
ARITHMETIC APPROACH TO NEWTON-OKOUNKOV BODIES

HUAYI CHEN

Newton-Okounkov body is an efficient tool to study the volume function on the
group of Cartier divisors over a projective variety. Initialised by Okounkov [14,
15], this theory is then developed by Lazarsfeld and Mustaţă [12] and Kaveh and
Khovanskii [10, 11]. We remind briefly its construction. Let k be a field, X be an
integral scheme over Spec k, and K be the field of rational functions on X. Let d
be the Krull dimension of the scheme X. We equip Zd with a monomial order (for
example the lexicographic order) and fix a Zd-valuation val(.) on K such that

(i) for any a ∈ k \ {0}, val(a) = 0,
(ii) for any α ∈ Zd, the quotient k-vector space

{x ∈ K | val(x) ! α}/{x ∈ K | val(x) > α}

has dimension 0 or 1.
Any Zd-valuation satisfying these properties is said to be of one-dimensional leaves.
For example, such Zd-valuation can be obtained by choosing a regular rational point
P of X and a regular sequence in the local ring OX,P (see [10, §2.2]). Given a graded
sub-k-algebra V• =

⊕
n∈N VnT n of the polynomial ring K[T ], the Newton-Okounkov

body of V• is defined as

∆(V•) := Convex hull of
⋃

n∈N, n!1

{ 1
n
val(x)

∣∣∣ x ∈ Vn, x ̸= 0
}
.

In the case where the Newton-Okounkov semigroup

Γ(V•) :=
⋃

n∈N, n!1
{(n, val(x)) | x ∈ Vn, x ̸= 0}

generates Zd+1 as a group, the sequence
dimk(Vn)

nd
, n ∈ N, n ! 1

converges to the Lebesgue measure of the convex set ∆(V•). Thus we associate
graded linear series with convex bodies in Rd in order to understand the asymptotic
behaviour of these graded linear series, generalising the classic combinatoric study
of toric varieties.

From the point of view of arithmetic geometry, where the base field is often not
algebraically closed, the existence of a Zd-valuation of one-dimensional leaves on K
is not guaranteed in general. The existence of such a Zd-valuation val(.) implies
actually that the extension K/k is geometrically integral. In fact, any non-zero
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element α of K ⊗k k can be written in the form x1 ⊗ a1 + · · · + xn ⊗ an with
(x1, . . . , xn) ∈ (K \ {0})n and (a1, . . . , an) ∈ (k \ {0})n satisfying

val(x1) > val(x2 ) ! . . . ! val(xn).

Moreover, the value of val(x1) does not depend on the choice of the decomposition.
These facts can be shown by an induction argument on the tensorial rank of α (the
minimal positive integer n such that α can be written as the sum of n split tensors).
Hence we can extend the valuation function val(.) to K ⊗k k by associating val(x1)
to α. The extended map is additive with respect to the multiplication law. This
implies that K ⊗k k is an integral domain. Therefore it is interesting to have an
alternative approach of Newton-Okounkov bodies for the case where K does not
admit a Zd-valuation of one-dimensional leaves.

Before explaining the main idea for the alternative approach of Newton-Okounkov
bodies, let me briefly recall the construction of arithmetic Newton-Okounkov bodies.
Let X be an arithmetic projective variety, that is, an integral, flat, and projective
scheme over SpecZ. As Hermitian line bundle over X , we refer to the data L
consisting of an invertible sheaf L on X together with metric ϕ = (|.|ϕ(x))x∈X (C)
on L (C), which is assumed to be continuous with respect to the analytic topology,
and invariant by the complex conjugation. We are interested in the asymptotic
behaviour of ln(card Ĥ0(L ⊗n)) when n→ +∞, where

Ĥ0(L ⊗n) :=
{
s ∈ Γ(X ,L ⊗n)

∣∣∣ sup
x∈X (C)

|s|ϕ⊗n(x) " 1
}
.

In the philosophy of Arakelov geometry, Hermitian line bundles are analogous to in-
vertible sheaves in the geometry of a projective scheme, and the family (Ĥ0(L ⊗n))n∈N
should play the role of a graded linear series in the arithmetic setting. However, it
turns out that the family (Ĥ0(L ⊗n))n∈N does not have the structure of graded
algebra over a field (or over the ring of integers), and the arithmetic replication
of geometric constructions and arguments is often difficult. For example, in [18],
an analogue of the approach of Lazarsfeld and Mustaţă has been developed in the
arithmetic setting by much more arduous combinatoric arguments.

In [2], a new idea has been proposed to transform the study of “arithmetic graded
linear series” (Ĥ0(L ⊗n))n∈N into that of a family (indexed by R) of graded linear
series of the generic fibre LQ. For any t ∈ R, we consider the graded linear series

V t
• (L ) =

⊕

n∈N

VectQ
{
s ∈ Γ(X ,L ⊗n)

∣∣∣ sup
x∈X (C)

|s|ϕ⊗n(x) " e−nt
}
.

From the point of view of the geometry of numbers, the family of graded linear
series (V t

• (L ))t∈R encodes the successive minima of the free Z-modules Γ(X ,L ⊗n)
equipped with the norms∥.∥ϕ⊗n := supx∈X (C) |.|ϕ⊗n(x). Thus by the second theorem
of Minkowski one can naturally associate the asymptotic behaviour of (Ĥ0(L ⊗n))n∈N
with the value of the volume function on the family of graded linear series (V t

• (L ))t∈R.
This new approach also permits to obtain the arithmetic analogue of the main re-
sults of Lazarsfeld and Mustaţă (see [3]), and a new construction of arithmetic
Newton-Okounkov bodies (see [1]).
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The purpose of this lecture is to explain how the above idea leads to an alter-
native construction of Newton-Okounkov bodies in the geometric setting. The key
argument relies on the analogy between number fields and function fields, where in-
stead of the geometry of numbers we use the geometry of vector bundles on a curve,
or function field arithmetic. In what follows, we fix a base field k. For simplicity,
we assume that the characteristic of k is zero (we will discuss the general case in
the end of the lecture). Let K be a finitely generated extension of k and d be the
transcendence degree of K over k. By graded linear series of K/k, we refer to a
graded sub-k-algebra V• =

⊕
n∈N VnT n of the polynomial ring K[T ] =

⊕
n∈N KT n,

such that each Vn is a finite-dimensional vector space over k. We say that V• is
birational if one has

k(V•) := k

( ⋃

n∈N, n!1

{f
g

∣∣∣ (f, g) ∈ (Vn \ {0})2
})

= K.

In order to determine the family of graded linear series on which we develop a
theory of Newton-Okounkov bodies, we make the following observations. First of
all, given a graded linear series V• of K/k, the set

N(V•) := {n ∈ N |Vn ̸= {0}}

is a subsemigroup of N. Moreover, if we denote by Z(V•) the subgroup of Z generated
by N(V•) then N(V•)\Z(V•) is a finite set. Therefore, by changing the grading we may
assume without loss of generality that Vn ̸= {0} for sufficiently large n. Secondly,
a graded linear series V• is always birational viewed as a graded linear series of the
extension k(V•)/k. Therefore, by changing the underlying field extension K/k we
may assume without loss of generality that V• is birational. Thirdly, we are mainly
interested in graded linear series of a Cartier divisor, which is necessarily a sub-k-
algebra of a graded linear series of finite type. Such graded linear series is said to be
of subfinite type. A priori this condition depends on the choice of the extension K/k
with respect to which we consider the graded linear series V•. However, as shown
by [8, Theorem 1.2], if V• is a graded linear series of subfinite type of K/k, then it
is also a graded linear series of subfinite type of k(V•)/k.

In the following, we denote by A(K/k) the set of all birational graded linear series
V• of K/k which are of subfinite type and such that Vn ̸= {0} for sufficiently large
n. Our purpose is to construct a map ∆ from A(K/k) to the set of convex bodies
in Rd (namely convex and compact subset with non-empty interior) which satisfies
the following properties:

(a) for graded linear series V• and W• in A(K/k) such that Vn ⊂ Wn for suffi-
ciently large n, one has ∆(V•) ⊂ ∆(W•);

(b) for any V• in A(K/k) and any integer m ∈ N!1, one has ∆(V (m)
• ) = m∆(V•),

where V (m)
• denotes the graded linear series

⊕
n∈N VmnT n;

(c) for graded linear series V• and W• in A(K/k) one has

∆(V•) +∆(W•) ⊂ ∆(V• ·W•),
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where “+” denotes the Minkowski sum of convex bodies, and V• ·W• denotes
the graded linear series

⊕

n∈N

Vectk
(
{fg | (f, g) ∈ Vn ×Wn}

)
T n;

(d) for any graded linear series V•, the volume of V•, which is defined as

vol(V•) := lim sup
n→+∞

dimk(Vn)

nd/d!
,

is equal to the Lebesgue measure of ∆(V•) times d!.
We will see from the construction of the map ∆ that, for any graded linear series
V• ∈ A(K/k), the sequence defining the volume of V• actually converges. Moreover,
the graded linear series V• satisfies the Fujita approximation property, namely vol(V•)
is equal to the supremum of volumes of graded linear series of finite type which are
contained in V•. This generalises [10, Corollary 3.11] to the case where the extension
K/k is not geometrically integral.

Similarly to the approach of [3, 10], the construction of the map ∆(.) is not
intrinsic. However, instead of choosing a Zd-valuation of the field K over k, our
construction depends on the choice of a flag of intermediate extensions of K/k. In
the following we fix a sequence of field extensions

k = K0 ! K1 ! . . . ! Kd = K

such that each extension Ki/Ki−1 is transcendental of transcendence degree 1. Note
that the extension K/Ki is of transcendence degree d − i. We will construct, by
backward induction on i, a map ∆(i) from A(K/Ki) to the set of convex bodies
in Rd− i, which satisfies the conditions (a)–(d) above, and such that, for any graded
linear series V• in A(K/Ki−1), the projection of ∆(i−1)(V•) on its first d−i coordinates
gives a convex body which is contained in ∆(i)(V•,Ki), where V•,Ki denotes the graded
sub-Ki-algebra of K[T ] generated by V•. Then the map ∆(0) from A(K/k) to the
set of convex bodies in Rd is just what we need.

We first consider the case where i = d. If V• is a graded linear series in A(K/K),
then Vn = K for sufficiently large n, and one has vol(V•) = 1. We let ∆(d)(V•) = R0.
It is easy to see that the conditions (a)–(d) are satisfied by the map ∆(d). Moreover,
any graded linear series V• in A(K/K) is necessarily of finite type, and dimk(Vn) = 1
for sufficiently large n, and hence the sequence defining vol(V•) converges.

It is in the induction procedure that we applies the approach of concave transform
and arithmetic Newton-Okounkov body in the function field setting. We assume that
the map ∆(i) has been constructed. The main idea is to identifie Ki with the field
of rational functions of a regular projective curve Ci over SpecKi−1. We denote by
ηi : SpecKi → Ci the morphism associated with the generic point of Ci. Let W be a
vector space over Ki and M be a finite-dimensional Ki−1-vector subspace of W . The
sub-OCi-module of ηi,∗(W ) generated by M is a vector bundle (namely, locally free
sheaf of finite rank) on Ci, called the vector bundle generated by (M,W ), denoted by
E(M,W ). Note that M identifies with a Ki−1-vector subspace of H0(Ci, E(M,W )),
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and the generic fibre of E identifies with the Ki-vector subspace of W generated by
M . If V• is a graded linear series in A(K/Ki−1), then

E(V•) :=
⊕

n∈N

E(Vn, Vn,Ki)

is a graded OCi-algebra whose generic fibre identifies with V•,Ki . Note that the
volume of V• can be described by the asymptotic behaviour of E(V•): one has

vol(V•) = lim sup
n→+∞

dimk(H0(Ci, E(Vn, Vn,Ki)))

nd− i+1/(d− i+ 1)!
.

We refer to [7, Lemma 4.5] for a proof.
The above construction allows to apply the method of R-filtration to the graded

OCi-algebra E(V•) to construct the convex body associated with V• (similarly to the
arithmetic Newton-Okounkov body mentioned above). It turns out that Harder-
Narasimhan R-filtration is a suitable choice. Let F be a non-zero vector bundle on
Ci. Recall that the slope of F is defined as the quotient of the degree of F by the
rank of F , denoted by µ(F ). If any non-zero vector subbundle of F has a slope
" µ(F ), we say that F is semistable. Harder and Narasimhan have shown that, for
any non-zero vector bundle F , there exists a unique flag of vector subbundles

0 = F0 ! F1 ! . . . ! Fm = F,

which is called Harder-Narasimhan flag of F , such that each subquotient Fj/Fj−1

is semistable, and that
µ(F1/F0) > . . . > µ(Fm/Fm−1).

We refer to [9, §1.3] for more details. Note that the last slope µ(Fm/Fm−1) is the
smallest one among the slopes of non-zero quotient vector bundles of F . It is called
the minimal slope of F and denoted by µmin(F ). The first slope µ(F1/F0) is the
largest one among the slopes of non-zero vector subbundle of F , which is called the
maximal slope of F and denoted by µmax(F ). We can encode the Harder-Narasimhan
flag and the successive slopes into an R-filtration of the generic fibre: for any t ∈ R,
we let

F t
HN(F ) =

∑

0 ̸=G ⊂ F
µmin(G)!t

GKi

and call it the Harder-Narasimhan R-filtration of F . It can be shown that

F t
HN(F ) =

⎧
⎪⎨

⎪⎩

0, if µ(F1/F0) < t,

Fj,Ki , if µ(Fj+1/Fj) < t " µ(Fj/Fj−1),

FKi , if t " µ(Fm/Fm−1).

We refer to [4, §§2.2-2.3] for more details.
Note that we have assumed that the base field k is of characteristic zero. Under

this condition it has been shown by Narasimhan and Seshadri [13] that the tensor
product of two semistable vector bundles is still semistable (see also the algebraic
proof of Ramanan and Ramanathan [16]). As a consequence, the minimal slope of
the tensor product of two (non-necessarily semistable) vector bundles is equal to the
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sum of the minimal slopes of these vector bundles. Therefore, if V• is a graded linear
series in A(K/Ki−1), then the Harder-Narasimhan R-filtrations on E(Vn, Vn,Ki) are
super-multiplicative, namely, for any (n1, n2 ) ∈ N2 and any (t1, t2 ) ∈ R2 , one has

F t1
HN(E(Vn1 , Vn1 ,Ki)) · F

t2
HN(E(Vn2 , Vn2 ,Ki)) ⊂ F t1+t2

HN (E(Vn1+n2 , Vn1+n2 ,Ki)).

For any t ∈ R, let
V (t)

•,Ki
:=
⊕

n∈N

Fnt(E(Vn, Vn,Ki)).

The above super-multiplicativity shows that V (t)
•,Ki

is a graded linear series of K/Ki.
Clearly this graded linear series is of sub-finite type. Let

µ∗ := lim sup
n→+∞

µmax(E(Vn, Vn,Ki))

n
.

For t > µ∗, the graded linear series V (t)
•,Ki

is trivial, namely V (t)
n,Ki

= {0} for any
n ∈ N!1. For t < µ∗, the graded linear series V (t)

•,Ki
is birational (see [7, Lemma 4.2])

and hence belongs to the family A(K/Ki). Thus the induction hypothesis applies
and leads to a decreasing family

(
∆(i)(V (t)

•,Ki
)
)
t<µ∗of convex bodies in Rd− i. Moreover,

the induction hypothesis (notably conditions (a)–(c)) and the above super-additivity
also imply that, for any ε ∈ [0, 1] and any (t1, t2 ) ∈ R2

<µ∗ one has

ε∆(i)(V (t1 )
•,Ki

) + (1− ε)∆(i)(V (t2 )
•,Ki

) ⊂ ∆(i)(V εt1+(1−εt2 )
•,Ki

).

Therefor, the function GV• : ∆
(i)(V•,Ki)→ [0, µ∗] sending x ∈ ∆(i)(V•, Ki) to

sup{t < µ∗ | x ∈ ∆(i)(V (t)
•,Ki

)}
is concave. We call it the concave transform of V•. The convex body associated with
V• is then defined as the graph of the positive part of the concave transform, namely

∆(i−1)(V•) := {(x, t) | x ∈ ∆(i)(V•,Ki), 0 " t " GV•(x)}.
We have constructed above a map ∆(i−1) from A(K/Ki−1) to the set of convex

bodies in Rd− i+1. By definition is not hard to check that the map satisfies the
conditions (a)–(c). We refer to [7, §4.4] for details. The condition (d) results from
Riemann-Roch theorem, which implies that, for any non-zero vector bundle F on
Ci, one has

∣∣∣∣ dimKi−1 (H
0(Ci, F ))−

∫ +∞

0

dimKi(F t
HN(F )) dt

∣∣∣∣ " rk(F )max(g(Ci)− 1, 1),

where g(Ci) denotes the genus of Ci relatively to Ki−1. We refer to [6, Theorem 2.4]
for a proof of this inequality. Indeed, the measure of the convex body ∆(i−1)(V•) can
be written as∫

∆(i)(V•,Ki
)

∫ +∞

0

1l{t"GV• (x)} dt dx =

∫ +∞

0

vol(∆(i)(V (t)
•,Ki

)) dt.

Note that the induction hypothesis shows that

vol(∆(i)(V (t)
•,Ki

)) = lim
n→+∞

dimKi(Fnt
HN(E(Vn, Vn,Ki)))

nd− i
.
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Therefore we obtain

vol(∆(i−1)(V•)) = lim
n→+∞

1

nd− i

∫ +∞

0

dimKi(Fnt
HN(E(Vn, Vn,Ki))) dt

= lim
n→+∞

1

nd− i+1

∫ t

0

dimKi F t
HN(E(Vn, Vn,Ki))) dt.

Combining with the above inequality resulting from Rimann-Roch theorem, we ob-
tain

vol(∆(i−1)(V•)) = lim
n→+∞

dimKi−1 (H
0(Ci, E(Vn, Vn,Ki)))

nd− i+1
= lim

n→+∞

dimKi−1 (Vn)

nd− i+1
.

The Fujita approximation property of V• can be proved by using [1, Theorem 1.14].
By the above induction procedure, we construct a map ∆ from A(K/k) to the

set of convex bodies in Rd which satisfies the conditions (a)–(d). Observe that the
construction in each induction step is the function field analogue of the arithmetic
Newton-Okounkov body. Similar construction can be done in the positive charac-
teristic case: it suffices to replace the Harder-Narasimhan R-filtration by the R-
filtration of minima, and replace the geometry of vector bundles (notably Riemann-
Roch theorem) by function field arithmetic (notably the analogue of Minkowski’s
second theorem by Roy and Thunder [17, Theorem 2.1]). We refer to [7] for more
details.

Given a flag of intermediate extensions of K/k, it seems to be a difficult problem
to compute explicitly the map ∆ from A(K/k) to the set of convex bodies in Rd.
The computations made in [5] suggest that, even in the case where K/k is purely
transcendental and V• comes from a toric divisor on a toric variety model, the convex
body ∆(V•) may often have a non-linear boundary. However, from the point of view
of birational geometry, the additional data on which the map ∆(.) depends seems
to be more natural. It can be hoped that the convex body ∆(V•) contains more
intrinsic information about the graded linear series V• than the classic Newton-
Okounkov body, and thus have potential applications in the study of birational
algebraic geometry.
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