Singularities of non- \mathbb{Q}-Gorenstein varieties admitting a polarized endomorphism

Shou Yoshikawa
Graduate School of Mathematical Sciences, The University of Tokyo

Conjectures and Main Results
Let X be a normal complex projective variety admitting a noninvertible polarized endomorphism f. We are interested in the following two conjectures.

Conjectures

```
0If }X\mathrm{ has the log canonical model }\mu:Y->X\mathrm{ , then }\mu\mathrm{ is an
isomorphism in codimension one. [BH14]
0 }X\mathrm{ is of Calabi-Yau type. [BG17]
```

Broustet and Höring showed in [BH14] that if X is \mathbb{Q}-Gorenstein, then Conjecture 1 holds true i.e. X has \log canonical singularities. f f ind Gongyo proved in [BG17] that if X is \mathbb{Q}-Gorenstein main results in codimension one, then Conjecture 2 holds true. Our main results are removing the assumption that X is \mathbb{Q}-Gorenstein.

Main Results

```
- Conjecture 1 holds true
Conjecture 2 holds true if f}\mathrm{ is étale in codimension one and X
has the log canonical model
```

Notations and Properties
X : normal complex projective variety admitting a non-invertible polarized endomorphism f
W : normal integral scheme essentially of finite type over a field of characteristic 0 .
$\operatorname{Env}_{W}(D)$: nef envelope of Weil divisor D on W

- $\operatorname{Env}_{W}(D)_{Y}$ is a divisor on birational model Y over W and if $\mu: Y^{\prime} \rightarrow Y$ is birational morphism over W, then $\mu_{*} \operatorname{Env}_{W}(D)_{Y^{\prime}}=\operatorname{Env}_{W}(D)_{Y}$
- If D is \mathbb{Q}-Cartier divisor, then $\operatorname{Env}_{W}(D)_{Y}=\pi^{*} D$ for any birational morphism $\pi: Y \rightarrow W$
D is \mathbb{Q}-Cartier if and only if $\operatorname{Env}_{W}(D)+\operatorname{Env}_{W}(-D)=0$ and $\oplus_{m} \mathcal{O}_{W}(m D)$ is finitely generated.

Definition and Key Theorems
We say that W has valuative \log canonical singularities it $\operatorname{ord}_{E}\left(K_{Y}-\operatorname{Env}_{X}\left(K_{W}\right)_{Y}\right)+1 \geq 0$
for any birational model Y and prime divisor E on Y
Thanks to the following theorem, we can reduce Conjecture 1 to prove that X has valuative log canonical singularities.
Key Theorem 1
The following are equivalent to each other.
© W has valuative \log canonical singularities.
©For any birational model $\pi: Y \rightarrow W$ and positive number m,
we have

$$
\pi_{*} \mathcal{O}_{Y}\left(m\left(K_{Y}+E^{\pi}\right)\right)=\mathcal{O}_{W}\left(m K_{W}\right)
$$

where, E^{π} is the exceptional prime divisors on Y.
Furthermore, if W has the log canonical model, the following
condition is also equivalent.
©The log canonical model of W is an isomorphism in
codimension one.

The following theorems are local problems corresponding to main results.

Key Theorem 2

(R, \mathfrak{m}, k) : normal local ring of essentially of finite type over \mathbb{C}.
$\phi: R \rightarrow R$: finite injective local homomorphism. Suppose that - Spec $R \backslash\{m\}$ has valuative log canonical singularities, and $\operatorname{deg}(\phi)>\left[\phi_{*} k: k\right]$
Then Spec R has valuative log canonical singularities
We further assume the following conditions.
$\oplus R\left(m K_{R}\right)$ is finitely generated
Spec $R \backslash\{\mathfrak{m}\}$ is \mathbb{Q}-Gorenstein.
ϕ is étale in codimension one
Then R is \mathbb{Q}-Gorenstein

Sketch of the proof of Main Result 1
We assume that non-valuative log canonical locus is not empty, and take an irreducible component Z. First, we prove the following claim
Z is totally invariant up to replacing f by some iterate.
Next, by this claim, we may assume f induces an endomorphism of the local ring $\mathcal{O}_{X, \eta}$ of the generic point η of Z. Applying Key Theorem 2, we have

$$
\operatorname{deg}(f)=\left[f_{*} \kappa(Z): \kappa(Z)\right]
$$

where $\kappa(Z)$ is the residue field of Z. Since $\left[f_{*} \kappa(Z): \kappa(Z)\right]$ is nothing but $\operatorname{deg}\left(\left.f\right|_{Z}\right)$, we see that

$$
\operatorname{deg}(f)=\operatorname{deg}\left(\left.f\right|_{Z}\right)
$$

but it contradicts the fact that f is a non-invertible polarized endomorphism.

$$
\text { Sketch of the proof of Main Result } 2
$$

We assume that non-Q-Gorenstein locus is not empty, and take an irreducible component Z. By Main Result 1, X has the amall \log canonical model, so

$$
\oplus \mathcal{O}_{X}\left(m K_{X}\right)
$$

is finitely generated. By a similar argument, we may assume Z is totally invariant, and we can apply Key Theorem 2. Therefore we also see that

$$
\operatorname{deg}(f)=\operatorname{deg}\left(\left.f\right|_{Z}\right)
$$

and it is a contradiction.

References

[BdFF12] S.Boucksom, T. de Fernex, C.Favre, The volume of an isolated singularity, Duke Math. J. 161 (2012),no. 8, 1455-1520. [BG17] A. Broustet and Y. Gongyo, Remarks on Log Calabi- Yau structure of varieties admitting polarized endomorphisms, Taiwan J Math. 21 (2017), no. 3, 569-582.
[BH14] A. Broustet and A. Höring, Singularities of varieties admitting an endomorphism. Math. Ann. 360 (2014), no. 1-2, 439-456.

