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Abstract We consider two-player zero-sum stochastic mean payoff games with per-
fect information. We show that any such game, with a constant number of random
positions and polynomially bounded positive transition probabilities, admits a poly-
nomial time approximation scheme, both in the relative and absolute sense.
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1 Introduction

The rise of the Internet has led to an explosion in research in game theory, the math-
ematical modeling of competing agents in strategic situations. The central concept in
such models is that of a Nash equilibrium, which defines a state where no agent gains
an advantage by changing to another strategy. Nash equilibria serve as predictions for
the outcome of strategic situations in which selfish agents compete.

A fundamental result in game theory states that if the agents can choose a mixed
strategy (i.e., probability distributions of deterministic strategies), a Nash equilib-
rium is guaranteed to exist in finite games [24,25]. Often, however, already pure (i.e.,
deterministic) strategies lead to a Nash equilibrium. Still, the existence of Nash equi-
libria might be irrelevant in practice since their computation would take too long
(finding mixed Nash equilibria in two-player games is PPAD-complete in general
[11]). Thus, algorithmic aspects of game theory have gained a lot of interest. Fol-
lowing the dogma that only polynomial time algorithms are feasible algorithms, it is
desirable to show polynomial time complexity for the computation of Nash equilib-
ria.

We consider two-player zero-sum stochastic mean payoff games with perfect infor-
mation. In this case the concept of Nash equilibria coincides with saddle points or
mini–max/maxi–min strategies. The decision problem associatedwith computing such
strategies and the values of these games is in the intersection of NP and co-NP, but
it is unknown whether it can be solved in polynomial time. In cases where efficient
algorithms are not known to exist, an approximate notion of a saddle point has been
suggested. In an approximate saddle point, no agent can gain a substantial advan-
tage by changing to another strategy. In this paper, we design approximation schemes
for saddle points for such games when the number of random positions is fixed (see
Sect. 1.2 for a definition).

In the remainder of this section, we introduce the concepts used in this paper.
Our results are summarized in Sect. 1.4. After that, we present our approxima-
tion schemes (Sect. 2). We conclude with a list of open problems (Sect. 3),
where we address in particular the question of polynomial smoothed complexity
of mean payoff games. In the conference version of this paper [2], we wrongly
claimed that stochastic mean payoff games can be solved in smoothed polynomial
time.
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1.1 Stochastic Mean Payoff Games

1.1.1 Definition and Notation

The model that we consider is described is a stochastic mean payoff game with perfect
information, or equivalently a BWR-game G = (G, P, r):

– G = (V, E) is a directed graph that may have loops and multiple edges, but
no terminal positions, i.e., no positions of out-degree 0. The vertex set V of G is
partitioned into three disjoint subsets V = VB ∪VW ∪VR that correspond to black,
white, and random positions, respectively. The edges stand for moves. The black
and white positions are owned by two players: Black—the minimizer—owns the
black positions in VB , and White—the maximizer—owns the white positions in
VW . The positions in VR are owned by nature.

– P is the vector of probability distributions for all positions v ∈ VR owned by
nature. We assume that

∑
u:(v,u)∈E pvu = 1 for all v ∈ VR and pvu > 0 for all

v ∈ VR and (v, u) ∈ E .
– r is the vector of rewards; each edge e has a local reward re.

Starting from some vertex v0 ∈ V , a token is moved along one edge e in every
round of the game. If the token is on a black vertex, Black selects an outgoing edge e
and moves the token along e. If the token is on a white vertex, then White selects an
outgoing edge e. In a random position v ∈ VR , a move e = (v, u) is chosen according
to the probabilities pvu of the outgoing edges of v. In all cases, Black pays White
the reward re on the selected edge e.

Starting from a given initial position v0 ∈ V , the game yields an infinite walk
(v0, v1, v2, . . .), called a play. Let bi denote the reward r(vi−1,vi ) received by White
in step i . The undiscounted limit average effective payoff is defined as the Cesàro

average c = lim infn→∞
∑n

i=1 E[bi ]
n . White’s objective is to maximize c, while the

objective of Black is to minimize it.
In this paper, we will restrict our attention to the sets of pure (that is, non-

randomized) and stationary (that is, history-independent) strategies of playersWhite
and Black, denoted by SW and SB , respectively; such strategies are called positional
strategies. Formally, a positional strategy sW ∈ SW forWhite is amapping that assigns
a move (v, u) ∈ E to each position in VW . We sometimes abbreviate sW (v) = (v, u)

by sW (v) = u. Strategies sB ∈ SB for Black are analogously defined. A pair of
strategies s = (sW , sB) is called a situation. By abusing notation, let s(v) = u if
v ∈ VW and sW (v) = u or v ∈ VB and sB(v) = u.

Given a BWR-game G = (G, P, r) and a situation s = (sB, sW ), we obtain a
weighted Markov chain G(s) = (G(s) = (V, E(s)), P(s), r) with transition matrix
P(s) defined in the obvious way:

pvu(s) =

⎧
⎪⎨

⎪⎩

1 if v ∈ VW ∪ VB and u = s(v),

0 if v ∈ VW ∪ VB and u �= s(v), and

pvu if v ∈ VR .
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Here, E(s) = {e = (v, u) ∈ E | pvu(s) > 0} is the set of arcs with positive
probability. Given an initial position v0 ∈ V from which the play starts, we define the
limiting (mean) effective payoff cv0(s) in G(s) as

cv0(s) = ρ(s)T r =
∑

e∈E

ρe(s)re,

where ρ(s) = ρ(s, v0) ∈ [0, 1]E is the arc-limiting distribution for G(s) starting from
v0. This means that for (v, u) ∈ E , we have ρvu(s) = πv(s)pvu(s), where π ∈ [0, 1]V

is the limiting distribution in the Markov chain G(s) starting from v0. In what follows,
we will use (G, v0) to denote the game starting from v0. We will simply write ρ(s)
for ρ(s, v0) if v0 is clear from the context. For rewards r : E → R, let r− = mine re

and r+ = maxe re. Let [r ] = [r−, r+] be the range of r . Let R = R(G) = r+ − r−
be the size of the range.

1.1.2 Strategies and Saddle Points

If we consider cv0(s) for all possible situations s, we obtain a matrix game Cv0 : SW ×
SB → R, with entries Cv0(sW , sB) = cv0(sW , sB). It is known that every such game
has a saddle point in pure strategies [19,29]. Such a saddle point defines an equilibrium
state in which no player has an incentive to switch to another strategy. The value at
that state coincides with the limiting payoff in the corresponding BWR-game [19,29].

We call a pair of strategies optimal if they correspond to a saddle point. It is well-
known that there exist optimal strategies (s∗

W , s∗
B) that do not depend on the starting

position v0. Such strategies are called uniformly optimal. Of course there might be
several optimal strategies, but they all lead to the same value. We define this to be
the value of the game and write μv0(G) = Cv0(s

∗
W , s∗

B), where (s∗
W , s∗

B) is any pair of
optimal strategies. Note that μv0(G) may depend on the starting node v0. Note also
that for an arbitrary situation s, μv0(G(s)) denotes the effective payoff cv0(s) in the
Markov chain G(s).

An algorithm is said to solve the game if it computes an optimal pair of strategies.

1.2 Approximation and Approximate Equilibria

Given a BWR-game G = (G = (V, E), P, r), a constant ε > 0, and a starting
position v ∈ V , an ε-relative approximation of the value of the game is determined
by a situation (s∗

W , s∗
B) such that

max
sW

μv

(G (
sW , s∗

B

)) ≤ (1 + ε)μv(G) and min
sB

μv

(G (
s∗

W , sB
)) ≥ (1 − ε)μv(G).

(1)
An alternative concept of an approximate equilibrium are ε-relative equilibria. They
are determined by a situation (s∗

W , s∗
B) such that

max
sW

μv

(G (
sW , s∗

B

)) ≤ (1 + ε)μv

(G (
s∗

W , s∗
B

))

and min
sB

μv

(G (
s∗

W , sB
)) ≥ (1 − ε)μv

(G (
s∗

W , s∗
B

))
. (2)
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Note that, for sufficiently small ε, an ε-relative approximation implies a �(ε)-relative
equilibrium, and vice versa. Thus, in what follows, we will use these notions inter-
changeably. When considering relative approximations and relative equilibria, we
assume that the rewards are non-negative integers.

An alternative to relative approximations is to look for an approximation with an
absolute error of ε; this is achieved by a situation (s∗

W , s∗
B) such that

max
sW

μv

(G (
sW , s∗

B

)) ≤ μv(G) + ε and min
sB

μv

(G (
s∗

W , sB
)) ≥ μv(G) − ε. (3)

Similarly, for an ε-absolute equilibrium, we have the following condition:

max
sW

μv

(G (
sW , s∗

B

)) ≤ μv

(G (
s∗

W , s∗
B

)) + ε and min
sB

μv

(G (
s∗

W , sB
))

≥ μv

(G (
s∗

W , s∗
B

)) − ε. (4)

Again, an ε-absolute approximation implies a 2ε-absolute equilibrium, and vice versa.
When considering absolute equilibria and absolute approximations, we assume that
the rewards come from the interval [−1, 1].

A situation (s∗
W , s∗

B) is called relatively ε-optimal, if satisfies (1), and it is called
absolutely ε-optimal if it satisfies (3). In the following, we will drop the specification
of absolute and relative if it is clear from the context. If the pair (s∗

W , s∗
B) is (absolutely

or relatively) ε-optimal for all starting positions, it is called uniformly (absolutely or
relatively) ε-optimal (also called subgame perfect).

We note that, under the above assumptions, the notion of relative approximation
is stronger. Indeed, consider a BWR-game G with rewards in [−1, 1]. A relatively
ε-optimal situation (s∗

W , s∗
B) of the game Ĝ with local rewards given by r̂ = r +1 ≥ 0

(where 1 is the vector of all ones, and the addition and comparison ismeant component-
wise) satisfies

max
sW

μv

(G (
sW , s∗

B

)) = max
sW

μv(Ĝ(sW , s∗
B)) − 1 ≤ (1 + ε)μv(Ĝ) − 1

= μv(G) + εμv(G) + ε ≤ μv(G) + 2ε

and

min
sB

μv(G(s∗
W , sB)) = min

sB
μv(Ĝ(s∗

W , sB)) − 1 ≥ (1 − ε)μv(Ĝ) − 1

= μv(G) − εμv(G) − ε ≥ μv(G) − 2ε.

This is because μv(Ĝ(s)) = μv(G(s)) + 1 for any situation s and μv(G) ≤ 1. Thus,
we obtain a 2ε-absolute approximation for the value of the original game.

An algorithm for approximating (absolutely or relatively) the values of the game
is said to be a fully polynomial-time (absolute or relative) approximation scheme
(FPTAS) if the running-time depends polynomially on the input size and 1/ε. In what
follows, we assume without loss of generality that 1/ε is an integer.
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1.3 Previous Results

BWR-games are an equivalent formulation [21] of the stochastic games with perfect
information and mean payoff that were introduced in 1957 by Gillette [19]. As it was
noticed already in [21], the BWRmodel generalizes a variety of games and problems:
BWR-games without random positions (VR = ∅) are called cyclic or mean payoff
games [16,17,21,33,34]; we call these BW-games. If one of the sets VB or VW is
empty, we obtain a Markov decision process for which polynomial-time algorithms
are known [32]. If both are empty (VB = VW = ∅), we get a weighted Markov chain.
If V = VW or V = VB , we obtain the minimum mean-weight cycle problem, which
can be solved in polynomial time [27].

If all rewards are 0 except for m terminal loops, we obtain the so-called
Backgammon-like or stochastic terminal payoff games [7]. The special case m = 1, in
which every randomnodehas only twooutgoing arcswith probability 1/2 each, defines
the so-called simple stochastic games (SSGs), introduced by Condon [13,14]. In these
games, the objective of White is to maximize the probability of reaching the termi-
nal, while Black wants to minimize this probability. Recently, it has been shown that
Gillette games (and hence BWR-games [3]) are equivalent to SSGs under polynomial-
time reductions [1]. Thus, by recent results of Halman [22], all these games can be
solved in randomized strongly subexponential time 2O(

√
nd log nd ) poly(|V |), where

nd = |VB | + |VW | is the number of deterministic positions.
Besides their many applications [26,30], all these games are of interest to com-

plexity theory: The decision problem “whether the value of a BW-game is positive” is
in the intersection of NP and co-NP [28,40]; yet, no polynomial algorithm is known
even in this special case. We refer to Vorobyov [39] for a survey. A similar complexity
claim holds for SSGs and BWR-games [1,3]. On the other hand, there exist algo-
rithms that solve BW-games in practice very fast [21]. The situation for these games is
thus comparable to linear programming before the discovery of the ellipsoid method:
linear programming was known to lie in the intersection of NP and co-NP, and the
simplex method proved to be fast in practice. In fact, a polynomial algorithm for linear
programming in the unit cost model would already imply a polynomial algorithm for
BW-games [37]; see also [4] for an extension to BWR-games.

While there are numerous pseudo-polynomial algorithms known for BW-games
[21,35,40], pseudo-polynomiality for BWR-games (with no restriction on the num-
ber of random positions) is in fact equivalent to polynomiality [1]. Gimbert and
Horn [20] have shown that a generalization of simple stochastic games on k ran-
dom positions having arbitrary transition probabilities [not necessarily (1/2, 1/2)]
can be solved in time O(k!(|V ||E | + L)), where L is the maximum bit length of a
transition probability. There are various improvements with smaller dependence on
k [9,15,20,23] (note that even though BWR-games are polynomially reducible to
simple stochastic games, under this reduction the number of random positions does
not stay constant, but is only polynomially bounded in n, even if the original BWR-
game had a constant number of random positions). Recently, a pseudo-polynomial
algorithm was given for BWR-games with a constant number of random posi-
tions and polynomial common denominator of transition probabilities, but under the
assumption that the game is ergodic (that is, the value does not depend on the ini-
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tial position) [5]. Then, this result was extended for the non-ergodic case [6]; see
also [4].

As for approximation schemes, the only resultwe are aware [36] of is the observation
that the values of BW-games can be approximated within an absolute error of ε in
polynomial-time, if all rewards are in the range [−1, 1]. This follows immediately
from truncating the rewards and using any of the knownpseudo-polynomial algorithms
[21,35,40].

On the negative side, it was observed recently [18] that obtaining an ε-absolute
FPTAS without the assumption that all rewards are in [−1, 1], or an ε-relative FPTAS
without the assumption that all rewards are non-negative, for BW-games, would imply
their polynomial time solvability. In that sense, our results below are the best possible
unless there is a polynomial algorithm for solving BW-games.

1.4 Our Results

In this paper, we extend the absolute FPTAS for BW-games [36] in two directions.
First, we allow a constant number of random positions, and, second, we derive an
FPTAS with a relative approximation error. Throughout the paper, we assume the
availability of a pseudo-polynomial algorithm A that solves any BWR-game G with
integral rewards and rational transition probabilities in time polynomial in n, D, and
R, where n = n(G) is the total number of positions, R = R(G) := r+(G) − r−(G)

is the size of the range of the rewards, r+(G) = maxe re and r−(G) = mine re, and
D = D(G) is the common denominator of the transition probabilities. Note that the
dependence on D is inherent in all known pseudo-polynomial algorithms for BWR-
games. Note also that the affine scaling of the rewards does not change the game.

Let pmin = pmin(G) be the minimum positive transition probability in the game
G. Throughout this paper, we will assume that the number k of random positions is
bounded by a constant.

The following theorem says that a pseudo-polynomial algorithm can be turned into
an absolute approximation scheme.

Theorem 1 Given a pseudo-polynomial algorithm for solving any BWR-game with
k = O(1) (in uniformly optimal strategies), there is an algorithm that returns, for
any given BWR-game with rewards in [−1, 1], k = O(1), and for any ε > 0, a
pair of strategies that (uniformly) approximates the value within an absolute error of
ε. The running-time of the algorithm is bounded by poly(n, 1/pmin, 1/ε) [assuming
k = O(1)].

We also obtain an approximation scheme with a relative error.

Theorem 2 Given a pseudo-polynomial algorithm for solving any BWR-game with
k = O(1), there is an algorithm that returns, for any given BWR-game with non-
negative integral rewards, k = O(1), and for any ε > 0, a pair of strategies that
approximates the value within a relative error of ε. The running-time of the algorithm
is bounded by poly(n, 1/pmin, log R, 1/ε) [assuming k = O(1)].

We remark that Theorem1 (apart from the dependence of the running time on log R)
can be obtained from Theorem 2 (see Sect. 2). However, our reduction in Theorem 1,
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unlike Theorem 2, has the property that if the pseudo-polynomial algorithm returns
uniformly optimal strategies, then the approximation scheme also returns uniformly
ε-optimal strategies. For BW-games, i.e., the special case without random positions,
we can also strengthen the result of Theorem 2 to return a pair of strategies that is
uniformly ε-optimal.

Theorem 3 Assume that there is a pseudo-polynomial algorithm for solving any BW-
game in uniformly optimal strategies. Then for any ε > 0, there is an algorithm
that returns, for any given BW-game with non-negative integral rewards, a pair of
uniformly relatively ε-optimal strategies. The running-time of the algorithm is bounded
by poly(n, log R, 1/ε).

In deriving these approximation schemes from a pseudo-polynomial algorithm, we
face two main technical challenges that distinguish the computation of ε-equilibria
of BWR-games from similar standard techniques used in combinatorial optimization.
First, the running-timeof the pseudo-polynomial algorithmdepends polynomially both
on themaximumreward and the commondenominator D of the transitionprobabilities.
Thus, in order to obtain a fully polynomial-time approximation scheme (FPTAS) with
an absolute guaranteewhose running-time is independent of D, we have to truncate the
probabilities and bound the change in the game value, which is a non-linear function
of D. Second, in order to obtain an FPTAS with a relative guarantee, one needs (as
often in optimization) a (trivial) lower/upper bound on the optimum value. In the
case of BWR-games, it is not clear what bound we can use, since the game value
can be arbitrarily small. The situation becomes even more complicated if we look for
uniformly ε-optimal strategies. This is because we have to output just a single pair of
strategies that guarantees ε-optimality from any starting position.

In order to resolve the first issue, we analyze the change in the game values and opti-
mal strategies if the rewards or transition probabilities are changed. Roughly speaking,
we use results fromMarkov chain perturbation theory to show that if the probabilities
are perturbed by a small error δ, then the change in the game value is O(δn2/p2k

min) (see
Sect. 2.1). It is worth mentioning that a somewhat related result was obtained recently
for the class of so-called almost-sure ergodic games (not necessarily with perfect
information) [10]. More precisely, it was shown that for this class of games there is an
ε-optimal strategy with rational representation with denominator D = O( n3

εpk
min

) [10].

The second issue is resolved through repeated applications of the pseudo-polynomial
algorithm on a truncated game. After each such application we have one of the fol-
lowing situations: either the value of the game has already been approximated within
the required accuracy or it is guaranteed that the range of the rewards can be shrunk
by a constant factor without changing the value of the game (see Sects. 2.3, 2.4).

Since BWR-games with a constant number of random positions admit a pseudo-
polynomial algorithm, as was recently shown [5,6], we obtain the following results.

Corollary 1 (i) There is an FPTAS that solves, within an absolute error guarantee, in
uniformly ε-optimal strategies, any BWR-game with a constant number of random
positions, 1/pmin = poly(n), and rewards in [−1, 1].
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(ii) There is an FPTAS that solves, within a relative error guarantee, in ε-optimal
strategies, any BWR-game with a constant number of random positions, 1/pmin =
poly(n), and non-negative rational rewards.

(iii) There is an FPTAS that solves, within a relative error guarantee, in uniformly
ε-optimal strategies, any BW-game with non-negative (rational) rewards.

The proofs of Theorems 1, 2, and 3 will be given in Sects. 2.2, 2.3, and 2.4, respec-
tively.

2 Approximation Schemes

2.1 The Effect of Perturbation

Our approximation schemes are based on the following three lemmas. The first one
(which is known) says that a linear change in the rewards corresponds to a linear
change in the game value. In our approximation schemes, we truncate and scale the
rewards to be able to run the pseudo-polynomial algorithm in polynomial time. We
need the lemma to bound the error in the game value resulting from the truncation.

Lemma 1 Let G = (G = (V, E), P, r) be a BWR-game. Let θ1, γ1, θ2, γ2 be
constants such that θ1, θ2 > 0. Let Ĝ be a game (G = (V, E), P, r̂) with
θ1re + γ11 ≤ r̂e ≤ θ2re + γ21, for all e ∈ E. Then for any v ∈ V , we have
θ1μv(G) + γ1 ≤ μv(Ĝ) ≤ θ2μv(G) + γ2. Moreover, if (ŝW , ŝB) is an absolutely
ε-optimal situation in (Ĝ, v), then

max
sW

μv

(G (
sW , ŝB

)) ≤ θ2μv(G) + γ2 − γ1 + ε

θ1
and

min
sB

μv

(G (
ŝW , sB

)) ≥ θ1μv(G) + γ1 − γ2 − ε

θ2
. (5)

Proof This uses only standard techniques, and we give the proof only for com-
pleteness. Let (s∗

W , s∗
B) and (ŝW , ŝB) be pairs of optimal strategies for (G, v) and

(Ĝ, v), respectively. Denote by ρ∗, ρ̂, ρ′, and ρ′′ the (arc) limiting distributions for
the Markov chains starting from v0 and corresponding to pairs (s∗

W , s∗
B), (ŝW , ŝB),

(s∗
W , ŝB), and (ŝW , s∗

B), respectively. By the definition of optimal strategies and the
facts that ‖ρ′‖1 = ‖ρ′′‖1 = 1 (because they are probability distributions), we have
the following series of inequalities:

μv(Ĝ) = (ρ̂)T r̂ ≥ (ρ′)T r̂ ≥ θ1(ρ
′)T r + γ1 ≥ θ1(ρ

∗)T r + γ1 = θ1μv(G) + γ1 and

μv(Ĝ) = (ρ̂)T r̂ ≤ (ρ′′)T r̂ ≤ θ2(ρ
′′)T r + γ2 ≤ θ2(ρ

∗)T r + γ2 = θ2μv(G) + γ2.

To see the first bound in (5), note that for any sW , we have μv(G(sW , ŝB)) ≤
1
θ1

(μv(Ĝ(sW , ŝB)) − γ1). Also, by the ε-optimality of ŝW in (Ĝ, v), we have

μv(Ĝ(sW , ŝB)) ≤ μv(Ĝ)+ ε ≤ θ2μv(G)+ γ2 + ε. The first bound in (5) follows. The
second bound can be shown similarly. ��
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The second lemma, which is new as far as we are aware, states that if we truncate
the transition probabilities within a small error ε, then the change in the game value is
bounded by O(ε2n3/p2k

min). More precisely, for a BWR-game G and a constant ε > 0,
define

δ (G, ε) :=
(

εn2

2

( pmin

2

)−k
(

εnk(k + 1)
( pmin

2

)−k + 3k + 1

)

+ εn

)

r∗, (6)

where n = n(G), pmin = pmin(G), k = k(G), and r∗ = r∗(G) := max{|r+(G)|,
|r−(G)|}.
Lemma 2 Let G = (G = (V, E), P, r) be a BWR-game with r ∈ [−1, 1]E , and let
ε ≤ pmin/2 = pmin(G)/2 be a positive constant. Let Ĝ be a game (G = (V, E), P̂, r)

with ‖P − P̂‖∞ ≤ ε (and p̂uv = 0 if puv = 0 for all arcs (u, v)). Then we have
|μv(G)−μv(Ĝ)| ≤ δ(G, ε) for any v ∈ V . Moreover, if the pair (s̃W , s̃B) is absolutely
ε′-optimal in (Ĝ, v), then it is absolutely (ε′ + 2δ(G, ε))-optimal in (G, v).

Proof We apply Lemma 10. Let (s∗
W , s∗

B) and (ŝW , ŝB) be pairs of optimal strategies

for (G, v) and (Ĝ, v), respectively. Write δ = δ(G, ε). Then optimality and Lemma 10
imply the following two series of inequalities:

μv(Ĝ) = μv(Ĝ(ŝW , ŝB)) ≥ μv(Ĝ(s∗
W , ŝB))

≥ μv

(G (
s∗

W , ŝB
)) − δ ≥ μv

(G (
s∗

W , s∗
B

)) − δ = μv(G) − δ and

μv(Ĝ) = μv(Ĝ(ŝW , ŝB)) ≤ μv(Ĝ(ŝW , s∗
B))

≤ μv

(G (
ŝW , s∗

B

)) + δ ≤ μv

(G (
s∗

W , s∗
B

)) + δ = μv(G) + δ.

To see the second claim, note that for any sW ∈ SW , we have

μv (G (sW , s̃B))≤μv(Ĝ(sW , s̃B))+δ ≤ μv(Ĝ(ŝW , ŝB)) + ε′ + δ ≤ μv(G) + ε′ + 2δ.

Similarly, we can show that μv(G(s̃W , sB)) ≥ μv(G) − ε′ − 2δ for all sB ∈ SB . ��
Since we assume that the running-time of the pseudo-polynomial algorithm for the

original gameG depends on the common denominator D of the transition probabilities,
we have to truncate the probabilities to remove this dependence on D. By Lemma 2,
the value of the game does not change too much after such a truncation.

The third result that we need concerns relative approximation. The main idea is to
use the pseudo-polynomial algorithm to testwhether the value of the game is larger than
a certain threshold. If it is, we get already a good relative approximation. Otherwise,
the next lemma says that we can reduce all large rewards without changing the value
of the game.

Lemma 3 Let G = (G = (V, E), P, r) be a BWR-game with r ≥ 0, and let v be
any vertex with μv(G) < t . Suppose that re ≥ t ′ = ntp−(2k+1)

min for some e ∈ E. Let

Ĝ = (G = (V, E), P, r̂), where r̂e = min{re, t ′′}, t ′′ ≥ (1+ ε)t ′ for some ε ≥ 0, and
r̂e′ = re′ for all e′ �= e. Then μv(Ĝ) = μv(G), and any relatively ε-optimal situation
in (Ĝ, v) is also relatively ε-optimal in (G, v).
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Proof We assume that r̂e = t ′′ ≥ (1 + ε)t ′, since otherwise there is nothing to
prove. Let s∗ = (s∗

W , s∗
B) be an optimal situation for (G, v). This means that μv(G) =

μv(G(s∗)) = ρ(s∗)T r < t . Lemma 8 says that ρe(s∗) > 0 implies ρe(s∗) ≥ p2k+1
min /n.

Hence, reρe(s∗) ≤ ρ(s∗)T r = μv(G) < t implies that re < t ′, if ρe(s∗) > 0. We
conclude that ρe(s∗) = 0, and hence μv(Ĝ(s∗)) = μv(G).

Since r̂ ≤ r , we have μv(Ĝ(s)) ≤ μv(G(s)) for all situations s. In particular, for
any sW ∈ SW ,

μv(Ĝ(sW , s∗
B)) ≤ μv

(G (
sW , s∗

B

)) ≤ μv

(G (
s∗

W , s∗
B

)) = μv(Ĝ(s∗
W , s∗

B)).

We claim that also μv(Ĝ(s∗
W , sB)) ≥ μv(Ĝ(s∗

W , s∗
B)) for all sB ∈ SB . Indeed, if

there is a strategy sB for Black such that μv(Ĝ(s∗
W , sB)) < μv(Ĝ(s∗

W , s∗
B)) =

μv(G) < t , then, by the same argument as above, we must have ρe(s∗
W , sB) = 0

(since ρe(s∗
W , sB)(1 + ε)t ′ ≤ ρe(s∗

W , sB)t ′′ = ρe(s∗
W , sB)r̂e ≤ ρ(s∗

W , sB)T r̂ =
μv(Ĝ(s∗

W , sB)) < t). This, however, implies that

μv

(G (
s∗

W , sB
)) = μv(Ĝ(s∗

W , sB)) < μv(Ĝ(s∗
W , s∗

B)) = μv

(G (
s∗

W , s∗
B

))
,

which is in contradiction to the optimality of s∗ in G. We conclude that (s∗
W , s∗

B) is

also optimal in Ĝ and hence μv(Ĝ) = μv(G).
Suppose that (ŝW , ŝB) is a relatively ε-optimal situation in (Ĝ, v). Then ρe(sW , ŝB)

= 0 for any sW ∈ SW . Indeed,

ρe(sW , ŝB)(1 + ε)t ′ = ρe(sW , ŝB)r̂e ≤ ρ(sW , ŝB)T r̂ = μv(Ĝ(sW , ŝB))

≤ (1 + ε)μv(Ĝ) = (1 + ε)μv(G) < (1 + ε)t,

gives a contradiction with Lemma 8 if ρe(sW , ŝB) > 0. It follows that, for any sW ∈
SW ,μv(G(sW , ŝB)) = μv(Ĝ(sW , ŝB)) ≤ (1+ε)μv(G). Furthermore, for any sB ∈ SB ,

μv

(G (
ŝW , sB

)) ≥ μv(Ĝ(ŝW , sB)) ≥ (1 − ε)μv(Ĝ) = (1 − ε)μv(G).

��

2.2 Absolute Approximation

In this section, we assume that r− = −1 and r+ = 1, i.e., all rewards are from
the interval [−1, 1]. We may assume also that ε ∈ (0, 1) and 1

ε
∈ Z+. We apply the

pseudo-polynomial algorithmA on a truncated game G̃ = (G = (V, E), P̃, r̃) defined
by rounding the rewards to the nearest integer multiple of ε/4 (denoted r̃ := �r� ε

4
)

and truncating the vector of probabilities (p(v,u))u∈V for each random node v ∈ VR ,
as described in the following lemma.

Lemma 4 Let α ∈ [0, 1]n with ‖α‖1 = 1. Let B ∈ N such that mini :αi >0{αi } > 2−B.
Then there exists α′ ∈ [0, 1]n such that
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(i) ‖α′‖1 = 1;
(ii) for all i = 1, . . . , n, α′

i = ci/2B where ci ∈ N is an integer;
(iii) for all i = 1, . . . , n, α′

i > 0 if and only αi > 0; and
(iv) ‖α − α′‖∞ ≤ 2−B.

Proof This is straight-forward, and we include the proof only for completeness. With-
out loss of generality, we assume αi > 0 for all i (set α′

i = 0 for all i such that
αi = 0). Initialize ε0 = 0 and iterate for i = 1, . . . , n: set α′

i = �αi + εi−1�2−B and
εi = αi +εi−1−α′

i . The construction implies (4). Note that |εi | ≤ 2−(B+1) for all i , and
εn = ∑

i αi −∑
i α′

i , which implies (4). Furthermore, |αi −α′
i | = |εi − εi−1| ≤ 2−B ,

which implies (4). Note finally that (4) follows from (4) since mini :αi >0{αi } > 2−B .
��
Lemma 5 LetA be a pseudo-polynomial algorithm that solves, in (uniformly) optimal
strategies, any BWR-game G = (G, P, r) in time τ(n, D, R). Then for any ε > 0,
there is an algorithm that solves, in (uniformly) absolutely ε-optimal strategies, any

given BWR-game G = (G, P, r) in time bounded by τ
(
n,

2k+4n2(3k+1)
εpk

min
, 8

ε

)
.

Proof We apply A to the game G̃ = (G, P̃, r̃), where r̃ := 4
ε
�r� ε

4
. The probabilities

P̃ are obtained from P by applying Lemma 4 with B = �log2(1/ε′)�, where we select
ε′ such that δ(G, ε′) ≤ ε

4 [as defined by (6)]. It is easy to check that δ(G, ε′) ≤ ε/4

for ε′ = εpk
min

2k+3n2(3k+1)
, as r∗ = 1. Note that all rewards in G̃ are integers in the range

[− 4
ε
, 4

ε
]. Since D(G̃) = 2B and R(G̃) = 8/ε, the statement about the running-time

follows.
Let s̃ be the pair of (uniformly) optimal strategies returned by A on input G̃. Let Ĝ

be the game (G, P̃, r). Since ‖r̃ − 4
ε
r‖∞ ≤ 1, we can apply Lemma 1 (with r̂ = r̃ ,

θ1 = θ2 = 4
ε
and γ1 = −γ2 = −1) to conclude that s̃ is a (uniformly) absolutely

ε
2 -optimal pair for Ĝ. Now we apply Lemma 2 and conclude that s̃ is (uniformly)
( ε
2 + 2δ(G, ε′))-optimal for G. ��
Note that the above technique yields an approximation algorithm with polynomial

running-time only for k = O(1), even if the pseudo-polynomial algorithm A works
for arbitrary k.

2.3 Relative Approximation

Let G = (G, P, r) be a BWR-game on G with non-negative integral rewards, that
is, r− = 0 and mine:re>0 re ≥ 1. The algorithm is given as Algorithm 1. The main
idea is to truncate the rewards, scaled by a certain factor of 1/K , and use the pseudo-
polynomial algorithm on the truncated game Ĝ. If the value μw(Ĝ) in the truncated
game from the starting node w is large enough (step 4), then we get a good relative
approximation of the original value and we are done. Otherwise, the information that
μw(Ĝ) is small allows us to reduce the maximum reward by a factor of 2 in the
original game (step 9); we invoke Lemma 3 for this. Thus, the algorithm terminates
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Data: a BWR-game G = (G = (V, E), P, r), a starting vertex w ∈ V , and an accuracy ε

Result: an ε-optimal pair (s̃W , s̃B ) for the game (G, w)

1 if r+(G) ≤ 2 then
2 Ĝ ← (G, P̃, r) return A(Ĝ, v)

3 end

4 K ← r+(G)/θ(G) r̂e ← �re/K � for e ∈ E Ĝ = (G, P̃, r̂) (s̃W , s̃B ) ← A(Ĝ, w) if μw(Ĝ) ≥ 3/ε
then

5 return (s̃W , s̃B )

6 end
7 else
8 for all e ∈ E do

9 r̃e ← min
{

re, � r+(G)
2 �

}

10 end
11 G̃ ← (G, P, r̃) return FPTAS-BWR(G̃, w, ε)

12 end

Algorithm 1: FPTAS-BWR(G, w, ε)

in polynomial time (in the bit length of R(G)). To remove the dependence on D in the
running-time, we need also to truncate the transition probabilities. In the algorithm, we
denote by P̃ the transition probabilities obtained from P by applying Lemma 4 with

B = �log(1/ε′)�, where we select ε′ = p2k
min

2k+1n2(k+2)2θ
with θ = θ(G) := 2(1+ε)(3+2ε)n

εp2k+1
min

.

Thus, we have 2δ(G, ε′) ≤ 2k+1ε′n2(k + 2)2 p−2k
min ≤ r+(G)/θ(G) = K (G).

Lemma 6 Let A be a pseudo-polynomial algorithm that solves any BWR-game (G =
(G, P, r), w), from any given starting position w, in time τ(n, D, R). Then, for any
ε ∈ (0, 1), there is an algorithm that solves, in relatively ε-optimal strategies, any
BWR-game (G = (G, P, r), w) from any given starting position w in time

O

((

τ

(

n,
2k+3n3(k + 2)2(1 + ε)(3 + 2ε)

εp4k+1
min

,
2(1 + ε)(3 + 2ε)n

εp2k+1
min

)

+ poly(n)

)

· log(R)

)

.

Proof The algorithm FPTAS-BWR(G, w, ε) is given as Algorithm 1. The bound on
the running-time follows since, by step (9), each time we recurse on a game G̃ with
r+(G̃) reduced by a factor of at least half. Moreover, the rewards in the truncated game
Ĝ are non-negative integers with a maximum value of r+(Ĝ) ≤ θ , and the smallest
common denominator of the transition probabilities is at most D̃ := 2

ε′ . Thus the time

taken by algorithm A for each recursive call is at most τ
(
n, D̃, θ).

What remains to be done is to argue by induction (on r+(G)) that the algorithm
returns a pair s̃ = (s̃W , s̃B) of ε-optimal strategies. For the base case, we have either
r+(G) ≤ 2 or the value returned by the pseudo-polynomial A satisfies μw(Ĝ) ≥ 3/ε.
In the former case, note that since ‖P − P̃‖∞ ≤ ε′ and r+(G) ≤ 2, Lemma 2
implies that the pair s̃ = (s̃W , s̃B) returned in step 2 is absolutely ε′′-optimal, where

ε′′ = 2δ(G, ε′) <
εp2k+1

min
n . Lemma 8 and the integrality of the non-negative rewards

imply that, for any situation s, μw(G(s)) ≥ p2k+1
min /n if μw(G(s)) > 0. Thus, if

μw(G) > 0, then ε′′ ≤ εμw(G), and it follows that (s̃W , s̃B) is relatively ε-optimal.

123



Algorithmica (2018) 80:3132–3157 3145

On the other hand, ifμw(G) = 0, thenμw(G(s̃)) ≤ μw(G)+ε′′ < p2k+1
min /n, implying

that μw(G(s̃)) = 0. Thus, we get a relative ε-approximation in both cases.
Suppose now thatA determines thatμw(Ĝ) ≥ 3/ε in step 4, and hence the algorithm

returns (s̃W , s̃B). Note that 1
K ·re −1 ≤ r̂e ≤ 1

K ·re for all e ∈ E , and ‖P − P̃‖∞ ≤ ε′.
Hence, by Lemmas 1 and 2, we have

Kμw(Ĝ) − δ
(G, ε′) ≤ μw(G) ≤ Kμw(Ĝ) + K + δ

(G, ε′) , (7)

and the pair (s̃W , s̃B) returned in step 5 is absolutely K + 2δ(G, ε′) ≤ 2K -optimal for
G. [To see (7), let G̃ := (G, P̃, r). Then by Lemma 2, we have

μw(G̃) − δ
(G, ε′) ≤ μw(G) ≤ μw(G̃) + δ

(G, ε′) . (8)

Furthermore, as Ĝyyy is obtained from G̃ by scaling and truncating the local rewards,
we have by Lemma 1 (applied with θ1 = θ2 = 1

K , γ1 = −1 and γ2 = 0),

1

K
μw(G̃) − 1 ≤ μw(Ĝyyy) ≤ 1

K
μw(G̃). (9)

Combining (8) and (9), we get (7).]
Then (7) implies that

K ≤ μw(G)

μw(Ĝ) − 1
2

≤ μw(G)

3/ε − 1
2

≤ ε

2
μ(G),

and we are done.

On the other hand, if μw(Ĝ) < 3/ε then, by (7), μw(G) <
K (3+2ε)

ε
= p2k+1

min r+
2(1+ε)n .

By Lemma 3, applied with t = K (3 + 2ε)/ε, the game G̃ defined in step 11 satisfies
μw(G) = μw(G̃), and any (relatively) ε-optimal strategy in (G̃, w) (in particular the
one returned by induction in step 11) is also ε-optimal for (G, w). ��

Note that the running-time in the above lemma simplifies to poly(n, 1/ε, 1/pmin) ·
log R for k = O(1).

2.4 Uniformly Relative Approximation for BW-Games

The FPTAS in Theorem 6 does not necessarily return a uniformly ε-optimal situa-
tion, even if the given pseudo-polynomial algorithm A provides a uniformly optimal
solution. For BW-games, we can modify this FPTAS to return a uniformly ε-optimal
situation. The algorithm is given as Algorithm 2. The main difference is that when we
recurse on a game with reduced rewards (step 11), we also have to delete all positions
that have large values μv(G̃) in the truncated game. This is similar to the approach
used to decompose a BW-game into ergodic classes [21]. However, the main techni-
cal difficulty is that, with approximate equilibria, White or Black might still have
some incentive to move to a lower- or higher-value class, respectively, since the values
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Data: a BW-game G = (G = (V = VB ∪ VW , E), r), and an accuracy ε

Result: a uniformly ε-optimal pair (s̃W , s̃B ) for G
1 if r+(G) ≤ 2 then
2 return A(G)

3 end

4 K ← ε′r+(G)

2(1+ε′)2n
r̂e ← �re/K � for e ∈ E Ĝ ← (G, r̂) (ŝW , ŝB ) ← A(Ĝ)

U ← {u ∈ V | μu(Ĝ) ≥ 1/ε′} if U = V then
5 return (s̃W , s̃B ) = (ŝW , ŝB )

6 end
7 else
8 G̃ ← G[V \U ] for all e ∈ E(G̃) do

9 r̃e ← min
{

re, � r+(G)
2 �

}

10 end
11 G̃ ← (G̃, r̃) (s̃W , s̃B ) ← FPTAS-BW(G̃, ε) s̃(w) ← ŝ(w) for all w ∈ U return s̃ = (s̃W , s̃B )

12 end

Algorithm 2: FPTAS-BW(G, ε)

obtained are just approximations of the optimal values. We show that such a move
will not be much profitable for either White nor for Black. Recall that we assume
that the rewards are non-negative integers.

Lemma 7 Let A be a pseudo-polynomial algorithm that solves, in uniformly optimal
strategies, any BW-game G in time τ(n, R). Then for any ε > 0, there is an algorithm
that solves, in uniformly relatively ε-optimal strategies, any BW-game G, in time

O
((

τ
(
n,

2(1+ε′)2n
ε′

) + poly(n)
) · h

)
, where h = �log R� + 1, and ε′ = ln(1+ε)

3h ≈ ε
3h .

Proof The algorithm FPTAS-BW(G, ε) is given as Algorithm 2. The bound on the
running-time is obvious: in step (9), each time we recurse on a game G̃ with r+(G̃)

reduced by a factor of at least half. Moreover, the rewards in the truncated game Ĝ
are integral with a maximum value of r+(Ĝ) ≤ r+(G)

K ≤ 2(1+ε′)2n
ε′ . Thus, the time that

algorithm A needs in each recursive call is bounded from above by τ
(
n,

2(1+ε′)2n
ε′

)
.

So it remains to argue (by induction) that the algorithm returns a pair (s̃W , s̃B) of
(relatively) uniformly ε-optimal strategies. Let us index the different recursive calls of
the algorithm by i = 1, 2, . . . , h′ ≤ h and denote by G(i) = (G(i) = (V (i), E (i), r (i))

the game input to the i th recursive call of the algorithm (so G(1) = G) and by ŝ(i) =
(ŝ(i)

W , ŝ(i)
B ), s̃(i) = (s̃(i)

W , s̃(i)
B ) the pair of strategies returned either in steps 2, 4, 5, or

11. Similarly, we denote by V (i) = V (i)
W ∪ V (i)

B , U (i), r (i), K (i) r̂ (i), Ĝ(i), G̃(i) the

instantiations of V , VB , VW , U , r , r̂ , Ĝ, K , G̃, respectively, in the i th call of the
algorithm. We denote by S(i)

W and S(i)
B the set of strategies in G(i) for White and

Black, respectively. For a set U of positions, a game G, and a situation s, we denote
by G[U ] = (G[U ], r) and s[U ], respectively, the game and situation induced on U . ��
Claim 1 (i) There does not exist an edge (v, u) ∈ E such that v ∈ V (i)

B ∩ U (i) and
u ∈ V (i)\U (i).

(ii) For all v ∈ V (i)
W ∩ U (i), there exists a u ∈ U (i) with (v, u) ∈ E.
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(i’) There does not exist an edge (v, u) ∈ E such that v ∈ V (i)
W \U (i) and u ∈ U (i).

(ii’) For all black positions v ∈ V (i)
B \U (i), there exists a u ∈ V (i)\U (i) such that

(v, u) ∈ E.
(iii) Let ŝ(i) = (ŝ(i)

W , ŝ(i)
B ) be the situation returned in step 4. Then, for all v ∈ U (i),

we have ŝ(i)(v) ∈ U (i), and, for all v ∈ V (i)\U (i), we have ŝ(i)(v) ∈ V (i)\U (i).

Proof By the optimality conditions in Ĝ(i) (see, e.g., [21]), we have

(I) μv(Ĝ(i)) = min{μu(Ĝ(i)) | u ∈ V (i) such that (v, u) ∈ E}, for v ∈ V (i)
B , and

(II) μv(Ĝ(i)) = max{μu(Ĝ(i)) | u ∈ V (i) such that (v, u) ∈ E}, for any v ∈ V (i)
W .

(i) and (ii), togetherwith the definition ofU (i), imply (i) and (ii), respectively. Similarly
(i’) and (ii’) can be shown. The optimality conditions also imply that for all v ∈ V (i),
μv(Ĝ(i)) = μŝ(i)(v)(Ĝ(i)), which in turn implies (iii). ��

Note that Claim 1 implies that the game G(i)[V (i)\U (i)] is well-defined since the
graph G[V (i)\U (i)] has no sinks. For a strategy sW (and similarly for a strategy sB)
and a subset V ′ ⊆ V , we write SW (V ′) = {sW (u) | u ∈ V ′}. The following two
claims state respectively that the values of the positions inU (i) are well-approximated
by the pseudo-polynomial algorithm and that these values are sufficiently larger than
those in the residual set V (i)\U (i).

Claim 2 For i = 1, . . . , h′, let ŝ(i) be the situation returned by the pseudo-polynomial
algorithm on the game Ĝ(i) in step 4. Then, for any w ∈ U (i), we have

max
sW ∈S(i)

W :sW (U (i)∩VW )⊆U (i)
μw

(
G(i)

(
sW , ŝ(i)

B

))
≤ (1 + ε′)μw

(
G(i)

)
and

min
sB∈S(i)

B

μw

(
G(i)

(
ŝ(i)

W , sB

))
≥ (1 − ε′)μw

(
G(i)

)
.

Proof This follows from Lemma 1 by the uniform optimality of ŝ(i) in Ĝ(i) and the
fact that μw(Ĝ(i)) ≥ 1/ε′ for every w ∈ U (i). ��
Claim 3 For all u ∈ U (i) and v ∈ V (i)\U (i), we have (1 + ε′)μu(G(i)) > μv(G(i)).

Proof For u ∈ U (i), v ∈ V (i)\U (i), we have μu(Ĝ(i)) ≥ 1/ε′ and μv(Ĝ(i)) < 1/ε′.
Thus, by Lemma 1,

μv

(
G(i)

)
≤ K (i)μv

(
Ĝ(i)

)
+ K (i) <

K (i)

ε′ (1 + ε′) ≤ K (i)μu

(
Ĝ(i)

) (
1 + ε′)

≤ μu

(
G(i)

) (
1 + ε′) .

��
We observe that the strategy s̃(i), returned by the i th call to the algorithm, is deter-

mined as follows (c.f. steps 11 and 11): for w ∈ U (i), s̃(i)(w) = ŝ(i)(w) is chosen
by the solution of the game Ĝ(i), and for w ∈ V (i)\U (i), s̃(i)(w) is determined by the
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(recursive) solution on the residual game G̃(i) = G(i+1). The following claim states
that the value of any vertex u ∈ V (i)\U (i) in the residual game is a good (relative)
approximation of the value in the original game G(i).

Claim 4 For all i = 1, . . . , h′ and any u ∈ V (i)\U (i), we have

μu

(
G(i)

)
≤ μu

(
G(i)

[
V (i)\U (i)

])
≤ (1 + 2ε′)μu

(
G(i)

)
. (10)

Proof Fix u ∈ V (i)\U (i). Let s∗ = (s∗
W , s∗

B) and (s̄W , s̄B) be optimal situations
in (G(i), u) and (Ḡ(i), u) := (G(i)[V (i)\U (i)], u), respectively. Let us extend s̄ to a
situation in G(i) by setting s̄(v) = ŝ(i)(v) for all v ∈ U (i), where ŝ is the situation
returned in by the pseudo-polynomial algorithm step 4. Then, by Claim 2.4(i’),White
has no way to escape to U (i), or in other words, s∗

W (u′) ∈ V (i)\U (i) for all u′ ∈
V (i)

W \U (i). Hence,

μu

(
G(i)

)
= μu

(
G(i) (

s∗
W , s∗

B

)) ≤ μu

(
G(i)(s∗

W , s̄B)
)

= μu

(
Ḡ(i) (

s∗
W , s̄B

)) ≤ μu(Ḡ(i)(s̄W , s̄B)) = μu(Ḡ(i)).

For similar reasons, μu(G(i)) ≥ μu(Ḡ(i)), if s∗
B(v) ∈ V (i)\U (i) for all v ∈ V (i)

B \U (i)

such that v is reachable from u in the graphG(s∗
W , s∗

B). Suppose, on the other hand, that

there is a v ∈ V (i)
B \U (i) such that u′ = s∗

B(v) ∈ U (i), and v is reachable from u in the

graph G(s∗
W , s∗

B). Then (by Lemma 1) μu(G(i)) = μu′(G(i)) ≥ K (i)μu′(Ĝ(i)) ≥ K (i)

ε′ .

Moreover, the optimality of (ŝW , ŝB) in Ĝ(i) and the fact that 1
K (i) r (i) − 1 ≤ r̂ (i) ≤

1
K (i) r (i) imply by Lemma 1 that

∀sW ∈ S(i)
W : μu

(
G(i) (

ŝW , ŝB
)) ≥ K (i)μu(Ĝ(i)(ŝW , ŝB)) ≥ K (i)μu(Ĝ(i)(sW , ŝB))

≥ μu

(
G(i) (

sW , ŝB
)) − K (i)

≥ μu

(
G(i) (

sW , ŝB
)) − ε′μu

(
G(i)

)

and

∀sB ∈ S(i)
B : μu

(
G(i) (

ŝW , ŝB
)) ≤ K (i)μu(Ĝ(i)(ŝW , ŝB)) + K (i)

≤ K (i)μu(Ĝ(i)(ŝW , sB)) + K (i)

≤ μu

(
G(i) (

ŝW , sB
)) + K (i)

≤ μu

(
G(i) (

ŝW , sB
)) + ε′μu

(
G(i)

)
.

In particular,
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μu

(
G(i)

)
= μu

(
G(i) (

s∗
W , s∗

B

)) ≥ μu

(
G(i) (

ŝW , s∗
B

))

≥ μu

(
G(i) (

ŝW , ŝB
)) − ε′μu

(
G(i)

)

≥ μu

(
G(i) (

s̄W , ŝB
)) − 2ε′μu

(
G(i)

)
= μu(Ḡ(i)(s̄W , ŝB)) − 2ε′μu

(
G(i)

)

≥ μu(Ḡ(i)(s̄W , s̄B)) − 2ε′μu

(
G(i)

)
= μu(Ḡ(i)) − 2ε′μu

(
G(i)

)
,

where μu(G(i)(s̄W , ŝB)) = μu(Ḡ(i)(s̄W , ŝB)) follows from Claim 1 (since (s̄W , ŝB)

(v) ∈ V (i)\U (i)). It follows that μu(G(i)) ≥ 1
1+2ε′ μu(Ḡ(i)). ��

Let us fix εh′ = ε′, and for i = h′ − 1, h′ − 2, . . . , 1, let us choose εi such that
1 + εi ≥ (1 + ε′)(1 + 2ε′)(1 + εi+1). Next, we claim that the strategies (s̃(i)

W , s̃(i)
B )

returned by the i th call of FPTAS-BW(G, ε) are relatively εi -optimal in G(i).

Claim 5 For all i = 1, . . . , h′ and any w ∈ V (i), we have

max
sW ∈S(i)

W

μw

(
G(i)

(
sW , s̃(i)

B

))
≤ (1 + εi )μw

(
G(i)

)
and (11)

min
sB∈S(i)

B

μw

(
G(i)

(
s̃(i)

W , sB

))
≥ (1 − εi )μw

(
G(i)

)
. (12)

Proof The proof is by induction on i = h′, h′ − 1, . . . , 1. For i = h′, the statement
follows directly from Claim 1 since U (h′) = V (h′). So suppose that i < h′.

By induction, s̄(i) = (
¯

s(i)
W , s̄(i)

B ) := (s̃(i)
W , s̃(i)

B )[V (i)\U (i)] is εi+1-optimal in
G(i+1) = G̃(i). Recall that the game G̃(i) is obtained from Ḡ(i) := G(i)[V (i)\U (i)]
by reducing the rewards according to step 9. Thus, Lemma 3 yields that μv(Ḡ(i)) =
μv(G̃(i)), and hence,

max
s′

W ∈S(i+1)
W

μv(Ḡ(i)(s′
W , s̄(i)

B )) ≤ (1 + εi+1)μv(Ḡ(i)) (13)

min
s′

B∈S(i+1)
B

μv(Ḡ(i)(s̄(i)
W , s′

B)) ≥ (1 − εi+1)μv(Ḡ(i)). (14)

��

Proof of (11): Consider an arbitrary strategy sW ∈ S(i)
W for White. Suppose first

that w ∈ U (i). Note that, by Claim 1(iii), s̃(i)
B (u) ∈ U (i) for all u ∈ VB ∩ U (i). If

also sW (u) ∈ U (i) for all u ∈ VW ∩ U (i), such that u is reachable from w in the
graph G(sW , s̃(i)

B ), then Claim 2 implies μw(G(i)(sW , s̃(i)
B )) ≤ (1 + ε′)μw(G(i)) ≤

(1 + εi )μw(G(i)).
Suppose therefore that v = sW (u) /∈ U (i) for some u ∈ VW ∩ U (i) such that u is

reachable from w in the graph G(sW , s̃(i)
B ).
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Note that s̃(i)
B (v′) ∈ V (i)\U (i) for all v′ ∈ V (i)

B \U (i), and by Claim 1(i’), S(i+1)
W is

the restriction of S(i)
W to V (i)\U (i). Thus, we get the following series of inequalities:

μw

(
G(i)

(
sW , s̃(i)

B

))
= μv

(
G(i)

(
sW , s̃(i)

B

))
≤ (1 + εi+1)μv

(
G(i)

[
V (i)\U (i)

])

(15)

≤ (1 + εi+1)(1 + 2ε′)μv

(
G(i)

)
(16)

< (1 + εi+1)(1 + 2ε′)(1 + ε′)μw

(
G(i)

)
≤(1 + εi )μw

(
G(i)

)
.

The equality holds since v is reachable from w in the graph G(sW , s̃(i)
B ); the first

inequality holds by (13); the second inequality holds because of (10); the third one
follows from Claim 3; the fourth inequality holds since (1+ εi+1)(1+ 2ε′)(1+ ε′) ≤
(1 + εi ).

If w ∈ V (i)\U (i), then a similar argument as in (15) and (16) shows that
μw(G(i)(sW , s̃(i)

B )) ≤ (1 + εi+1)(1 + 2ε′)μw(G(i)) ≤ (1 + εi )μw(G(i)). Thus, (11)
follows.

Proof of (12): Consider an arbitrary strategy sB ∈ S(i)
B for Black. If w ∈ U (i),

then we have μw(G(i)(s̃(i)
W , sB)) ≥ (1 − ε′)μw(G(i)) ≥ (1 − εi )μw(G(i)) from

Claims 1(i–iii), and εi ≥ ε′.
Suppose now that w ∈ V (i)\U (i). If sB(v) ∈ V (i)\U (i) for all v ∈ V (i)

B \U (i),

then we get by (14) and (10) that μw(G(i)(s̃(i)
W , sB)) ≥ (1 − εi+1)μw(G(i)) ≥ (1 −

εi )μw(G(i)). A similar situation holds if sB(v) ∈ V (i)\U (i) for all v ∈ V (i)
B \U (i) such

that v is reachable from w in the graph G(s̃(i)
W , sB). So it remains to consider the case

when there is a v ∈ V (i)
B \U (i) such that u = sB(v) ∈ U (i), and v is reachable from

w in the graph G(s̃(i)
W , sB). Since Black has no escape from U (i) in this case [by

Claim 1(i)], Claims 2 and 3 yield

μw

(
G(i)

(
s̃(i)

W , sB

))
= μu

(
G(i)

(
s̃(i)

W , sB

))
≥ (1 − ε′)μu

(
G(i)

)

> (1 − ε′)2μw

(
G(i)

)
≥ (1 − εi )μw

(
G(i)

)
,

where the last inequality follows from the fact that, for all i = 1, . . . , h′ − 1, 1+ εi ≥
(1 + 2ε′)(1 + ε′)2 ≥ (1 + ε′)3, and hence, 1 − εi ≤ 2 − (1 + ε′)3 ≤ (1 − ε′)2.

Finally, to finish the proof of Lemma 7, we set the εi ’s and ε′ such that ε1 =
(
(1+ 2ε′)(1+ ε′)

)h′−1
(1+ ε′) − 1 ≤ ε. Note that our choice of ε′ = ln(1+ε)

3h satisfies
this as

(
(1 + 2ε′)(1 + ε′)

)h′−1
(1 + ε′) = (1 + 2ε′)h′

(1 + ε′)h′

(1 + 2ε′)

≤ e3h′ε′

(1 + 2ε′)
≤ (1 + ε)

(1 + 2ε′)
≤ (1 + ε).
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3 Concluding Remarks

In this paper, we have shown that computing the game values of classes of stochastic
mean payoff games with perfect information and a constant number of random posi-
tions admits approximation schemes, provided that the class of games at hand can be
solved in pseudo-polynomial time.

To conclude this paper, let us raise a number of open questions:

1. First, in the conference version of this paper [2], we claimed that, up to some
technical requirements, a pseudo-polynomial algorithm for a class of stochastic
mean payoff games implies that this class has polynomial smoothed complexity
(smoothed analysis is a paradigm to analyze algorithms with poor worst-case and
good practical performance. Since its invention, it has been applied to a variety of
algorithms and problems to explain their performance or complexity, respectively
[31,38]).
However, the proof of this result is flawed. In particular, the proof of a lemma
that is not contained in the proceedings version, but only in the accompanying
technical report (Oberwolfach Preprints, OWP 2010-22, Lemma 4.3) is flawed.
The reason for this is relatively simple: If we are just looking for an optimal
solution, then we can show that the second-best solution is significantly worse
than the best solution. For two-player games, where one player maximizes and the
other player minimizes, we have an optimization problem for either player, given
an optimal strategy of the other player. However, the optimal strategy of the other
player depends on the random rewards of the edges. Thus, the two strategies are
dependent. As a consequence, we cannot use the full randomness of the rewards
to use an isolation lemma to compare the best and second-best response to the
optimal strategy of the other player.
Therefore, the question, whether stochastic mean payoff games have polynomial
smoothed complexity, remains open.

2. In Sect. 2.3 we gave an approximation scheme that relatively approximates the
value of a BWR-game from any starting position. If we apply this algorithm from
different positions, we are likely to get two different relatively ε-optimal strategies.
In Sect. 2.4 we have shown that a modification of the algorithm in Sect. 2.3 yields
a uniformly relatively ε-optimal strategies when there are no random positions. It
remains an interesting question whether this can be extended to BWR-games with
a constant number of random positions.

3. Is it true that pseudo-polynomial solvability of a class of stochastic mean payoff
games implies polynomial smoothed complexity? In particular, do mean payoff
games have polynomial smoothed complexity?

4. Related to Question 3: is it possible to prove an isolation lemma for (classes of)
stochasticmean payoff games?Webelieve that this is not possible and that different
techniques are required to prove smoothed polynomial complexity of these games.

5. While stochastic mean payoff games include parity games as a special case, the
probabilistic model that we used here does not make sense for parity games.
However, parity games can be solved in quasi-polynomial time [8]. One wonders
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if they also have polynomial smoothed complexity under a reasonable probabilistic
model.

6. Finally, let us remark that removing the assumption that k is constant in the above
results remains a challenging open problem that seems to require totally new
ideas. Another interesting question is whether stochastic mean payoff games with
perfect information can be solved in parameterized pseudo-polynomial time with
the number k of stochastic positions as the parameter?

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Lemmas About Markov Chains

For a situation s, let dG(s)(u, v) be the stochastic distance from u to v in G(s), which
is the shortest (directed) distance between vertices u and v in the graph obtained from
G(s) by setting the length of every deterministic arc [i.e., one with pe(s) = 1] to 0
and of every stochastic arc [i.e., one with pe(s) ∈ (0, 1)] to 1. Let

λ = λ(G) = max{dG(s)(v, u) | v, u ∈ V, dG(s)(v, u) is finite, and s is a situation}

be the stochastic diameter of G. Clearly, λ(G) ≤ k(G). Some of our bounds will be
given in terms of λ instead of k, which implies stronger bounds on the running-times
of some of the approximation schemes.

A set of vertices U ⊆ V is called an absorbing class of the Markov chain M if
there is no arc with positive probability from U to V \U , i.e., U can never be left once
it is entered, and U is strongly connected, i.e., any vertex of U is reachable from any
other vertex of U .

Lemma 8 Let M = (G = (V, E), P) be a Markov chain on n vertices with starting
vertex u. Then the limiting probability of any vertex v ∈ V is either 0 or at least p2λmin/n
and the limiting probability of any arc (u, v) ∈ E is either 0 or at least p2λ+1

min /n.

Proof Let π and ρ denote the limiting vertex- and arc-distribution, respectively. Let
C be any absorbing class of M reachable from u. We deal with π first. Clearly, for
any v that does not lie in any of these absorbing classes, we have πv = 0. It remains
to show that for every v′ ∈ C , we have πv′ ≥ p2λmin/n. Denote by πC = ∑

v∈C πv the
total limiting probability of C . Note that πC is equal to the probability that we reach
some vertex v ∈ C starting from u. Since there is a simple path in G from u to C with
at most λ stochastic vertices, this probability is at least pλ

min. Furthermore, there exists
a vertex v ∈ C with πv ≥ πC/|C | ≥ pλ

min/n. Now for any v′ ∈ C , there exists again
a simple path in G from v to v′ with at most λ stochastic positions, so the probability
that we reach v′ starting from v is at least pλ

min. It follows that πv′ ≥ p2λmin/n.
Now for ρ, note that ρ(u,v) ≥ πu pmin, if (u, v) ∈ E . Since πu is either 0 or at least

p2λmin/n, the claim follows. ��
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A Markov chain is said to be irreducible if its state space is a single absorbing
class. For an irreducible Markov chain, let muv denote the mean first passage time
from vertex u to vertex v, and mvv denote the mean return time to vertex v: muv is
the expected number of steps to reach vertex v for the first time, starting from vertex
u, and mvv is the expected number of steps to return to vertex v for the first time,
starting from vertex v. The following lemma relates these values to the sensitivity of
the limiting probabilities of a Markov chain.

Lemma 9 (Cho and Meyer [12]) Let ε > 0. Let M = (G = (V, E), P) be an
irreducible Markov chain. For any transition probabilities P̃ with ‖P̃ − P‖∞ ≤ ε

such that the corresponding Markov chainM̃ is also irreducible, we have ‖π̃−π‖∞ ≤
1
2ε · maxv

maxu �=v muv

mvv
, where mvu are the mean values defined with respect to M.

Let M = (G = (V, E), P, r) be a weighted Markov chain. We denote by
μu(M) := ∑

(v,u)∈E πv pvurvu the limiting average weight, where π = (πv : v ∈ V )

is the limiting distribution when u is the starting position. We will write μu whenM
is clear from the context.

Lemma 10 Let M = (G = (V, E), P, r) be a weighted Markov chain with arc
weights in [r−, r+], and let ε ≤ 1

2 pmin = 1
2 pmin(M) be a positive constant. Let

M̃ = (G = (V, E), P̃, r) be a weighted Markov chain with transition probabilities
P̃ such that ‖P̃ − P‖∞ ≤ ε and p̃uv = 0 if puv = 0. Then, for any u ∈ V , we have
|μu(M̃) − μu(M)| ≤ δ(M, ε), where δ is defined as in (6):

δ(M, ε) :=
(

εn2

2

( pmin

2

)−k
(

εnk(k + 1)
( pmin

2

)−k + 3k + 1

)

+ εn

)

r∗,

where n = |V |, pmin = pmin(M), k = k(M), and r∗ = r∗(M) :=
max{|r+(M)|, |r−(M)|}.
Proof Fix the starting vertex u0 ∈ V . Let π and π̃ denote the limiting distributions
corresponding toM and M̃, respectively. We first bound ‖π − π̃‖∞. Since ε < pmin,
we have p̃uv = 0 if and only if puv = 0. It follows that M and M̃ have the same
absorbing classes. Let C1, . . . , C� denote these classes. Denote by πCi = ∑

v∈Ci
πv

and π̃Ci = ∑
v∈Ci

π̃v the total limiting probability of Ci with respect to π and π̃ ,
respectively. Furthermore, let π |i and π̃ |i be the limiting distributions, corresponding
toM and M̃, respectively, conditioned on the event that theMarkov process is started
in Ci (i.e., u0 ∈ Ci ). Note that these conditional limiting distributions describe the
limiting distributions for the irreducible Markov chains restricted to Ci . By Lemma
9, we have ‖π |i − π̃ |i‖∞ ≤ 1

2ε · maxv∈Ci maxu∈Ci
u �=v

muv

mvv
. ��

Claim 6 For any u, v ∈ Ci , we have muv ≤ (λ+1)|Ci |
pλ
min

.

Proof Fix v ∈ Ci . Note that, for any u ∈ Ci , we have

muv =
∑

w �=v

puw(1 + mwv) + puv. (17)
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Let h = max{dG(u, v) | u ∈ Ci }. For j = 0, 1, . . . , h, let X j = max{muv | u ∈
Ci , dG(u, v) = j}. Let � be in argmax{X j | j ∈ {1, . . . , h}}. Then X0 ≤ |Ci | and, for
j = 1, . . . , h, (17) implies that

X j ≤ |Ci | + pminX j−1 + (1 − pmin)X�. (18)

Indeed, for a vertex for u ∈ V such that dG(u, v) = j , there is a path Q from u to vwith
j stochastic arcs. Let u′ be the vertex closest to u on Q such that dG(u′, v) = j − 1,
and let u′′ be the vertex on Q preceding u′. Then u′′ is stochastic, and hence by (17)

mu′′v ≤ pu′′u′(1 + X j−1) +
∑

w �=u′
pu′′w(1 + X�)

= pu′′u′(1 + X j−1) + (1 − pu′′u′)(1 + X�)

≤ pmin(1 + X j−1) + (1 − pmin)(1 + X�),

using the fact that X j ≤ X� for all j and pu′′u′ ≥ pmin. Finally, muv ≤ |Ci |−1+mu′′v
implies (18).

Applying (18) for j = 1, . . . , � yields

X� ≤ |Ci | · 1 − p�+1
min

1 − pmin
+ X�(1 − p�

min).

This implies that X� ≤ |Ci | 1−p�+1
min

1−pmin
p−�
min ≤ |Ci |(λ + 1)p−λ

min. ��

It follows that ‖π |i − π̃ |i‖∞ ≤ ε(λ+1)|Ci |
2pλ

min
.

Claim 7 |πCi − π̃Ci | ≤ εnλp−λ
min.

Proof Without loss of generality we assume that u0 /∈ Ci . For a transient vertex v

(i.e., one for which πv = 0), let yv and ỹv be the absorption probability into class
Ci in M and M̃, respectively. In particular yu0 = πCi . Let pvCi = ∑

u∈Ci
pvu and

p̃vCi = ∑
u∈Ci

p̃vu . Then we have

yv =
∑

u /∈Ci

pvu yu + pvCi . (19)

Similarly,

ỹv =
∑

u /∈Ci

p̃vu ỹu + p̃vCi =
∑

u /∈Ci

pvu ỹu +
∑

u /∈Ci

( p̃vu − pvu)ỹu + p̃vCi . (20)

Write 
v := |ỹv − yv|. Subtracting (19) from (20) yields


v ≤
∑

u /∈Ci

pvu
u +
∑

u /∈Ci

| p̃vu − pvu |ỹu + | p̃vCi − pvCi |
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≤
∑

u /∈Ci

pvu
u + (n − |Ci |)ε + |Ci |ε =
∑

u /∈Ci

pvu
u + εn. (21)

Let h = max{dG(u, Ci ) | u /∈ Ci ∧ dG(u, Ci ) < ∞}, where dG(u, Ci ) =
min{dG(u, v) | v ∈ Ci } is the stochastic distance in G from u to Ci . For
j = 0, 1, . . . , h, let X j = max{
u | u /∈ Ci ∧ d(u, Ci ) = j}, and let � be in
argmax{X j | j ∈ {1 . . . , h}}. Then X0 = 0 (since deterministic vertices inM remain
deterministic in M̃) and, for j = 1, . . . , h, (21) (for a stochastic vertex and (19) for
a deterministic vertex) implies

X j ≤ εn + pminX j−1 + (1 − pmin)X�. (22)

Applying this iteratively gives us X� ≤ εn
1−p�

min
1−pmin

p−�
min ≤ εnλp−λ

min. ��
Let v ∈ V be an arbitrary vertex. If v does not lie in any absorbing class, then

πv = π̃v = 0. Otherwise, let v ∈ Ci . By the above claims, we have

πv = πCi π
|i
v ≤

(
π̃Ci + εnλp−λ

min

) (
π̃ |i

v + ε

2
(λ + 1)|Ci |p−λ

min

)

≤ π̃v + ε

2
np−λ

min

[
εnλ(λ + 1)p−λ

min + 3λ + 1
]

:= π̃v + δ′(M, ε).

Similarly, we can conclude that π̃v ≤ πv + δ′(M̃, ε). Note that pmin(M̃) ≥
pmin(M)/2, since ε ≤ pmin(M)/2. It follows that

|μu0(M) − μu0(M̃)| ≤
∑

(u,v)∈E

|πu puv − π̃u p̃uv||ruv|

≤
∑

(u,v)∈E

(|πu − π̃u |puv + π̃u | p̃uv − puv|) r∗

≤
∑

(u,v)∈E

(
max{δ′(M, ε), δ′(M̃, ε)}puv + π̃uε

)
r∗

≤
(
max{δ′(M, ε), δ′(M̃, ε)} + ε

)
nr∗ ≤ δ(M, ε)r∗,

which completes the proof.
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