Hilb ${ }^{G}\left(\mathbb{C}^{4}\right)$ and crepant resolutions of certain abelian groups in $\operatorname{SL}(4, \mathbb{C})$

Yusuke Sato (Graduate School of Mathematics, Nagoya University)

Background

Question

Let G be a finite subgroup of $S L(n, \mathbb{C})$, then the quotient \mathbb{C}^{n} / G has a Gorenstein canonical singularity. When does \mathbb{C}^{n} / G have a crepant resolution?

■ When $n=2$, the quotient \mathbb{C}^{2} / G has a hypersurface singularity which is called a rational double point or ADE singularity. \mathbb{C}^{2} / G has the minimal resolution(lt is a crepant resolution).

- In the case $n=3$, it is known that \mathbb{C}^{3} / G has crepant resolutions.
- However, in higher dimension, \mathbb{C}^{n} / G does not always have crepant resolutions, and few examples of crepant resolutions are known.
In this poster, we will show several examples of crepant resolutions in $\mathrm{SL}(4, \mathbb{C})$ by $\operatorname{Hilb}^{G}\left(\mathbb{C}^{4}\right)$

Definition

A resolution $f: Y \rightarrow X$ is called a crepant resolution if the adjunction formula $K_{Y}=f^{*} K_{X}+\sum_{i=1}^{n} a_{i} D_{i}$ is satisfy $a_{i}=0$ for all i

Definition

$\operatorname{Hilb}^{G}\left(\mathbb{C}^{n}\right)=\left\{I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \mid I: G\right.$-invariant ideal,

$$
\left.\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / I \cong \mathbb{C}[G]\right\}
$$

- When $n=2, \operatorname{Hilb}^{G}\left(\mathbb{C}^{2}\right)$ is a crepant resolution for any finite subgroup in $S L(2, \mathbb{C})$
- In the case $n=3$, for any finite subgroup $S L(3, \mathbb{C}), \operatorname{Hilb}^{G}\left(\mathbb{C}^{3}\right)$ is one of crepant resolutions
- If $n \geq 4$, the relationship between $\operatorname{Hilb}^{G}\left(\mathbb{C}^{n}\right)$ and crepant resolutions is not well known.

Crepant resolution as toric varieties

G denote a finite abelian subgroups of $S L(n, \mathbb{C})$. Any $g \in G$ is of the form $g=\left(\begin{array}{ccc}\varepsilon_{r}^{a_{1}} & & 0 \\ & \cdots & \\ 0 & & \varepsilon_{r}^{a_{n}}\end{array}\right)$, where ε_{r} is a primitive r th root of unity.
Then we can write $g=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$. Also, we define
$\bar{g}=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}$ Let $N:=\mathbb{Z}^{n}+\mathbb{Z} \bar{g}$ be a free \mathbb{Z}-module of rank n, M be the dual \mathbb{Z}-module of N, and σ be the region of \mathbb{R}^{n} whose all entries are non-negative.
Then the toric variety determined by σ is isomorphic to \mathbb{C}^{n} / G

Remark

When a cone σ to corresponding to \mathbb{C}^{n} / G can be subdivided into Δ corresponding to smooth variety by lattice points of age $(g)=1$, then the toric variety determined by Δ is a crepant resolution of \mathbb{C}^{n} / G, where we define $\operatorname{age}(g)=\frac{1}{r} \sum_{i=1}^{n} a_{i}$.

When $n=2$, lattice points of age $=1$ are on straight line. If $n=3$, they are on triangle.
So we consider tetrahedron in the case of $S L(4, \mathbb{C})$

Main Result

Result 1

Let $r \geq 2, G=<\frac{1}{r}(1,1,0, r-2), \frac{1}{r}(0,0,1, r-1)>$. Then \mathbb{C}^{4} / G has crepant resolutions. If r is even, then Hilb ${ }^{G}\left(\mathbb{C}^{4}\right)$ is one of crepant resolutions. When r is odd, Hilb ${ }^{G}\left(\mathbb{C}^{4}\right)$ is blow-up of certain crepant resolutions.

One of crepant resolutions for $G=<\frac{1}{3}(1,1,0,1), \frac{1}{3}(0,0,1,2)>$ and some examples of cone.

$\operatorname{Hilb}^{G}\left(\mathbb{C}^{4}\right)$ for $G=<\frac{1}{3}(1,1,0,1), \frac{1}{3}(0,0,1,2)>$ and lattice points of age $(g)=1$ of $G=\left\langle\frac{1}{4}(1,1,0,2), \frac{1}{4}(0,0,1,3)\right\rangle$ and $G=\left\langle\frac{1}{5}(1,1,0,3), \frac{1}{5}(0,0,1,4)\right\rangle$

Result 2

Let $r=1+k+k^{2}+k^{3}, G=<\frac{1}{r}\left(1, k, k^{2}, k^{3}\right)>$. Then \mathbb{C}^{4} / G has crepant resolutions. If $k=2$, then $\operatorname{Hilb}^{\mathrm{G}}\left(\mathbb{C}^{4}\right)$ is one of crepant resolutions for \mathbb{C}^{4} / G. When $k \geq 3$, $\operatorname{Hilb}^{\mathrm{G}}\left(\mathbb{C}^{4}\right)$ is blow-up of certain crepant resolutions.

Lattice point of age $=1$ for $G=<\frac{1}{15}(1,2,4,8)>$ and $G=<\frac{1}{40}(1,3,9,27)>$ $G=<\frac{1}{15}(1,2,4,8)>$ is a 4 dimensional version of $G=<\frac{1}{7}(1,2,4)>\subset S L(3, \mathbb{C})$

$$
\text { Subdivision of inside tetrahedron of } G=<\frac{1}{40}(1,3,9,27)>
$$

Hilb ${ }^{G}\left(\mathbb{C}^{4}\right)$ is a half of each pyramid of orange-slice and other cones are the same as crepant resolution.

[^0]

Reference

[HIS] T.Hayashi, Y.Ito, Y.Sekiya, Existence of crepant resolutions, Advanced Study in Pure Mathematics, vol. 74 (2017), 185-202.

[^0]: Other examples
 If $G=<\frac{1}{15}(5,8,1,1)>$ or $G=<\frac{1}{15}(1,8,3,3)>$, then \mathbb{C}^{4} / G has crepant resolutions.
 Hilb ${ }^{6}\left(\mathbb{C}^{4}\right)$ is one of crepant resolutions for \mathbb{C}^{4} / G. The lattice points of G are on a blue triangle and are similar to lattice points of $\frac{1}{6}(1,2,3) \subset S L(3, \mathbb{C})$

