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Introduction

In this poster, we study the moduli space of logarithmic connections of rank 2 on B\ {ty,....t;}
with fixed spectral data. We compute the cohomology of such moduli space, and this computation

will be used o extend the results of geometric Langlands corespondence of [1] to the case where the

parabolic connections have five simple poles on P

Preliminaries
We introduce sly-connections.
Fix complex numbers v} vy € C. Suppose that vy - - v, # 0 and
Z i ¢ L (1)
i

for any (€;),¢; € {1, 1}

Definition 2.1 A v-sly-parabolic connection on ' is a triplet (E, V., ) such that
1. Eis a rank 2 vector bundle on P!
2.V: E = E®0L,(D) is a connection, where D i= 1ty + -+ ty,

3.p: A?E = Opi(—1) is a horizontal isomorphism

4. the residuc resy,(V) of the connection V at f; has cigenvalues v, 1 < i < n.

Here, we put
+

vE=dy (=1, —1), v = va, vy

S
Denote by M the moduli stack of v-sly-parabolic connections on PL, and by M its coarse moduli
space.

For such v, the parabolic direction [; := ker(rest,(V) — v;) C By, is uniquely determined. So, we
can get the forgetful map
Bun: M = P (E,V.p) = (E{L})

where P s the coarse moduli space of undecomposable quasi-parabolic bundles (B, {1;}) on P!
Now, we consider the following stratification of M. By the irreducibility of (E, V. ) € M, we have

the followi
Proposi

1 proposition
on 2.2 For (E.V.¢) € M, we have

E~O(k) & O(—k —1) where 0 < k < [” - ‘]

Denote by M* the subvaricty of M where E = O(k) & O(—k — 1). Then
M=MOU-..u M3/,

Note that the stratum MY is a Zariski open dense of M.

Geometric description of MY

Suppose n = 5. For computation of the cohomology of M, we introduce some blowing-up of the
Hirzebruch surface Fy, Put L = k(D). Let L be the total space of the line bundle L. Note that
L = Fy \ o0 where sog is the infinity section (s50)?
Let 72 L — P! be the projection and let 7;: F; := 7=1(t;) & € be the residue map. Put ;" := v;

)

v = —vfori =1, A v =

Set

=1 v, and 75

KL=

m,/,L)\rF. U--UFy)

where BlyLL is the blowing-up of L at 57 for i = 1,.....n, and F} are the proper pre-images of the

fiber F; i o

Lemma 3.1

c,
H'(KS, Opy) = § HA(A) #0,
0,

where (A,m) is a local ring such that dim(Ag) = 2.

We denote by K5 the image of K under the projection K — Fs \ sac. We can define the following
map
MO —s Syn(Ks)
(E.V.¢) — {(aq1.p1). (g2.p2)},
We consider the compasite of the Hilbert-Chow morphism and the blowing-up
Hilb%(K) — Sym?(Kh) — Sym?(Ks).

We have the next proposition.

Proposition 3.2 ([3 Theorem 5.2) We can estend the map (2) to

MO — Hilb(

and this map is injective

Cohomology of K%

S

We denote by Z € Sym?(K%) the proper pre-image of {(q1.p1). (g1, —p1)} € Sym*(K%) under the
blowing-up Sym(K4) = Sym3(Ks), and by Z C Hilb(K%) the proper pre-image of Z under the

Hilbert-Chow morphism Hilb%(K%) — Sym?(K%). Denote by

Hlb (k%) — Hilb? (3)

the blowing-up along Z and by Z the strict transform of Z. We also denote by (K% x )™ the blowing-
up of K x K4 along the ideal (g1 — g2, p1 —pa), and by (K x K the blowing-up of (K x K4)™
the ideal (g1 — g2, p1 + pa). Then Hilb*(K! KL x KLY /s, and Hilb (K4) = (K4 x K1)/,
Now, using above description, we define another important blowing-up of Hirzebruch surface Fy, Fix

along

@1 € P1\ {t1, - ,t5} and define the fiber Fy over q). We denote by (F3)™ the blowing-up of Fy at
two points {(q1, p1), (g1, —p1)} (when p; = py = 0, blow up twice at (gy,0)). Set
Kb g = )\ G UF U+ U Fy)

the image of K

where Fy is the strict transform of Fg. We denote by K: »

KL, Fy\ oo
Define

S under the projection

Dy = 2800+ F + -+ B+ Fy

Then, we have

(800, F;) = 1, ( =0, (So0s 800) = =3, (F1, Fy) = —2

This implies
(Dgy, Dyy)

This is the same condition of Arinkin Lysenko [2), section 5.2

(Dgy: 500,

ool
oy
o

Proposition 4.1

H'(KS,

50 Ok,

C, i=0,
0, >0,

Cohomology of M I

Set Mz == MU Z. By Proposition 3.2, we have injective maps ¢+ = M < Hilb%(K%) and

i+ My — il (K%). We define the blowing-up parameter A— as p; + p;
s P 5

Set T := Hilb (K%) \ M. For a vector bundle F on Hilb’(K)

Ao — @)

H(V. Flg, (L), 001" F)

’

= ling (D

F(kT))

__y
To compute H'(Hilb™(K5), F(KT)), consider H'((KS x KL, F(KT")), where T' is defined by
(A~ = 00). We can define a map

£ (KE x KBS\ T — K
(g1, 1,02, 2) — (01, P1),

and the fiber f~1({(q1.p1)}) = K,

! o By Leray's spectral sequence, we have

HI(KS x KES\T, F) = @ HP(KE, RUF.F),

pra=i

Xt

a1

() = H(

Fi

(ap1)

)

Using the Base change theorem, we have (R4f.F)
By using Lemma 3.1 and Proposition 4.1, we have

(o8 i=0,
= HA(A) 40, i
0, i> 1

H((

x KL=\ T'.0)

Moreover, the action of & on H'((K} x K%)=\ T/, 0) is nontrivial. Therefore.

C, i=0,
o i

Since codimyyz ) (Z) = 2, and M= M\ MO A2, we have
Theorem 5.1

H(My, 05,

C, i=0
H'(M,0yy) =
R {u i>0
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