$\mathrm{Hilb}^{\mathcal{G}}(\mathbb{C}^4)$ and crepant resolutions of certain abelian groups in $\mathsf{SL}(4,\mathbb{C})$

Yusuke Sato (Graduate School of Mathematics, Nagoya University)

Background

Question

Let G be a finite subgroup of $SL(n,\mathbb{C})$, then the quotient \mathbb{C}^n/G has a Gorenstein canonical singularity. When does \mathbb{C}^n/G have a crepant resolution?

- When n=2, the quotient \mathbb{C}^2/G has a hypersurface singularity which is called a rational double point or ADE singularity. \mathbb{C}^2/G has the minimal resolution(It is a crepant resolution).
- In the case n=3, it is known that \mathbb{C}^3/G has crepant resolutions.
- However, in higher dimension, \mathbb{C}^n/G does not always have crepant resolutions, and few examples of crepant resolutions are known

In this poster, we will show several examples of crepant resolutions in $SL(4,\mathbb{C})$ by $Hilb^G(\mathbb{C}^4)$

Definition

A resolution $f:Y\to X$ is called a crepant resolution if the adjunction formula $K_Y=f^*K_X+\sum_{i=1}^n a_iD_i$ is satisfy $a_i=0$ for all i

Definition

$$\begin{aligned} \operatorname{Hilb}^{G}(\mathbb{C}^{n}) &= \{I \subset \mathbb{C}[x_{1}, \dots, x_{n}] \mid I : G \text{-invariant ideal,} \\ &\mathbb{C}[x_{1}, \dots, x_{n}]/I \cong \mathbb{C}[G] \} \end{aligned}$$

- When n = 2, $\mathrm{Hilb}^{\mathsf{G}}(\mathbb{C}^2)$ is a crepant resolution for any finite subgroup in $\mathrm{St}(2,\mathbb{C}^n)$
- In the case n=3, for any finite subgroup $SL(3,\mathbb{C})$, $\mathrm{Hilb}^G(\mathbb{C}^3)$ is one of crepant resolutions .
- If $n \ge 4$, the relationship between $\operatorname{Hilb}^{\mathcal{G}}(\mathbb{C}^n)$ and crepant resolutions is not well known.

Crepant resolution as toric varieties

G denote a finite abelian subgroups of $SL(n,\mathbb{C})$. Any $g\in G$ is of the form $g=\begin{pmatrix} \varepsilon_r^{a_1} & 0 \\ & \ddots & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$, where ε_r is a primitive rth root of unity.

Then we can write $g=\frac{1}{r}(a_1,\ldots,a_n)$. Also, we define $\bar{g}=\frac{1}{r}(a_1,\ldots,a_n)\in\mathbb{R}$ Let $N:=\mathbb{Z}^n+\mathbb{Z}\bar{g}$ be a free \mathbb{Z} -module of rank n,M be the dual \mathbb{Z} -module of N, and σ be the region of \mathbb{R}^n whose all entries are non-negative.

Then the toric variety determined by σ is isomorphic to \mathbb{C}^n/G

Remark

When a cone σ to corresponding to \mathbb{C}^n/G can be subdivided into Δ corresponding to smooth variety by lattice points of age(g)=1, then the toric variety determined by Δ is a crepant resolution of \mathbb{C}^n/G , where we define $age(g)=\frac{1}{r}\sum_{i=1}^n a_i$.

When n=2, lattice points of age=1 are on straight line. If n=3, they are on triangle.

So we consider tetrahedron in the case of $SL(4, \mathbb{C})$

Result 1

Let $r \geq 2$, $G = <\frac{1}{r}(1,1,0,r-2),\frac{1}{r}(0,0,1,r-1)>$. Then \mathbb{C}^4/G has crepant resolutions. If r is even, then $\mathrm{Hilb}^{\mathrm{G}}(\mathbb{C}^4)$ is one of crepant resolutions. When r is odd, $\mathrm{Hilb}^{\mathrm{G}}(\mathbb{C}^4)$ is blow-up of certain crepant resolutions.

One of crepant resolutions for $G=<\frac{1}{3}(1,1,0,1),\frac{1}{3}(0,0,1,2)>$ and some examples of cone.

 $\begin{array}{l} \operatorname{Hilb}^G(\mathbb{C}^4) \text{ for } G = < \frac{1}{3}(1,1,0,1), \frac{1}{3}(0,0,1,2) > \text{ and lattice points of age}(g) = 1 \text{ of } G = < \frac{1}{4}(1,1,0,2), \frac{1}{4}(0,0,1,3) > \text{ and } G = < \frac{1}{5}(1,1,0,3), \frac{1}{5}(0,0,1,4) > \end{array}$

Result 2

Let $r=1+k+k^2+k^3$, $G=<\frac{1}{r}(1,k,k^2,k^3)>$. Then \mathbb{C}^4/G has crepant resolutions. If k=2, then $\mathrm{Hilb^G}(\mathbb{C}^4)$ is one of crepant resolutions for \mathbb{C}^4/G . When $k\geq 3$, $\mathrm{Hilb^G}(\mathbb{C}^4)$ is blow-up of certain crepant resolutions.

Lattice point of age=1 for $G=<\frac{1}{15}(1,2,4,8)>$ and $G=<\frac{1}{4}(1,3,9,27)>$ $G=<\frac{1}{15}(1,2,4,8)>$ is a 4 dimensional version of $G=<\frac{1}{7}(1,2,4)>\subset SL(3,\mathbb{C})$

Subdivision of inside tetrahedron of $G = \langle \frac{1}{40}(1,3,9,27) \rangle$ seems like 'orange-slice'

 $\mathrm{Hilb}^G(\mathbb{C}^4)$ is a half of each pyramid of orange-slice and other cones are the same as crepant resolution.

Other examples If $G = \langle \frac{1}{15}(5,8,1,1) \rangle$ or $G = \langle \frac{1}{15}(1,8,3,3) \rangle$, then \mathbb{C}^4/G has crepant resolutions. Hilb $^G(\mathbb{C}^4)$ is one of crepant resolutions for \mathbb{C}^4/G . The lattice points of G are on a blue triangle and are similar to lattice points of $\frac{1}{6}(1,2,3) \subset SL(3,\mathbb{C})$

Reference

[HIS] T.Hayashi, Y.Ito, Y.Sekiya, Existence of crepant resolutions, Advanced Study in Pure Mathematics, vol.74 (2017), 185-202.