Periods of tropical K3 hypersurfaces

arXiv:1806.04239, The University of Tokyo Yuto Yamamoto

1. The case of curves

- $f = \sum_i k_i x^i \in K[x_1^{\pm}, x_2^{\pm}]$
- ullet $V(\operatorname{trop}(f))$: the tropical hypersurface defined by $\operatorname{trop}(f)$
- $R \in \mathbb{R}^{>0}$: sufficiently large $\leadsto f_R := f|_{t=1/R} \in \mathbb{C}[x_1^\pm, x_2^\pm]$
- $V(R) := \{f_R = 0\}$: the complex hypersurface

Theorem (Katz-Markwig-Markwig, Iwao)

Take holomorphic forms $\{\Omega_i(R)\}_{i=1}^g$ so that $\int_{a_i} \Omega_j(R) = \delta_{i,j}$. The leading term of the period is given by

$$\int_{\beta_i} \Omega_j(R) \sim \frac{-1}{2\pi \sqrt{-1}} \log R \cdot T_{i,j}, \quad (R \to +\infty)$$

where $\left\{T_{i,j}\right\}_{i,i}$ is the tropical period matrix of $V(\operatorname{trop}(f))$.

2. Tropical K3 surfaces

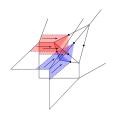
Theorem (Gross-Wilson)

Maximally degenerating families of complex K3 surfaces with Ricci-flat Kähler metrics converge to 2-spheres with integral affine structures with singularities in the Gromov–Hausdorff limit.

The first step: To construct an integral affine 2-sphere from a tropical K3 hypersurface.

3. Contractions

- The projection to the maximal dimensional torus orbit induces an integral affine structure on a neighborhood of a vertex.
- . Black dots are singularities.



• Similar/the same constructions have already been performed by Gross-Siebert and Kontsevich-Soibelman.

4. Radiance obstructions

- ullet B: an integral affine manifold (with singularities)
- $\iota \colon B_0 \hookrightarrow B :$ the smooth part
- ullet $\mathcal{T}_{\mathbb{Z}}$: the sheaf of integral tangent vectors on \emph{B}_{0}
- $\mathcal{T} := \mathcal{T}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{R}$
- $\{U_i\}_i$: a sufficiently fine open covering of B
- $\{s_i \in \Gamma(U_i \cap B_0, T^{\text{aff}}B_0)\}_i$

Definition (Goldman-Hirsch '84)

The radiance obstruction $c_B \in H^1(B, \iota_* \mathcal{T})$ is defined by

$$c_B((U_i, U_i)) := s_i - s_i$$

for each 1-simplex (U_i, U_i) of $\{U_i\}_i$.

5. Main results

- $\Delta \subset M_{\mathbb{R}}$: a smooth reflexive polytope
- $\check{\Delta} \subset N_{\mathbb{R}}$: the polar polytope of Δ
- $F = \max_{n \in \check{\Lambda} \cap N} \{a(n) + n \cdot X\}$: a tropical polynomial
- ullet V(F): the tropical hypersurface defined by F
- B: an integral affine 2-sphere obtained by contracting V(F)
- $\Sigma \subset M_{\mathbb{R}}$: the normal fan of Δ
- X_Σ : the complex toric manifold associated with Σ
- D_{ρ} : the toric divisor on X_{Σ} corresponding to $\rho \in \Sigma(1)$
- $Y \subset X_{\Sigma}$: an anti-canonical hypersurface
- $Pic(Y)_{amb} := Im \{Pic(X_{\Sigma}) \hookrightarrow Pic(Y)\}$
- \cup : $H^1(B, \iota_*\mathcal{T}_{\mathbb{Z}}) \otimes H^1(B, \iota_*\mathcal{T}_{\mathbb{Z}}) \rightarrow H^2(B, \iota_* \wedge^2 \mathcal{T}_{\mathbb{Z}}) \cong \mathbb{Z}$

Theorem (Y.)

1. There is a primitive embedding

$$\psi \colon \operatorname{Pic}(Y)_{\operatorname{amh}} \hookrightarrow H^1(B, \iota_* \mathcal{T}_{\mathbb{Z}})$$

that preserves the pairing.

2. The radiance obstruction c_B is given by

$$c_B = \sum_{\rho \in \Sigma(1)} \left\{ a(n_\rho) - a(0) \right\} \psi(D_\rho).$$

6. Corollary

- $f = \sum_{i} k_{i}x^{i} \in K[x_{1}^{\pm}, x_{2}^{\pm}, x_{3}^{\pm}]$
- $R \in \mathbb{R}^{>0}$: sufficiently large $\leadsto f_R := f|_{t=1/R} \in \mathbb{C}[x_1^\pm, x_2^\pm, x_3^\pm]$
- $V(R) := \{f_R = 0\}$: the complex K3 hypersurface
- The period map

$$\begin{split} \mathcal{P} \colon (R_0, \infty) &\to \left\{ [\sigma] \in \mathbb{P}((U \oplus \operatorname{Pic}(Y)_{\operatorname{amb}}) \otimes \mathbb{C}) | (\sigma, \sigma) = 0, (\sigma, \overline{\sigma}) > 0 \right\} \\ &\cong \left\{ \sigma \in \operatorname{Pic}(Y)_{\operatorname{amb}} \otimes \mathbb{C} | (\mathfrak{Re}\sigma, \mathfrak{Re}\sigma) > 0 \right\} \end{split}$$

• B: an integral affine 2-sphere obtained by contracting the tropical hypersurface $V(\operatorname{trop}(f))$

Corollary (Y.)

1. The leading term of the period map $\mathcal{P}(R)$ is given by

$$\mathcal{P}(R) \sim \log R \cdot \psi^{-1}(c_B) \quad (R \to +\infty).$$

The element $\psi^{-1}(c_B) \in \operatorname{Pic}(Y)_{\operatorname{amb}} \otimes_{\mathbb{Z}} \mathbb{R}$ can be regarded as the tropical period of $B \simeq V(\operatorname{trop}(f))$.

•

$$(\psi^{-1}(c_R), \psi^{-1}(c_R)) > 0.$$

This can be regarded as the tropical version of Hodge-Riemann bilinear relation.