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Abstract 

Y-doped BaZrO3 (BZY) is a promising candidate as an electrolyte in fuel cells, and attracts 

increasing attention.  In this work, a systematic investigation was performed on microstructure, 

proton concentration, proton conductivity, and hydration induced chemical expansion in Y-doped 

BaZrO3.  The results revealed that the bimodal microstructure in BaZr0.85Y0.15O3-δ was composed of 

large grains with composition close to the nominal value, and fine grains with large compositional 

discrepancy.  This property is considered to be one of the evidences of phase separation at lower 

temperature than sintering temperature (1600 oC), which hinders the grain growth.  Thermal 

expansion coefficient of BZY was measured for various dopant level, and was determined to be 

around 10-5 K-1 in wet and dry argon atmosphere.  In addition, chemical expansion effect due to 

hydration was confirmed by HT-XRD in dry and wet Ar atmospheres, and suggests an interesting 

relationship between the lattice change ratio and proton concentration, in the BZY system with 

different Y content.  The change ratio of lattice constant due to hydration increased obviously with 

the proton concentration for the sample containing the Y content of 0.02 and 0.05, but only changed 

slightly when the Y content was increased to 0.1 and 0.15.  However, when the Y content was 

further increased over 0.2, the change ratio of lattice constant due to hydration starts to increase 

obviously again.  Such results indicate a high possibility that the stable sites of protons in BZY 

changed with the variation in Y content. 
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1. Introduction 

Protonic ceramic fuel cells (PCFCs) using proton conductive oxides as electrolytes are promising 

devices for energy conversion, not only because of their relatively lower operation temperature range 

(450 – 700 oC) enabling reduced cost on structural materials, but also an increased efficiency for fuel 

utilization since water vapor is produced at the cathode in PCFCs.  Several candidates [1, 2] were 

proposed as the electrolyte in PCFCs, but barium zirconate (BaZrO3) doped with yttrium (Y) is 

regarded to be the most promising one, benefitted from its high protonic conductivity (> 0.01 Scm-1 

at 600 oC) in humid atmosphere [3-6], and excellent chemical stability against CO2 and H2O [7, 8]. 

A lot of works have been dedicated to investigate fundamental properties of Y-doped BaZrO3 (BZY), 

and also its practical application in PCFCs.  Recently, lattice expansion due to hydration in 

perovskite oxides, or hydration induced chemical expansion in another word, attracts an increasing 

attention [9-19], since potential risk of crack in electrolyte, or delamination between the electrolyte 

and electrodes during the fuel cell operation might thereby be introduced.  A clear chemical 

expansion behavior in the BZY system was reported by Hiraiwa, et al. [12] and Andersson, et al. [16] 

with high temperature X-ray diffraction (HT-XRD) analysis in dry atmosphere on hydrated samples.  

However, much more precise information on the chemical expansion behavior should be provided 

through a relevant measurement in a controlled humid atmosphere, but such investigation is lacking. 

In addition, although fundamental properties of BZY seem to be well studied, several questions still 

remained.  A bimodal microstructure was observed by Schober, et al. [20] in BaZr0.9Y0.1O3-δ 
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prepared by solid state reaction method.  Lately, Imashuku, et al. also reported such bimodal 

microstructure in BaZr0.85Y0.15O3-δ [21].  However, other information, such as local composition of 

such bimodal microstructure, has not been reported. 

In this work, BaZrO3 doped with various Y content were prepared, and HT-XRD were performed in 

dry and wet Ar atmospheres to evaluate the hydration induced chemical expansion effect.  Then, 

water content and conductivity were measured to enable a combined discussion on the correlation 

among these properties.  In addition, energy dispersion spectroscopy equipped with a scanning 

transmission electron microscope (STEM-EDS) was applied to examine local composition of 

BaZr0.85Y0.15O3-δ to reveal the character of the bimodal microstructure. 

 

2. Experimental 

2.1 Material preparation 

BaZr1-xYxO3-δ (x = 0.02, 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3) and undoped BaZrO3 were prepared by a 

conventional solid state reaction method.  Starting materials of BaCO3, ZrO2, and Y2O3 powders 

were mixed at the desired ratios, and ball-milled for 24 h.  Mixtures were pelletized under 9.8 MPa 

and heat-treated at 1000 oC for 10 h.  The pellets were then pulverized by a mortar, and subjected to 

ball-milling for 10 h for further pulverizing and mixing.  After that, the samples were pelletized 

under 9.8 MPa again, and kept at 1300 oC for 10 h for synthesizing.  The samples were pulverized 

by the mortar, and ball-milled for 50 h, and subsequently mixed with a binder (NCB-166, DIC 
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Corporation, Tokyo, Japan).  The mixtures were then pressed into pellets at 392 MPa, and 

heat-treated at 600 oC for 8 h to remove the binder.  At last, after being buried in sacrificial powders 

which are mixtures of the relevant synthesized powders (99 wt%) and BaCO3 (1 wt%), the pellet-like 

samples were heated at 1600 oC for 24 h in oxygen atmosphere for sintering. 

 

2.2 Characterization 

Chemical compositions were determined by inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) with SPS4000 (Seiko Instruments Inc., Chiba, Japan).  Relative density of 

the sintered pellet-like samples was estimated with Archimedes method.  Crystal structure was 

identified with X-ray diffraction (XRD) analysis using Cu Kα radiation with X’Pert-ProMPD 

(PANalytical, Almelo, Netherland).  High temperature XRD (HT-XRD) measurements were 

performed with the same XRD device using a HTK 1200N high-temperature chamber (Anton Paar, 

Graz, Austria).  Dry or wet ( atm0310O2H .=p ) argon gas was flowed in the high-temperature 

chamber.  HT-XRD patterns were collected during cooling from 1000 to 30 oC at an average 

cooling rate about 1.06 oCmin-1.  Detailed procedures of HT-XRD measurements were described in 

our previous work. [12]  Rietveld refinement was carried out utilizing a commercial software 

X’Pert HighScore Plus to determine lattice constants.  Microstructures were observed by scanning 

electron microscopy (SEM) and scanning transmission electron microscopy (STEM) with VE-7800 

(Keyence Co., Osaka, Japan) and JEM-2100F (JEOL, Tokyo, Japan), respectively.  Samples for 
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STEM observations were thinned by an argon ion (Ar+) beam using a JEOL EM-09100IS Ion Slicer.  

The local composition was identified by STEM with JEOL JED-2300. 

Karl-Fischer titration method was applied to determine water content.  The pellet-like samples 

heat-treated at 1600 oC for sintering were broken into pieces about 2 mm in length, and hydrated in 

wet Ar with a water partial pressure of 0.05 atm for at least 6 days at desired temperature.  Readers 

are referred to our previous works [22] for detailed procedures. 

Conductivity measurements of the pellet-like samples with sputtered platinum (Pt) electrodes were 

performed in wet H2 atmosphere with water partial pressure kept as 0.05 atm.  Contributions of bulk 

(intra-grain) and grain boundary conduction was determined from the impedance spectra, which were 

collected by A. C. impedance spectroscopy in the frequency range from 10 Hz to 7 MHz using a 

frequency response analyzer (Solartron SI 1260, Solartron Analytical, Farnborough, UK) with 

applied voltage of 100 mV at temperature from 600 to 100 oC. 

 

3. Results 

3.1 Phase identification and microstructure observation 

All the samples show single perovskite phases after sintering at 1600 oC (see Fig. S1 for XRD 

patterns), in agreement with previous reports [23, 24].  The actual chemical compositions 

determined by ICP-AES were close to the nominal ones, as given in Table 1.  In the following text, 

the samples of BaZr1-xYxO3-δ will be named as the abbreviations given in the table, e. g., BZY20 for 
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BaZr0.8Y0.2O3-δ. 

From SEM images of the fractured cross-section shown in Fig. 1, it is clear that a bimodal 

microstructure as a mixture of large and fine grains formed, when the Y content was 0.05, 0.1 and 

0.15.  Such microstructure was also confirmed from STEM observation on BaZr0.85Y0.15O3-δ 

(BZY15), as shown in Fig. 2.  But, with the Y content increased over 0.2, the grain size turned to be 

relatively uniform. 

Then, STEM-EDS point analysis was applied on BZY15 to determine the local compositions of 

individual grains.  Since the spot size is about 1 nm, the local compositions of the fine grains can 

also be determined precisely.  As shown in Fig. 3(a), the large grains have the composition very 

close to the nominal value.  However, an obvious discrepancy in composition was confirmed for the 

fine grains (Fig. 3(b)) (an example for STEM-EDS analysis is given in supplementary information).  

It seems that such bimodal structure cannot be treated simply as a mixture of grains just with 

different size, the difference in compositional homogeneity of the large and fine grains is another 

important characteristic. 

 

3.2 Proton concentration 

The samples hydrated at 300 and 600 oC in wet Ar (𝑝𝑝H2O = 0.05 atm) were subjected to 

Karl-Fischer titration to determine the proton concentration with the results shown in Fig. 4.  In 

general, the proton concentration increased with the increasing Y content.  It is because that as 
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given in eqn (1), increasing the Y content resulted in an increasing in oxide ion vacancies (VO∙∙), 

which benefit the hydration reaction (eqn (2)) to introduce protons (OHO
∙ ). 

Y2O3 + ZrZr× + OO
×  →  YZr′ + ZrO2 + VO∙∙ (1) 

H2O + VO∙∙ = 2OHO
∙  (2) 

 

3.3 Thermal and Chemical expansion 

Variation of lattice constants, which were determined by Rietveld refinement on the XRD patterns 

collected through HT-XRD measurements in dry and wet Ar (𝑝𝑝H2O = 0.031 atm), against the 

temperature is shown in Fig. 5.  Here, only a single cubic perovskite ( mPm3 ) model [25] was used 

to determine the lattice constant.  For the samples with a bimodal microstructure, the fitting results 

should reflect an average effect from the stoichiometric large grains and fine grains with 

compositional discrepancy.  For the samples doped with Y, the lattice constants in wet Ar are larger 

than those in dry Ar, indicating an expansion effect on lattice volume due to hydration.  However, 

since the dry Ar atmosphere in our apparatus is not absolutely free of water vapour, the Y-doped 

samples are hydrated slightly during cooling in the low temperature range (30 – 400 oC), and their 

lattice constants show a positive deviation from the predicted tendency (broken lines in Fig. 4) 

obtained by extrapolating the data in the high temperature range (700 – 1000 oC). 

Then, thermal expansion coefficients (TECs) of the dehydrated samples in the dry Ar atmosphere 

were estimated along the broken lines in Fig. 5, with the results listed in Table 1.  TEC for the 
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undoped BaZrO3 is estimated to be 8.02 × 10-6 K-1 in this work, and seems to increase gradually with 

the increasing Y content.  But the case in wet Ar is a little complicated, since in addition to the 

thermal expansion effect, the chemical expansion induced by the hydration reaction (eqn (2)) also 

plays a very important role [16].  But in the relatively low temperature range (e.g., < 300 oC) where 

the variation of the amount of water molecules incorporated into BZY with the temperature is 

negligibly small [5, 26, 27], the change of the lattice constant in wet Ar is almost parallel with that in 

dry Ar.  It means that if excluding the effect from chemical expansion, the value of TEC in wet and 

dry Ar is very close. 

The lattice constants in dry and wet Ar at 300 and 600 oC are summarized in Fig. 6 (data at 30 oC are 

given in Fig. S3), together with the change ratio of lattice constant, which is defined by eqn (3), to 

give a quantitative evaluation of the chemical expansion effect [19].  In eqn (3), awet Ar and adry Ar 

are the lattice constants at 300 or 600 oC obtained in wet and dry Ar atmospheres, respectively.   

The extrapolated lattice constants in dry Ar were used here.  It can be seen that the change ratio of 

lattice constant due to hydration exhibits a tendency to increase with the increasing Y content, 

indicating an enhanced chemical expansion effect. 

Change ratio of lattice constant =  
𝑎𝑎wet Ar −  𝑎𝑎dry Ar

𝑎𝑎dry Ar
 × 100% (3) 

Deep insight into the behaviour of protons in the crystal lattice of BZY might be provided by 

exploring the relationship between the proton concentration and the change ratio of lattice constant.  

As shown in Fig. 7, when the Y content was very low (0.02 and 0.05), the change ratio of lattice 
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constant shows an obvious tendency to increase with the increasing proton concentration.  However, 

a plateau appeared when the Y content was between 0.05 and 0.15, that is; although the proton 

concentrations still increased, the change ratio of lattice constant increased only a little.  When the 

Y content was further increased over 0.2, the change ratio of lattice constant turned to increase 

significantly again with the increasing proton concentration.  This phenomenon is quite interesting.  

Such special behaviour implies that it is not a simple proportional relation between the degree of 

chemical expansion effect and the proton concentration.  Some other factors also play important 

roles. 

 

3.4 Bulk and grain boundary conductivities 

By analyzing the electrochemical impedance spectra collected in wet H2, contributions belonging to 

bulk (intra-grain) and grain boundary conductions are separated [5, 19].  Arrhenius plots of the bulk 

and grain boundary conductivities of BaZrO3 doped with various Y content are shown in Fig. 8 and 

Fig. 9, respectively.  Here, the bulk and grain boundary conductivities were calculated following 

eqn. (4).  σ is the conductivity.  L and S are the thickness and surface area of the pellet-like sample 

for impedance measurement, respectively.  R is the resistance belonging to bulk or grain boundary 

determined from impedance spectra. 

𝜎𝜎 =  
𝐿𝐿

𝑅𝑅 × 𝑆𝑆
 (4) 

The contribution from bulk conduction can only be separated at relatively low temperature (an 
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example of BZY25 is given in the supplementary information).  We here only plotted the bulk and 

grain boundary conductivities at 300 oC in Fig. 10 for comparison.  The bulk conductivity is very 

low for the sample with the Y content of 0.02 and 0.05.  But, when the Y content was increased 

from 0.05 to 0.1, the bulk conductivity increased dramatically from 0.61 mScm-1 (BZY5) to 2.66 

mScm-1 (BZY10).  It means that the Y content is just doubled, but the proton conductivity increased 

by more than four times.  However, further increasing the Y content over 0.1 does not result in a 

large change in the proton conductivity.  Referring to the grain boundary conductivity, it increased 

slightly with Y content from 0.02 to 0.15, but a dramatic increase occurred when the Y content was 

elevated from 0.15 to 0.2.  Further increase in the Y content results in a decrease in the grain 

boundary conductivity.  Apparently, BaZr0.8Y0.2O3-δ possess the highest value. 

The activation energy (Ea) and pre-exponential factor (A) of the bulk conduction were extracted by 

fitting the conductivity data collected between 100 and 200 oC following eqn. (5).  Here, T is 

temperature and kB is Boltzmann’s constant. 

𝜎𝜎𝜎𝜎 =  𝐴𝐴 exp(
−𝐸𝐸a
𝑘𝑘B𝜎𝜎

) (5) 

Some literature data with their experimental conditions summarized in Table 2 were also plotted for 

comparison in Fig. 11.  Our results agree well with that reported by Bohn, et al [28], Imashuku, et 

al [21], and Yamazaki, et al [29], but higher than those reported by Fabbri, et al., [23] with a higher 

fitting temperature range of 350 – 500 oC.  As shown in Fig. 11(a), the activation energy of bulk 

conduction shows a tendency to increase with the increasing Y content.  And the pre-exponential 
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factor, as shown in Fig. 11(b), increased when the Y content was increased from 0.02 to 0.1, but 

changed slightly when the Y content was further increased.  (The activation energy and 

pre-exponential factor of the grain boundary conduction are also calculated, and given in 

supplemental information.) 

 

3.5 Total conductivity 

The Arrhenius plots of the total conductivities of BaZrO3 doped with various Y content are shown in 

Fig. 12.  For the sake of comparison, Fig. 13 summarized the value at 400, 500 and 600 oC.  It is 

clear that the total conductivity increased with increasing Y content from 0.02 to 0.2, but decreased 

when the Y content was higher than 0.2.  And BaZr0.8Y0.2O3-δ has the highest total conductivity at 

all these three temperatures compared with the other samples containing different Y content.  

Especially, the value obtained at 500 and 600 oC is larger than 0.01 Scm-1, which is necessary for the 

application as an electrolyte in fuel cells [30]. 

In order to check the reproducibility of the total conductivity of BaZr0.8Y0.2O3-δ, five different 

batches of BZY20 samples were prepared, and their total conductivities are shown in Fig. 14.  The 

data marked with the circle symbols are the same as those used in Fig. 12.  Although a little 

fluctuation appeared among different preparation batches, in general, reasonably good 

reproducibility was achieved.  And the average value of these five different batches were calculated 

to be 0.0145 ± 0.0012 Scm-1 at 600 oC. 
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4 Discussion 

Compared with BZY20, the grain boundary conductivity of BaZr1-xYxO3-δ (x = 0.05, 0.1 and 0.15) is 

quite low.  Relatively smaller grain size of these samples should be a reason, since the area of grain 

boundary thereby greatly increased.  That is, it is reasonable to consider that the bimodal 

microstructure impacts a negative influence on the grain boundary conductivity.  The bimodal 

microstructure of BZY15 contains the large grains with the composition close to the nominal one, 

and fine grains possessing significant imhomogeneity in composition.  As far as we know, it is the 

first time that the precise local composition of such microstructure was determined.  In our previous 

work [31], we found that when the sintering time at 1600 oC was increased from 24 h to 100 h, the 

microstructure of BZY15 turned to be homogeneous.  In addition, by using fine BZY15 powders, 

which can be prepared with a nitrate freeze drying method [32], even the sintering time at 1600 oC 

was shorten to 4 h, a homogeneous microstructure can be achieved.  These results indicate that the 

equilibrated status of the composition of BaZr0.85Y0.15O3-δ is a single perovskite phase at 1600 oC.  

Reports on phase observation of BaZr0.9Y0.1O3-δ (BZY10), which also exhibited a bimodal 

microstructure in this work, might be informative [33, 34].  Azad, et al., [33] observed α-BZY10 

phase at relatively low temperature (1500 oC), which changed to β-BZY10 phase when the sintering 

temperature elevated to 1720 oC.  The difference in phase behavior at lower and higher temperature 

possibly hinders the grain growth, and results in such bimodal microstructure.  But, we do not have 

direct evidence of the hypothesis, and further investigation in future is needed. 
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Fundamental aspect on the mechanism of proton conduction is always an important and interesting 

topic.  A definite trapping effect of protons in BZY was recently reported by Yamazaki, et al. [35] 

at relatively low temperature (for example, 100 – 200 oC).  Briefly speaking, protons are trapped at 

the oxide ions near the Y dopant cations, but relatively free at the oxide ions close to the Zr host 

cations.  In the present study, when the Y content is in the range between 0.02 and 0.1, both the 

activation energy and the pre-exponential factor increased with the increasing Y content.  Such 

behavior of activation energy and pre-exponential factor is reasonable, if we consider the increase of 

proton concentration and assume a transition status of protons at these temperature ranges, where 

dominant status of protons is changing from trapped ones to free ones.  However, when the Y 

content is increased over 0.1, although the activation still increases with the increasing Y content, the 

change in pre-exponential factor is quite small.  These results indicate that a simple trapping theory 

might be available for the system with low Y content (0.02 – 0.1 in this work).  For the system 

containing high Y content, the case seems to be sophisticated rather than a simple trapping effect. 

A clear dependence of the chemical expansion behavior on the Y content, which can be divided into 

three regions, was observed in this study (Fig. 7).  Since the chemical expansion here is induced by 

hydration, behavior of protons in the crystal lattice of BZY is expected to be one of the main factors 

influencing the chemical expansion effect.  A recent work by Oikawa, et al. revealed a linear 

relationship between the lattice constant of BaZr0.9Sc0.1O3-δ and proton concentration [36], implying 

that if the stable site of protons in the lattice does not change greatly with the proton concentration, 
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an increase in proton concentration should induce a linear behavior of chemical expansion.  

Thereby, the phenomenon observed in Fig. 7 suggests possibly different stable sites for protons in 

BZY with the different Y content.  For example, the location of protons might be different between 

BaZrO3 doped with small Y content (0.02, 0.05) and large Y content (0.15 – 0.3).  However, only 

macroscopic information is available in the present work, establishing detail models might be an 

interesting topic in the future. 

 

Conclusions 

In this work, a systematic investigation on microstructure, proton concentration, proton conductivity, 

thermal expansion, and hydration induced chemical expansion in Y-doped BaZrO3 was performed.  

By STEM-EDS analysis, it was found that the bimodal microstructure in BaZr0.85Y0.15O3-δ is 

composed of large grains with composition close to the nominal value, and fine grains with large 

compositional discrepancy.  This property is considered to be one of the evidences of phase 

separation at lower temperature than sintering temperature (1600 oC), which hinders the grain growth.    

Behavior of thermal expansion and chemical expansion was investigated by HT-XRD analysis.  

The thermal expansion coefficient in dry Ar atmosphere was estimated to be 8.02 × 10-6 K-1 for 

undoped BaZrO3, and tended to increase with the increasing Y content.  For example, about 1.01 × 

10-5 K-1 for BaZr0.8Y0.2O3-δ.  In addition, an interesting relationship was observed between the 

proton concentration and the lattice change ratio due to the hydration induced chemical expansion, in 
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the BZY system with different Y content.  Such results implied a high possibility that the stable 

sites of protons in BZY was different between the samples with small Y content (0.02 and 0.05) and 

those with large Y content (0.15 – 0.3). 
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Fig. 1  SEM images of the fractured cross-section of undoped BaZrO3 and BaZr1-xYxO3-δ (x = 0.02, 

0.05, 0.1, 0.15, 0.2, 0.25 and 0.3).  All the samples were heat-treated at 1600 oC in O2 for 24 h for 

sintering. 
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Fig. 2  A bright field STEM (BF-STEM) image of BaZr0.85Y0.15O3-δ (BZY15), in which a clear 

co-existence of large grains and fine grains can be seen. 

 

  



24 
 

 

Fig. 3  Results of STEM-EDS point analysis of (a) large grains and (b) fine grains in 

BaZr0.85Y0.15O3-δ (BZY15). 
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Fig. 4  Proton concentration of BaZrO3 doped with various Y content plotted against the actual Y 

content measured by ICP-AES.  All the samples were sintered at 1600 oC in O2 for 24 h, and 

hydrated at 300 or 600 oC in wet Ar ( atm050O2H .=p ).  The proton concentration was calculated 

from the water content measured by Karl-Fischer titration method.  The data of BaZr0.8Y0.2O3-δ are 

cited from our previous report [5]. 
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Fig. 5  Variation in lattice constants of undoped BaZrO3 and those doped with various Y content in 

dry Ar and wet Ar (𝑝𝑝H2O = 0.031 atm) with temperature.  All the samples were finally heat-treated 

at 1600 oC in O2 for 24 h for sintering. 
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Fig. 6  Lattice constant of BaZrO3 doped with various Y content determined by HT-XRD 

measurements in dry Ar and wet Ar (𝑝𝑝H2O = 0.031 atm) at (a) 300 oC, and (b) 600 oC against the 

actual Y content determined by ICP-AES.  The lattice constants in dry Ar were determined by 

extrapolating the data at high temperature range (700 – 1000 oC). 
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Fig. 7  Relationship between change ratio of lattice constant due to hydration and proton 

concentration per unit cell at (a) 300 oC, and (b) 600 oC.  The proton concentration was measured 

by Karl-Fischer titration method on samples hydrated in wet Ar – 5% H2O.  The change ratio of 

lattice constant was calculated using the lattice constant determined by HT-XRD in dry Ar 

(extrapolated) and Ar – 3.1% H2O.  All the samples used here were sintered at 1600 oC in O2 for 24 

h. 
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Fig. 8  Arrhenius plots of bulk conductivities of BaZr1-xYxO3-δ (x = 0.02, 0.05, 0.1, 0.15, 0.2, 0.25 

and 0.3) in wet H2 atmosphere with the water vapor pressure of 0.05 atm.  All the samples were 

finally heat-treated at 1600 oC in O2 for 24 h for sintering. 
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Fig. 9  Arrhenius plots of grain boundary conductivities of BaZr1-xYxO3-δ (x = 0.02, 0.05, 0.1, 0.15, 

0.2, 0.25 and 0.3) in wet H2 atmosphere with the water vapor pressure of 0.05 atm.  All the samples 

were finally heat-treated at 1600 oC in O2 for 24 h for sintering. 
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Fig. 10  Bulk conductivity and effective grain boundary conductivity of BaZrO3 doped with various 

Y content at 300 oC in wet H2 ( atm050O2H .=p ) plotted against the actual Y content determined by 

ICP-AES H2 – 5% H2O atmosphere.  
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Fig. 11  (a) Activation energy and (b) pre-exponential factor of bulk conduction of BaZrO3 doped 

with various amount of Y plotted against the actual Y content determined by ICP-AES.  The 

activation energy and pre-exponential factor were obtained by fitting the bulk conductivity measured 

in the temperature range around 100 – 200 oC in H2 – 5% H2O atmosphere.  Literature data [21, 23, 

28, 29] were also plotted for comparison. 

  



33 
 

 

Fig. 12  Arrhenius plots of total conductivities of BaZr1-xYxO3-δ (x = 0.02, 0.05, 0.1, 0.15, 0.2, 0.25 

and 0.3) in wet H2 atmosphere with the water vapor pressure of 0.05 atm.  All the samples were 

finally heat-treated at 1600 oC in O2 for 24 h for sintering.  
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Fig. 13  Total conductivity of BaZrO3 doped with various Y content at 400, 500 and 600 oC in wet 

H2 ( atm050O2H .=p ) plotted against the actual Y content determined by ICP-AES.  Violet dash 

line indicates the ionic conductivity of 0.01 Scm-1 necessary for an applicable electrolyte in fuel cells. 

[30] 
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Fig. 14  Total conductivity in H2 – 5% H2O of BaZr0.8Y0.2O3-δ sintered at five different batches.  

The data marked with circle symbols are those plotted in Fig. 12. 

 


