

4

4
16

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
5

20
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

6
24

40
0.

02
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
7

28
40

0.
06

40
0.

00
40

0.
00

40
0.

00
40

0.
00

40
0.

00
40

0.
00

5

4
20

40
0.

11
40

0.
04

40
0.

00
40

0.
03

40
0.

04
40

0.
00

40
0.

00
5

25
40

8.
39

40
2.

22
40

0.
21

40
0.

83
40

2.
62

40
0.

08
40

0.
08

6
30

40
27

.7
8

40
2.

66
40

0.
38

40
0.

84
40

2.
97

40
0.

11
40

0.
10

7
35

38
11

9.
63

40
42

.4
0

40
4.

81
40

6.
16

40
50

.1
5

40
0.

74
40

0.
72

8
40

37
19

2.
26

39
62

.8
0

40
38

.4
2

40
29

.1
5

39
59

.2
2

40
3.

32
40

3.
15

9
45

37
24

4.
85

39
71

.5
1

40
37

.9
2

40
10

.4
5

39
74

.9
9

40
2.

29
40

2.
17

10
50

30
59

3.
64

39
15

5.
13

40
56

.0
4

40
12

.4
1

39
15

2.
19

40
3.

50
40

2.
85

6
6

36
28

73
2.

47
31

52
4.

94
38

21
5.

90
35

33
4.

01
31

53
8.

18
40

51
.0

6
40

47
.9

5
10

60
5

16
36

.0
1

14
12

97
.3

1
16

11
82

.6
5

23
87

2.
74

14
12

74
.0

1
27

73
8.

72
28

68
9.

04

10
6

60
0

18
00

.0
0

0
18

00
.0

0
0

18
00

.0
0

0
18

00
.0

0
0

18
00

.0
0

0
18

00
.0

0
0

18
00

.0
0

10
10

0
0

18
00

.0
0

0
18

00
.0

0
0

18
00

.0
0

0
18

00
.0

0
0

18
00

.0
0

0
18

00
.0

0
0

18
00

.0
0

47

Ta
bl

e
5:

C
om

pu
ta

tio
na

lr
es

ul
ts

fo
rC

V
S

in
st

an
ce

s
(T

=
H
+

2,
re

st
ri

ct
ed

)

H
S

N
U

B
Ta

na
ka

an
d

Ta
ki

i[
23

]
T

R
[1

6]
a

[1
7]

b
[2

1]
c

[2
8]

d

op
t

av
e

m
ax

op
t

av
e

m
ax

op
t

op
t

op
t

av
e

op
t

av
e

3

3
9

5.
00

0
40

0.
00

0.
00

40
0.

00
0.

00
39

40
40

0.
1

40
0.

1
4

12
6.

17
5

40
0.

00
0.

00
40

0.
00

0.
00

40
40

40
0.

3
40

0.
1

5
15

7.
02

5
40

0.
00

0.
00

40
0.

00
0.

00
39

40
40

0.
8

40
0.

1
6

18
8.

40
0

40
0.

00
0.

00
40

0.
00

0.
00

38
40

40
4.

2
40

0.
4

7
21

9.
27

5
40

0.
00

0.
00

40
0.

00
0.

00
39

40
40

5.
8

40
0.

6
8

24
10

.6
50

40
0.

00
0.

00
40

0.
00

0.
00

37
40

40
11

.2
40

1.
3

4

4
16

10
.2

00
40

0.
00

0.
00

40
0.

00
0.

00
32

40
40

1.
2

40
0.

1
5

20
12

.9
50

40
0.

00
0.

00
40

0.
00

0.
00

40
40

5.
8

40
0.

5
6

24
14

.0
25

40
0.

00
0.

01
40

0.
00

0.
01

40
40

16
.1

40
2.

3
7

28
16

.1
25

40
0.

00
0.

02
40

0.
00

0.
02

20
40

40
90

.1
40

6.
4

5

4
20

15
.4

25
40

0.
00

0.
00

40
0.

00
0.

00
10

40
40

19
.9

40
1.

8
5

25
18

.8
50

40
0.

00
0.

04
40

0.
00

0.
04

40
39

36
9.

3
40

41
.9

6
30

22
.0

75
40

0.
02

0.
48

40
0.

01
0.

25
4

40
33

52
4.

3
39

68
.0

7
35

24
.2

50
40

0.
45

8.
53

40
0.

10
1.

86
37

24
48

7.
7

36
17

0.
9

8
40

27
.7

00
40

9.
10

21
1.

34
40

1.
44

26
.5

1
4

9
74

9.
4

33
59

0.
2

9
45

30
.4

50
40

10
.6

7
16

2.
25

40
1.

98
21

.3
5

0
5

12
6.

1
26

65
8.

2
10

50
33

.2
75

37
18

5.
67

18
00

.0
0

38
10

8.
09

18
00

.0
0

0
2

—
22

11
11

.0

6
6

36
30

.8
75

40
21

.7
3

47
3.

51
40

8.
96

17
6.

49
0

7
14

66
.5

19
44

1.
7

10
60

45
.8

50
17

11
72

.0
1

18
00

.0
0

24
84

7.
41

18
00

.0
0

0
2

—
2

—

10
6

60
78

.6
75

3
17

08
.4

9
18

00
.0

0
4

16
63

.6
4

18
00

.0
0

0
0

—
0

—
10

10
0

12
1.

32
5

0
18

00
.0

0
18

00
.0

0
0

18
00

.0
0

18
00

.0
0

0
0

—
0

—
a

IB
M

IL
O

G
C

PL
E

X
12

.1
,r

un
on

an
In

te
lX

eo
n

2.
67

G
H

z
C

PU
w

ith
3.

48
G

B
R

A
M

,t
im

e
lim

it
of

1
ho

ur
.

b
Ja

va
SE

7,
ru

n
on

an
In

te
lC

or
e

2
D

uo
E

85
00

3.
16

G
H

z
C

PU
w

ith
4G

B
R

A
M

,t
im

e
lim

it
of

24
ho

ur
s.

c
IB

M
IL

O
G

C
PL

E
X

12
.5

,r
un

on
an

In
te

lX
eo

n
3.

07
G

H
z

C
PU

w
ith

12
.0

G
B

R
A

M
,t

im
e

lim
it

of
1

ho
ur

.
T

he
av

er
ag

e
co

m
pu

ta
tio

n
tim

e
is

ov
er

no
n-

tr
iv

ia
li

ns
ta

nc
es

so
lv

ed
to

op
tim

al
ity

w
ith

in
th

e
tim

e
lim

it.
d

G
ur

ob
iO

pt
im

iz
er

7.
0.

1,
ru

n
on

fo
ur

In
te

lE
5-

26
90

v4
2.

6G
H

z
C

PU
s

w
ith

8G
B

R
A

M
,t

im
e

lim
it

of
1

ho
ur

.T
he

av
er

ag
e

co
m

pu
ta

tio
n

tim
e

is
ov

er
no

n-
tr

iv
ia

li
ns

ta
nc

es
so

lv
ed

to
op

tim
al

ity
w

ith
in

th
e

tim
e

lim
it.

48

Table 6: Comparison of computation time (in seconds) for a subset of CVS instances: Our previous
branch-and-bound algorithm in [23], TR in this study, IP approach and b&b algorithm in [18], IP
approach in [19], b&b algorithm in [24], and IP approach in [28] (T = H +2, restricted)

H S Instance b&b [23] TR IP [18]a b&b [18]a IP [19]b b&b [24]c IP [28]d
No.

3

3

1 0.00 0.00 1.18 0.007 0.11 *
2 0.00 0.00 1.39 0.007 0.11 *
3 0.00 0.00 1.00 0.006 0.08 *
4 0.00 0.00 1.09 0.007 0.09 *
5 0.00 0.00 0.68 0.007 0.06 *

4

1 0.00 0.00 4.76 0.008 0.28 0.014
2 0.00 0.00 18.39 0.007 0.22 *
3 0.00 0.00 11.71 0.008 0.34 *
4 0.00 0.00 16.06 0.007 0.26 *
5 0.00 0.00 18.04 0.007 0.27 *

5

1 0.00 0.00 83.09 0.010 0.72 *
2 0.00 0.00 75.95 0.007 1.20 *
3 0.00 0.00 100.71 0.013 0.91 *
4 0.00 0.00 95.31 0.008 0.80 *
5 0.00 0.00 65.32 0.026 1.59 0.097

6

1 0.00 0.00 124.11 0.086 5.35 5.26 0.397
2 0.00 0.00 113.29 0.008 1.59 0.00 *
3 0.00 0.00 89.06 0.019 3.09 2.01 *
4 0.00 0.00 93.12 0.016 1.78 0.03 *
5 0.00 0.00 96.50 0.007 1.23 0.00 *

7

1 0.00 0.00 182.14 0.009 2.89 0.08 *
2 0.00 0.00 284.29 0.011 3.29 0.60 *
3 0.00 0.00 119.20 0.011 3.34 1.98 *
4 0.00 0.00 472.32 0.010 3.35 0.30 *
5 0.00 0.00 277.97 0.038 7.97 191.60 *

8

1 0.00 0.00 84.66 0.021 7.25 0.75 0.508
2 0.00 0.00 14403.33 0.055 9.31 8.65 *
3 0.00 0.00 8298.85 0.012 6.57 0.66 *
4 0.00 0.00 250.33 0.013 11.03 7.24 *
5 0.00 0.00 6384.65 0.022 11.06 13.53 *

4

4

1 0.00 0.00 71.96 0.017 1.25 0.08 *
2 0.00 0.00 228.91 0.025 0.93 0.00 0.036
3 0.00 0.00 71.99 0.009 1.56 0.03 0.077
4 0.00 0.00 65.25 0.008 0.78 0.00 *
5 0.00 0.00 89.36 0.013 1.15 0.04 0.081

5

1 0.00 0.00 3544.86 0.540 61.62 21.08 0.543
2 0.00 0.00 326.54 0.043 5.27 0.15 0.229
3 0.00 0.00 1023.98 0.018 8.28 2.60 0.261
4 0.00 0.00 119.86 0.014 2.96 0.02 *
5 0.00 0.00 2656.67 0.579 81.26 93.40 0.763

6

1 0.00 0.00 4077.08 17.476 — 64.73 8.679
2 0.00 0.00 18985.03 0.030 5.23 0.02 0.541
3 0.00 0.00 1706.75 0.069 12.86 31.90 *
4 0.00 0.00 2376.86 0.315 23.40 59.53 0.828
5 0.00 0.00 8564.20 0.076 45.22 107.15 0.641

a Java SE 7, run on an Intel Core 2 Duo E8500 3.16GHz CPU with 4GB RAM.
b IBM ILOG CPLEX 12.1.0, run on an Intel Core i3 CPU with 4GB RAM, time limit of 900 seconds.
c Java, run on an Intel Core i5-2500 3.3GHz CPU with 8GB RAM.
d Gurobi Optimizer 7.0.1, run on four Intel E5-2690 v4 2.6GHz CPUs with 8GB RAM, time limit of 1
hour. * means a trivial instance.

49

Table 7: Comparison of computation time (in seconds) for a subset of CVS instances: Our previous
branch-and-bound algorithm in [23], TR in this study, and IP approaches in [19, 28] (T = H +2,
restricted)

H S Instance b&b [23] TR IP [19]b IP [28]d
No.

4 7

1 0.00 0.00 44.10 2.995
2 0.00 0.00 20.47 1.245
3 0.00 0.00 18.95 *
4 0.00 0.00 49.78 2.310
5 0.00 0.00 85.75 2.160

5

4

1 0.00 0.00 118.20 0.295
2 0.00 0.00 185.36 1.060
3 0.00 0.00 5.90 0.320
4 0.00 0.00 5.01 0.170
5 0.00 0.00 118.16 0.652

5

1 0.00 0.00 – 6.079
2 0.00 0.00 22.06 0.422
3 0.00 0.00 – 25.542
4 0.00 0.00 – 5.538
5 0.00 0.00 46.30 0.837

b IBM ILOG CPLEX 12.1.0, run on an Intel Core i3 CPU with 4GB
RAM, time limit of 900 seconds.
d Gurobi Optimizer 7.0.1, run on four Intel E5-2690 v4 2.6GHz CPUs
with 8GB RAM, time limit of 1 hour. * means a trivial instance.

50

Ta
bl

e
8:

C
om

pu
ta

tio
na

lr
es

ul
ts

fo
rZ

Q
L

Z
in

st
an

ce
s

T
S

n
U

nr
es

tr
ic

te
d

B
R

P
R

es
tr

ic
te

d
B

R
P

FB
T

IR
/N

Ta
na

ka
an

d
Ta

ki
i[

23
]

T
R

op
t

av
e

m
ax

op
t

av
e

m
ax

op
t

av
e

m
ax

op
t

av
e

m
ax

3

6
30

0
30

0
0.

00
0.

00
30

0
0.

00
0.

00
30

0
0.

00
0.

00
30

0
0.

00
0.

00
7

30
0

30
0

0.
00

0.
00

30
0

0.
00

0.
00

30
0

0.
00

0.
00

30
0

0.
00

0.
00

8
30

0
30

0
0.

00
0.

00
30

0
0.

00
0.

00
30

0
0.

00
0.

00
30

0
0.

00
0.

00
9

30
0

30
0

0.
00

0.
03

30
0

0.
00

0.
00

30
0

0.
00

0.
00

30
0

0.
00

0.
00

10
30

0
30

0
0.

00
0.

39
30

0
0.

00
0.

00
30

0
0.

00
0.

00
30

0
0.

00
0.

00

4

6
40

0
40

0
0.

00
1.

02
40

0
0.

00
0.

11
40

0
0.

00
0.

00
40

0
0.

00
0.

00
7

40
0

40
0

0.
03

7.
17

40
0

0.
00

0.
11

40
0

0.
00

0.
00

40
0

0.
00

0.
00

8
40

0
40

0
0.

04
5.

20
40

0
0.

00
0.

24
40

0
0.

00
0.

01
40

0
0.

00
0.

00
9

40
0

40
0

1.
56

57
5.

30
40

0
0.

02
7.

31
40

0
0.

00
0.

10
40

0
0.

00
0.

04
10

40
0

39
9

5.
05

18
00

.0
0

40
0

0.
01

2.
12

40
0

0.
00

0.
57

40
0

0.
00

0.
30

5

6
50

0
49

9
5.

66
18

00
.0

0
50

0
0.

18
70

.5
6

50
0

0.
00

0.
01

50
0

0.
00

0.
02

7
50

0
49

5
29

.0
1

18
00

.0
0

50
0

0.
93

12
5.

31
50

0
0.

00
0.

04
50

0
0.

00
0.

04
8

50
0

48
6

79
.8

0
18

00
.0

0
49

9
10

.4
7

18
00

.0
0

50
0

0.
00

1.
03

50
0

0.
00

0.
59

9
50

0
48

0
11

5.
88

18
00

.0
0

49
9

9.
05

18
00

.0
0

50
0

0.
04

12
.8

5
50

0
0.

01
2.

75
10

50
0

45
9

22
4.

76
18

00
.0

0
49

5
29

.0
1

18
00

.0
0

50
0

0.
05

13
.7

2
50

0
0.

01
0.

62

6

6
60

0
51

9
30

4.
32

18
00

.0
0

59
0

59
.6

3
18

00
.0

0
60

0
0.

00
0.

50
60

0
0.

00
0.

16
7

60
0

46
8

50
8.

31
18

00
.0

0
57

2
12

2.
31

18
00

.0
0

60
0

0.
03

2.
63

60
0

0.
01

1.
09

8
60

0
37

2
81

3.
26

18
00

.0
0

52
9

28
3.

44
18

00
.0

0
60

0
0.

38
85

.5
3

60
0

0.
20

38
.7

8
9

60
0

25
4

11
31

.5
9

18
00

.0
0

47
4

49
1.

56
18

00
.0

0
59

9
6.

26
18

00
.0

0
60

0
2.

82
84

9.
57

10
60

0
20

8
12

92
.7

3
18

00
.0

0
43

2
61

1.
54

18
00

.0
0

59
8

19
.7

7
18

00
.0

0
59

9
8.

84
18

00
.0

0

51

