<table>
<thead>
<tr>
<th>Title</th>
<th>Pathological quotient singularities which are not log canonical in positive characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yamamoto, Takahiro</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 2018: 152-152</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2018</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/236420</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Pathological quotient singularities which are not log canonical in positive
class characteristic

Takahiro Yamamoto
Osaka university
t-yamamoto@cr.math.sci.osaka-u.ac.jp

Abstract
In characteristic zero, quotient singularities are log terminal. Moreover, we can check whether a quotient variety is canonical
or not by using only the cyclic subgroups of the relevant finite group if the group does not have pseudo-reflections. In positive
class characteristic, a quotient variety is not log terminal, in general. In this paper, we give an example whose singularity cannot
be determined by looking at proper subgroups.

1 Introduction
Quotient singularities form one of the most basic classes of sin-
gularities. They behave well in characteristic zero. In charac-
teristic zero, any quotient variety has log terminal singularities.
Moreover, for a finite group $G \subset \text{GL}(d,\mathbb{C})$ without pseudo-
reflection, we say that G is small, we can use Reid-Shepherd-
Barron-Tai criterion [2, Theorem 3.21] to know the singularity
of \mathbb{C}^d/G. Namely, the following two conditions are equivalent.

\bullet \mathbb{C}^d/G is canonical (resp. terminal).

\bullet \mathbb{C}^d/C is canonical (resp. terminal) for all cyclic subgroup C of G.

In positive characteristic, if the given finite group is tame, then the quotient variety is again log terminal and we can use
the Reid-Shepherd-Barron-Tai criterion.

2 Main Theorem
If the group is wild, there exists a quotient variety which is not
log terminal. We give an even more pathological example.

Theorem (Main Theorem). Let C_3 be the cyclic group
of order three and C_2^3 be the product of two copies of it.
Suppose that the group C_3^2 is embedded in $\text{SL}(3,K)$ and this
embedding makes C_3^2 small, where K is algebraically
closed field of characteristic three. Then the quotient vari-
ety \mathbb{A}^3_K/C_3^2 is not log canonical.

The pathological point of this example is that:

\mathbb{A}^3_K/C is canonical for all cyclic subgroup $C \subset C_3^2$
because $\# C = 3$ for any cyclic subgroup C, see [3]. But
\mathbb{A}^3_K/C_3^2 is not log canonical.

This is in contrast to the fact that, in characteristic zero, we
can use the Reid-Shepherd-Barron-Tai criterion.

We give the proof of the main theorem by explicit compu-
tation. The all small action of C_3^2 are given in [1]. The actions
are parametrized by $a \in K \setminus \mathbb{F}_3$, $b \in K$. Then, we can compute
the explicit form of the quotient varieties X for each action of
C_3^2. We will find that the quotient varieties are classified in two
types separating by whether $b = 0$ or not about the parame-
ter b of the action. Finally, we construct the proper birational
morphism $Y \to X$ with exceptional divisors which discrepancy
is smaller than -1, which shows the quotient varieties are not
log canonical. This construction given by a few times blow up
along the singular loci in each case.

3 Application
As an application of the main result, we give a criterion when
a quotient variety associated to a small wild finite group is log
terminal in dimension three and characteristic three. Accord-
ing to the criterion, we can judge the singularity of a quotient
variety by seeing the order of the acting group.

Corollary. Let G be a wild small finite group of $\text{GL}(3,K)$
where K is an algebraically closed field. We write $\#G = 3^n$ where r, n
are positive integer and n is not divided by three.

(i) If $r = 1$ then \mathbb{A}^3_K/G is log terminal.

(ii) If $r \geq 2$ then \mathbb{A}^3_K/G is not log canonical.

References
[1] H.E.A.E.Campbell, R.J.Shank, D.L.Wehlau, Ring of in-
variants for modular representations of elementary abelian
[2] J.Kollár, Singularities of the minimal model program,
Cambridge University Press, (2013)