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We study properties of heavy-light-heavy three-point functions in two-dimensional conformal field
theories by using the modular invariance of two-point functions on a torus. We show that the result is
nontrivially consistent with the condition of eigenstate thermalization hypothesis. We also study the open-
closed duality of cylinder amplitudes and derive behaviors of disk one-point functions.
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I. INTRODUCTION

Two-dimensional conformal field theories (2D CFTs)
have provided us an ideal factory of new insights on
dynamical properties in quantum field theories. This is
owing highly to the strong constraints imposed by their
infinite dimensional conformal symmetries [1]. One well-
known highlight is the Cardy formula

DðEÞ ∼ e4π
ffiffiffi
cE
12

p
; ð1Þ

which offers a universal formula for the degeneracy DðEÞ
of highly excited states (with energy E ≫ c) for general
unitary 2D CFTs with the central charge c [2]. This formula
is derived from the modular invariance of torus amplitude.
In the presence of boundaries, we can employ the open-
closed duality to constrain the behaviors of boundary states
[3] in boundary conformal field theories [4]. Moreover, the
conformal bootstrap for correlation functions leads to
another strong constraints on the properties of CFTs, which
has successfully been applied not only in two-dimensions
but also in higher-dimensions [5,6].
Recently, there have been very interesting progresses on

the properties of three-point functions in 2D CFTs. The
modular invariance of a torus one-point function leads to a
universal formula for the diagonal part of heavy-light-
heavy three-point functions [7]. The genus two modular
invariance gives another constraints on the behavior of

heavy-heavy-heavy three-point functions [8], see also
[9,10]. The behaviors of heavy-light-light three-point
functions have been worked out in [11,12]. Refer to
[13–20] for other aspects of recent developments on
constraints in 2D CFTs. For generic CFTs, heavy operators
(or equally states) are those with energy (or equally
conformal dimensions) larger than the central charge c.
In particular, for holographic CFTs, which are strongly
coupled and have a large central charge c, we can say
operators are heavy already when its energy is larger than
c=6. Operators with energies much smaller than those of
the heavy ones are simply called light.
Motivated by these developments, the purpose of this

article is to explore more of such universal properties
through the modular invariance of two-point functions on a
torus [21–23] and the open-closed duality [4]. As we will
explain later, the former analysis leads to interesting
constraints for the off diagonal part of heavy-light-heavy
three-point functions. The results satisfy the condition of
ETH (eigenstate thermalization hypothesis) [24–26], which
is a well-known criterion for a closed quantum system to
become chaotic such that it gets thermalized. We will also
generalize this argument to multipoint functions on a torus.
The latter analysis provides new universal properties on the
one-point functions on a disk or equally the coefficients of
boundary states. Our analysis below focuses only on the
exponential contributions neglecting the polynomial factor
of the energy of relevant states, which is denoted by the
symbol ∼: Refer to [27–33] for earlier arguments on ETH
in CFTs.
This article is organized as follows: in Sec. II, we study

the modular invariance of two-point functions on a torus
and derive a property of three-point functions. After briefly
introducing the ETH, we show that the result satisfies the
condition of ETH. In Sec. III, we study the open-closed
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duality and derive constraints on the coefficients of
boundary states. We also give a holographic interpretation.
In Sec. IV, we summarize our conclusions and discuss
future problems.

II. MODULAR INVARIANCE
ON TORUS AND ETH

Consider a two-point function hOðt;ϕÞOð0; 0Þi of a
primary operator O on a torus in a given 2D CFT. We
choose O such that its spin is vanishing. Its (chiral)
conformal dimensions are given by ΔO ¼ Δ̄O, and its
energy reads EO ¼ 2ΔO. The Euclidean time coordinate
t and space coordinate ϕ are periodic such that t ∼ tþ β
and ϕ ∼ ϕþ 2π on this torus.
We would like to study the constraint imposed by the

modular invariance (where we follow the convention in
[23]). Until Sec. II. B., we assume generic 2D CFTs below.
We will discuss how the results are improved for holo-
graphic CFTs in Sec. II. C. We interpret our results in the
light of ETH in Sec. II. 4.
By setting ϕ ¼ 0 for simplicity, the modular invariant

relation β ↔ ð2πÞ2=β for the torus two point function
hOðt; 0ÞOð0; 0Þi is written as

e
βc
12

X
A

X
B

jhAjOjBij2e−ðβ−tÞEA−tEB

¼e
ð2πÞ2c
12β ·

�
2π

β

�
2EOX

A

X
B

e−
ð2πÞ2EA

β e
2πiJABt

β jhAjOjBij2; ð2Þ

where A and B label all states in the CFT including both
primaries and descendants; we set EA ¼ ΔA þ Δ̄A as the
energy of the state jAi and JAB as the difference of the spins
of jAi and jBi. The matrix element hAjOjBi is equal to the
three-point function hAð∞ÞOð1ÞBð0Þi.
Below we would like to study implications of (2) in the

high temperature limit β → 0 with t=β kept finite and
nonvanishing. In this case, we do not need to worry about
the divergence due to the coincidence of two operators
(i.e., t ¼ 0). In this limit we can set A to be the vacuum. By
using the Cardy formula (1) for the degeneracy of high
energy states EA;B ≫ c, we can estimate both sides of the
modular invariance relation (2) for the torus two point
function hOðt; 0ÞOð0; 0Þi as follows:Z

dEAdEBe
4π
ffiffiffiffiffiffiffi
c
12
EA

p
e4π

ffiffiffiffiffiffiffi
c
12
EB

p
jhAjOjBij2e−ðβ−tÞEA−tEB

∼ e
π2c
3β ·

�
2π

β

�
2ΔO

: ð3Þ

Here, the average is over all states A and B of fixed
dimensions EA and EB. Since in general EA and EB can be
arbitrarily large in the limit β → 0, the above relation (3)
provides a constraint on the mean squared of heavy-light-

heavy three-point functions jhAjOjBij2 as a function of EA
and EB. In the analysis below we only focus on the
exponential contributions neglecting the polynomial factor
of the energy EA and EB.
When t=β is very small, the dominant contributions of

the left-hand side of (3) come from the states with
EB ≫ EA. Also if we strictly set t → 0, then the two-point
function should have a power divergence ∼t−2EO . Thus we
find that the summation over B should marginally converge
when t=β is very small, and this leads to the following
estimation of the exponential suppression of the three-point
functions when EB ≫ EA:

jhAjOjBioff j2 ∼ e−4π
ffiffiffiffiffiffiffi
c
12
EB

p
: ð4Þ

We would also like to comment that if we keep β finite
and take the limit t → 0, then the two-point function
behaves as hOðt; 0ÞOð0; 0Þi ≃ t−2EO · ZðβÞ, where ZðβÞ
is the vacuum partition function. This relation is equivalent
to the conformal bootstrap constraint for four-point func-
tions studied in [11,12].

A. Constraints on 3pt functions

Now we would like to estimate the square of the off

diagonal part of the three-point function jhAjOjBioff j2 from
the modular invariance (3).
Let us introduce the parameter s instead of t,

β − t ¼ β þ s
2

; t ¼ β − s
2

; ð5Þ

where −β ≤ s ≤ β. Moreover, we parametrize EA and EB
by the “boost coordinate” ðρ; θÞ as follows:

EA ¼ ρeθ; EB ¼ ρe−θ; ð6Þ

where −∞ < θ < ∞ and 0 < ρ < ∞.
We assume the following behavior of the three-point

function square:

jhAjOjBioff j2 ∼ e−4π
ffiffiffi
cρ
12

p
fðθÞ; ð7Þ

where fðθÞ is an unknown function, which we want to
determine from the modular property (3) below. This form
is expected from the requirement that the degeneracy given
by the Cardy formula should be canceled in the integral in
(3) and is justified in our analysis below.
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The left-hand side of (3) is estimated by the integral,Z
ρdρdθeIðρ;θÞ;

Iðρ; θÞ≡ 4π

ffiffiffiffiffiffiffiffi
cEA

12

r
þ 4π

ffiffiffiffiffiffiffiffi
cEB

12

r
− 4π

ffiffiffiffiffi
cρ
12

r
fðθÞ

− ðβ − tÞEA − tEB

¼ 8π

ffiffiffiffiffi
cρ
12

r
cosh

�
θ

2

�
− 4π

ffiffiffiffiffi
cρ
12

r
fðθÞ − βρ cosh θ

− sρ sinh θ: ð8Þ

Now we apply the saddle point approximation with
respect to the integral of ρ. This leads to the following
relation by solving ∂ρI ¼ 0:

ffiffiffi
ρ

p ¼ 2π

ffiffiffiffiffi
c
12

r �
2 coshðθ

2
Þ − fðθÞ

β cosh θ þ s sinh θ

�
: ð9Þ

By substituting this and assuming fðθÞ < 2 coshðθ
2
Þ, Iðρ; θÞ

is simplified,

Iðρ; θÞ ¼ π2c
3

·
ð2 coshðθ

2
Þ − fðθÞÞ2

β cosh θ þ s sinh θ
: ð10Þ

Note that if fðθÞ > 2 coshðθ
2
Þ, then there is no saddle point

(9) and the related contributions can be neglected.
Now we would like to impose the modular invariance

(3). This means the following equivalence in the limit
β → 0 and s=β ¼ finite:

Z
∞

−∞
dθe

π2c
3
·
ð2 coshðθ

2
Þ−fðθÞÞ2

β cosh θþs sinh θ ∼ e
π2c
3β : ð11Þ

This approximated equality should be true for any values of
the ratio s=β (remember s takes the values such that
js=βj ≤ 1). The important point is that the right-hand side
does not depend on the parameter s, and this is possible
only if the contribution from the integral of θ is localized
around θ ¼ 0. This requires (i) fð0Þ ≃ 1 and (ii) the integral
for θ ≠ 0 can be negligible, which is equal to the inequality,

ð2 coshðθ
2
Þ − fðθÞÞ2

β cosh θ þ s sinh θ
<

1

β
; ð12Þ

for any jsj ≤ β. This inequality (12) is equivalent to

fðθÞ ≥ 2 cosh

�
θ

2

�
− e−

jθj
2 ¼ e

jθj
2 ; ð13Þ

where we used fðθÞ < 2 coshðθ
2
Þ. Moreover, the previous

argument which derives (4), tells us fðθÞ ≃ e
jθj
2 in the

limit jθj → ∞.

In summary, we find the following behavior:

If EA ≃ EB ≫ c; jhAjOjBioff j2 ∼ e−
SðEAÞþSðEBÞ

2 ; ð14Þ

If c ≪ EA ≪ EB; jhAjOjBioff j2 ∼ e−SðEBÞ; ð15Þ

For generic values of EA;B ≫ c;

jhAjOjBioff j2 ≲Min½e−SðEAÞ; e−SðEBÞ�; ð16Þ

where SðEÞ ¼ 4π
ffiffiffiffi
cE
12

q
is the entropy for states with the

energy E.
In the above analysis, we ignored contributions from the

diagonal part hAjOjBidiag ¼ δAB · hAjOjAi. The averaged
diagonal three-point function is found in [7]

hAjOjAi ∼ e
−πc

3

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1−12Eχc

p � ffiffiffiffiffiffi
12EA
c

p
; ð17Þ

where Eχ is the energy of the lowest dimensional state jχi
which satisfies hχjOjχi ≠ 0. By explicitly substituting this
to (3), we find that the diagonal ones are not dominant over
the off diagonal ones, and this justifies the above analysis.
Note that we can actually show that in the limit EB → ∞

with EB − EA fixed, the two-point conformal blocks on a
torus take just the form of a torus character [20]. Therefore,
the three-point function of primary states can be given by
the same formula (14) after just a shift c → c − 1 up to a
constant factor as in [7]. However, in the case EA ≪ EB, the
contribution from the two-point block on a torus is non-
trivial, and therefore the above result does not contradict
with the results in [11,12].

B. H-L-L 3pt functions from conformal bootstrap

Let us focus on the case where only either EA or EB is
heavy, i.e. the heavy-light-light three-point function. Our
previous argument based on the modular invariance derives
the behavior (4) as we have explained. Here we would like
to point out that this result for the heavy-light-light three-
point function can also be found from a simple argument of
conformal bootstrap. First note that the four-point function
of primary operators O1 and O2 can be expanded in terms
of all states A in a given 2D CFT,

hO1ð0ÞO2ðx; x̄ÞO2ð1ÞO1ð∞Þi
¼ jxj−EO1

−EO2

X
A

jCO1O2Aj2xΔA x̄Δ̄A ; ð18Þ

where CO1O2A ¼ hO1jO2jAi. The bootstrap relation in the
limit x → 1 leads to the behavior

hO1ð0ÞO2ðx; x̄ÞO2ð1ÞO1ð∞Þi ≃ j1 − xj−2EO2 : ð19Þ

Therefore we obtain the following relation in the limit
x ¼ x̄ → 1:
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Z
dEADðEAÞjCO1O2Aj2xEA ∼ j1 − xj−2EO2 ; ð20Þ

where the density of state reads DðEAÞ ∼ e2π
ffiffiffiffiffi
cEA
3

p
. It is

straightforward to see that this leads to the behavior,

jCO1O2Aj2 ∼ e−4π
ffiffiffiffiffi
cEA
12

p
; ð21Þ

which indeed reproduces (4).

C. Holographic CFTs

So far our arguments assumed generic unitary CFTs in
two-dimensions, where we have shown the exponential
suppressions of the off diagonal three-point functions for
the energies much larger than the central charge EA,
EB ≫ c. However, if we consider the special class of
CFTs, called holographic CFTs, this energy condition is
relaxed as wewill explain below. The holographic CFTs are
characterized by the large degrees of freedom and strong
interactions so that they have classical holographic duals. In
two-dimensional CFTs, these conditions are equivalent to
the large central charge c ≫ 1 and the sparse spectrum.

Under these conditions, the Cardy formula1 DðEÞ ∼
e4π

ffiffiffiffiffiffiffiffiffiffiffiffi
c
12
ðE− c

12
Þ

p
holds for any states with the energy E ¼

Δþ Δ̄ ≥ c
6
as proved in [15], which is equivalent to a

sharp confinement/deconfinement phase transition of the
partition function at β ¼ 2π. Therefore we can employ the
Cardy formula even for such relatively low energy states.
Let us ask if we can apply the previous argument in

Sec. II A to such states EA;B ¼ OðcÞ. The crucial point is
the validity of the saddle point approximation (9). Since the
dominant contribution is localized at θ ¼ 0, we find that the
saddle point is located at EA;B − c

12
≃ ρ ¼ ð2πβ Þ2 · c

12
. Since

we consider the low temperature phase for the right-hand
side of the basic relation (2), we have the condition β < 2π.
From this, we obtain EA;B ≥ c

6
. In this way, we can conclude

that the exponential suppressions of the off diagonal three-
point functions (14), (15) and (16) occur in 2D holographic
CFTs when EA;B ≥ c

6
, which allow much lower energy

regions compared with the condition of the same suppres-
sions for generic CFTs, i.e., EA;B ≫ c.

D. Comparison with ETH

The ETH (eigenstate thermalization hypothesis)
[24–26], which we will briefly review below, is formulated
for the matrix elements of observablesO in the basis jni for
the eigenstates of Hamiltonian H,

hnjOjmi ¼ fOðEnÞδnm þ e−
SðEÞ
2 gOðEn; EmÞRnm; ð22Þ

where SðEÞ is the averaged entropy at the energy
E ¼ EnþEm

2
. The matrix Rnm is a random Hermitian matrix

with zero mean and unit variance. Ideally, we expect

⟪RklRmn⟫ ¼ δl;mδk;n; ð23Þ

where ⟪� � �⟫ denotes the random average.2 The functions
fOðEnÞ and gOðEn; EmÞ are smooth functions of the
energies En;m. This behavior (22) can be obtained by
assuming that the eigenstates jni are random states, i.e.,
if we choose a basis jii such that the observable O is
diagonal hijOjji ¼ δijOi, then the vectors fpn

i g defined by
jni ¼Pip

n
i jii are random such that ⟪p�n

i pm
j ⟫ ¼ 1

D δijδnm,
where D is the dimension of Hilbert space.
The ETH is considered to be true in a closed quantum

system with a quantum chaos. If we assume ETH, we can
show the thermalization of the observable O as follows.
Consider the time evolution of expectation value hOðtÞi for
a quantum state jψi ¼Pnbnjni,

hOðtÞi ¼
X
n;m

hnjOjmib�nbmeiðEn−EmÞt

¼
X
n

jbnj2hnjOjni þ
X
n≠m

eiðEn−EmÞthnjOjmib�nbm:

ð24Þ

We say thatO is thermalized if the (some) time average of
hOðtÞi coincideswith its microcanonical prediction. For this
we need to show that (i) the time average Ō ¼ 1

T

R
T
0 dthOðtÞi

only depends on the energy, and it should not depend on
the details of the coefficient bn, and moreover, (ii) the
fluctuation is very small: 1T

R
T
0 dthðOðtÞÞ2i − ðŌÞ2 ∼ e−SðEÞ.

Indeed, we can confirm that (i) is satisfied because the
diagonal part of (22) only depends on the energy and that
(ii) is satisfied because the off diagonal part is suppressed by
the factor e−S=2.
In the ETH, we regard O as a low energy operator and

take the states jni to be high energy states which are
responsible for thermalizations. The ETH property (22)
leads to the estimation when we take an appropriate
average,

⟪jhnjOjmij2⟫ ≃ e−SðEÞðgOðEn; EmÞÞ2: ð25Þ

1Note that in (1) we assumed E ≫ c, and thus we made the
approximation E − c

12
≃ E. In this section, we choose E and c as

both equally large, and we cannot allow this approximation.

2It has been pointed out that this random behavior is not
exactly correct in generic chaotic quantum systems because Rnm
satisfy various constraints [28,34]. Our analysis for generic CFTs
is not affected by this issue as we consider averaged quantities.
For holographic CFTs, we expect this issue will be almost absent
as the number of such kinematical constraints are much smaller
than those of the total degrees of freedom.
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Indeed this exponentially suppressed behavior nicely
agrees with our results (14), (15) and (16) for the off
diagonal part of the heavy-light-heavy three-point func-
tions, by identifying A ¼ n and B ¼ m. In this way, the
modular invariance in 2D CFTs nicely reproduces the ETH
property for off diagonal three point functions. Note that for
generic unitary 2D CFTs, these ETH behaviors for the
averaged three point functions hold for the high energy
states En, Em ≫ c as we have seen in Sec. II A. In
particular, for holographic CFTs, these properties hold
even for relatively low energy states as long as the
condition En, Em ≥ c

6
is satisfied.

Also note that the diagonal part (17), which is clearly a
smooth function, gives the function fOðEÞ in (22). For
holographic 2D CFTs, we expect fOðEÞ is indeed not
exponentially suppressed because we normally have Eχ ¼
Oð1Þ in (17) and take the large c limit. For generic 2D
CFTs, this ETH requirement of nonsuppressed fOðEÞ is not
guaranteed.

E. Torus multipoint functions
and modular invariance

The ETH (22) argues that the off diagonal three-point
functions are not only exponentially suppressed but also are
random valued. We would like to study their multipoint
correlations to examine this property. For this, we consider
the modular invariance of N-point functions on a torus
hOðt1ÞOðt2Þ…OðtNÞi. For simplicity we choose ti ¼ N−i

N β
for i ¼ 1; 2;…; N. In the low temperature limit, this
N-point function on a torus factorizes into the thermal
partition function times the N-point function on a cylinder,
where the latter does not have any exponentially growing
factor. Similar to the N ¼ 2 case (2), the modular invari-
ance of the torus N-point function in the limit β → 0
leads to

X
A1;A2;…;AN

hA1jOjA2ihA2jOjA3i…hAN jOjA1i ·e−
β
NðE1þE2þ���þENÞ

∼e
π2c
3β ; ð26Þ

where we employed the estimation of the partition function

Zð1=βÞ ∼ e
π2c
3β . The energies E1; E2;… are those of the

states jA1i; jA2i;…, respectively. By using the Cardy
formula as before, we finally obtain from (26) the following
average of theN products of the three-point functions when
all energies are the same E1 ¼ E2 ¼ � � � ¼ EN ≡ E:

hA1jOjA2ihA2jOjA3i…hAN jOjA1i ∼ eð1−NÞSðEÞ; ð27Þ

where we do not take any summations over Ai; also

SðEÞ ¼ 4π
ffiffiffiffi
cE
12

q
is the entropy for states with the energy

E again.

Next we would like to compare this result with that
obtained by assuming the ETH behavior (22), where Rnm is
a random matrix. When N is even, we find

hA1jOjA2ihA2jOjA3i…hAN jOjA1i
∼ e−

N
2
SðEÞ⟪RA1A2

RA2A3
…RANA1

⟫ ∼ e−ðN−1ÞSðEÞ: ð28Þ

Here we evaluated the averaged random correlation func-
tion by the Wick contractions in the random average (23) as

⟪RA1A2
RA2A3

…RANA1
⟫

¼ δA1A3
δA3A5

…δAN−1A1
þ ðpermutationÞ

∼ e−ðN2−1ÞSðEÞ: ð29Þ

Remember that the average M̄ in the above means that for
all states with the energy E i.e. M̄ ¼ e−NSðEÞP

A1;A2;…;AN
M.

When N is odd, we can obtain the same estimation (28)
from the ETH ansatz (22) by replacing one of e−SðEÞ=2Rnm
with δn;m in the averaged random correlation function. In
this way, the CFT result (27) reproduces the random matrix
result (28) based on the ETH ansatz for these correlation
functions. Note that again this analysis can applied to the
high energy states E ≫ c for generic 2D CFTs and to the
states E ≥ c

6
for holographic CFTs.

III. CONSTRAINTS FROM
OPEN-CLOSED DUALITY

Next we would like to study universal constraints for 2D
CFTs with boundaries, where conformal boundary con-
ditions are imposed. These theories are called as boundary
conformal field theories. We are especially interested in
properties of the one-point functions of primary operators
on a disk. For this, it is useful to employ the description in
terms of boundary states, which are closed string states for
boundaries.
States which describe physical boundaries are called

Cardy states jBαi [4] and are given by the linear combi-
nations of Ishibashi states jIki as follows:

jBαi ¼
X
k

cαk jIki; ð30Þ

where the label k runs over those of primary states. The
index α describes the types of boundary conditions.
The Ishibashi state jIki is constructed out of the primary

state jki and its descendants. It is given by the maximally
entangled state between the left and right moving sectors,

jIki ¼
X
n⃗

jn⃗; kiLjn⃗; kiR: ð31Þ

Here the states jn⃗; ki make the orthonormal basis of the
descendants of the form
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jn⃗; ki ¼ Nn⃗;k½ðL−1Þn1…ðL−mÞnm � � � þ � � ��jki; ð32Þ

where fLmg are Virasoro generators and Nn⃗;k are the
overall constants to make the states orthonormal,

hn⃗; kjm⃗; li ¼ δk;lδn⃗;m⃗: ð33Þ

A. Duality for vacuum cylinder amplitudes

The open-closed duality relation for vacuum cylinder
amplitudes, so-called the Cardy condition [4], is written as

hBαje−sHC jBβi ¼
X
γ

Nγ
αβTrγ½e−2πtHO �; ð34Þ

where t and s are related by

t ¼ π

s
: ð35Þ

Here HC and HO are the closed and open string
Hamiltonians, respectively,

HC ¼ L0 þ L̃0 −
c
12

; HO ¼ L0 −
c
24

: ð36Þ

Moreover, γ runs all primary states, and Nγ
αβ is a positive

integer which counts the number of open string sectors and
is nonzero only when the corresponding OPE coefficient is
nonvanishing.

1. t → 0 limit

Let us first study a familiar limit t → 0. Here we assume
the limit of large central charge c ≫ 1 so that the
degeneracy of primary states is approximately given by
the Cardy formula (1), with neglecting descendant con-
tributions. We write the conformal dimension as L0 ¼ Δ in
the open string sector. In this limit, the duality condition
(34) leads to

c̄α0c
β
0 · e

πc
12t ∼

Z
dΔDopenðΔÞe−2πtðΔ− c

24
Þ; ð37Þ

where DopenðΔÞ is the density of state in an open string at
energy HO ¼ Δ − c

24
. Here we have assumed that cα0 ≠ 0

and cβ0 ≠ 0 for boundary conditions α and β. These
conditions are equivalent to those for vacuum disk ampli-
tudes to be nonvanishing, and they are usually satisfied as
they mean the nonzero tensions of D-branes. By using the
saddle point approximation formula,

Z
dxe2πλ

ffiffiffi
cx
6

p
e−2sx ∼ e

π2cλ2
12s ; ð38Þ

we find the following estimation for Δ ≫ c:

DopenðΔÞ ∼ e2π
ffiffiffi
cΔ
6

p
; ð39Þ

which gives the Cardy formula for open strings.

2. s → 0 limit

Now let us turn to the less familiar limit s → 0. First we
assume α ¼ β. We define the chiral conformal dimension
as L0 ¼ L̃0 ¼ Δk for the primary state jki. In this case we
get from (34),Z

dΔkjcαk j2e−ð2Δk− c
12
ÞsDclosedðΔkÞ ∼ e

π2c
12s : ð40Þ

Here the density of state (note that L0 ¼ L̃0 is imposed for
boundary states) is given by the same as the chiral or open
string Cardy formula for Δk ≫ c,

DclosedðΔkÞ ∼ e2π
ffiffiffiffiffi
cΔk
6

p
; ð41Þ

which is a square root of the full Cardy formula (1). This
leads to the following estimation:

jcαkj2 ∼ 1; ð42Þ

where an appropriate average over k with fixed dimension
Δk is taken.
Now we take the different boundary conditions α ≠ β. In

this case, we have N0
αβ ¼ 0, and thus there should be a gap

in the open string spectrum. We call the minimum of the
conformal dimension for the open string in the channel γ as
Δmin

γ . Then, the relation (34) leads to

Z
dΔkc̄αkc

β
ke

−ð2Δk− c
12
ÞsDclosedðΔkÞ ∼ e

π2ðc−24Δmin
γ Þ

12s : ð43Þ

Thus we obtain the estimation

c̄αkc
β
k ∼ e2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc−24Δmin

γ ÞΔk
6

q
−2π

ffiffiffiffiffiffi
c
6
Δk

p

¼ e−
πc
3
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−24

cΔ
min
γ

p
Þ
ffiffiffiffiffiffi
6
cΔk

p
: ð44Þ

This can be understood as the correlations between
the coefficients (or disk one-point functions) cαk and cβk.
Compared with (42), we find that the correlation is reduced
as the gap in the open strings between the two boundaries α
and β develops.

3. Holographic interpretation

Here we would like to give a holographic interpretation
of the result (44), which is motivated by the argument in [7]
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for the diagonal three-point functions.3 We first consider
the case with 1 ≪ Δmin

γ ≪ c
24
, where the expression of (44)

reduces to

c̄αkc
β
k ∼ e−2πΔ

min
γ

ffiffiffiffiffiffiffi
24
cΔk

p
: ð45Þ

We then include the corrections as in (44) for Δmin
γ < c

24
.

We are interested in the exchange of closed strings with
high energy Ek ¼ 2Δk ≫ c between the boundary states.
The high energy state of closed string is dual to the BTZ
black hole, whose horizon area is

A ¼ 2πrþ; rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24Δk

c
− 1

r
: ð46Þ

For Δmin
γ ≪ c

24
, the open string state with energy Δmin

γ can
be described as a perturbative scalar particle with a mass
mmin

γ ∼ Δmin
γ . The leading order contribution comes from

the scalar particle running around the BTZ black hole, see
Fig. 1(a).
The other assumption Δmin

γ ≫ 1 implies that the con-
tribution can be evaluated by the geodesic wrapping the
black hole horizon as exp ð−mmin

γ AÞ. Using mmin
γ ∼ Δmin

γ

and the area of horizon (46) we reproduce (45) for Δk ≫ c.
Next we relax the condition of Δmin

γ as Δmin
γ < c

24
. In this

case, we should take care of the backreaction of the particle
since it would create a conical defect geometry. Let us
consider a particle ϕ with a mass mϕ and its energy Eϕ

evaluated at the boundary of anti–de Sitter (AdS). The
relation between them is given by [see (27) of [7] ]

mϕ ¼ c
6

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

12Eϕ

c

r �
: ð47Þ

However, we should be careful applying the formula to our
setup since we are dealing with a bulk particle dual to a
boundary open string state. The bulk particle is regarded as
a low energy excitation of a bulk open string attached to a
brane as in Fig. 1(b), see, e.g., [35,36] for AdS/BCFT.
Since a pair of open strings create a closed string, we
should set 2mmin

γ ¼mϕ and 2Δmin
γ ¼Eϕ. Therefore, we have

mmin
γ ¼ c

12

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

24Δmin
γ

c

s !
: ð48Þ

With this expression of mmin
γ and the area of the horizon

(46), the contribution from the geodesic of the particle,
exp ð−mmin

γ AÞ, reproduces (44) for Δk ≫ c.

B. Duality for 1pt function on cylinder

Finally we would like to study the open-closed duality
for a cylinder one-point function of a primary operator O,

hBαje−s1HCOe−s2HC jBβi ¼
X
γ

Nγ
αβTrγ½Oe−2πtHO �; ð49Þ

where t ¼ π
s1þs2

. Again we assume the limit of a large
central charge c ≫ 1.
In the limit s1, s2 → 0, this relation is expressed as

follows:

Z
dΔkdΔle

2π
ffiffiffiffiffi
cΔk
6

p
e2π

ffiffiffiffi
cΔl
6

p
hkjOjli

× e−ð2Δk−c=12Þs1e−ð2Δl−c=12Þs2 c̄αkc
β
l

≃ Nγ
αβhγjOjγiopen · e

π2

12ðs1þs2Þðc−24Δ
min
γO Þ; ð50Þ

where γ is the open string state with the smallest conformal
dimension L0 ¼ Δmin

γO , which satisfies Nγ
αβ ≠ 0 and

hγjOjγiopen ≠ 0. Note that by definition we have

Δmin
γO ≥ Δmin

γ : ð51Þ

First we evaluate contributions from the diagonal part.
We can employ the known formula (17) for the diagonal
parts of three-point functions (with L0 ¼ L̄0 ¼ Δ ¼ E=2).
Then, by using the saddle point formula and the previous
formula (44), we can estimate the relation (50) and obtain
the following relation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

24

c
Δmin

γO

r
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

24

c
Δmin

γ

r
−2

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

24

c
Δχ

r �
: ð52Þ

The inequality should be saturated if the diagonal part gives
the dominant contributions. Note that the inequality is
consistent with (51).

(a) (b)

FIG. 1. (a) A closed string state at high energy and a light open
string state are approximately described by the BTZ black hole
and a perturbative scalar particle, respectively. (b) A bulk light
particle dual to a boundary open string state can be regarded as a
low energy excitation of a bulk open string on a brane.

3A gravity dual interpretation is expected to be possible only
for a holographic CFT with the condition of the large central
charge and the sparse spectrum. However, as we will show below,
we can reproduce the CFT result (44) without using the condition
for the current case analogously for the Cardy formula (1).
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Next let us estimate contributions from the off diagonal
parts of three-point functions. The open-closed duality tells
us the relation

X
k;l

hkjOjlic̄αkcβl e−2Δks1e−2Δls2 ∼ e
π2

12ðs1þs2Þðc−24Δ
min
γO Þ: ð53Þ

In particular, if we choose s1 ¼ s2 ¼ s=2, we findZ
dΔkdΔle

2π
ffiffiffiffiffiffi
c
6
Δk

p
þ2π

ffiffiffiffiffi
c
6
Δl

p
· e−ðΔkþΔlÞs · hkjOjlic̄αkcβl

∼ e
π2

12sðc−24Δmin
γO Þ: ð54Þ

When Δk ≃ Δl, this relation leads to the behavior,

hkjOjlic̄αkcβl ≲ e−πð2−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−24Δmin

γO =c
p

Þð
ffiffiffiffiffiffi
c
6
Δk

p
þ
ffiffiffiffiffi
c
6
Δl

p
Þ; ð55Þ

where the inequality is saturated when the off diagonal
contributions are dominant. In other words, either (52) or
(55) should be saturated in order for the open-closed duality
relation (49) to be satisfied.

IV. CONCLUSIONS

In this article, we studied implications of modular dual-
ities in 2D CFTs. In particular, we analyzed the modular
invariance of two-point functions on a torus and the open-
closed duality of cylinder amplitudes with the input of
density of high energy states given by the Cardy formula.
The modular invariance of two-point functions leads to

nontrivial constraints on the behavior of three-point func-
tions where two of the operators are heavy, whose
dimensions are much larger than the central charge, and
the other is much lighter than them. We found that the off
diagonal part of three-point functions, for which the case
with two different heavy states, is exponentially suppressed

by the entropy as ∼e−
SðEÞ
2 under an appropriate average.

Interestingly, this nontrivially satisfies the important con-
dition required for the ETH. This implies that high energy
states in generic 2D CFTs have the crucial property
necessary for thermalizations. To see more details of
how much a given 2D CFT is chaotic, we need to under-
stand the properties of the matrix Rnm in (22). For truly
chaotic CFTs, we expect that Rnm becomes a random
matrix. Even though we leave the full studies of the random
matrix property in 2D CFTs for a future problem, we found
some evidence for this by studying a class of multipoint
correlations of the off diagonal three-point functions.
It is natural to expect that for integrable CFTs, only with

particular choices of n and m, this matrix takes nontrivial
values, and thus they do not satisfy ETH. In our analysis of
modular invariance for general two-dimensional CFTs, we

were able to show the suppression by the factor e−SðEÞ=2 of
averaged three point functions only at very high energies
E ≫ c. On the other hand, we expect that large central
charge CFTs with large spectrum gaps, namely holographic
CFTs [15] satisfy ETH as they are expected to be
maximally chaotic. Indeed, we found that for 2D holo-
graphic CFTs, both the exponential suppressions and the
expected behavior for the multipoint correlations of the
three-point functions, occur even for relatively low energy
states E ≥ c

6
. These reinforce the chaotic properties for

holographic CFTs. It will be an intriguing future problem to
examine more closely the randomness of the matrix Rmn for
various 2D CFTs. The constraints for three-point functions
also come from the conformal bootstrap. Recently, an
interesting transition phenomenon for conformal blocks,
depending on whether the conformal dimensions are larger
than c=32 or not, was observed in [12,37]. It would be
interesting to consider its implication in terms of the
behavior of three-point functions.
The open-closed duality for vacuum cylinder amplitudes

turned out to predict interesting behaviors of disk one-point
functions (or equally the coefficients of boundary states) for
various conformal boundary conditions. We found that as
the mass gap in open stings between two boundaries gets
larger, the correlation between the two disk one-point
functions for the boundary conditions is reduced. We gave
a holographic explanation for this result. We also studied
implications of the open-closed duality for cylinder one-
point functions. This leads to interesting constraints on the
average of a three-point function times two disk one-point
functions. It would be interesting to look at explicit
examples of boundary states in solvable CFTs, such as
various orbifold CFTs, to see how the chaos is related to
these properties of boundary states.
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