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Background

Question
Let G be a finite subgroup of SL(n,C), then the quotient
Cn/G has a Gorenstein canonical singularity. When does
Cn/G have a crepant resolution?

When n = 2, the quotient C2/G has a hypersurface singularity which is called
a rational double point or ADE singularity. C2/G has the minimal resolution(It
is a crepant resolution).
In the case n = 3, it is known that C3/G has crepant resolutions.

However, in higher dimension, Cn/G does not always have
crepant resolutions, and few examples of crepant resolutions are
known.
In this poster, we will show several examples of crepant
resolutions in SL(4,C) by HilbG(C4)

Definition

A resolution f : Y → X is called a crepant resolution if the
adjunction formula KY = f ∗KX +

∑n
i=1 aiDi is satisfy ai = 0 for all i

Definition

HilbG(Cn) = {I ⊂ C[x1, . . . , xn] | I : G−invariant ideal,
C[x1, . . . , xn]/I ∼= C[G ]}

When n = 2, HilbG(C2) is a crepant resolution for any finite subgroup in
SL(2,C)
In the case n = 3, for any finite subgroup SL(3,C), HilbG(C3) is one of
crepant resolutions .

If n ≥ 4, the relationship between HilbG(Cn) and
crepant resolutions is not well known.

Crepant resolution as toric varieties

G denote a finite abelian subgroups of SL(n,C). Any g ∈ G is of the

form g =

⎛

⎝
εa1r 0

. . .
0 εanr

⎞

⎠, where εr is a primitive r th root of unity.

Then we can write g = 1
r (a1, . . . , an). Also, we define

ḡ = 1
r (a1, . . . , an) ∈ R Let N := Zn + Zḡ be a free Z-module of rank

n, M be the dual Z-module of N , and σ be the region of Rn whose
all entries are non-negative.
Then the toric variety determined by σ is isomorphic to Cn/G

Remark

When a cone σ to corresponding to Cn/G can be subdivided into ∆
corresponding to smooth variety by lattice points of age(g) = 1, then
the toric variety determined by ∆ is a crepant resolution of Cn/G ,
where we define age(g) = 1

r

∑n
i=1 ai .

When n = 2, lattice points of age = 1 are on straight line. If n = 3,
they are on triangle.

So we consider tetrahedron in the case of SL(4,C)

Main Result

Result 1

Let r ≥ 2, G =< 1
r (1, 1, 0, r − 2), 1r (0, 0, 1, r − 1) >.Then

C4/G has crepant resolutionsɽIf r is even, then
HilbG(C4) is one of crepant resolutions. When r is odd,
HilbG(C4) is blow-up of certain crepant resolutions.

One of crepant resolutions for G =< 1
3(1, 1, 0, 1),

1
3(0, 0, 1, 2) > and some examples

of cone.

HilbG(C4) for G =< 1
3(1, 1, 0, 1),

1
3(0, 0, 1, 2) > and lattice points of age(g)=1 of

G =< 1
4(1, 1, 0, 2),

1
4(0, 0, 1, 3) > and G =< 1

5(1, 1, 0, 3),
1
5(0, 0, 1, 4) >

Result 2

Let r = 1 + k + k2 + k3,G =< 1
r (1, k , k

2, k3) >.Then
C4/G has crepant resolutionsɽIf k = 2, then HilbG(C4)
is one of crepant resolutions for C4/G . When k ≥ 3 ,
HilbG(C4) is blow-up of certain crepant resolutions.

Lattice point of age = 1 for G =< 1
15(1, 2, 4, 8) > and G =< 1

40(1, 3,9, 27) >
G =< 1

15(1, 2, 4, 8) > is a 4 dimensional version of G =< 1
7(1, 2, 4) >⊂ SL(3,C)

Subdivision of inside tetrahedron of G =< 1
40(1, 3,9, 27) >

seems like ’orange-slice’

HilbG(C4) is a half of each pyramid of orange-slice and other cones are the same as
crepant resolution.

Other examples

If G =< 1
15(5, 8, 1, 1) > or G =< 1

15(1, 8, 3, 3) >,
then C4/G has crepant resolutions.
HilbG(C4) is one of crepant resolutions for C4/G .
The lattice points of G are on a blue triangle and are
similar to lattice points of 1

6(1, 2, 3) ⊂ SL(3,C)
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