Examples of Calabi-Yau 3-folds from projective joins of del Pezzo manifolds

Daisuke Inoue (Graduate School of Mathematical Sciences, The University of Tokyo)

Introduction

The derived equivalence between Grassmannian and Pfaffian Calabi-Yau 3-folds is an interesting phenomenon discovered in the study of mirror symmetry of Calabi-Yau 3-folds. These Calabi-Yau 3-folds share the same mirror family due to Rødland and the derived equivalence is indicated in the two different boundary points of the family. We construct similar examples of Calabi-Yau 3-folds but with Picard number greater than one as an application of homological projective dualities by Kuznetsov-Perry [KP].

2. Linear dualities

Linear dualities of projective bundles are special cases of the homological projective dualities, but they often result in birational Calabi-Yau 3-folds, which are known to be Fourier-Mukai partners to each other. The following example is a special case of [Kuz, Section 8].

Example

Let \mathcal{E} be a vector bundle on $G(2,4)$ such that \mathcal{E}^{*} is globally generated and $c_{1}(\mathcal{E})=-4 H$. Let \mathcal{E}^{\perp} be an orthogonal vector bundle of \mathcal{E} defined by $0 \rightarrow \mathcal{E}^{\perp} \rightarrow H^{0}\left(G(2,4), \mathcal{E}^{*}\right) \otimes \mathcal{O}_{G(2.4)} \rightarrow \mathcal{E}^{*} \rightarrow 0$. We take a general linear subspace $L \subset H^{0}\left(G(2,4), \mathcal{E}^{*}\right)$ of codimension $r=\operatorname{rank} \mathcal{E}$. Let $L^{\perp} \subset H^{0}\left(G(2,4),\left(\mathcal{E}^{\perp}\right)^{*}\right)$ be the orthogonal linear subspace of L. Then the linear sections of projective bundles

$$
X=\mathbb{P}_{G(2,4)}(\mathcal{E}) \cap \mathbb{P}\left(L^{\perp}\right), \quad Y=\mathbb{P}_{G(2,4)}\left(\mathcal{E}^{\perp}\right) \cap \mathbb{P}(L)
$$

are Calabi-Yau 3-folds.

These X and Y are derived equivalent by the linear duality due to Kuznetsov. Also, it turns out X and Y are birational, hence they are derived equivalent due to Bridgeland's theorem.

Then, in these cases, the derived equivalences are also followed from the Bridgeland's theorem. Here \bar{X} is an anti-canonical hypersurface of $G(2,4)$.

Categorical joins

In a recent paper [KP], Kuznetsov and Perry have formulated categorical join and found many new examples of homological projective dualities. By using their results, we can find new pairs of Calabi-Yau 3-folds whose derived categories are equivalent. We recall a definition of projective joins of projective varieties.

Def

For projective varieties $M_{i} \subset \mathbb{P}\left(V_{i}\right)(i=1,2)$, a projective join of M_{1} and M_{2} is defined by
where $\left\langle x_{1}, x_{2}\right\rangle$ is the linear subspace spanned by $\left[x_{1}, 0\right]$ and $\left[0, x_{2}\right]$ in $\mathbb{P}\left(V_{1} \oplus V_{2}\right)$.
When we take M_{1}, M_{2} to be del Pezzo manifolds, we can construct Calabi-Yau 3-folds from linear sections of $\operatorname{Join}\left(M_{1}, M_{2}\right)$ (c.f. [G]). Let us take $M_{1}=G(2,5)$ and M_{2} to be one of the followings:
(i) $\mathbb{P}^{2} \times \mathbb{P}^{2}$
(ii) $\mathrm{Bl}_{\mathrm{pt}} \mathbb{P}^{3}$
(iii) $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$.

For each choices of M_{2}, we consider the following projective bundles $\mathbb{P}_{M_{1}, M_{2}}$:
(i) $\mathbb{P}_{G(2,5) \times \mathbb{P}^{2}}\left(\pi_{1}^{*} \mathcal{O}_{G(2,5)}(-1) \oplus \pi_{2}^{*} \mathcal{K}_{1}^{\oplus 3}\right)$
(ii) $\mathbb{P}_{G(2,5) \times \mathbb{P}^{2}}\left(\pi_{1}^{*} \mathcal{O}_{G(2,5)}(-1) \oplus \pi_{2}^{*} \mathcal{K}_{1} \oplus \pi_{2}^{*} \mathcal{K}_{2}\right)$
(iii) $\mathbb{P}_{G(2,5) \times \mathbb{P}^{1} \times \mathbb{P}^{1}}\left(\pi_{1}^{*} \mathcal{O}_{G(2,5)}(-1) \oplus \pi_{2}^{*} \mathcal{K}_{1,1}\right)$
where π_{1} is the projection to $G(2,5)$ and π_{2} is the projection to the remaining factors. Here $\mathcal{K}_{i}(i=1,2), \mathcal{K}_{1,1}$ are defined as follows:

$$
\begin{aligned}
& 0 \rightarrow \mathcal{K}_{i} \rightarrow H^{0}\left(\mathbb{P}^{2}, \mathcal{O}(i)\right) \otimes \mathcal{O}_{\mathbb{P}^{2}} \rightarrow \mathcal{O}(i) \rightarrow 0(i=1,2), \\
& 0 \rightarrow \mathcal{K}_{i} \rightarrow H^{0}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(1,1)\right) \otimes \mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}} \rightarrow \mathcal{O}(1,1) \rightarrow 0 .
\end{aligned}
$$

Main Result

(1) Take a general linear subspace $L \subset H^{0}\left(\operatorname{Join}\left(M_{1}, M_{2}\right), \mathcal{O}(1)\right)$ with an appropriate codimension. Consider the following linear sections

$$
X=\operatorname{Join}\left(M_{1}, M_{2}\right) \cap \mathbb{P}\left(L^{\perp}\right), Y=\mathbb{P}_{M_{1}, M_{2}} \cap \mathbb{P}(L)
$$

then X and Y are both Calabi-Yau 3-folds.
(2) These Calabi-Yau 3-folds X and Y are not birational, but derived equivalent. For the choices of M_{1}, M_{2}, the Hodge numbers are given as follows; $\left(h^{i, j}=h_{X}^{i, j}=h_{Y}^{i, j}\right)$

M_{1}	M_{2}	$h^{1,1}$	$h^{2,1}$
$G(2,5) \mathbb{P}^{2} \times \mathbb{P}^{2}$	2	47	
$G(2,5)$	$\mathrm{Bl}_{\mathrm{pt}} \mathbb{P}^{3}$	2	47
$G(2,5) \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$	3	43	

Example

By studying birational geometry of these Calabi-Yau 3-folds, we can see that these are not birational. For example, if $M_{1}=G(2,5), M_{2}=\mathbb{P}^{2} \times \mathbb{P}^{2}$, we have diagrams

where π_{i} (resp. p_{i}) $(i=1,2$) are elliptic fibrations on each Calabi-Yau 3 -folds. The morphisms $\varphi_{i}(i=1,2)$ are small contractions which contract $30 \mathbb{P}^{1}$'s to points.
The image \bar{Y} is a complete intersection of type $(1,1,3)$ in $G(2,5)$ with 30 ordinary double points.

Remark

Main Result is based on the following well-known fact:
Fact: Let $E_{i} \subset \mathbb{P}\left(V_{i}\right)(i=1,2)$ be projectively normal elliptic curves. Then the projective join $\operatorname{Join}\left(E_{1}, E_{2}\right) \subset \mathbb{P}\left(V_{1} \oplus V_{2}\right)$ is a (singular) Calabi-Yau 3-fold.
Suppose E_{1}, E_{2} are given by suitable linear sections of del Pezzo manifolds M_{1} and M_{2}, respectively. Then the corresponding linear sections of $\operatorname{Join}\left(M_{1}, M_{2}\right)$ can be regarded as a smoothing of the singular Calabi-Yau 3 -fold $\operatorname{Join}\left(E_{1}, E_{2}\right)$. As pointed out by [G], we can construct a lot of Calabi-Yau 3-folds in this way.

Example

There are some other possible choices of M_{2} (with $M_{1}=G(2,5)$). We can consider $\operatorname{Join}\left(M_{1}, M_{2}\right)$ with $M_{1}=G(2,5)$ and $M_{2}=\mathbb{P}^{2}$. The projective join is naturally resolved by the following projective bundle

$$
\mathbb{P}_{G(2,5) \times \mathbb{P}^{2}}\left(\pi_{1}^{*} \mathcal{O}_{G(2,5)}(-1) \oplus \pi_{2}^{*} \mathcal{O}_{\mathbb{P}^{2}}(-3)\right) .
$$

Correspondingly to this, the dual projective bundle following to [KP] becomes

$$
\mathbb{P}_{G(2,5) \times \mathbb{P}^{2}}\left(\pi_{1}^{*} \mathcal{O}_{G(2,5)}(-1) \oplus \pi_{2}^{*} \mathcal{K}_{3}\right)
$$

where π_{i} and \mathcal{K}_{3} are as before. We define X and Y by mutually orthogonal linear sections of these projective bundles. In this case, we can see that the Picard numbers of X and Y are greater than or equal to 6 . I have not yet been able to determine whether X and Y are birational or not.

4. Mirror Calabi-Yau 3 -folds: Fiber products of elliptic surfaces

S. Galkin pointed out some relations between projective joins and Hadamard products in [G]. Inspired by his result, we construct candidates of mirror families of Calabi-Yau 3-folds as fiber products of elliptic surfaces (c.f. Schoen's work).

Result

We construct elliptic surfaces S_{1} and S_{2} :
(1) S_{1} by a suitable smooth orbifold of Shioda modular surface of level 5 .
(2) S_{2} by closely related to Batyrev-Borisov toric mirror construction of $(1,1) \cap(1,1) \cap(1,1) \subset \mathbb{P}^{2} \times \mathbb{P}^{2}$
Then both S_{1}, S_{2} are rational elliptic surfaces with sections. The fiber product $X^{\vee}=S_{1} \times \mathbb{P}^{1} S_{2}$ gives a family of Calabi-Yau 3-folds with Euler number e $\left(X^{\vee}\right)=90$. Conjecture

We conjecture that the above family of Calabi-Yau 3-folds is a mirror family of the linear section X of $\operatorname{Join}\left(G(2,5), \mathbb{P}^{2} \times \mathbb{P}^{2}\right)$.

Indeed, this family naturally parametrized by \mathbb{P}^{2} and have three maximally unipotent monodromy points. The following numbers are calculated from each maximally unipotent monodromy points by using mirror symmetry.

$d_{d_{1} \backslash d_{2}}$	10	${ }^{2}$	3			${ }_{0}$	3
	0 120	105	105	0	030		0
1	1202085	15690	83400	1	105330	105	0
2	10515690	569475	9690270	2	1202865	6585	2865
3	10583400	9690270	418812780	3	12017400	151260	283755
4	120362850	107459880	10086474180	4	10587150	2141265	11044335
5	901365060	901887570	164859436335	5	90368670	22279830	256967580
6	1204621020	6204884125	2041590595410	6	1051377840	186120810	4267143150
7	10514399490	36701125005	20496053409240	7	1204644030	1311908070	55405726800
8	10541932200	192593575110	174405931797135	8	1214441100	8065898475	594374999280
9	120115485075	916315955820	1297448843314125	9	10542003450	44272540830	5463083502630
10	90303166710	401584388695	8630138044756890	10	9011559325	220759120890	44140588111590

We can identify these numbers with the counting invariants of X and those of its Fourier-Mukai partner Y in $\mathbb{P}_{G(2,5) \times \mathbb{P}^{2}}\left(\pi_{1}^{*} \mathcal{O}_{G(2,5)}(-1) \oplus \pi_{2}^{*} \mathcal{K}_{1}^{\oplus 3}\right)$. Indeed, the number 30 in the right can be identified with the number of flopping curves.

References

[G] S. Galkin, Joins and Hadamard products, 2015, Talk presented at Categorical and analytic invariants in Algebraic geometry 1, Moscos, Steklov Mathematical Institute, September 17.
[Kuz] A. Kuznetsov, Hyperplane sections and derived categories, Izv. Math. 70 (2006), no. 3, 447-547. MR2238172
[KP] A. Kuznetsov and A. Perry, Categorical joins, arXiv:1804.00144 [math.AG].

