A unique pair of triangles

Yoshinosuke Hirakawa and Hideki Matsumura (Keio Univ.)

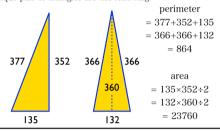
§1. Main Result

Theorem (H. -Matsumura [2]).

There exists a unique (up to similitude) pair of a right triangle and an isosceles triangle such that

- 1. all of their sides have integral lengths,
- 2. they have the same perimeters, and
- they have the same areas.

The unique pair of triangles are the following:



Remark.

- Every right triangle is characterized by its perimeter and area. Therefore, there exists no incongruent pair of right triangles satisfying 1, 2, and 3.
- On the other hand, there exist infinitely many incongruent pairs of isosceles triangles satisfying 1, 2, and 3.
- Moreover, there exist infinitely many pairs of a right triangle and an isosceles triangle satisfying 1 and 2 (resp. 1 and 3).

§2. Hyperelliptic curve

By parameterizing all the pairs of triangles satisfying the three conditions in the above theorem, we can reduce its proof to the following diophantine problem:

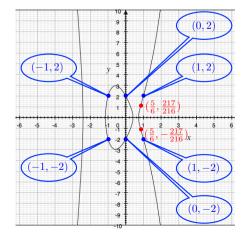
Problem

Determine the set of rational points on the hyperelliptic curve C of genus 2 defined by $y^2 = (x^3 - x + 6)^2 - 32$.

It is easy to check that C has **at least ten** rational points, that is, two points at infinity and $(x,y)=(0,\pm 2),(1,\pm 2),(-1,\pm 2),(5/6,\pm 217/216)$. The first eight points correspond to "collapsed" triangles and the last two points correspond to the above unique pair. Amazingly, we can prove that

$$\#C(\mathbb{Q}) \le 10.$$

This inequality is verified by using the **Chabauty-Coleman method**, which is one of the most sophisticated techniques of modern arithmetic geometry.



§3. Chabauty-Coleman method

$\underline{\mathbf{Theorem}}$ (Coleman [1]).

Let C be a complete non-singular curve of genus g > 1 defined over $\mathbb Q$ and J be its jacobian variety. Suppose that C has good reduction at a prime number p > 2g and $r := \operatorname{rank} J(\mathbb Q) < g$. Then, we have

$$\#C(\mathbb{Q}) \le \#C(\mathbb{F}_p) + (2g-2).$$

Rough idea of the proof of Coleman's theorem:

1. Every closed 1-form on J has a locally rigid analytic primitive function because of the "wobbly topology" of C_p. Here and after, C_p denotes the p-adic completion of an algebraic closure of the field of p-adic numbers Q_p. It is a natural p-adic counterpart of the field of complex numbers C. however, it is a totally disconnected topological space.

cted totally disconnected

- 2. We can embed $(C(\mathbb{Q}) \subset) J(\mathbb{Q})$ into the r-dimensional subvariety V of $J(\mathbb{C}_p)$ defined by the primitive functions of 1-forms associated with $J(\mathbb{Q}) \subset J(\mathbb{C}_p)$. Then, V cannot contain $C(\mathbb{C}_p)$ because of the assumption $r < g = \dim(J(\mathbb{C}_p))$ and the minimality of J (Chabauty's idea).
- 3. Reduce the **rigid analytic problem** of estimating the size of $(C(\mathbb{Q}) \subset)$ $C(\mathbb{Q}_p) \cap V$ to **algebraic geometry** of the modulo p reduction C/\mathbb{F}_p (cf. $2g-2=\deg \Omega^1_{C/\mathbb{F}_p}$).

Remark.

It may be valuable to note a corresponding fact in the case of g=1: If an elliptic curve E defined over $\mathbb Q$ has good reduction at an odd prime number p and $\#E(\mathbb Q)<\infty$, then the modulo p reduction map induces an injective homomorphism $E(\mathbb Q)\hookrightarrow E(\mathbb F_p)$ (cf. the Nagell-Lutz theorem).

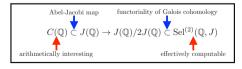
In our case, the hyperelliptic curve C has good reduction at 5, $\#C(\mathbb{F}_5)=8$ (cf. $(5/6,\pm 217/216)\equiv (0,\pm 2)$ (mod 5)), and $\mathrm{rank}J(\mathbb{Q})\leq 1$. The former two conditions are immediate, however, the last one is not. We can check it by the following **2-descent argument**, which is another of the most sophisticated techniques of modern arithmetic geometry.

$\S4.$ 2-descent (cf. Stoll [3])

In the **2-descent argument**, we embed $J(\mathbb{Q})/2J(\mathbb{Q})$ into a certain Galois cohomology group $\mathrm{Sel}^{(2)}(\mathbb{Q},J)$, the so called **2-Selmer group** of J. (In fact, we can also use its variants, e.g., $\mathrm{Sel}^{(2)}_{\mathrm{fake}}(\mathbb{Q},J)$.) The dimension of the latter \mathbb{F}_2 -vector space is **effectively computable** (!) by calculating

- 1. the unit group (i.e., the group of invertible global sections) and
- 2. the Picard group (i.e., the group of invertible sheaves)

of the ring of algebraic integers of $\mathbb{Q}(\alpha|f(\alpha)=0)$. Here, f denotes a polynomial which defines the branched locus of the double covering $C\to\mathbb{P}^1$, namely, the involved hyperelliptic curve C is defined by $y^2=f(x)$.



Thank you for your reading!

Reference

- R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770.
 Y. Hirakawa and H. Matsumura, A unique pair of triangles, to appear in J. Number Theory (2019).
- [3] M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245–277