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Introduction

In this poster, we study the moduli space of logarithmic connections of rank 2 on P1 \ {t1, . . . , t5}
with fixed spectral data. We compute the cohomology of such moduli space, and this computation
will be used to extend the results of geometric Langlands corespondence of [1] to the case where the
parabolic connections have five simple poles on P1.

Preliminaries

We introduce sl2-connections.
Fix complex numbers ν1, . . . , νn ∈ C. Suppose that ν1 · · · νn ≠ 0 and

n∑

i=1

ϵiνi /∈ Z (1)

for any (ϵi), ϵi ∈ {1,−1}.

Definition 2.1 A ν-sl2-parabolic connection on P1 is a triplet (E,∇,ϕ) such that

1.E is a rank 2 vector bundle on P1,
2.∇ : E → E ⊗ Ω1

P1(D) is a connection, where D := t1 + · · · + tn,

3. ϕ :
∧2E ≃ OP1(−1) is a horizontal isomorphism,

4. the residue resti(∇) of the connection ∇ at ti has eigenvalues ν
±
i , 1 ≤ i ≤ n.

Here, we put
ν±i := ±νi (i = 1, . . . , n− 1), ν+n := νn, ν

−
n := 1− νn.

Denote by M the moduli stack of ν-sl2-parabolic connections on P1, and by M its coarse moduli
space.

For such ν, the parabolic direction li := ker(resti(∇) − νi) ⊂ E|ti is uniquely determined. So, we
can get the forgetful map

Bun : M → P ; (E,∇,ϕ) *→ (E, {li})

where P is the coarse moduli space of undecomposable quasi-parabolic bundles (E, {li}) on P1.

Now, we consider the following stratification of M . By the irreducibility of (E,∇,ϕ) ∈ M , we have
the following proposition.
Proposition 2.2 For (E,∇,ϕ) ∈ M , we have

E ≃ O(k)⊕O(−k − 1) where 0 ≤ k ≤

[
n− 3

2

]
.

Denote by Mk the subvariety of M where E ≃ O(k)⊕O(−k − 1). Then

M = M0 ∪ · · · ∪M [(n−3)/2].

Note that the stratum M0 is a Zariski open dense of M .

Geometric description of M0

Suppose n = 5. For computation of the cohomology of M , we introduce some blowing-up of the
Hirzebruch surface F3. Put L := Ω1

P1(D). Let L be the total space of the line bundle L. Note that

L = F3 \ s∞ where s∞ is the infinity section (s∞)2 = −3.
Let π : L → P1 be the projection and let τi : Fi := π−1(ti)

∼
−→ C be the residue map. Put ν+i := νi,

ν−i := −νi for i = 1, . . . , 4, ν+5 := ν5, ν
−
5 := 1− ν5, and ν̂±i := τ−1

i (ν±i ).
Set

K′
5 :=

(
Blν̂±i

L
)
\ (F̃1 ∪ · · · ∪ F̃5)

where Blν̂±i
L is the blowing-up of L at ν̂±i for i = 1, . . . , n, and F̃i are the proper pre-images of the

fiber Fi i = 1, . . . , n.

Lemma 3.1

Hi(K′
5,OK′

5
) =

⎧
⎪⎨

⎪⎩

C, i = 0,

H2
m(A) ≠ 0, i = 1,

0, i ≥ 2,

where (A,m) is a local ring such that dim(Am) = 2.

We denote by K5 the image of K′
5 under the projection K′

5 → F3 \ s∞. We can define the following
map

M0 −→ Sym2(K5)
(E,∇,ϕ) *−→ {(q1, p1), (q2, p2)},

(2)

We consider the composite of the Hilbert-Chow morphism and the blowing-up

Hilb2(K′
5) −→ Sym2(K′

5) −→ Sym2(K5),

We have the next proposition.

Proposition 3.2 ([3] Theorem 5.2) We can extend the map (2) to

M0 −→ Hilb2(K′
5)

and this map is injective.

Cohomology of K′
5,q1

We denote by Z ⊂ Sym2(K′
5) the proper pre-image of {(q1, p1), (q1,−p1)} ⊂ Sym2(K′

5) under the

blowing-up Sym2(K′
5) → Sym2(K5), and by Z̃ ⊂ Hilb2(K′

5) the proper pre-image of Z under the
Hilbert-Chow morphism Hilb2(K′

5) → Sym2(K′
5). Denote by

H̃ilb
2
(K′

5) → Hilb2(K′
5) (3)

the blowing-up along Z̃ and by Ẑ the strict transform of Z̃ . We also denote by (K′
5×K′

5)
∼ the blowing-

up ofK′
5×K′

5 along the ideal (q1−q2, p1−p2), and by (K
′
5×K′

5)
≈ the blowing-up of (K′

5×K′
5)
∼ along

the ideal (q1 − q2, p1 + p2). Then Hilb2(K′
5) = (K′

5 ×K′
5)
∼/S2, and H̃ilb

2
(K′

5) = (K′
5 ×K′

5)
≈/S2.

Now, using above description, we define another important blowing-up of Hirzebruch surface F3. Fix
q1 ∈ P1 \ {t1, · · · , t5} and define the fiber F6 over q1. We denote by (F3)≈ the blowing-up of F̃3 at
two points {(q1, p1), (q1,−p1)} (when p1 = p2 = 0, blow up twice at (q1, 0)). Set

K′
5,q1 := (F3)≈ \ (s̃∞ ∪ F̃1 ∪ · · · ∪ F̃6)

where F̃6 is the strict transform of F6. We denote by K5,q1 the image of K′
5,q1

under the projection

K′
5,q1

→ F3 \ s∞.
Define

Dq1 := 2s∞ + F̃1 + · · · + F̃5 + F̃6

Then, we have
(s∞, F̃i) = 1, (F̃i, F̃j) = 0, (s∞, s∞) = −3, (F̃i, F̃i) = −2

This implies
(Dq1, Dq1) = (Dq1, s∞) = (Dq1, F̃i) = 0.

This is the same condition of Arinkin Lysenko [2], section 5.2.

Proposition 4.1

Hi(K′
5,q,OK′

5,q
) =

{
C, i = 0,

0, i > 0.

Cohomology of M

Set M̂Z := M0 ∪ Ẑ. By Proposition 3.2, we have injective maps ι : M0 ↪→ Hilb2(K′
5) and

ι̂ : M̂Z ↪→ H̃ilb
2
(K′

5). We define the blowing-up parameter λ− as p1 + p2 = λ−(q1 − q2).

Set T := H̃ilb
2
(K′

5) \ M̂Z . For a vector bundle F on H̃ilb
2
(K′

5),

Hi(M̂Z,F|
M̂Z

) = Hi(H̃ilb
2
(K′

5), ι̂∗ι̂
∗F)

= lim−→Hi(H̃ilb
2
(K′

5),F(kT )).

To compute Hi(H̃ilb
2
(K′

5),F(kT )), consider Hi((K′
5 × K′

5)
≈,F(kT ′)), where T ′ is defined by

(λ− = ∞). We can define a map

f : (K′
5 ×K′

5)
≈ \ T ′ −→ K′

5
(q1, p1, q2, p2) *−→ (q1, p1),

and the fiber f−1({(q1, p1)}) ≃ K′
5,q1

. By Leray’s spectral sequence, we have

Hi((K′
5 ×K′

5)
≈ \ T ′,F) ≃

⊕

p+q=i

Hp(K′
5, R

qf∗F).

Using the Base change theorem, we have (Rqf∗F)(q1,p1) ≃ Hq(K′
5,q1

,F(q1,p1)).
By using Lemma 3.1 and Proposition 4.1, we have

Hi((K′
5 ×K′

5)
≈ \ T ′,O) =

⎧
⎪⎨

⎪⎩

C, i = 0,

H2
m(A) ≠ 0, i = 1,

0, i > 1.

Moreover, the action of S2 on H1((K′
5 ×K′

5)
≈ \ T ′,O) is nontrivial. Therefore,

Hi(M̂Z,OM̂Z
) =

{
C, i = 0,

0, i > 0.

Since codimHilb2(K′
5)
(Z̃) = 2, and M1 = M \M0 ≃ A2, we have

Theorem 5.1

Hi(M,OM ) =

{
C, i = 0,

0, i > 0.
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