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1 Introduction

In three dimensions, the Yang-Mills coupling has positive mass dimension. This means that

three-dimensional Yang-Mills theories are super-renormalizable. The Yang-Mills term is

irrelevant and cannot contribute to the infrared physics independently of the gauge group

and the matter content. It might be expected that 3d gauge theories flow to the non-

trivial infrared fixed point, which depends on the matter content. In fact, U(N) QCD with

Nf ≥ Ncri massless flavors, where Ncri is some critical value, might flow to an interacting

IR fixed point while with Nf < Ncri massless flavors the theory is expected to flow to

a gapped phase in the IR [1–3]. The numbers of the flavors plays an important role in

determining the IR structure of a 3d gauge theory. However, it is generally difficult to

determine the non-perturbative properties of such a theory.
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Three-dimensional supersymmetric gauge theories have several interesting features that

four-dimensional supersymmetric gauge theories do not share. In particular, we are inter-

ested in the fact that there are real parameters, namely the real mass and Fayet-Iliopolous

(FI) parameters. These are not given by the background chiral superfields. Thus, the dy-

namics triggered by the deformation of real parameters are not restricted by holomorphy.

This means that the non-trivial phase transitions can occur. When we give the matter

fields infinite mass, the massive matter fields decouple from the theory and decoupling of

the flavors changes the IR physics. Then, an interesting phase transition occurs.

Supersymmetric gauge theories are known to have exactly calculable quantities such

as the partition function on a compact manifold M using localization methods in three

dimensions [20–23]. In this paper, we focus on the round three-sphere partition function,

which is given by a matrix-type finite-dimensional integral. These localization methods

admit the deformation of the real mass and FI terms by weakly gauging a global symmetry

and giving the background field that couples with the current of global symmetry an

expectation value. Then, we can approach the non-trivial dynamics triggered using these

real mass parameter with the localization methods. In [4–15], the phase structure of mass-

deformed gauge theories on S3 is investigated.

In this study, we focus on N = 4 U(N) SQCD with Nf pairs of chiral multiplets in the

fundamental and anti-fundamental representations of U(N). These theories are classified

in [16] by their low energy properties. The authors define three types of the theories:

“good”, “ugly” and “bad” theories. A 3d gauge theory is a good theory if all the monopole

operators obey the unitarity bound. In this case, the R-symmetry in the IR is the same

as that in the UV. An N = 4 U(N) SQCD is a good theory when Nf ≥ 2N . A gauge

theory is called “ugly” if the monopole operators satisfy the unitarity bound, but somel

monopole operators saturate it. This type of theory is likely to flow to an interacting

superconformal field theory (SCFT) with R-symmetry visible in the UV and a decoupled

free sector consisting of the monopole operators that saturate the unitarity bound. An

N = 4 U(N) SQCD is an ugly theory when Nf = 2N − 1. In a bad theory, there

are monopole operators with zero or negative R-charge corresponding to the R-symmetry

manifest in the UV. Because the monopole operators violate the unitarity bound of the

UV R-symmetry, a bad theory flows to a fixed point, whose R-symmetry is not manifest

in the UV. An N = 4 U(N) SQCD becomes a bad theory when N ≤ Nf ≤ 2N − 2.1 It

is known that the question of whether the S3 partition function diverges is related to the

criterion of “bad” theories. The partition function of a “bad” theory is divergent [21]. This

might be because the localization methods use the R-symmetry that is manifest in the UV

to define the gauge theory on a compact manifold. Thus, we should treat the number of

the flavors carefully.

Our aim in this work is to study the S3 partition function of real mass-deformed

theories in the infinite mass limit.2 For example, we consider the situation in which we

1Recent progress on“bad” theories in terms of the geometry of the moduli space of vacua is described

in [17–19].
2The infinite mass limit of the matrix model of 3d gauge theories is also considered in [24–27, 30] in the

context of finding new examples of Seiberg-like dualities [28, 29].
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give real masses to enough matter multiplets of a “good” theory for it to become a“bad”

theory after the massive matter fields decouple. It could naively be thought that the

massive matter multiplets will decouple from the theory in this limit. However, a matrix

model of a “bad” theory is not well defined.3 It is interesting to investigate what happens

to this matrix model in the infinite mass limit. Hence, our interest is to determine which

hypermultiplets become effectively massless or massive in the infinite mass limit on the

three-sphere. When a theory is defined on the flat space, we must choose a vacuum in

order to determine the decoupling of matter fields. However, there are no vacuum choices

for the theories on the three-sphere. In particular, we calculate the sphere partition function

with the help of so-called Coulomb branch localization and this is given by the integral over

the classical Coulomb branch parameters. Namely, the three-sphere partition function is

represented by the integrals of a portion of the vacua in terms of the theory on flat space.

Thus, it is not simple to argue whether or not the massive multiplets will be decoupled

when we take the infinite mass limit.

For example, we consider U(2) N = 4 SQCD with
Nf
2 pairs of hypermultiplets with

a real mass ±m. Figure 1 shows the real parts of the two classical Coulomb branch

parameters, where there are some special points. When we fix a generic point of the

Coulomb branch (blue dot), the effective theory is U(1)× U(1) with massive matter fields

and W-bosons while on a specific point, such as green or red points, the effective theory

has
Nf
2 or Nf massless hypermultiplets, respectively. The origin (black dot) is also special

in the sense that the gauge symmetry is enhanced to U(2). It is non-trivial to determine

which points dominantly contribute to the three-sphere partition function in the infinite

mass limit, because all the points of the Coulomb branch can contribute to it, including

generic points and the special one mentioned above.

To investigate this, we focus on the solution of the saddle point equation because the

solution corresponds to a classical Coulomb branch point and in the large N limit it gives

a dominant contribution to the sphere partition function. Hence, in the large N limit, we

can investigate the decoupling of the massive matter fields as well as which theory will

appear as an effective theory on the point of the Coulomb branch which corresponds to

the solution. Then, we deduce the effective theory in the infinite mass limit because the

solution of the saddle point equation of the effective theory coincides with that of the saddle

point equation of the original massive theory in the infinite mass limit.

Investigating the solution of the saddle point equation is simply a method to deter-

mine which point of the Coulomb branch gives the dominant contribution to the partition

function in the infinite mass limit. Even when we do not take the large N limit, it is

expected that there exists a dominant point of the Coulomb branch and the matrix model

becomes a specific effective theory in the infinite mass limit. This is because the mass

infinite limit also corresponds to the decompactified limit (rS3 →∞),4 and thus the point

3The magnetic theory of a “bad” theory in terms of the Seiberg-like duality is considered as a good

theory [27].
4The mass m must appear as the combination mrS3 in the partition function. Therefore we cannot

distinguish between the infinite mass limit and the decompactified limit. In our convention we take rS3 to

1.
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Figure 1. This figure schematically shows the real parts of the two classical Coulomb branch

parameters of U(2) N = 4 SQCD with
Nf

2 pairs of hypermultiplets with real mass ±m. There

are some special points where new massless degrees of freedom appear or the gauge symmetry is

enhanced to U(2). Here, we assume that σ2 ≥ σ1 due to the Weyl symmetry of U(2).

of the Coulomb branch should be chosen in this limit. We verify this in the matrix models

for small N and confirm that the effective theory is the same as that which we deduced

from the calculations in the large N limit. We conclude that this vacuum selection does

not require the large N limit, rather than just the infinite mass limit.

In this study, we focus on the following two types of the mass-deformed N = 4 U(N)

SQCD: (i) with only massive matter fields, and (ii) with massive and massless matter fields.

The theory (i) is simple and suitable for investigate the cases in which the mass deformation

leads to a ‘bad’ theory after decoupling of the matter fields. The theory (ii) is also simple

and suitable for investigating whether the massive matter fields simply decouple when the

mass deformation leads a ‘good’ theory to a ‘good’ theory and how the gauge group is

spontaneously broken as the number of the massless fields increases. In addition, we can

obtain some insight into the results even in case of general mass deformations from those

in case of these deformations.

The rest of this paper is organized as follows: in section 2, we review localization meth-

ods and introduce the building blocks of matrix models. In section 3, we solve the saddle

point equation of N = 4 SQCD with massless or massive matter fields and investigate

the theory that appears in the infinite mass limit. In section 4, we calculate the partition

function of finite rank SQCDs and evaluate the leading part in the infinite mass limit. In

section 5 we present a conclusion and discussion. In appendix A, we introduce the tech-

niques of the resolvent methods utilized in this paper to solve the saddle point equation

in the large N limit. In appendix B, we introduce mixed Chern-Simons terms which must

appear in the infinite mass limit as one-loop effects. We attempt to interpret what happens

in the infinite mass limit in terms of these mixed Chern-Simons terms. In appendix C, we

discuss the convergence bound of the matrix model and reconsider the matrix model of

the effective theory in the infinite mass limit from the viewpoint of its convergence bound.

In appendix D, we introduce an example that becomes ABJM theory in the infinite mass

limit while it is just an SQCD when m = 0.
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2 Localization and matrix model

In this paper, we investigate the round three-sphere partition function of three dimensional

supersymmetric gauge theories. This is given by a finite dimensional integral rather than

the path integral by employing the localization technique [20–23]. To utilize this localiza-

tion technique, we define a gauge theory on S3 with preserving supersymmetry and deform

the action on S3 by a Q-exact term, where Q is a generator of the supersymmetry. The par-

tition function of the deformed action is independent of the deformation parameter. Thus,

we take the parameter to infinity and the path integral reduces to a finite-dimensional ma-

trix integral because the path integral is determined by the finite-dimensional saddle point

configuration in the field configuration space. Because the saddle point approximation is

one-loop exact, the action of the matrix model is written in terms of classical and one-loop

parts as

Z =
1

N !

∫ Rank(G)∏
i=1

dσi

 |J |ZClassical(σ)Zvec
1-loop(σ)Zmat

1-loop(σ), (2.1)

where |J | is the usual Vandermonde determinant and Zvec
1-loop and Zmat

1-loop are one-loop con-

tributions from the vector multiplets and matter multiplets, respectively. The variable σi of

the integral corresponds to an eigenvalue of the scalar fields of an N = 2 vector multiplet.

2.1 Vector multiplet

In this paper, we use the Coulomb branch localization mentioned above. We only consider

U(N) gauge theories in this paper. The Yang-Mills term cannot contribute to the partition

function since the Yang-Mills term is Q-exact. On the other hand, the Chern-Simons term

can contribute to this as a classical contribution, but we do not consider this situation

here. The one-loop contribution of the vector multiplets is given by

Zvec
1-loop(σ) =

N∏
i<j

4 sinh2 π(σi − σj)
π2(σi − σj)2

, (2.2)

where the denominator cancels against the Vandermonde determinant, which appears when

we choose the diagonal gauge of σ. When there is a U(1) part of the gauge group, the FI

term can be introduced, which contributes to the partition function as a classical term

e2πiζ
∑N
i=1 σi . (2.3)

2.2 Matter multiplet

Next, we consider the contributions of chiral multiplets. The chiral multiplets can only

contribute to the partition function through one-loop parts because their kinetic and su-

perpotential terms are Q-exact. The one-loop contributions of chiral multiplets are deter-

mined by the representations of both the gauge group and the flavor symmetry. By weakly

gauging a flavor symmetry, we can couple its current with a background vector multiplets

– 5 –
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in a supersymmetric manner. Thus, we can give the corresponding scalar σb an expecta-

tion value and regard it as a real mass for the chiral multiplets. Moreover, we can give the

chiral multiplets an R-charge [22, 23]. However, we do not consider such a deformation in

this work and we consider the chiral multiplets to have canonical dimension 1
2 .5

The one-loop contribution of the chiral multiplets in the representation R of U(N) is

given by ∏
ρ

e`(
1
2

+iρ(σ)), (2.4)

where ρ is a weight vector of the representation R. In [22], the function `(z) is defined as

`(z) = −z log
(
1− e2πiz

)
+
i

2

(
πz +

1

π
Li2(e2πiz)

)
− iπ

12
. (2.5)

A notable property we will often exploit is that

e`(
1
2

+ix)e`(
1
2
−ix) =

1

2 coshπx
. (2.6)

In this paper, we focus on SQCDs, which are super Yang-Mills theories with Nf pairs

of chiral multiplets in the fundamental and anti-fundamental representations of U(N). We

consider following two mass deformations: in case (i), we give a real mass m to
Nf
2 flavors

while we give a real mass −m to the remaining
Nf
2 flavors.6 This breaks flavor symmetry

SU(Nf ) down to SU(
Nf
2 )×SU(

Nf
2 ). The total one-loop contribution is given by

Zmat
1-loop(σ) =

N∏
i=1

e
Nf
2 (`( 1

2
+i(σi+m))+`( 1

2
+i(σi−m))+`( 1

2
+i(−σi+m))+`( 1

2
+i(−σi−m)))

=

N∏
i=1

1

2 (coshπ (σi +m) 2 coshπ (σi −m))
Nf
2

. (2.7)

In case (ii), we give
Nf
3 flavors a real mass m while we give other

Nf
3 flavors a real mass −m.

Then, we keep the remaining
Nf
3 flavors massless. This real mass assignment breaks each

of the SU(Nf ) global symmetries of the matter fields down to SU(
Nf
3 )×SU(

Nf
3 )×SU(

Nf
3 ).7

The total one-loop contribution of the chiral multiplets is given by

Zmat
1-loop(σ)

=

N∏
i=1

e
Nf
3 (`( 1

2
+i(σi+m))+`( 1

2
+i(σi−m))+`( 1

2
+i(−σi+m))+`( 1

2
+i(−σi−m))+`( 1

2
+iσi)+`( 1

2
−iσi))

=

N∏
i=1

1

(2 coshπ (σi +m) 2 coshπ (σi −m) 2 coshπσi)
Nf
3

. (2.8)

5For an N = 4 vector multiplet, there exists an adjoint chiral multiplet in terms of the N = 2 language.

Then, it appears that we must consider the one-loop contributions of this. However, because its canonical

R-charge is 1, the adjoint chiral multiplet does not contribute to the partition function without an axial

mass parameter [21, 23].
6We assume that

Nf

2
is an integer.

7We assume that
Nf

3
is an integer.

– 6 –
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3 Large N solution and Coulomb branch point

3.1 SQCD with massless hypermultiplets

In this subsection, we solve the saddle point equation of U(N) SQCD with massless hy-

permultiplets for later use. The solution is given as an eigenvalue density function ρ(x),

which determines the large N behavior of the theory. The partition function is written as

Z =
1

N !

∫ N∏
i=1

dxi

∏
i<j 4 sinh2 (π(xi − xj))∏

i (2 cosh(πxi))
Nf

. (3.1)

It is generally difficult to calculate this partition function exactly except for small N .

Fortunately, the leading part in the large N limit can be evaluated by the saddle point

approximation. The saddle point equation for this theory is given by

0 = Nf tanh(πxi)− 2
∑
j 6=i

cothπ(xi − xj). (3.2)

We assume that the eigenvalues become dense in the large N limit and we take the con-

tinuous limit as follows:

i

N
→ s ∈ [0, 1], xi → x(s),

1

N

N∑
i=1

→
∫
ds. (3.3)

The leading part of this saddle point equation is rewritten as a singular integral equation8

0 = ξ tanhπ(x)− 2

(
P

∫
dyρ(y) cothπ(x− y)

)
, (3.4)

where we also took Nf to be infinite with ξ ≡ Nf
N finite and introduced the density function

ρ(x) defined as

ds

dx
≡ ρ(x). (3.5)

This means that we regard the values of the eigenvalues denoted by x as constituting the

fundamental variables. The density function ρ(x) counts the number of the eigenvalues

which exist between x and x+dx and satisfies the following normalization condition which

depends on how we take the continuous limit:∫
I
dxρ(x) = 1. (3.6)

8We denote a principal value integral as

P

∫
dx.

– 7 –
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In order to solve the equation (3.4) and obtain the density function ρ(x), we employ the

resolvent methods. We give a brief summary of resolvent methods in appendix A. We take

e2πx ≡ X and e2πy ≡ Y and define the resolvent ω(Z) and the potential V ′(x) as

ω(X) ≡ 2

∫
I
dyρ(y)

eπ(x−y) + e−π(x−y)

eπ(x−y) − e−π(x−y)
= 2

∫
I
dyρ(y)

X + Y

X − Y
= 2

(
1 +

∫
C

dY

π

ρ(y)

X − Y

)
,

(3.7)

V ′(x) ≡ X − 1

X + 1
ξ, (3.8)

where I and C represent the intervals [xmin, xmax] and [b, a] respectively. The resolvent is de-

termined from the analyticity and the one-cut solution of the resolvent is given by (A.14) as

ω(X) = ξ

X − 1

X + 1
−

2
√

(X − a)
√

(X − 1
a)

(X + 1)
√

(1 + a)(1 + 1
a)

 = ω0

(
X; 1; a,

1

a

)
, (3.9)

where b = 1
a because of the symmetry of the saddle point equation. We should carefully

consider the branch of the square root. For later convenience, we introduce the follow-

ing function:

ω0(X;A; a, b) = ξ

(
X −A
X +A

−
2A
√

(X − a)
√

(X − b)
(X +A)

√
(1 + a)(1 + b)

)
. (3.10)

The density function ρ(x) defined on [ 1
a , a] is given by (A.8) as

ρ(x) =
ξ

(X + 1)

√
(X − 1

a)(a−X)

(1 + a)(1 + 1
a)

. (3.11)

The end of the cut a is determined by the asymptotic behavior of the resolvent ω(X)

from (3.9). The asymptotic behavior in X → 0 is determined by the following equation:

−2

ξ
= −1 +

2√
(1 + a)(1 + 1

a)
. (3.12)

The solution is given by

a =
ξ2 + 4ξ − 4 + 4

√
(ξ − 1)ξ2

(ξ − 2)2
, (3.13)

where this solution only exists when ξ ≥ 2 because the right-hand side of (3.12) is always

greater than −1 as a function of a.

Here, we argue on the relation between this large N solution and a point of the classical

Coulomb branch. The equation (3.13) implies that when we take rS3 to infinity, xmin and

xmax become 0 because the radius is recovered as x → xrS3 and a = e2πrS3xmax . Thus,

the saddle point solution becomes condensed to the origin. Taking the radius to infinity

corresponds to considering the theory on a flat space. Therefore, this solution corresponds

– 8 –
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to a point of the Coulomb branch of the theory on a flat space, which is the origin of the

classical Coulomb branch. The origin of the Coulomb branch is the most singular point

in the sense that on this point, all the massive W-bosons become massless. On this point,

the theory at the deep IR of the RG flow expected to be an interacting superconformal

field theory. It is expected that the sphere partition function of SQCD with massless

hypermultiplets always represents that of a non-trivial SCFT.

The solution exists when ξ ≥ 2. This reflects the bound of the convergence of the

matrix model. In this study, we will add real mass to matter fields while preserving the

special flavor symmetry. Even in that case, this bound always appears in our analysis.

3.1.1 Adding an FI term

Here, we consider U(N) gauge theories with Nf massless hypermultiplets and an FI term.

In particular in this section, we consider imaginary FI terms. This is in preparation for

the latter part of this paper, where such terms appear as one-loop effects when we take the

infinite mass limit, namely in the form of certain mixed Chern-Simons terms. The density

function is almost the same as that in the previous section. However, an FI term breaks

the symmetry of the saddle point equation under the simultaneous change of the sign of

all eigenvalues xi → −xi.
For this theory, the matrix model is written as

Z =
1

N !

∫ N∏
i=1

dxi
eπζ

∑
i xi
∏
i<j 4 sinh2 (π(xi − xj))∏

i

(
2 coshπ(xi)

)Nf , (3.14)

where ζ ∈ R is an imaginary FI parameter in the sense that ordinary FI terms are considered

as eiζπ
∑
i xi . This FI term can be considered as the R-charge of the monopole operator

since the real part of the monopole operator is e−2π∆mσi , where ∆m is the R-charge of the

monopole operator [34, 37]. The saddle point equation in the continuous limit is

0 = η + ξ tanhπxi − 2

(
P

∫
I
dyρ(y) cothπ(x− y)

)
, (3.15)

where we also take Nf and ζ to be infinite while keeping

ξ ≡
Nf

N
, η ≡ ζ

N
, (3.16)

finite in order to solve the saddle point equation. We can solve this saddle point equation

in the large N limit using resolvent methods. We define the resolvent ω(X) and potential

V ′(x) for this theory as

ω(X) ≡ 2

∫
dyρ(y)

X + Y

X − Y
= 2

(
1 +

∫
dY

π

ρ(y)

X − Y

)
, (3.17)

V ′(x) ≡ η +
X − 1

X + 1
ξ. (3.18)

The resolvent ω(Z) is obtained through the same calculation that appears in the previous

section because an FI term does not change the singular structure of the resolvent:

ω(X) = η + ω0 (X; 1; a, b) . (3.19)

– 9 –
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The density function is given by the equation (A.8) as

ρ(x) =ξ

[ √
(a−X)(X − b)

(X + 1)
√

(1 + a)(1 + b)

]
, (3.20)

where a and b are determined from the equation describing the asymptotic behavior of

ω(X) at X = 0 and ∞:

η

ξ
=

1−
√
ab√

(1 + b)(1 + a)
, (3.21)

1− 2

ξ
=

1 +
√
ab√

(1 + b)(1 + a)
. (3.22)

Because an FI term breaks the Z2 symmetry under which xi → −xi in the saddle point

equation, a and b do not satisfy the condition ab = 1. The solutions of (3.21) and (3.22)

are given by

a =
−4 + 4ξ + ξ2 − η2 + 4

√
(ξ − 1) (ξ2 − η2)

(−2 + ξ + η)2
,

b =
−4 + 4ξ + ξ2 − η2 − 4

√
(ξ − 1) (ξ2 − η2)

(−2 + ξ + η)2
. (3.23)

From (3.21) and (3.22), we find that the solution only exists when

ξ ≥ 2 + |η|. (3.24)

This condition is equivalent to the condition that the matrix model converges in the large N

limit. In appendix C, we will discuss the convergence bound of the matrix model of SQCDs.

3.2 SQCD with massive hypermultiplets

In this subsection, we consider U(N) SQCD with Nf pairs of chiral multiplets with real

mass by weakly gauging its flavor symmetry and coupling its current to N = 2 vector

multiplets as background fields such that the matrix model is given by

Z =
1

N !

∫ N∏
i=1

dxi

∏
i<j 4 sinh2 (π(xi − xj))∏

i

(
2 coshπ(xi +m)2 coshπ(xi −m)

)Nf
2

. (3.25)

When m = 0, this matrix model becomes that of U(N) with Nf massless fundamental

hypermultiplets. When we take the infinite mass limit, if the massive matter multiplets

decouple, then, the matrix model is not well defined. Therefore, we investigate what

happens to this matrix model in the infinite mass limit.

The saddle point equation is written as

2
∑
i

cothπ(xi − xj) =
Nf

2

(
tanhπ(xi +m) + tanhπ(xi −m)

)
, (3.26)
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and in the continuous limit this becomes

4

(
P

∫
dyρ(y) cothπ(x− y)

)
= ξ

(
tanhπ(x+m) + tanhπ(x−m)

)
, (3.27)

Next, we define the resolvent ω(X) and potential V ′(x) as

ω(X) = 4

∫
dyρ(y)

X + Y

X − Y
= 4

(
1 +

∫
dY

π

ρ(y)

X − Y

)
, (3.28)

V ′(x) = ξ

(
X −M−1

X +M−1
+
X −M
X +M

)
, (3.29)

where M = e2πm. The resolvent is determined by its analytic properties (A.14) as

ω(X) =ω0 (X;M ; a, b) + ω0

(
X;M−1; a, b

)
. (3.30)

The density function is given by (A.8) as

ρ(x) =
ξ

2

[
M
√

(a−X)(X − b)
(X +M)

√
(M + a)(M + b)

+
M−1

√
(a−X)(X − b)

(X +M−1)
√

(M−1 + a)(M−1 + b)

]
. (3.31)

The constants a and b are detemined by the symmetry and asymptotic behavior

when Z = 0:

−4 = 2ξ

−1 +
1√

(M + a)(M + 1
a)

+
1√

(M−1 + a)(M−1 + 1
a)

 . (3.32)

This equation immediately implies that a exists when ξ ≥ 2. We conclude that this type

of mass deformation does not affect the bound of the existence of the solution. Here, a is

given by

a =
2(ξ − 1)(M2 + 1)+Mξ2+2(M + 1)

√
(ξ − 1) (ξ − 1 +M2(ξ − 1) +M(ξ2 − 2ξ + 2))

M(ξ − 2)2
.

(3.33)

When we take the infinite mass limit, it can naively be thought that this theory becomes

a bad theory, and its matrix model diverges. However, this argument is not correct in the

following sense: the density function has peaks around ±m and the eigenvalues gather

around these peaks as m becomes large. Thus, in the large N limit the partition function

of this massive SQCD theory corresponds to that of the effective theory on the point of

the Coulomb branch where half of the eigenvalues sit on +m and the others sit on −m as

σ =

−m1N
2
×N

2
0

0 m1N
2
×N

2

 . (3.34)

In fact, this argument is confirmed as follows: we assume that the eigenvalues are

separated as

xi =

m− λi (i = 1, . . . N2 ),

−m− λ̃i (i = N
2 + 1 . . . N),

(3.35)
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Figure 2. These figures show the numerical solution (blue dots) and analytic solutions for ρ(x)

(green line). The left utilizes the parameter (N,Nf ,m)=(100,2000,2), and the right one is for

parameter (N,Nf ,m)=(100,800,0.5).

where we assume that λi and λ̃i do not depend on m. The saddle point equations (3.26)

for the first N
2 eigenvalues are written as

0 = − 2
∑
j 6=i

cothπ (λi − λj)

− 2
∑
j

cothπ
(
λi − λ̃j − 2m

)
+
Nf

2

(
tanhπλi + tanhπ

(
λi − 2m

))

→ 0 = N

(
Nf

2N
− 1

)
+ 2

N
2∑
j 6=i

cothπ (λi − λj)−
Nf

2
tanhπλi, (3.36)

where we took the infinite mass limit in the second line and we note that the first term can

be interpreted as the gauge-R mixed Chern-Simons term [31–33] induced by integrating

out the massive gauginos and complex fermions of chiral multiplets. For the latter N
2

eigenvalues, the saddle point equation in the large mass limit is almost same as (3.36):

0 =N

(
1−

Nf

2N

)
+ 2

N
2∑
j 6=i

cothπ
(
λ̃i − λ̃j

)
−
Nf

2
tanhπλ̃i. (3.37)

The equations (3.36) and (3.37) imply that in the infinite mass limit the matrix

model (3.25) becomes9

Z ∼ ZMassive(m)

∫
d
N
2 λ

e
πN
(
Nf
2N
−1
)∑

i λi
∏
i<j (2 sinhπ (λi − λj))2∏

i (2 coshπλi)
Nf
2

×
∫
d
N
2 λ̃

e
−πN

(
Nf
2N
−1
)∑

i λ̃i
∏
i<j

(
2 sinhπ

(
λ̃i − λ̃j

))2

∏
i

(
2 coshπλ̃i

)Nf
2

, (3.38)

9The overall factor of the matrix model cannot be determined in this procedure.
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because the saddle point equation of this is equivalent to (3.36) and (3.37). The factor

ZMassive(m) represents the contribution of the decoupled free massive degrees of freedom.

We can evaluate ZMassive ∼ M−
N
2

(Nf−N). This part cannot be obtained from the saddle

point equations. This represents SQCD theories with the two U(N2 ) gauge group,
Nf
2

fundamental hypermultiplets, and an FI parameter ±N
(

1− Nf
2N

)
.10 As previously noted,

the FI term is induced by one-loop effects as a mixed Chern-Simons term consisting of

vector multiplets of the gauge and R-symmetry by integrating out the effectively massive

fermions. We argue on this point in appendix B. This FI term cannot appear when we

consider gauge on theories on flat space.

In fact, we verify our assumptions by comparing the density function of the matrix

model of the effective theory (3.38) with that of the matrix model (3.25) in the infinite mass

limit. First, we consider the density function of SQCD with massive hypermultiplets (3.31)

in the infinite mass limit. We rewrite X as X = MZ and assume that Z is order O(M0).

This procedure corresponds to simultaneous shifting xi by m and focusing on the peak of

the density function around +m. We have to consider the expansion of a (3.33) around

m =∞, which is given by

a = αM +O(M0), α ≡ 4(ξ − 1)

(ξ − 2)2
. (3.39)

Thus, the density function is expanded around m =∞ as

ρ(x) =
ξ

2(Z + 1)

√
Z (α− Z)

1 + α
+O(M−1), (3.40)

where Z ∈ [0, α] in the infinite mass limit. Then, we compare this with the solution for

the saddle point equation of the λ part (3.36) because the λ part corresponds to a part of

the massive SQCD in which the eigenvalues are concentrated on +m. The solution of its

saddle point equation (3.36) is given by applying the result in section 3.1.1. In this case, a

and b are

a = α, b = 0, (3.41)

and the density function is

ρ(z) =
ξ

2(Z + 1)

√
Z (α− Z)

1 + α
, Z ≡ e2πz, (3.42)

where the additional factor of 1
2 results from the fact that the effective theory has two

U(N2 ) gauge groups and the normalization condition should be taken as∫
I

dZ

2πZ
ρ(z) =

1

2
. (3.43)

10To be precise, the FI parameter is given by 1
r
S3

(
1− Nf

2N

)
if we recover the radius of S3 because in a

3d theory an FI parameter has mass dimension 1.
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The density functions (3.40) and (3.42) are completely equivalent. Next, we should consider

the part concentrated around −m. Here, we must rewrite X = M−1Z in (3.31) and the

density function in this limit is

ρ(x) =
ξ

2(Z + 1)

√
Z − 1

α

1 + 1
α

+O(M−1), (3.44)

where Z ∈ [ 1
α ,∞]. Then, we consider λ̃ part of (3.38). The solution of its saddle point

equation is given by applying the result of 3.1.1 to (3.37) and we obtain

a =∞, b =
1

α
, (3.45)

with the density function

ρ(z) =
ξ

2(Z + 1)

√
Z − 1

α

1 + 1
α

. (3.46)

This is the same as (3.44). Therefore, we conclude that SQCD with Nf massive hyper-

multiplets, as studied here, becomes two SQCDs in the infinite mass limit: each is a U(N2 )

SQCD with
Nf
2 massless hypermultiplets and the FI term ζ = ±iN(

2Nf
N − 1). This result

suggests that if we assume that the massive matter fields will be decoupled, then the sphere

partition function of a massive theory that would become a bad theory always becomes that

of a specific effective theory. This means that an interacting SCFT on a specific singular

point of the Coulomb branch appears in the infinite mass limit, rather than a bad theory

appearing. This result may also suggest that the massive theory cannot be employed for

the UV regularization of the bad theory. In section 4, we will verify our claim through

the exact calculation of the partition function of finite-rank SQCD. It is expected that the

partition function can be written as the product of those of the sector of the decoupled

free massive multiplets and of the effective theory in the infinite mass limit.

3.3 SQCD with massive and massless hypermultiplets

In the previous subsection, all matter fields of the theory were set to be massive. In this

subsection, we consider an SQCD theory with both massive and massless matter fields. It

is expected that the asymptotic behavior of the partition function in the infinite mass limit

will depend on the number of massless matter fields because the presence of the sufficient

number of matter fields makes the matrix model convergent.

We consider U(N) SQCD with
Nf
3 pairs of massive hypermultiplets with ±m and

Nf
3

massless hyper multiplets. We assume that
Nf
3 is an integer. The matrix model is given by

Z =
1

N !

∫ N∏
i=1

dxi

∏
i<j 4 sinh2 (π(xi − xj))∏

i

(
2 coshπ(xi +m)2 coshπ(xi −m)2 coshπ(xi)

)Nf
3

. (3.47)

The saddle point equation is given by

2

N∑
j 6=i

cothπ(xi − xj) =
Nf

3

(
tanhπ (xi +m) + tanhπ (xi −m) + tanhπxi

)
, (3.48)
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and we take the continuous limit of this. This is written as

6

(
P

∫
C
dy cothπ(x− y)

)
= ξ
(

tanhπ(x+m) + tanhπ(x−m) + tanhπx
)
. (3.49)

We define the resolvent ω(X) and potential V ′(x) as

ω(X) = 6

∫
dyρ(y)

X + Y

X − Y
= 6

(
1 +

∫
dY

π

ρ(y)

X − Y

)
, (3.50)

V ′(x) = ξ

(
X − 1

X + 1
+
X −M
X +M

+
X −M−1

X +M−1

)
, (3.51)

where M = e2πm. The resolvent is obtained from (A.14) as

ω(X) = ω0

(
X; 1; a,

1

a

)
+ ω0

(
X;M ; a,

1

a

)
+ ω0

(
X;M−1; a,

1

a

)
. (3.52)

The cut C = [ 1
a , a] is determined by the following asymptotic equation:

−6

ξ
= −3 +

2√
(1 + a)(1 + 1

a)
+

2√
(M + a)(M + 1

a)
+

2√
(M−1 + a)(M−1 + 1

a)
. (3.53)

Unfortunately, there are generally no explicit forms of the solution because this equation

corresponds to an octic equation in a . However, we can determine the solution numerically

or in the infinite mass limit. The density function for this case is given by (A.8) as

ρ(x) =
ξ

3

 M
√

(a−X)(X − 1
a)

(X +M)
√

(M + a)(M + 1
a)

+
M−1

√
(a−X)(X − 1

a)

(X +M−1)
√

(M−1 + a)(M−1 + 1
a)

+

√
(a−X)(X − 1

a)

(X + 1)
√

(1 + a)(1 + 1
a)

 . (3.54)

Let us consider what happens to the matrix model when the number of the matter fields

varies. When
Nf
3 ≥ 2N , the matrix model is still well defined after we take the infinite

mass limit and all massive matter fields decouple from the theory. In fact, in this case

the limit in which the mass is taken to infinity and the integrals of the matrix model are

commutative.11 This immediately implies that all the massive matter fields decouple and

the remaining theory is U(N) SQCD with
Nf
3 massless matter fields. This situation is

reflected in the equation (3.53). We assume that the solution does not depend on M ,12

11In this work, we focus only on the leading part of the mass infinite limit. Namely, when there exist

finite constants α and β such that the relation

lim
M→∞

(∫ ∞
−∞

dxf(x,M)Mα

)
=

∫ ∞
−∞

dx lim
M→∞

(f(x,M)Mα) = β, (3.55)

is satisfied for f(x,M), which is a function of x and M , we say that the infinite integral and the limit of

M are commutative.
12This assumption means that the effectively massless degrees of freedom cannot appear.
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when we take the mass m to infinity. Then, the equation (3.53) becomes the same as (3.12)

for the case with
Nf
3 flavors.

3− 6

ξ
=

2√
(1 + a)(1 + 1

a)
. (3.56)

This implies that the solution of (3.53), which does not depend on the mass m can exist

when
Nf
3 ≥ 2N while the constant solution cannot exist in the infinite mass limit when

Nf
3 < 2N . The numerical analysis of (3.53) supports the existence of such a solution.

Indeed, the density function is the same as that of U(N) gauge theory with
Nf
3 massless

hypermultiplets and this means that all the massive hypermultiplets decouple from the

theory because in the infinite mass limit, the origin of the Coulomb branch is dominant.

On the other hand, when
Nf
3 < 2N , a is proportional to M in the infinite mass limit,

and the density function has three peaks: around the origin and x = ±m. We illustrate the

behavior of the density function ρ(x) in figure 3. Then, we study the effective theory that

appears in this situation by analyzing the behavior of the density function when we take

the infinite mass limit. First, we need to know how the gauge group U(N) is broken. From

the density function, we find that U(N) is broken into three parts. Thus, we assume that

U(N)→ U(N1)×U(N2)×U(N3), (N1 +N2 +N3 = N). (3.57)

The rank of each of the three gauge groups is determined by the ratio of the numbers

of eigenvalues around each peak. The density function ρ(x) counts the number of the

eigenvalues between x and x+dx. Therefore, we count the numbers of the eigenvalues that

exist around each peak by integrating the corresponding density function in the infinite

mass limit to determine N1, N2 and N3.

We assume that there exists a solution proportional to M . In the infinite mass limit,

the equation (3.53) becomes

1− 2

ξ
=

2

3
√

(1 + β)
, (3.58)

where we assume that a = Mβ. We can then immediately determine β as

β =
(5ξ − 6)(−ξ + 6)

9(ξ − 2)2
. (3.59)

In order to study the behavior of the density function around x = m, we redefine X using

an order O(M0) variable Z as X = MZ and take M → ∞. In this limit, the density

function (3.54) becomes

ρ(x) −−−−→
m→∞

ξ

3(Z + 1)

√
Z(β − Z)

1 + β
≡ ρ+(z), Z ≡ e2πz, (3.60)

where Z ∈ [0, β]. Next, we examine the density function around the peak at x = −m by

regarding X as X = M−1Z in (3.54). By the same calculation as in (3.42), this becoms

ρ(x) −−−−→
m→∞

ξ

3(Z + 1)

√√√√Z − 1
β

1 + 1
β

≡ ρ−(z), (3.61)
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Figure 3. These figure shows the density function ρ(x) (3.54) (green line) and the numer-

ical one from the saddle point equation (blue dots). The left and right figures correspond to

(N ,Nf ,m)=(200,1000,3) and (200,420,3) respectively.

where Z ∈ [ 1
β ,∞]. The final part is the density function around x = 0. To investigate

this part of the density function, we assume that X is of order O(M0). Then, we take the

infinite mass limit and the density function becomes

ρ(x) −−−−→
m→∞

ξ
√
Z

3(Z + 1)
≡ ρ0(z), (3.62)

where Z takes value ∈ [0,∞]. To determine N1, N2 and N3, we integrate (3.60), (3.61)

and (3.62), respectively. We obtain∫ β

0

dZ

2πZ
ρ+(z) =

6− ξ
12

, (3.63)∫ ∞
1
β

dZ

2πZ
ρ−(z) =

6− ξ
12

, (3.64)∫ ∞
0

dZ

2πZ
ρ0(z) =

ξ

6
. (3.65)

This result implies that the gauge group U(N) is broken into the following:

N1 =
ξ

6
N, N2 = N3 =

6− ξ
12

N, (3.66)

where we assume that ξ
6N and 6−ξ

12 N are integers. This implies that in the infinite mass

limit, the theory becomes the effective theory on a point of the Coulomb branch as

σ =

−m1N2×N2

0N1×N1

m1N2×N2

 . (3.67)

We assume that the eigenvalues are separated as

xi =


−m− λ1

i (i = 1, . . . , N2),

λ2
i (i = N2 + 1, . . . N1 +N2),

m− λ3
i (i = N1 +N2 + 1, . . . , N).

(3.68)
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Through a similar calculation as that presented in the previous subsection, the saddle point

equation is rewritten in the following three parts:

0 = 2N

(
6 + ξ

12
− ξ

3

)
+ 2

N2∑
j 6=i

cothπ
(
λ1
i − λ1

j

)
−
Nf

3
tanhπλ1

i , (i = 1, . . . N2), (3.69)

0 = 2

N1∑
j 6=i

cothπ
(
λ2
i − λ2

j

)
−
Nf

3
tanhπλ2

i , (i = 1, . . . N1), (3.70)

0 = − 2N

(
6 + ξ

12
− ξ

3

)
+ 2

N2∑
j 6=i

cothπ
(
λ3
i − λ3

j

)
−
Nf

3
tanhπλ3

i , (i = 1, . . . N2). (3.71)

These equations mean that the matrix model (3.25) in the infinite mass limit becomes the

following matrix model:

Z = Zmassive(m)

∫
dN2λ2

e2πN( ξ3−
6+ξ
12 )

∑
i λ

2
i
∏
i<j

(
2 sinhπ

(
λ2
i − λ2

j

))2

∏
i

(
2 coshπλ2

i

)Nf
3

×
∫
dN2λ3

e−2πN( ξ3−
6+ξ
12 )

∑
i λ

3
i
∏
i<j

(
2 sinhπ

(
λ3
i − λ3

j

))2

∏
i

(
2 coshπλ3

i

)Nf
3

×
∫
dN1λ1

∏
i<j

(
2 sinhπ

(
λ1
i − λ1

j

))2

∏
i

(
2 coshπλ1

i

)Nf
3

. (3.72)

The two U(N2) parts have FI terms, which also arise from the gauge-R-symmetry mixed

Chern-Simons term we discussed in the previous section. The U(N1) part has no FI terms

since there are pairs of mixed Chern-Simons terms which have opposite overall signs corre-

sponding to those of the masses of the effectively massive fermions. The decoupled massive

free sector can be estimated by ZMassive(m) ∼M−
NfN(6+ξ)

36 .

In fact, we can confirm that the density functions obtained in the infinite mass limit

are the same as those obtained from (3.69), (3.70) and (3.71). First, the solution of (3.69)

is given by (3.11) and (3.13). We obtain

a =∞, ρ(z) =
ξ
√
Z

3π(Z + 1)
, (3.73)

where Z ∈ [0,∞] and we assume that Z
a is zero since when we scale Z = aZ̃, ρ(z) is O( 1

a)

and only the order O(a0) part of Z can contribute to ρ(z). This density function is same

as ρ0(z). Next, we consider the solution of (3.70). We can obtain the solution from the

equations (3.23) as

a =∞, b =
(ξ̃ − 2)2

4(ξ̃ − 1)
=

1

β
, ξ̃ ≡ 4ξ

6− ξ
, (3.74)
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and the density function is given by

ρ(z) =
6− ξ

12

ξ̃

(Z + 1)

√√√√Z − 1
β

1 + 1
β

=
ξ

3(Z + 1)

√√√√ Z − 1
β

(1 + 1
β )
, (3.75)

where Z ∈ [ 1
β ,∞]. This corresponds to ρ−(z). Finally, we solve (3.71). Its solution is

obtained in the same manner as that of (3.70). The solution is given as

a =
4(ξ̃ − 1)

(ξ̃ − 2)2
= β, b = 0, (3.76)

and

ρ(z) =
6− ξ

12

ξ̃

(Z + 1)

√
Z(β − Z)

1 + β
=

ξ

3(Z + 1)

√
Z(β − Z)

1 + β
. (3.77)

This density function is same as ρ+(z). In the above calculation, the normalization condi-

tion of each density function is set such that they corresponds to each rank of the gauge

groups (3.66). We conclude that the matrix model (3.47) becomes the matrix model (3.72)

when we take the infinite mass limit. The above result shows that the massive multiplets

cannot decouple from the theory, and so the matrix model of the theory converges. In other

words, a “good” theory cannot become a “bad” theory after the massive matter fields de-

couple although the matrix model can become a “good” theory after the decoupling of the

massive matter multiplets. A notable result is that the gauge group of the effective theory

depends on the number of flavors. When ξ = 2, the effective theory consist of three SQCDs

with gauge groups U(N3 ) with
Nf
3 hypermultiplets and the gauge group is maximally broken

between 2 ≤ ξ ≤ 6. Then, the gauge group recovers to U(N) as ξ increases. We note that

the matrix model of the effective theory when 2 ≤ ξ ≤ 6 is always convergent.

4 Finite rank SQCD

In SQCD cases, the matrix model can be actually calculated at least for a sufficiently low

rank of the gauge group. In this section, we confirm through the exact results that our

argument for the effective theory is true even in case of finite N . Furthermore, we show

what happens in the infinite mass limit for theories that are not covered by our argument

in the large N limit.

4.1 With massive hypermultiplets

U(1) SQED. The matrix model of SQED with massive matter fields is given by

Z
Nf
U(1) =

∫ ∞
−∞

dx
1

(2 coshπ(x+m)2 coshπ(x−m))
Nf
2

. (4.1)

This model is considered in [10] with an FI term. In this case, the theory may not become

the effective theory expected from the previous section because N
2 is not integer. Thus, we
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Nf = 4 Nf = 6 Nf = 8 Nf = 10

1
(2π)2M2

1
(4π)2M4

1
(6π)2M6

1
(8π)2M8

Table 1. The leading part of Z
Nf

U(2) when m→∞.

want to know what happens in this case when m → ∞. The exact result for any Nf is

written in terms of the hypergeometric function as [10]

Z
Nf
U(1) =

Γ(
Nf
2 )

2
Nf
2

√
2πΓ(

Nf
2 + 1

2) (cosh 2πm+ 1)
Nf
2
− 1

2

2F1

(
1

2
,

1

2
,
Nf

2
+

1

2
;

1

2
(1− cosh 2πm)

)
.

(4.2)

The leading part in the infinite mass limit of this partition function is given by

Z
Nf
U(1) −−−−→m→∞

1

π

logM

M
Nf
2

, M ≡ e2πm. (4.3)

This is a strange result in the sense of our argument so far because there cannot exist a

logM term when a massive theory splits into a decoupled sector and an SCFT sector in

the mass infinite limit. Therefore, we cannot determine what the effective theory is in this

case using our previous argument.

U(2) SQCD. The partition function for this theory is given by

Z
Nf
U(2) =

1

2!

∫ ∞
−∞
dx

∫ ∞
−∞
dy

4 sinh2 π(x− y)

(2 coshπ(x+m)2 coshπ(x−m)2 coshπ(y+m)2 coshπ(y−m))
Nf
2

,

(4.4)

and the results for small Nf are summarized in table 1.

In fact, these results show that in the infinite mass limit, the partition function can be

interpreted as that of the theory expected from the large N calculation since the following

relation is verified:

ZMassiveZU(1)×U(1) =
4 sinh2(2πm)

(2 cosh 2πm)Nf

∫ ∞
−∞

dx
e
π
(

2−
Nf
2

)
x

(2 coshπx)
Nf
2

∫ ∞
−∞

dx
e
−π
(

2−
Nf
2

)
x

(2 coshπx)
Nf
2

−−−−→
m→∞

1

((Nf − 2)π)2M (Nf−2)
, (4.5)

where the two integrals represent a U(1)× U(1) theory and the pre-factor Zmassive repre-

sents decoupled massive free sector, for which the denominator comes from the massive

hypermultiplets and the numerator comes from the vector multiplets. Because N
2 is an

integer, U(2) can be broken down U(1) × U(1). In this case, we see that the partition

functions are equal including the overall factor, which can not be determined from the

large N analysis.
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Nf = 6 Nf = 8 Nf = 10 Nf = 12
logM

16π3M5
logM

144π3M8
logM

576π3M11
logM

1600π3M14

Table 2. The leading part of Z
Nf

U(3) when m→∞.

U(3) SQCD. The partition function for this case is given by

Z
Nf
U(3) =

1

3!

∫ ∞
−∞

dxdydz
4 sinh2 π(x− y)4 sinh2 π(x− z)4 sinh2 π(y − z)

(2 coshπ(x±m)2 coshπ(y ±m)2 coshπ(z ±m))
Nf
2

, (4.6)

where we define

2 coshπ(X ± Y ) ≡ 2 coshπ(X + Y )2 coshπ(X − Y ). (4.7)

The results for small Nf are given in table 2.

From these results, it may not be possible that the effective theory is composed of an

SCFT and a massive free sector for the same reason as in the U(1) case, namely, that N
2 is

not an integer.

4.2 With massive and massless hypermultiplets

U(1) SQED. This case is trivial because the limit that takes mass to infinity is com-

mutative with the infinite integral. The massive matter fields simply decouple from the

theory and the remaining theory is SQED with
Nf
3 massless hypermultiplets. In fact,

Z̃
Nf
U(1) =

∫ ∞
−∞

dx
1

(2 coshπx2 coshπ(x+m)2 coshπ(x−m))
Nf
3

−−−−→
m→∞

(
1

M

)Nf
3

Z̃
Nf
3

U(1)

∣∣
m=0

,

where for N = 4 U(N) SQCD with a massless flavors part, Z̃
Nf
U(N)

∣∣
m=0

can be calculated

for Nf ≥ 2N [35, 36] as

Z̃
Nf
U(N)

∣∣
m=0

=
1

N !

1

(2π)N

N−1∏
k=0

Γ(k + 2)
(

Γ(
Nf
2 −N + k + 1)

)2

Γ(Nf −N + k + 1)
. (4.8)

U(2) SQCD. In the following, we present the exact calculation of the partition function

of U(2) SQCD with Nf fundamental hypermultiplets,

Z̃
Nf
U(2) =

1

2!

∫ ∞
−∞

dxdy
4 sinh2 π(x− y)

(2 coshπ(x±m)2 cosh(y ±m)2 coshπx2 coshπy)
Nf
3

. (4.9)

The results for small Nf are summarized in table 3.

When Nf = 3, we can deduce the effective theory as follows:

ZMassiveZU(1)×U(1) =
4 sinh2 2πm

(2 cosh 2πm2 coshπm)2

(∫ ∞
−∞

dx
1

2 coshπx

)2

−−−−→
m→∞

1

4M
. (4.10)
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Nf = 3 Nf = 6 Nf = 9 Nf = 12

1
4M

(logM)2

4π2M4
1

32M6
1

48π2M8

Table 3. The leading part of Z̃
Nf

U(2) when m→∞.

This means that the effective theory appears when we chose the point of the Coulomb

branch as

σ =

(
−m

m

)
, (4.11)

in the sense of theories on the flat space. Because our previous expectation cannot be

applied to this case as ξ
6N and 12−ξ

12 N are not integers, it may be expected that a logM

term also appears in the infinite mass limit as in the case with only massive matter fields.

However, a logM term does not appear in this case and the effective theory is the expected

one. When Nf = 6, a logM term does appear. In this case, the effective theory may not be

U(1)×U(1). It is also notable that whether or not a logM appears depends on the number

of flavors. When Nf ≥ 9, the infinite mass limit is commutative with the integral. Thus,

the result is trivial.13 This is consistent with the fact that the
2NNf

3 massive matter fields

with the real mass m simply decouple by choosing the origin of the Coulomb branch since

the remaining theory is a good theory. Namely, in the infinite mass limit, the integral is

written as

Z̃
Nf
U(2) −−−−→m→∞

(
1

M

) 2Nf
3

Z̃
Nf
3

U(2)

∣∣
m=0

. (4.12)

U(3) SQCD. For this case, the partition function is give by

Z̃
Nf
U(3) =

1

3!

∫ ∞
−∞

4 sinh2 π(x− y)4 sinh2 π(x− z)4 sinh2 π(y − z)dxdydz

(2 cosh(πx)2 cosh(πy)2 cosh(πz)2 coshπ(x±m)2 coshπ(y ±m)2 coshπ(z ±m))
Nf
3

.

(4.13)

The results for small Nf are summarized in table 4.

In the Nf = 6 case, the theory will become a U(1)×U(1)×U(1) gauge theory, where

each gauge group has two massless fundamental hypermultiplets. This theory is expected

from the large N analysis when ξ = 2 and ξ
6N and 12−ξ

6 N are integers. In fact, its matrix

model is given by

ZMassiveZU(1)×U(1)×U(1) =
(4 sinh2 πm)24 sinh2 2πm

(2 coshπm)4(2 cosh 2πm)6

(∫ ∞
−∞

dx
1

(2 coshπx)2

)3

−−−−→
m→∞

1

(2π)3M4
. (4.14)

13Exactly speaking, the matrix converges when 2N − 2 ≤ Nf

3
. In the large N limit the order one part is

neglected.
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Nf = 6 Nf = 9 Nf = 12 Nf = 15

1
(2π)3M4

9
212M8

(logM)2

48π3M12
1

213M15

Table 4. The leading part of Z̃
Nf

U(3) when m→∞.

When Nf = 9, this means that ξ = 3. However, ξ6N and 12−ξ
12 N are not integers. Therefore,

we cannot apply the result from the large N analysis to this case. However, we can guess

that the effective theory will be a U(1)× U(1) × U(1) gauge theory where each group has

three massless hypermultiplets. As opposed to the Nf = 6 case, two of the three U(1) have

an imaginary FI term which arises from one-loop effects. In fact, the matrix model is

ZmassiveZU(1)×U(1)×U(1) =

(
4 sinh2 πm

)2 (
4 sinh2 2πm

)
(2 cosh 2πm)6(2 coshπm)12

×
(∫ ∞
−∞

dx
e−2πx

(2 coshπx)3

)2 ∫ ∞
−∞

dx
1

(2 coshπx)3

−−−−→
m→∞

9

212M8
, (4.15)

which is the same as Z̃
Nf=9

U(3) in the infinite mass limit. Thus, in the case of Nf = 6, 9, we

conclude that the IR effective theory corresponds to the theory on a non-trivial Coulomb

branch point

σ =

m

0

−m

 , (4.16)

in the sense of theories on the flat space.

In the case that Nf = 12, a logM term appears and we do not have any interpretation

of the effective theory. It may be worth emphasizing that a logM term will appear when
Nf
3 = 2N−2, where Nf = 2N−2 is the threshold for a “bad” theory of N = 4 U(N) SQCD

with Nf flavors. When Nf ≥ 15, we find that the massive multiplets simply decouple in

the infinite mass limit because we can change the order of the limit of the mass and the

integrals. Indeed,

Z̃
Nf
U(3) −−−−→m→∞

(
1

M

) 3Nf
3

Z̃
Nf
3

U(3)

∣∣
m=0

, (4.17)

and in this case the IR effective theory corresponds to the theory on the trivial Coulomb

branch point

σ =

 0

0

0

 . (4.18)
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5 Conclusion and discussion

It is known that the IR dynamics of three-dimensional supersymmetric SQCD theories

strongly depends on the number of matter multiplets. Hence, it is reasonable that we

give infinite mass to matter multiplets in order to decouple them and then investigate the

effects. We considered the round three-sphere partition function of two types of mass-

deformed U(N) SQCD with massive hypermultiplets and what happens when we take the

infinite mass limit. The deformations are following: (i) only massive matter fields, and

(ii) massive and massless matter fields. Generally speaking, the vacuum (in this paper we

only consider the Coulomb branch) must be chosen in order to argue on whether a matter

hypermultiplet decouples from a theory from the viewpoint of theories on flat space. On

the other hand, because the sphere partition function is written in terms of the integrals

over all possible Coulomb branch parameters, it seems that we cannot argue on whether

the matter hypermultiplets decouple. Then, we focused on the large N limit, in order to

determine a dominant point of the Coulomb branch. The partition function was evaluated

by the solution of the saddle point equation and the solution corresponds to a specific point

of the Coulomb branch. Therefore, we could investigate the decoupling of matter fields and

the effective IR theory by following the solution. Finally, we confirmed that an effective

theory on a non-trivial point of the Coulomb branch appears through the exact calculation

of the partition function of finite-rank SQCD.

In case (i), if we consider a theory on the trivial Coulomb branch and take the mass to

infinity, then, all massive matter fields decouple from the theory and its partition function

diverges. In fact, this argument is not valid because it is not guaranteed that the limit of

mass is commutative with the integrals of the matrix model. We found that the solution

of the saddle point solution has two separated regions: one is concentrated around m and

the other around −m. This means that in the infinite mass limit the gauge group U(N) is

broken down to U(N2 )×U(N2 ) with massless hypermultiplets and FI terms. Even for cases

of finite N , this picture we obtained from the large N analysis may be true except when
N
2 is not an integer.

In case (ii), the behavior of the partition function depends on the number of the

massless flavors. When
Nf
3 > 2N − 2, the limit of the mass is commutable with the

integrals and the massive matter fields simply decouple from the theory. This corresponds

to the case that the solution of the saddle point equation is concentrated on the origin of the

Coulomb branch. In case that
Nf
3 ≤ 2N − 2, we found that the gauge group is broken into

three parts and the rank of each gauge group depends on the number of flavors. Through

the results in cases of finite N , we confirmed that a non-trivial effective theory appears in

the infinite mass limit except in a few cases.

Let us comment on more general mass deformations. In this paper, we considered

above two mass deformations. It is possible to study more general mass deformations of

N = 4 U(N) SQCD as long as mass deformations preserve N = 4 supersymmetry because

at least, the large N analysis can be applied to the general mass deformations. The result

for the more general mass-deformed theories can be inferred from our results. Then, it is

expected that the number of the real mass parameters correspond to that of the peaks of
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the density function and the number of the flavors which have the same real mass parameter

determines the rank of the gauge groups which the original gauge group is spontaneously

broken into.

We will also provide the model that becomes the ABJM theory in the infinite mass

limit with the help of this vacuum selection in the appendix D. This can be regarded as an

example that connects a theory whose free energy is proportional to N2 to one whose free

energy is proportional to N
3
2 by means of a continuous parameter. This is consistent with

the F-theorem [37].14

Let us now comment on the F-theorem. In our analysis, it can be verified that the free

energies of many theories are divided into two parts in the infinite mass limit as

F → FSCFT + FMassive, (5.1)

where FSCFT is the free energy of an interacting SCFT and FMassive is that representing

the sector of free massive multiplets. FMassive is proportional to m and we can counter

it by a local-counter term, which corresponds the Einstein-Hilbert action of S3 [31]. We

expect that

FUV > FSCFT, (5.2)

where FUV is the free energy when m = 0 because it can naively be considered that the

limit m→∞ corresponds to a deep IR limit and m = 0 corresponds to a UV limit. In fact,

this relation is valid at least in our results in section 4. We also remark that we encounter

exceptional theories, whose partition functions exhibit logM behavior in the infinite mass

limit, and these theories cannot be interpreted as in (5.1). This is because the leading

behavior of the partition function can be evaluated by substituting the dominant point

of the Coulomb branch for the action. Thus, the contributions from the points of the

Coulomb branch (at most countable points) cannot cause the logarithmic factors. It may

be possible that the logarithmic factors arise from the contributions of the uncountably

infinite points of the Coulomb branch. It may be interesting to investigate the IR behavior

of such a theory and to consider the F-theorem.
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A A brief summary of resolvent methods

Here, we introduce resolvent methods and further details of the calculation of the density

function in this paper. We follow the argument of the resolvent in [38–40]. First, we assume

14In this argument, we omit the decoupled massive free sectors.
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that the eigenvalues become dense in the large N limit and we can take the continuous

limit as follows:

i

N
→ s ∈ [0, 1], xi → x(s),

1

N

N∑
i=1

→
∫
ds. (A.1)

We introduce the density function ρ(x) defined as

ρ(x) ≡ ds

dx
, (A.2)

and impose the normalization condition∫
I
ρ(x) = 1, (A.3)

where I is the interval on which ρ(x) is defined. In this study, we consider the following

type of the saddle point equation, given as a singular integral equation:

α

(
P

∫
I
dyρ(y) cothπ(x− y)

)
= V ′(x), (A.4)

where α is constant. It is convenient for us to take X = e2πx and Y = e2πy as in this case

various techniques are available. The saddle point equation is written as

α

(
1 + P

∫
C

dY

π

ρ(y)

X − Y

)
= V ′(x), (A.5)

where X ∈ C = [b, a]. We introduce an auxiliary function ω(Z) as

ω(X) ≡ α
(

1 +

∫
C

dY

π

ρ(y)

X − Y

)
. (A.6)

This function is defined on all of the complex plane except on C, where ω(X) has a discon-

tinuity when we across the interval C. The function satisfies the following properties:

lim
X→0

ω(X) = −α, lim
X→∞

ω(X) = α, (A.7)

ρ(x) = − 1

2αi
lim
ε→0

(ω(X + iε)− ω(X − iε)) , X ∈ C, (A.8)

V ′(x) =
1

2
lim
ε→0

(ω(X + iε) + ω(X − iε)) , X ∈ C. (A.9)

Here, we give a proof of (A.8) and (A.9), which relies on from the discontinuity of ω(X).

The following relation is obtained by changing the integral contour:∫
C

dY

π

ρ(y)

X + iε− Y
=

(∫ X−ε

b
+

∫ a

X+ε

)
dY

π

ρ(y)

X − Y
+

∫
C−ε

dY

π

ρ(y)

X − Y
, (X ∈ C), (A.10)

where C−ε is a circle with radius ε around Y = X in the lower half plane, which is oriented

counterclockwise. By the definition of the principal value integral and the residue theorem,

we finally obtain

lim
ε→0

ω(X + iε) = α

(
1 + P

∫
C

dY

π

ρ(y)

X − Y
− iρ(x)

)
. (A.11)
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By the same calculation, we also obtain

lim
ε→0

ω(X − iε) = α

(
1 + P

∫
C

dY

π

ρ(y)

X − Y
+ iρ(x)

)
. (A.12)

Thus, the equations (A.8) and (A.9) are proved.

From the analyticity,15 the resolvent is given by

ω(X) =

∮
C

dZ

2πi

V ′(z)

X − Z

√
(X − a)

√
(X − b)√

(Z − a)
√

(Z − b)
, Z = e2πz, (A.13)

where C is a circle which encloses C. The density function is determined once the potential

V ′(z) is given. We assume that the ni degree poles X0i, (i = 1, . . . n0) of V ′(x), exist

outside of C. We deform the integral contour C to infinity and pick up the poles Z = X

and Z = X0i, (i = 1, . . . n0). Thus, the resolvent is written as

ω(X) = −
∮
∞

dZ

2πi

V ′(z)

X − Z

√
(X − a)

√
(X − b)√

(Z − a)
√

(Z − b)

= V ′(x)−
n0∑
i=1

Res

(
V ′(z)

X − Z

√
(X − a)

√
(X − b)√

(Z − a)
√

(Z − b)
, X0i

)
. (A.14)

To determine the edge of the cut C, we simply solve the equation (A.7) with the resolvent

ω(X) obtained in (A.14).

B Mixed Chern-Simons terms

It is known that the various Chern-Simons terms exist in three dimensions. These not only

consist of dynamical gauge fields, but also background fields that couple with the current of

the global symmetry. These Chern-Simons terms must appear in the infinite mass limit as

one-loop effects by integrating out the massive fermions charged under the corresponding

symmetries. In particular, on S3 we can consider background vector fields that couples

with the R-symmetry current and Chern-Simons terms including the background fields.

These are important in order to understand what remains after taking the infinite mass

limit [31–33]. The Chern-Simons terms that will appear are flavor-R and gauge-R mixed

Chern-Simons terms given by

SFR
CS ∼

kFR

2π

∫
S3

√
gd3x (σf + iDf) , (B.1)

SGR
CS ∼

kGR

2π
Tr

∫
S3

√
gd3x (σ + iD) , (B.2)

where σf and Df represent the scalar and auxiliary fields of the background vector super-

fields, respectively. Here, we only write the parts of the action that contribute to it after

15We should consider the resolvent ω(X) such that its branch cut is on [b, a] and it satisfies the asymp-

totic equations (A.7). Then, we should take the resolvent ω(X) that has the product of the square root√
X − a

√
X − b, not

√
(X − a)(X − b) because indeed,

√
(X − a)(X − b) has the branch cut on [b, a], but

does not satisfy the asymptotic behavior at X → 0.
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applying localization methods. The induced Chern-Simons levels are given by integrating

out a complex fermion ψ as

kFR
ψ =

∆ψ

2
sgn(Mψ)

∑
f

qψ,f, (B.3)

kGR
ψ =

∆ψ

2
sgn(Mψ)

∑
i

qψ,i, (B.4)

where qf, qg and ∆ correspond to flavor, gauge and R charges respectively. Furthermore, Mψ

is the effective real mass of the fermions on a point of the Coulomb branch. In this paper,

Mψ =
∑

f qfσf +
∑

i qiσi, where i labels the U(1) gauge groups on the Coulomb branch.

We use the terms (B.1) and (B.2) after applying a localization technique. These are

given by

eS
FR
CS = e2πkFRσf , (B.5)

eS
GR
CS = e2πkGRσ, (B.6)

where the supersymmetric configuration of the background fields and the localization locus

are required:

Df = −iσf , D = −iσ, (Other fields) = 0. (B.7)

The real mass is given by the expectation value of the background field σf = m. Thus, the

flavor-R Chern-Simons terms (B.1) induced in the infinite mass limit can corresponds to

the contributions from the free massive degrees of freedom. The induced gauge-R Chern-

Simons term (B.2) corresponds to the FI term and the contributions from massive degrees

of freedom when we shift σ by m.

As an example, we attempt to obtain the decoupled free massive sector and the FI

terms of the U(2) SQCD case described in section 4.1 from the induced Chern-Simons

terms.16 We assume that the classical Coulomb branch parameters (σ1, σ2) are written

as (−m − δσ1,m − δσ2). Then, the gauge group U(2) is broken down to U(1)L× U(1)R.

The effective mass and the charges of the massive gauginos and complex fermions of chiral

multiplets are summarized in table 5.17

The contributions of the massive gauginos to the induced Chern-Simons terms

as follows:

λ+ : eπ∆λsign(−2m−δσ1+δσ2)(−m−δσ1−(−δσ2+m)) (B.8)

λ− : eπ∆λsign(2m+δσ1−δσ2)(−(−m−δσ1)+(−δσ2+m)). (B.9)

Thus, the total contributions of massive gauginos when m→∞ are

e2π∆λ(2m+δσ1−δσ2). (B.10)

16We would like to thank Masazumi Honda for giving us useful comments and discussion on this point.
17An N = 4 gauge theory has a chiral multiplet in the adjoint representation of the gauge group.

Therefore, it seems that we must consider the contributions from the chiral multiplets. However, the

canonical R-charge of the chiral multiplet is 1. Thus, the R-charge of the fermion component is 0 and it

does not contribute to the gauge-R mixed Chern-Simons level.
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effective mass U(1)R U(1)L × U(1)R
λ+ σ1 − σ2 1 (1,−1)

λ− σ2 − σ1 1 (−1, 1)

ψ1± ±m+ σ1 −1
2 (1, 0)

ψ2± ±m+ σ2 −1
2 (0, 1)

ψ̃1± ±m− σ1 −1
2 (−1, 0)

ψ̃2± ±m− σ2 −1
2 (0,−1)

Table 5. The effective mass, R-charge and gauge charge of the fermions under U(1)×U(1). Here,

λ± denote gauginos and ψ (ψ̃) is a complex fermion in the chiral multiplet in the fundamental

(anti-fundamental) representation.

The first term can be interpreted as the massive free part and the second and third terms

are the induced FI terms of U(1)L and U(1)R.

The contributions of the massive matter fermions are summarized as follows:

ψ1− : eπ∆ψ sgn(−2m−δσ1)(−2m−δσ1) (B.11)

ψ2+ : eπ∆ψ sgn(2m−δσ2)(2m−δσ2) (B.12)

ψ̃1+ : eπ∆ψ sgn(2m+δσ1)(2m+δσ1) (B.13)

ψ̃2− : eπ∆ψ sgn(−2m+δσ2)(−2m+δσ2). (B.14)

Then, the total contribution of the massive matter fermions to the induced Chern-Simons

term is given by

eπ
Nf
2

∆ψ(8m+2δσ1−2δσ2). (B.15)

The first term can be interpreted as representing the contributions from the massive free

sector and the second and third can be interpreted as FI terms. Then, we conclude that

in this case the total contributions from the free massive sectors when m→∞ is given by

e2mπ(2−Nf), (B.16)

and the total induced FI terms are given by

e
π
(

2−
Nf
2

)
δσ1 , for U(1)L, (B.17)

e
−π
(

2−
Nf
2

)
δσ2 , for U(1)R. (B.18)

These results are same as those we obtained in section 4.1 from the calculation of the

matrix model. Thus, the effects that appear in the infinite mass limit in the matrix model

can indeed be regarded as the induced mixed Chern-Simons terms. The result can easily be

generalized to other theories in this paper. These consequences are not surprising because

the one-loop parts of the vector and chiral multiplets in the matrix model must inherit

such one-loop effects after integrating out massive fermions.
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C Convergence bound of matrix models

In this section, we discuss the convergence of the matrix models. The convergence bound

of the matrix model of SQCD was first discussed in [30]. In [41], it is also pointed out

that the convergence bound is indistinguishable from the unitarity bound of the monopole

operator in the Veneziano limit.

We consider the convergence of the matrix model introduced in (3.14):

Z =
1

N !

∫ N∏
i=1

dxi
eπζ

∑
i xi
∏
i<j 4 sinh2 (π(xi − xj))∏

i

(
2 coshπ(xi)

)Nf . (C.1)

In order to check whether the integral is convergent, it is suffiient to know the asymptotic

behavior of the integrand when we take one of the integral valuables |xi| → ∞. Thus, we

focus on x1 and study the asymptotic behavior of the integrand. When |x1| → ∞, the part

of the integrand that is related to the convergence is

eπ|x1|(sign(x1)ζ+2(N−1)−Nf). (C.2)

Thus, for the matrix model to converge the relation

|ζ|+ 2(N − 1)−Nf < 0 (C.3)

must hold. This threshold corresponds to the condition that the solution of the saddle

point equation in (3.14) in the large N limit exists. We note that the matrix models of the

effective theories (3.38) and (3.72) satisfy the above relation and converge. In fact, each

matrix model narrowly satisfies the bound. For example, for the case of (3.38), the left-

hand side of the bound (C.3) is −2, which does not depends on any parameter. Therefore,

the convergence of the matrix model restricts the theory that appears in the infinite mass

limit. In fact, in the subsection 3.2 we assume that the solution of the saddle point equation

where the gauge group U(N) is broken down to U(N1)× U(N2) (N1 > N2)18 is allowed.

Then, the condition for the convergence of the matrix model corresponding to the effective

theory is given by

0 >
Nf

2
− 2N2 + 2(N1 − 1)−

Nf

2
= 2(N1 −N2)− 2, (C.4)

0 >

∣∣∣∣Nf

2
− 2N1

∣∣∣∣+ 2(N1 − 1)−
Nf

2
. (C.5)

The first line is not satisfied when N1 > N2. Therefore, only the case that N1 = N2 is

allowed owing to the convergence of the matrix model of the effective theory.19 By the

same argument concerning the convergence bound, we can also understand why N1, N2

and N3 satisfy the relation (3.66).

18We assume this situation without loss of generality.
19We would like to thank Tomoki Nosaka for pointing out and discussing this point.
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D ABJM theory as an effective theory

Here, we consider the theory whose effective theory in the large mass limit is the ABJM

theory. Naively speaking, the theory when m = 0 corresponds to the UV theory in the sense

that the energy scale that is determined by the radius of the three-sphere is significantly

bigger than the mass parameter. In the same sense, the theory in the infinite mass limit

corresponds to the IR theory in the same sense. The SYM theory we introduce here flows to

the ABJM theory in the above sense. Which effective theories appear depends on the mass

assignment to matter multiplets and the representation of the matter fields. It is possible

to anticipate that the ABJM theory will appear as the effective theory in the infinite mass

limit using the insight developed so far.

We consider the U(2N) SYM theory with two massive hypermultiplets in the ad-

joint representation and 2Nf massive fundamental hypermultiplets. The matrix model is

given by

Z =
1

(2N)!

∫
dNx

2N∏
i>j

4 sinh2 π(xi − xj)
(2 coshπ(xi − xj + 2m)2 coshπ (xi − xj − 2m))2

×
2N∏
i

1

(2 coshπ (xi +m) 2 coshπ (xi −m))Nf
, (D.1)

where it is necessary to give the adjoint hypermultiplets real mass ±2m and the hypermul-

tiplets real mass ±m. Then, we assume that the saddle point configuration is splitting,

which means that the saddle point solution x0i has the following separated region:{
x0i = m+ λi i ∈ 1, . . . , N,

x0i = −m+ λ̃i i ∈ 1, . . . , N
. (D.2)

Under this assumption, the free energy F = − logZ is evaluated for the solution x0i as

F =−
∑
i>j

[
log 4 sinh2 π (λi − λj) + log 4 sinh2 π

(
λ̃i − λ̃j

)]
+ 2

∑
i,j

log 2 coshπ
(
λ̃i − λj

)
+Nf

∑
i

log 2 coshπλi +Nf

∑
i

log 2 coshπλ̃i

−
∑
i>j

[
log 4 sinh2 π

(
λ̃i − λj + 2m

)
− 2 log coshπ

(
λ̃i − λj + 4m

)]
+ 2

∑
i>j

log 2 coshπ (λi − λj + 2m) 2 coshπ(λi − λj − 2m)

+ 2
∑
i>j

log 2 coshπ
(
λ̃i − λ̃j + 2m

)
2 coshπ(λ̃i − λ̃j − 2m)

+Nf

∑
i

log 2 coshπ (λi + 2m) +Nf

∑
i

log 2 coshπ
(
λ̃i − 2m

)
.

=−
∑
i>j

[
log 4 sinh2 π (λi − λj) + log 4 sinh2 π

(
λ̃i − λ̃j

)]
+ 2

∑
i,j

log 2 coshπ
(
λ̃i − λj

)
+Nf

∑
i

log 2 coshπλi +Nf

∑
i

log 2 coshπλ̃i + (massive part). (D.3)
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The massive part in the infinite mass limit is given by N0m where N0 is some constant.

The massless part of the action corresponds to the free energy of the U(N) × U(N) quiver

SYM with two bi-fundamental multiplets and Nf fundamental hypermultiplets multiplets

charged under each U(N), which is evaluated using saddle point approximation. The

matrix model of this effective theory is given by

Zeff ∼
∫
dNλdN λ̃

∏
i>j 4 sinh2 π(λi − λj) sinh2 π(λ̃i − λ̃j)∏

i,j

(
2 coshπ

(
λ̃i − λj

))2∏
i

(
2 coshπλi2 coshπλ̃i

)Nf . (D.4)

The massive part is proportional to N2m when we consider that the mass m is considerably

bigger than the typical order of the eigenvalues. We will show that this matrix model is

the same as the square of the matrix model of the ABJM theory with the Chern-Simons

level k = Nf in the large N limit. We will solve the saddle point equation of (D.4) by

following the approach in [44], where the eigenvalues are proportional to
√
N in the large

N limit with the Chern-Simons level k kept finite.

We assume that the saddle point configuration satisfies the condition

λi = λ̃i. (D.5)

This is plausible in the sense that the action S(λ, λ̃) is invariant under exchange of λ and

λ̃. Under this assumption, it is sufficiently to consider the saddle point equation of the

matrix model

Z̃eff =
1

(2N)!

∫
dNλ

∏
i>j 4 sinh2 π(λi − λj)∏

i,j (2 coshπ (λi − λj))
∏
i (2 coshπλi)

Nf
(D.6)

≡
∫
dNλe−S̃eff(λ).

For Nf = 1, this matrix model is known as the mirror dual matrix model of the ABJM

theory with k = 1 [21]. This matrix model is studied in [42, 43] in the Veneziano limit

where Nf is taken to infinity while
Nf
N is kept finite. In this paper, we do not employ the

Veneziano limit. Rather, we take N to infinity while keeping Nf finite.

We evaluate the action, which is explicitly written as

S̃eff(λ) = −
∑
i>j

log 4 sinh2 π (λi − λj) +
∑
i,j

log 2 coshπ (λi − λj) +Nf

∑
i

log 2 coshπ (λi) .

(D.7)

Here, we take the continuous limit in the large N limit. We define the continuous parameter

s resulting from the label of the eigenvalues as s = i
N + sb. The continuous value s runs

from sb to sb + 1, where sb is constant. The eigenvalues are replaced by a function of s

which is monotonically increasing and differentiable. The summation is replaced by an

integral as ∑
i

→ N

∫ sb+1

sb

ds, (D.8)
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where we do not introduce the density function. We assume that an ABJM-type ansatz

for the eigenvalues which are proportional to
√
N in the large N limit as [44]

λ(s) =
√
Nx(s), (D.9)

From the above expression, the final term of the action (D.7) is evaluated as

Nf

∑
i

log 2 coshπ
(√

Nxi

)
→ N

3
2Nfπ

∫ sb+1

sb

|x(s)|. (D.10)

The evaluation of the first and second terms of the action is non-trivial as the naive order

of these part is N2, which reduces to N
3
2 . We briefly review this using the technique

developed in [9]. We rewrite the first term as follows:

∑
i>j

log 4 sinh2 π (λi − λj)

→ N2

∫ ∫
s>s′

dsds′ log 4 sinh2 π
(√

N(x− x′)
)

(D.11)

=
N2

2

∫ ∫
dsds′

[
2π
√
N |x− x′|+ log

[
4 sinh2 π

(√
N(x− x′)

)
e−2π

√
N |x−x′|

] ]
,

∑
i,j

log 2 coshπ (λi − λj)

→ N2

∫ ∫
dsds′ log 2 coshπ

(√
N(x− x′)

)
(D.12)

= N2

∫ ∫
dsds′

[
π
√
N |x− x′|+ log

[
2 coshπ

(√
N(x− x′)

)
e−π
√
N |x−x′|

] ]
,

where x and x′ denote x(s) and x(s′), respectively. The first terms in (D.11) and (D.12)

cancel. The second terms in (D.11) and (D.12) are evaluated by the following approxima-

tion formulae: ∫
s0

ds log
(

1± e−2z(s)
)
∼ 1√

Nẋ(s0)

∫
C+

dt log
(
1± e−2t

)
, (D.13)∫ s0

ds log
(

1± e+2z(s)
)
∼ 1√

Nẋ(s0)

∫
C−

dt log
(
1± e−2t

)
, (D.14)

for ẋ(s)|s=s0 > 0 where

z(s) =
√
Nx(s) + v(s), (D.15)

x(s0) = 0 and the path C± is a straight line between t = ±v(s0) and t =
√
Nẋ(s0) with

N → ∞. In our case, v(s) = 0 and u(s) is real. The contour C± is a half line from 0 to
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∞. Thus, the remaining parts of the free energy are

N
3
2

∫
ds′

πẋ(s′)

(
− 2

∫ ∞
0

dt log
(
sinh(t)e−t

)
+

∫ ∞
0

dt log
(
cosh(t)e−t

)
+

∫ ∞
0

dt log
(
cosh(t)e−t

))
=N

3
2

∫
ds′

πẋ(s′)

(
−2

∫ ∞
0

dt log

(
sinh(t)

cosh(t)

))
=N

3
2

∫
ds′

ẋ(s′)

1

4
π, (D.16)

where we have assumed that ẋ1(s′) > 0 and that there are no singularities in the t-plane

when deforming the contour C±. However, there are singularities in the action where a

cosh factor vanishes. We can observe that if

−1

4
< Im(v(s))− Re(v(s))

Im(ẋ(s))

Re(ẋ(s))
<

1

4
, s ∈ [sb, sb + 1] (D.17)

then there is no obstruction to the deformation of the contour. If this is not the case, then,

we can shift z2 → z2 + in/2, where n is an integer, in order to satisfy the condition (D.17).

In this case, the above bound (D.17) is always satisfied since Im (x(s)) = 0. Plugging the

above expressions into the action (D.7), we obtain the leading part of the free energy as

F [x] = πN
3
2

∫ sb+1

sb

ds

[
Nf |x(s)|+ 1

4ẋ(s)

]
. (D.18)

The saddle point equation is given by

0 =
δF [x]

δx(s)
= Nf sign(x(s)) +

1

4

d

ds

1

(ẋ(s))2
, (D.19)

with the boundary condition

1

(ẋ(s))2

∣∣∣∣
boudary

= 0. (D.20)

The solution of the equation (D.19) is potentially discontinuous at the zeros of x(s) because

there a sign function in (D.19). However, we must make x(s) to be continuous everywhere

in (sb, sb+1) as we assumed that x(s) is differentiable. We must take this fact into account

and the boundary conditions are explicitly written as

1

ẋ(s)

∣∣∣∣
s=sb

= 0, (D.21)

1

ẋ(s)

∣∣∣∣
s=sb+1

= 0 (D.22)
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Figure 4. The left figure shows the solution of the saddle point equation of (D.1) with (N,Nf ,m) =

(200, 2, 500). The horizontal line means the label of the eigenvalues. The right one shows that the

density of the eigenvalues with the same parameter. The horizontal line means the degree of the

eigenvalues.

where these equations arise from the edge of the domain of x(s). Then, the solution of the

saddle point equation (D.19) is20

x(s) =
sign

(
s− sb − 1

2

)√
2Nf

[
1−

√
1− 2

∣∣∣∣s− sb − 1

2

∣∣∣∣
]
, (D.23)

ds

dx
≡ ρ(x) = 2Nf

(
1√
2Nf

− |x|

)
. (D.24)

It is convenient to take s̃ ≡ s− sb − 1
2 and we rewrite s̃ ∈ [−1

2 ,
1
2 ] as s. Consequently, we

can evaluate the free energy by plugging this solution into (D.18) as

F = πN
3
2

∫ 1
2

− 1
2

ds

[√
Nf

2

(
1−

√
1− 2|s|

)
+

√
Nf

8

√
1− 2|s|

]
=
π
√

2NfN
3
2

3
. (D.25)

We can see that the number of the fundamental flavors Nf of the SYM theory cor-

responds to the Chern-Simons level of the ABJM theory at least in the large N limit as

the free energy of the ABJM theory with Chern-Simons level k is π
√

2k
3 N

3
2 . We present

the numerical solution of the saddle point equation of (D.1) in the large N and large mass

region and compare it with the analytic solution (D.23). From the following figure, we can

observe that the solution has two separated regions and in fact the distance between the

two regions is given by m. Therefore, we conclude that in the large N and large mass limit

with maintained
√
N � m, the free energy of (D.1)

F = 2FABJM(N, k = Nf ) + Fmassive, (D.26)

where FABJM(N, k) is the free energy of the U(N)k ×U(N)−k ABJM theory and Fmassive is

the free energy of the free massive sector, which originates from massive hyper and vector

20There is choice of the over all sign ± due to the square root. We choose the sign so that the solution

monotonically increases.
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Figure 5. The left figure shows the comparison of the numerical solution (Blue dots) of the saddle

point equation of (D.1) with the analytic solution (D.23) (Green line). The right one shows that

the comparison of the density function from numerical analysis(Blue dots) with the analytic one

(Green line). In this figures we focus on the eigenvalues of the first N
2 eigenvalues and shifted the

valuable x by m.

multiplets. Here, Fmassive is proportional to N2 while FABJM is proportional to N
3
2 . The

free energy of the IR effective theory is 2FABJM. This is consistent with the F-theorem21

in the sense that the free energy of the UV theory, which corresponds to taking m = 0, is

proportional to N2 while that of the deep IR theory, which corresponds to taking m =∞, is

proportional to N
3
2 . Thus, we conclude that this model (D.1) is an example that connects

a theory whose free energy is proportional to N2 to one whose free energy is proportional

to N
3
2 through a continuous parameter.
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