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A B S T R A C T

Changes in mechanical properties due to transmutation products (Re and Os) in W alloys is a central issue for
plasma-facing materials in fusion reactors. We conducted density functional theory calculations to investigate
the effect of Re, Os, and other 5d solutes on core structure and motion of screw dislocations associated with
plastic deformation. Ir, Pt, Au, and Hg solutes show strong attractive interactions with screw dislocations,
causing solution strengthening by the pinning mechanism. On the other hand, Hf, Ta, and Re cause softening by
facilitating dislocation motion around solutes. This prediction corresponds well with the experimental ob-
servation of softening behavior in W-Re alloys.

1. Introduction

Tungsten (W) is a potential candidate for plasma-facing materials in
fusion reactors due to its high melting point and thermal conductivity,
as well as its high resistance to neutron sputtering [1–8]. Structural
materials exposed to high deuterium and tritium fluxes under 14 MeV
neutron irradiation, which releases significant amounts of transmuta-
tion products such as hydrogen and helium, experience degradation of
their physical and mechanical properties [9–11]. The relationship be-
tween trapping of transmutation gas products and surface damage has
been widely investigated [12–15]. The other important aspect of neu-
tron irradiation in fusion reactors is the transmutation products of W
[16]. Neutron irradiation produces increasing amounts of 5d metals
such as rhenium (Re) and osmium (Os) with increasing fluxes, where Re
is initially produced and then Os is created from Re. The stability of
these transmutation products is a central issue when W alloys are used
in fusion reactors, since fusion products may alter the mechanical
properties of structural materials. The changes in mechanical proper-
ties, such as hardness and microstructure, due to irradiation have been
examined for pure W, W-Re, W-Os, and W-Re-Os alloys [17], and clear
differences were found between Re and Os in terms of the effect of
irradiation hardening. Hardness decreases with Re content up to 10
mass% for low-dose neutron irradiation (below 1.54 dpa), while it in-
creases linearly with the total concentration of Re and Os at higher
doses [18], where precipitation nucleated by the irradiation contributes

directly to the hardness. More recently, the local distribution of Re in
W-Re and W-Re-Ta alloys under irradiation has been investigated using
atom probe tomography, revealing that Re clustering tends to occur in
these alloys [19]. On the other hand, it has long been known that Re
solutes in W alloys cause solution softening [20–23], and that this
softening behavior depends on both temperature and alloy composi-
tion. In particular, W-Re alloys exhibit a strong ductilization tendency
at low temperatures (below 300 K) and low solution concentrations
(about 10 at.%) [21], which is thought to be due to the effect of Re
solutes on the double kink nucleation process [22]. The effects of in-
dividual transmutation solutes on mechanical properties, as well as the
formation of radiation defects such as voids and radiation-induced
precipitation (RIP), are therefore of great importance for W alloys
under neutron irradiation.

We have so far carried out first-principles and kinetic Monte Carlo
calculations to investigate the formation of radiation defects such as RIP
in W alloys [24–26]. The formation and motion of W-Re and W-Os pairs
in perfect crystals and some mixed dumbbell structures provide an in-
sight into the effect of these elements on radiation defect formation. It is
also important to understand solid solution strengthening and softening
behavior in W, since W is intrinsically brittle. Regarding the effect of
individual solutes on mechanical properties, the solution softening
observed at low temperatures was found to be common to various body-
centered cubic (BCC) metals [27]. Screw dislocation motion is a fun-
damental plastic deformation mechanism in BCC metals, and therefore
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the fundamental properties of dislocation motion associated with the
core structure in W [28] and the effect of Re solutes on dislocation core
structure [29–33] were investigated by density functional theory (DFT)
calculations, where some sophisticated models were proposed. The
stress-dependent interaction energy and migration process of Re in W
alloys was investigated using DFT and kinetic Monte Carlo calculations
[32], and softening effect was investigated by DFT and theoretical
models in cooperation with the interaction between solute and a screw
dislocation [33]. However, the energy barrier for dislocation motion
should be considered as well as the interaction energy. In the present
study, we construct a dipole configuration of screw dislocations in a
periodic cell and investigate in detail the effects of Re and other 5d
solutes on the interaction energy with a screw dislocation and the en-
ergy barrier for the dislocation motion through DFT calculations.

2. Analysis method

The introduction of dislocations into our periodic cell was accom-
plished by applying a continuum linear elastic theory solution for a
periodic dislocation dipole array [34] in BCC W with lattice constant
a0= 3.1715 Å. We can effectively solve for the distortion field in the
periodic cell using a Fourier series, where the elastic energy can be
expressed in Fourier space associated with elastic constants. The dis-
tortion field was then chosen to minimize the total elastic energy,
subject to the topological constraints imposed by the dislocations. The
displacement field can be obtained via line integrals. The displacement
field of dislocation dipole in a 135-atom supercell was then obtained. In
the present study, screw dislocation core with the Burgers vector 1/
2< 111>was considered. The position of dislocation and solutes were
shown in Fig. 1, where the core structure of the screw dislocation dipole
was visualized using a differential displacement (DD) map [35]. The
unit cell vector of the supercell for a dislocation quadrupolar is

=x a5 [112]0 , = + +y a a a2.5 [112] 4.5 [110] ( /4)[111]0 0 0 , and
=z a( /2)[111]0 . We used two- and six-layer supercell models along the z

direction with a total of 270 and 810 atoms, respectively to confirm the
convergence of the size along the direction, and two solutes were in-
troduced near each side of the dipole's dislocation cores. The interaction
energy between the 5d solutes and the screw dislocation dipole was
then evaluated. First-principles electronic structure calculations were
carried out within the DFT framework using the Vienna Ab-initio Si-
mulation Package (VASP) [36,37], with the Perdew–Burke–Ernzerhof
generalized gradient approximation exchange-correlation density
functional [38]. The Brillouin-zone k-point samplings were chosen
using the Monkhorst–Pack algorithm [39], where 1×1×9 and
1×1×3 k-point samples along x, y, and z directions were used for
structural relaxation of two- and six-layer models, respectively. We
used a plane-wave energy cutoff of 400 eV, with a first-order Methfes-
sel–Paxton scheme employing a smearing parameter of 0.1 eV. We en-
sured that the total energy converged to within 10−6 eV for all

calculations. The relaxed configurations were obtained by the conjugate
gradient method, and the search was terminated when the force on all
atoms had reduced to 0.02 eV/Å. The energy barrier and saddle point
during dislocation motion for pure W were evaluated by the nudged
elastic band (NEB) method with nine replica images [40].

3. Results and discussion

We first evaluated the interaction energy between the 5d solutes and
the screw dislocation without atomic relaxation to understand the
general features of the interaction, with the solutes being substituted at
sites 0 to 7 according to Fig. 1. Fig. 2 shows the effect of the relative
position (or distance) between the solutes and the dipole on the inter-
action energy for each solute, where the relative position of dislocation
core is unchanged to constrain the dislocation motion influenced by
high solute concentration. The interaction energy is defined as the en-
ergy difference between site 0 and furthest site from dislocation core.
Strong attractive interactions were observed with the screw dislocation
in iridium (Ir), platinum (Pt), gold (Au), and mercury (Hg), while
hafnium (Hf), tantalum (Ta), and Re had relatively weak interactions
and Os was in the middle. In addition, we found that the effective range
of the interaction for most of the solutes was up to the 3rd nearest
neighbor in the (111) plane, with little difference between the different
solute types.

We then evaluated the actual interaction energy, considering atomic
relaxation, for 1st nearest neighbor configuration (sites 0 and 1).
Fig. 3(a) shows the interaction energies between all 5d solutes and a
screw dislocation per a solute, where the solute is supposed to be
substituted in every 2b units along the dislocation line. For confirma-
tion of the convergence of the supercell size, we calculated the inter-
action energy only when each solute is substituted at site 0 using 6b unit
supercell as shown in Table 1 and found that 2b unit reproduces the
tendency well. The trends and absolute values are approximately the
same as the ones calculated using unrelaxed configurations, indicating
that the electronic interaction primarily determines the interaction
energy. As discussed about d-band filling for bcc transition metals [41],
the electronic interaction plays a significant role in the interaction
energy in case of screw dislocation because there is no volumetric strain
component unlike edge dislocations. Ir, Pt, Au, and Hg showed strong
attractive interactions with the screw dislocation, resulting in solid
solution hardening via the pinning mechanism. In addition, after
atomic relaxation, the 3rd nearest neighbor configuration (site 3) for
these solutes converged to the 1st nearest neighbor configuration (as-
sociated with site 1) due to the short-range strong attractive interaction
with high solute concentration. On the other hand, since the interac-
tions with Hf, Ta, and Re were not so strong, the dislocation did not
move even when these solutes were substituted in 2nd nearest neighbor
configuration. These results suggest that Hf, Ta, and Re at least do not
induce solution strengthening.

Fig. 3(b) shows the relaxed core structures around typical Re, Os,
and Au solutes, visualized by DD maps. We found that weakly-inter-
acting solutes, such as Re, did not change the core structure, while those
with attractive interactions, such as Au, causes reconstruction of the
core structure, that is, the stable easy-core changes into a split core by
the presence of these solutes. We should note, however, that this change
of core structure is caused by high solute concentration and therefore,
the interaction energy would be overestimated. There is still difficulty
in simulating dilute alloys due to the computational cost though larger
atomic models along dislocation line should be used.

The energy barrier to kink nucleation is important when discussing
the effect of solutes on plastic deformation. The kink nucleation rate is
expressed as the thermally activated process, which is associated with
the external stress and the solute concentration as follows [42]:

Fig. 1. The relative position of dislocation core and solutes, where the differ-
ential displacement vector is used to visualize the dislocation core.
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where c is the concentration, νdk
0 is the attempt frequency of double kink

nucleation, ΔHdk(σ) is the activation enthalpy of pure W and E σ( )int is
the interaction energy under given stress σ. This relation indicates that
the change in energy barrier of kink nucleation is directly affected by
the interaction energy. As discussed above, however, the interaction
energy is overestimated since the values are calculated by small atomic
models with high solute concentration. In the present study, we esti-
mated directly the Peierls barrier around the solutes as follows. First,
we calculated the Peierls barrier in pure W using the NEB method as-
sociated with two adjacent easy-core configurations for the initial and
final configurations. Here we obtained EP= 0.18 eV/2b, where 2b is the
length of the dislocation line in the present study and corresponds to
the unit cell size along the [111] direction. The saddle point config-
uration was then extracted for subsequent calculations. The solutes
were then substituted at site 0 of this saddle point configuration, and
atomic relaxation was carried out under the constraint that the

displacement of the three atoms characterizing the dislocation core
along [111] direction was fixed during relaxation to prevent the dis-
location moving toward the easy-core configuration. As a result, the
energy difference between the easy core and saddle point under the
same constraint then provided an effective estimate of the effect of
solutes on the Peierls barrier to dislocation motion without increasing
the computational cost. The resulting energy differences and the re-
lationships between the Peierls barrier and the interaction energy are
shown in Figs. 4(a) and (b), respectively. The Peierls barrier per 2b unit
is shown to indicate the solute concentration though only the effect per
a solute should be discussed. The extremely strong correlation between

Fig. 2. Interaction energies per a solute with a screw dislocation dipole for 5d solutes at various lattice sites, where the energies are evaluated without atomic
relaxation.

Fig. 3. Effects of different solutes on the dislocation core. (a) Interaction energies between the solutes and the dislocation for 1st nearest neighbor configuration after
atomic relaxation. (b) DD maps for W-Re, W-Os, and W-Au.

Table 1
Interaction energies between the solutes and the dislocation within the 1st
nearest neighbor using 2b and 6b unit supercells.

Hf Ta Re Os Ir Pt Au Hg

Eint (2b) –0.03 0.05 –0.23 –0.62 –1.14 –1.28 –1.17 –1.00
Eint (6b) –0.09 0.03 –0.23 –0.63 –1.00 –1.18 –1.11 –0.98
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these energies indicates that the effect of solutes on dislocation motion
is related to the interaction energy. In particular, with Ir, Pt, Au, and Hg
solutes the Peierls barrier increases as the dislocation moves away from
the solute, while the negative values indicate that there is no energy
barrier when it is in 1st nearest neighbor configuration due to the at-
tractive interaction. This negative barrier still arises from the high so-
lute concentration, and both attractive and pinning forces are over es-
timated. Strong attractive interactions lead to solution strengthening
due to the obstacle effect on kink migration as well as the pinning effect
on athermal stress. In contrast, weakly-interacting Hf, Ta, and Re so-
lutes reduce the Peierls barrier, and the barrier does not increase sig-
nificantly as the dislocation moves away. Considering the weak at-
tractive interactions between these solutes and the dislocation, these
results suggest that Hf, Ta, and Re do not act as strong obstacles to kink
migration, but they can attract screw dislocations moderately, in-
creasing the primary nucleation rate. The predictions given above
correspond reasonably well with the experimental results, where Re
induces softening while Os and Ir increase hardness [17,18,21,22]. Our
finding that softening is not only induced by Re but also by Hf. Ac-
cordingly, the solution softening behavior in W-Re and other W-based
alloys is caused by reduction of the energy barrier to kink-nucleation
due to the electronic interaction between the solutes and screw dis-
locations. More realistic calculations using thicker models are con-
ducted to realize the individual effect of each solute in dilute alloys and

the solid solution softening and hardening model using both interaction
energy and energy barrier through DFT calculations for dilute alloy are
being developed [43].

4. Conclusions

In this paper, we have investigated the effect of Re and other 5d
solutes on solution softening/hardening in W via DFT calculations.
Focusing on the motion and core structure of dislocations associated
with plastic deformation, we constructed a quadrupolar model of a
screw dislocation based on linear elasticity theory, and evaluated the
interaction energies between solutes and a screw dislocation dipole. We
found that Ir, Pt, Au, and Hg solutes showed strong attractive interac-
tions, while Hf, Ta, and Re solutes showed relatively weak interactions.
We have also proposed a method for approximately predicting the ef-
fect of solutes on the energy barrier to dislocation motion at low
computational cost. The height of the energy barrier was found to be
correlated with the interaction energy, indicating that Ir, Pt, Au, and Hg
induce solution strengthening, while Hf, Ta, and Re cause softening by
facilitating dislocation motion around solutes. These predictions, based
on dislocation core calculations, correspond well with the experimental
studies on mechanical behavior in W alloys.

Fig. 4. (a) Energy barriers to dislocation motion for different solutes. (b) Relationship between the energy barrier and the interaction energy.
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