Examples of Calabi-Yau 3-folds from projective joins of del Pezzo manifolds

Daisuke Inoue (Graduate School of Mathematical Sciences, The University of Tokyo)

The derived equivalence between Grassmannian and Pfaffian Calabi-Yau 3-folds is an interesting phenomenon discovered in the study of mirror symmetry of Calabi-Yau 3-folds. These Calabi-Yau 3-folds share the same mirror family due to Rødland and the derived equivalence is indicated in the two different boundary points of the family. We construct similar examples of Calabi-Yau 3-folds but with Picard number greater than one as an application of homological projective dualities by Kuznetsov-Perry [KP].

2. Linear dualities

Linear dualities of projective bundles are special cases of the homological projective dualities, but they often result in birational Calabi–Yau 3-folds, which are known to be Fourier-Mukai partners to each other. The following example is a special case of [Kuz, Section 8].

Let $\mathcal E$ be a vector bundle on G(2,4) such that $\mathcal E^*$ is globally generated and $c_1(\mathcal{E}) = -4H$. Let \mathcal{E}^{\perp} be an orthogonal vector bundle of \mathcal{E} defined by $0 \to \mathcal{E}^{\perp} \to \mathcal{H}^0(G(2,4),\mathcal{E}^*) \otimes \mathcal{O}_{G(2,4)} \to \mathcal{E}^* \to 0$. We take a general linear subspace $L \subset \mathcal{H}^0(G(2,4),\mathcal{E}^*)$ of codimension $r = \operatorname{rank} \mathcal{E}$. Let $L^{\perp} \subset \mathcal{H}^0(G(2,4),(\mathcal{E}^{\perp})^*)$ be the orthogonal linear subspace of L. Then the linear sections of projective bundles

$$X = \mathbb{P}_{G(2,4)}(\mathcal{E}) \cap \mathbb{P}(L^{\perp}), \quad Y = \mathbb{P}_{G(2,4)}(\mathcal{E}^{\perp}) \cap \mathbb{P}(L)$$

are Calabi–Yau 3-folds. These X and Y are derived equivalent by the linear duality due to Kuznetsov. Also, it turns out X and Y are birational, hence they are derived equivalent due to Bridgeland's theorem.

Then, in these cases, the derived equivalences are also followed from the Bridgeland's theorem. Here \bar{X} is an anti-canonical hypersurface of G(2,4).

In a recent paper [KP], Kuznetsov and Perry have formulated categorical join and found many new examples of homological projective dualities. By using their results, we can find new pairs of Calabi-Yau 3-folds whose derived categories are equivalent. We recall a definition of projective joins of projective varieties

For projective varieties $M_i \subset \mathbb{P}(V_i)$ (i=1,2), a projective join of M_1 and M_2 is

$$\mathrm{Join}(\textit{M}_{1},\textit{M}_{2}) = \overline{\bigcup_{\textit{x}_{1} \in \textit{M}_{1},\textit{x}_{2} \in \textit{M}_{2}} \langle \textit{x}_{1},\textit{x}_{2} \rangle} \subset \mathbb{P}(\textit{V}_{1} \oplus \textit{V}_{2})$$

where $\langle x_1, x_2 \rangle$ is the linear subspace spanned by $[x_1, 0]$ and $[0, x_2]$ in $\mathbb{P}(V_1 \oplus V_2)$.

When we take M_1 , M_2 to be del Pezzo manifolds, we can construct Calabi-Yau 3-folds from linear sections of $Join(M_1, M_2)$ (c.f. [G]). Let us take $M_1 = G(2, 5)$ and M_2 to be one of the followings:

(i)
$$\mathbb{P}^2 \times \mathbb{P}^2$$
 (ii) $\mathrm{Bl}_{\mathrm{pt}}\mathbb{P}^3$ (iii) $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

For each choices of M_2 , we consider the following projective bundles \mathbb{P}_{M_1,M_2} :

$$\begin{array}{l} \text{(i) } \mathbb{P}_{G(2,5)\times\mathbb{P}^2}(\pi_1^*\mathcal{O}_{G(2,5)}(-1)\oplus\pi_2^*\mathcal{K}_1^{\oplus 3}) \\ \text{(ii) } \mathbb{P}_{G(2,5)\times\mathbb{P}^2}(\pi_1^*\mathcal{O}_{G(2,5)}(-1)\oplus\pi_2^*\mathcal{K}_1\oplus\pi_2^*\mathcal{K}_2) \end{array}$$

(iii) $\mathbb{P}_{G(2,5)\times\mathbb{P}^1\times\mathbb{P}^1}(\pi_1^*\mathcal{O}_{G(2,5)}(-1)\oplus\pi_2^*\mathcal{K}_{1,1})$ where π_1 is the projection to G(2,5) and π_2 is the projection to the remaining

factors. Here
$$\mathcal{K}_i$$
 $(i=1,2), \mathcal{K}_{1,1}$ are defined as follows:
$$0 \to \mathcal{K}_i \to H^0(\mathbb{P}^2, \mathcal{O}(i)) \otimes \mathcal{O}_{\mathbb{P}^2} \to \mathcal{O}(i) \to 0 \quad (i=1,2), \\ 0 \to \mathcal{K}_i \to H^0(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(1,1)) \otimes \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1} \to \mathcal{O}(1,1) \to 0.$$

(1) Take a general linear subspace $L\subset H^0(\mathrm{Join}(M_1,M_2),\mathcal{O}(1))$ with an appropriate codimension. Consider the following linear sections

$$X = \operatorname{Join}(M_1, M_2) \cap \mathbb{P}(L^{\perp}), Y = \mathbb{P}_{M_1, M_2} \cap \mathbb{P}(L),$$

then X and Y are both Calabi-Yau 3-folds.

(2) These Calabi-Yau 3-folds X and Y are not birational, but derived equivalent For the choices of M₁, M₂, the Hodge numbers are given as follows; $(h^{i,j}=h_X^{i,j}=h_Y^{i,j})$

$\overline{M_1}$	M ₂	$h^{1,1}$	$h^{2,1}$
G(2,5)	$\mathbb{P}^2 \times \mathbb{P}^2$	2	47
G(2,5)	Bl _{pt} ℙ ³	2	47
G(2.5)	$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	3	43

By studying birational geometry of these Calabi-Yau 3-folds, we can see that these are not birational. For example, if $M_1=G(2,5), M_2=\mathbb{P}^2\times\mathbb{P}^2$, we have diagrams

where π_i (resp. p_i) (i=1,2) are elliptic fibrations on each Calabi–Yau 3-folds. The morphisms φ_i (i=1,2) are small contractions which contract 30 \mathbb{P}^1 's to points. The image Y is a complete intersection of type (1,1,3) in G(2,5) with 30 ordinary double points.

Main Result is based on the following well-known fact:

Fact: Let $E_i \subset \mathbb{P}(V_i)$ (i=1,2) be projectively normal elliptic curves. Then the projective join $\mathrm{Join}(E_1,E_2)\subset \mathbb{P}(V_1\oplus V_2)$ is a (singular) Calabi-Yau 3-fold Suppose E_1 , E_2 are given by suitable linear sections of del Pezzo manifolds M_1 and M_2 , respectively. Then the corresponding linear sections of $\mathrm{Join}(M_1,M_2)$ can be regarded as a smoothing of the singular Calabi–Yau 3-fold $Join(E_1, E_2)$. As pointed

There are some other possible choices of M_2 (with $M_1 = G(2,5)$). We can consider $\mathrm{Join}(M_1,M_2)$ with $M_1=G(2,5)$ and $M_2=\mathbb{P}^2$. The projective join is naturally resolved by the following projective bundle

$$\mathbb{P}_{G(2,5)\times\mathbb{P}^2}(\pi_1^*\mathcal{O}_{G(2,5)}(-1)\oplus\pi_2^*\mathcal{O}_{\mathbb{P}^2}(-3)).$$

Correspondingly to this, the dual projective bundle following to [KP] becomes

out by [G], we can construct a lot of Calabi-Yau 3-folds in this way.

$$\mathbb{P}_{G(2,5)\times\mathbb{P}^2}(\pi_1^*\mathcal{O}_{G(2,5)}(-1)\oplus\pi_2^*\mathcal{K}_3)$$

where π_i and \mathcal{K}_3 are as before. We define X and Y by mutually orthogonal linear sections of these projective bundles. In this case, we can see that the Picard numbers of X and Y are greater than or equal to 6. I have not yet been able to determine whether X and Y are birational or not.

Mirror Calabi-Yau 3-folds: Fiber products of elliptic surfaces

S. Galkin pointed out some relations between projective joins and Hadamard products in [G]. Inspired by his result, we construct candidates of mirror families of Calabi-Yau 3-folds as fiber products of elliptic surfaces (c.f. Schoen's work).

We construct elliptic surfaces S₁ and S₂:

(1) S₁ by a suitable smooth orbifold of Shioda modular surface of level 5. (2) S₂ by closely related to Batyrev-Borisov toric mirror construction of $(1,1)\cap (1,1)\cap (1,1)\subset \mathbb{P}^2 imes \mathbb{P}^2$

Then both S_1, S_2 are rational elliptic surfaces with sections. The fiber product $X^{\vee} = S_1 \times_{\mathbb{P}^1} S_2$ gives a family of Calabi–Yau 3-folds with Euler number $e(X^{\vee}) = 90$.

We conjecture that the above family of Calabi-Yau 3-folds is a mirror family of the linear section X of $Join(G(2,5), \mathbb{P}^2 \times \mathbb{P}^2)$.

Indeed, this family naturally parametrized by \mathbb{P}^2 and have three maximally unipotent monodromy points. The following numbers are calculated from each maximally unipotent monodromy points by using mirror symmetry.

$d_1 \setminus d_2$	0	1	2	3	eı	\ e2	0	1	2	3
0	0	120	105	105	_	0	0	30	0	0
1	120	2085	15690	83400		1	105	330	105	0
2	105	15690	569475	9690270		2	120	2865	6585	2
3	105	83400	9690270	418812780		3	120	17400	151260	2
4	120	362850	107459880	10086474180		4	105	87150	2141265	1
5	90	1365060	901887570	164859436335		5	90	368670	22279830	2
6	120	4621020	6204484125	2041590595410		6	105	1377840	186120810	4
7	105	14399490	36701125005	20496053409240		7	120	4644030	1311908070	5
8	105	41932200	192593575110	174405931797135		8	120	14441100	8065898475	5
9	120	115485075	916315955820	1297448843314125		9	105	42003450	44272540830	5
10	90	303166710	4015843886955	8630138044756890		10	90	115593255	220759120890	
			Table 1	DDC	£ 1: /	c-1.	L:	V 2 £	1.1.	

We can identify these numbers with the counting invariants of X and those of its Fourier–Mukai partner Y in $\mathbb{P}_{G(2,5)\times\mathbb{P}^2}(\pi_1^*\mathcal{O}_{G(2,5)}(-1)\oplus\pi_2^*\mathcal{K}_1^{\oplus 3})$. Indeed, the number 30 in the right can be identified with the number of flopping curves.

[G] S. Galkin, Joins and Hadamard products, 2015, Talk presented at Categorical and analytic invariants in Algebraic geometry 1, Moscos, Steklov Mathematical Institute, September 17.

[Kuz] A. Kuznetsov, Hyperplane sections and derived categories, Izv. Math. 70 (2006), no. 3, 447-547. MR2238172

[KP] A. Kuznetsov and A. Perry, Categorical joins, arXiv:1804.00144 [math.AG]