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Abstract: Electromagnetic waves, such as microwaves, have been used to enhance various chemical
reactions over polyoxometalates. The dielectric properties of catalysts are among the relevant
parameters facilitating catalytic reactions under electromagnetic radiation. This study describes the
dielectric properties of polyoxometalate catalysts in aqueous and organic solutions to understand
the mechanism of interactions between polyoxometalates and electromagnetic waves. Specific loss
factors of polyoxometalates were observed at lower frequencies (<1 GHz) by the ionic conduction
of the polyoxometalate solution. The evolution of ionic conduction depended strongly on cations
rather than anions. Proton-type polyoxometalates exhibited significantly higher loss factors than
other cations did. The activation energy for ionic conduction in protonated silicotungstic acid
(H4SiW12O40) was significantly low in water (7.6–14.1 kJ/mol); therefore, the high loss factor of
protonated polyoxometalates in water was attributed to the proton relay mechanism (i.e., Grotthuss
mechanism). The results suggested that the proton relay mechanism at the radio-frequency band is
critical for generating selective interactions of polyoxometalates with applied electromagnetic fields.

Keywords: polyoxometalate; dielectric spectroscopy; radio frequency; proton relay

1. Introduction

Polyoxometalates (POMs) exhibit unique catalysis for many oxidation and reduction reactions,
alkene polymerization, and acid and base catalysis reactions [1,2]. POMs comprise oxo-anions of
heteroatoms (Si, P, S, Ge, As, Se, B, Al, and Ga) and addenda atoms (W, Mo, V, Nb, and Ta). The general
chemical formula for Keggin-type POMs is given by [XM12O40]n− (X = heteroatoms; M = addenda
atoms). Because of the high stability of POM anions, POMs exhibit very low acid dissociation constants;
thus, POMs are used as super acid catalysts [1]. At the same time, the multi-electron-transfer redox
property of POMs under relatively mild conditions enables selective oxidative catalysis, such as the
high-yield syntheses of epoxides and aldehydes [1,2]. The unique catalytic properties of POMs have
been applied for many biorefinery processes, such as hydrolysis of crystalline cellulose [3,4], oxidative
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delignification [5], and the oxidation of biomass for the production of syngas [6], formic acid [7],
and hydrogen [8].

We have recently reported that microwave (MW) irradiation enhances the POM-catalyzed
hydrolysis of biomass, such as crystalline cellulose [9], seaweeds [10], and cellobiose [11]. Dielectric
heating by electromagnetic waves enables the rapid and selective heating of materials by inducing
direct interactions with the irradiated materials. MWs have been reported to enhance various
chemical processes including organic synthesis [12], inorganic synthesis [13], material processing [14],
metal sintering [15], food processing [16], and biorefinery processes [17]. MW irradiation is also
effective for POM-catalyzed biomass conversion reactions [18,19] and the synthesis of POMs and
POM-related materials [20–24]. The understanding of the mechanism of interaction between
POM and electromagnetic waves is, therefore, important for their effective use in enhancing
POM-related reactions.

The dielectric heating of materials occurs by various loss mechanisms, including ionic conduction
(σ), dielectric loss (ε”), and magnetic loss (µ”) under an applied electromagnetic field. The dielectric
heating phenomenon can be expressed by the following equation:

P =
1
2

σ|E|2 + π f ε0εr
′′ |E|2 + π f µ0µr

′′ |H|2, (1)

where P, E, H, ε0, and µ0 are the absorbed power by volume, electric field intensity, magnetic field
intensity, permittivity of free space, and permeability of free space, respectively. The dielectric
properties and intensities of the electric and magnetic fields are the key parameters to manipulate
to obtain the high-efficiency energy propagation of electromagnetic waves. In addition, dielectric
properties are strongly related to the molecular dynamics of dipoles and charges (ions and electrons)
under oscillating electromagnetic fields [24–27]. Therefore, the dielectric properties of a material
provide information regarding the molecular dynamics of dipoles and charges under electromagnetic
fields, as well as the degree of the electromagnetic wave susceptibility of the material.

In this study, the dielectric properties of POMs under applied electromagnetic radiation from
the radio-frequency (RF) band to MWs were analyzed to understand the absorption mechanisms of
electromagnetic waves by various POMs with different chemical compositions. Dielectric spectroscopy
was conducted by the coaxial probe method to characterize the complex dielectric constants of the
POMs in different solvents such as water, dimethylsulfoxide (DMSO), and 2-propanol. The dielectric
loss mechanism of the POMs was further investigated by applying the Cole–Cole model to reveal the
key parameters involved in the dielectric loss mechanisms of POMs in solution.

2. Materials and Methods

2.1. Materials

Silicotungstic acid (H4SiW12O40·28H2O), phosphotungstic acid (H3PW12O40·nH2O),
and phosphomolybdic acid (H3PMo12O40·nH2O) were purchased from FUJIFILM Wako Pure Chemical
Corporation. H3AsW12O40·nH2O, H4S2W18O62·nH2O, H4PVW11O40·nH2O, K4PVW11O40·nH2O,
and (NH4)4PVW11O40·nH2O were prepared with the method reported previously [28]. The water
contents in the POMs were determined by thermogravimetric analysis (TGA, Shimadzu Co., Kyoto,
Japan; Table 1). The POMs were used without further purification.
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Table 1. Numbers of hydration in polyoxometalates used in this study.

POM Hydration Number

H4SiW12O40 28
H3PW12O40 25
H3PMo12O40 28
H3AsW12O40 10
H4PVW11O40 10
H4S2W18O62 27

(NH4)4PVW11O40 9
K4PVW11O40 4

2.2. Dielectric Relaxation Spectroscopy

Dielectric relaxation spectra were obtained by the coaxial probe method using a Keysight 5242A
Network Analyzer and a Keysight high-temperature probe (100 MHz–20 GHz) or a Rhode & Schwartz
ZND network analyzer equipped with a KEYCOM Co. (Tokyo, Japan) probe-type (open mode)
dielectric constant measurement kit (200 MHz–8.5 GHz). The POMs were dissolved in pure water,
DMSO, or aqueous 2-propanol (0–100 v/v %) solutions of 1–20 mM. Dielectric relaxation spectra were
obtained between room temperature (25 ◦C) and 80 ◦C by changing the temperature using a bath of
aluminum beads with stirring to obtain solutions with homogeneous temperatures. The temperature
during the dielectric measurement was monitored by a fiber-optic thermometer (FL-2000, Anritsu
Meter Co., Ltd., Tokyo, Japan) under stirring to ensure temperature homogeneity of the POM solutions.

3. Results and Discussion

3.1. Dielectric Properties of POMs in Water, 2-Propanol, and DMSO

The complex dielectric constants of the POM solutions were measured by the coaxial method
using open probes and a vector network analyzer. The real part and imaginary part of the complex
dielectric constant represent the relative permittivity and loss factor, including dielectric loss (ε”)
and ionic conduction (σ), respectively. Figure 1A,B show the dielectric spectra of H4SiW12O40 in
water (0–8.8 mM) at frequencies of 100 MHz–20 GHz. The loss factors of H4SiW12O40 are strongly
affected by the acid concentration. Aqueous H4SiW12O40 solutions show particularly elevated losses
at frequencies of <2000 MHz, which becomes more prominent in the RF band (<300 MHz) rather than
under MWs. The loss mechanism at this frequency range can be attributed to ionic conduction by
electrolytes [26]. In contrast, the dielectric dispersion at higher frequencies, peaking at 18–20 GHz,
does not significantly change with concentration. The peak is assigned to the cooperative relaxation
of long-range hydrogen-bond-mediated dipole–dipole interactions of free water [29]. The dielectric
spectra of H3PW12O40 show similar behavior to those of H4SiW12O40, exhibiting enhanced loss factors
at lower frequencies; however, the magnitudes of the loss factors are smaller than those of H4SiW12O40

(Figure 1C,D).
Figure 2 shows the dielectric spectra of binary systems of 2-propanol and water with and without

H4SiW12O40. The ratios of 2-propanol to water were varied to investigate the effect of the relative
permittivity of the solvent on the dielectric properties of the POM solution. The relative permittivity is
decreased from 86.6 to 20.6 with increased 2-propanol concentration (Figure 2A) [30,31]. Along with
the decrease in relative permittivity, the dielectric loss peak is shifted from 18–20 GHz (free water)
to 300–400 MHz (2-propanol) with a reduction in peak intensity (Figure 2B). The loss factor by
ionic conduction is gradually weakened by increased 2-propanol concentration, and is buried by
the dielectric loss of 2-propanol (Figure 2D). The decrease in ionic conduction indicates that the
dissociation of H4SiW12O40 should be prohibited by the addition of 2-propanol. The dissociation of an
acid depends on the dielectric constants and proton affinities of the solvents granted by their molecular
structures [32]. Smaller dielectric constants provide larger Coulomb potentials, thus prohibiting ionic
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dissociation. Because 2-propanol has a lower relative permittivity than water, the dissociation constants
of acids become higher than those in water.
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temperature: 26 ± 1 ◦C.
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Figure 2. Dielectric properties of POMs in mixed solutions of water and 2-propanol (2-propanol
concentrations = 0–100 v/v %). (A) Relative permittivity and (B) loss factor of binary system of water
and 2-propanol; (C) relative permittivity and (D) loss factor of H4SiW12O40 in mixed solutions of
2-propanol and water (1 mM). Measurement temperature: 26 ± 1 ◦C.
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Figure 3 shows dielectric spectra of H4SiW12O40 and H3PW12O40 in DMSO. DMSO was found
to exhibit a specific solvent effect on the oxidation of alcohol via PVxMo(12−x)O40

−(3+x) (x = 0, 2)
because DMSO works as an oxygen donor during the reaction [33]. Similar to the case in the
aqueous POM solutions, the relative permittivity does not significantly change with increasing POM
concentration. The peak for the dielectric loss of DMSO at ~8 GHz is not obviously affected by
the different concentrations of POMs from 0 to 10 mM. In contrast, the dielectric losses at lower
frequencies are increased with increased concentrations of H4SiW12O40 and H3PW12O40 in DMSO by
ionic conduction. H4SiW12O40 has a slightly higher loss factor than H3PW12O40; however, the ionic
conduction by POMs in DMSO is much smaller than that in water because of the lower conductivities
of the electrolytes in DMSO. The dissociation constant of POMs in DMSO should be between those
in water and 2-propanol, because the relative permittivity of DMSO (46.9) is between those of water
(86.6) and 2-propanol (20.6).

The above results indicate that the loss factors of POMs in a solution are selectively increased
at lower frequencies corresponding to the RF band. The dissociation of POMs is required to initiate
clear ionic conduction in the dielectric spectra. A relative permittivity of >50 (such as those of 50%
aqueous 2-propanol solution and DMSO) is essential for obvious ionic conduction by the dissociation
of POM in the solvents. For the molybdenum-based Keggin POM of H3PMo12O40, the dependence
of dielectric properties on solvents were in very good accordance with those of H4SiW12O40 and
H3PW12O40 (Figures S1 and S2). Therefore, solvents with relatively high permittivities, such as water,
are suitable for improving the specific dielectric losses of POMs.
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Figure 3. Dielectric properties of POMs in DMSO. (A) Relative permittivity and (B) loss factor of
H4SiW12O40 in DMSO (0–10 mM); (C) relative permittivity and (D) loss factor of H3PW12O40 in DMSO
(0–10 mM). Measurement temperature: 26 ± 1 ◦C.

3.2. Mechanism of Interaction of POMs and Electromagnetic Waves in Water

The mechanism of interaction between the POMs and electromagnetic field was further studied by
applying the dielectric relaxation model to the dielectric parameters, allowing quantitative evaluation
of the POM conductivity in solvents and of the solvent relaxation process. The real and imaginary parts
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of the complex dielectric constants were further analyzed by a dielectric relaxation model. A general
dielectric relaxation model is given by the Debye model (2):

ε∗r = ε∞ +
εs − ε∞

1 + jωτ
, (2)

where ε*, εs, ε∞, j, ω, and τ are the complex permittivity, the permittivity at a static frequency,
the permittivity at infinite frequency, the imaginary unit, angular frequency, and relaxation time,
respectively. The Debye model can be applied to single components. The Cole–Cole model (3) is
more suitable for mixed solutions of more than two components by introducing β (0 < β ≤ 1) as a
distribution parameter:

ε∗r = ε∞ +
εs − ε∞

1 + (jωτ)β
. (3)

For a solution containing an electrolyte, a term for the contribution of ionic conduction can be
applied to the Cole–Cole model as follows (4):

ε∗r = ε∞ +
εs − ε∞

1 + (jωτ)β
− jσ

ωε0
, (4)

where ε0 and σ are the permittivity of free space and conductivity of the electrolyte, respectively.
The conductivity and the dielectric relaxation time were calculated by fitting the Cole–Cole

model considering the conductivity, as shown in Equation (4). The conductivities of H4SiW12O40 in
water and DMSO are indicated in Figure 4A,C. The increased concentration of H4SiW12O40 in water
linearly increases the conductivity. In contrast, a concentration of >5 mM is required for H4SiW12O40

to exhibit conductivity in DMSO. The conductivity of H4SiW12O40 in water is much higher than
that in DMSO. The relaxation times for water and DMSO are shown in Figure 4B,D. In aqueous
solutions, the relaxation time of water remains almost constant between 8 and 8.5 ps. However,
the relaxation time of DMSO is linearly increased from 16 to 18 ps with increased H4SiW12O40

concentration. Therefore, the restriction of the molecular motion of DMSO is gradually strengthened
by the addition of H4SiW12O40. This indicates strong interactions between DMSO and H4SiW12O40.
H3PW12O40 and H3PMo12O40 also showed very similar tendencies in DMSO and water (Figure S3).

The temperature dependence of conductivities is shown in Figure 5. The elevated temperature
increases the conductivity of H4SiW12O40 in both water and DMSO. The temperature-dependent
conductivities are further fitted to the Arrhenius Equation (5) to obtain the activation energy (Ea) of
the conduction process:

ln(σ) = ln(A)− Ea

RT
, (5)

where A, R, and T are the frequency factor, ideal gas constant, and absolute temperature, respectively.
The activation energy of conductivity in water is estimated at 14.1 kJ/mol, while that in DMSO

(1 mM) is ~96.6 kJ/mol (Figure 5). The higher activation energy of H4SiW12O40 in DMSO may be due
to the constraint of ionic conduction by the strong interaction of DMSO and H4SiW12O40. By increasing
the concentration of H4SiW12O40 to 5–10 mM, the activation energy is decreased to 8.9 kJ/mol
(5 mM)–7.6 kJ/mol (10 mM) in water and to 24.6 kJ/mol (5 mM)–18.9 kJ/mol (10 mM) for DMSO.
POMs are well-known highly proton-conductive materials, often used in proton-exchange membrane
fuel cells [34]. Horky et al. previously reported the infinite dilution conductivity of cations (Λ◦ H3O+)
and POM anions (Λ◦ anion) for H4SiW12O40 and H3PW12O40 in water [35]. The low conductivity of
POM anions indicated that their conduction entirely relies on hydrodynamic transport (the vehicle
mechanism). However, the large mobility of protons (H3O+) arises from the proton relay mechanism
(or Grotthuss mechanism), which involves fast proton transport by the consecutive formation and
destruction of H3O+. Wang et al. reported that the activation energy for conductivity in H3PW12O40

(0.6–6.7 mM) and H4SiW12O40 (0.13–3 mM) in dimethyl formamide (DMF) is ~7.9–8.3 kJ/mol [33].
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The activation energy of <15 kJ/mol indicates the proton relay mechanism, whereas that of >20 kJ/mol
is due to the vehicle mechanism. Therefore, dielectric loss of H4SiW12O40 in water under RF-band
electromagnetic waves can be attributed to fast proton conduction. In DMSO, the conduction process
is much lower than that in water, indicating the importance of water in enabling high dielectric loss by
the proton relay mechanism.
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Figure 4. Dependence of conductivities (H4SiW12O40) and relaxation times (water and DMSO) on the
concentration of H4SiW12O40 (0–10 mM). (A) Conductivity of H4SiW12O40 in water as a function of its
concentration; (B) conductivity of H4SiW12O40 in dimethylsulfoxide as a function of its concentration;
(C) relaxation time of water as a function of H4SiW12O40 concentration; and (D) relaxation time of
DMSO as a function of H4SiW12O40 concentration. Measurement temperature: 26 ± 1 ◦C.
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The dielectric properties of several types of POM with different compositions and structures
are analyzed in water (1 mM) (Figure 6A). The degree of ionic conduction varies depending on
the type of POM. H4S2W18O62, a Wells–Dawson-type POM, shows the highest ionic conduction
(0.223 S/m), followed by H4SiW12O40 (0.133 S/m) and H3AsW12O40 (0.129 S/m). The conductivities of
the POMs are further plotted over their acidities, as described by the Hammett indicator (Figure 6B) [28].
The acidities of the POMs show good accordance with their conductivities because of the higher
concentrations of protons in the systems. Therefore, the degree of acid dissociation is another important
factor to obtain better ionic conductivity by POMs.Materials 2018, 11, x FOR PEER REVIEW  8 of 11 
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To investigate the contribution of cations to the loss factors of POMs, the dielectric spectra of the
[PVW11O40]4− anion with different cations (H+-, K+-, and (NH4)+-forms) are measured in aqueous
solutions (Figure 7). The protonated [PVW11O40]4− exhibit the highest ionic conductivity, reaching
0.141 S/m, while those for the K+- and (NH4)+-forms are only 0.040 S/m and 0.055 S/m, respectively.
Therefore, the large conductivity of protons significantly affects the loss factors of POM solutions.
In DMSO at 1 mM, however, no proton-dependent enhancement was observed. These results coincide
with the large activation energy required for ionic conduction at low POM concentrations in DMSO,
compared to the very small activation energies required in water (Figure 5). As a summary, protonated
POMs exhibit specific loss factors at lower frequencies in aqueous media than in non-aqueous ones
because of the proton relay mechanism.

Interestingly, we have previously observed similar proton-enhanced ionic conductivity in an
aqueous system of natural polysaccharides obtained from seaweeds [36,37]. The dielectric properties
of acidic polysaccharides, such as κ- and λ-carrageenan (sulfated galactan), are significantly affected by
the conductivities of their cations. When the cation of carrageenan was exchanged from the K+-form
(as-prepared) to the proton-form by a strong cation-exchange resin, a significant enhancement of
ionic conductivity was observed in the RF band (<300 MHz). Therefore, the proton-enhanced ionic
conductivity may be a general phenomenon in many materials. Ionic conductivity is among the key
parameters needed to obtain efficient dielectric heating, as described in Equation (1). Because the
power of dielectric heating strongly depends on the conductivity, ionic conductivity has been used to
improve the MW susceptibility of reaction systems [38–40]. The presented results indicate that stronger
and more selective interactions can be obtained between protonated POMs and electromagnetic waves
by applying RF fields rather than MWs.
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4. Conclusions

Electromagnetic waves have been used to activate various chemical reactions catalyzed by
POMs. The dielectric properties of irradiated materials are important factors in obtaining good energy
propagation during reactions under electromagnetic fields. The dielectric properties of POMs were,
therefore, characterized by dielectric spectroscopy under fields at frequencies between the RF band
and MWs in this study. Selective loss factor increases of POMs in water were observed at frequencies
below <1 GHz; these became more prominent in the RF band (<300 MHz). This process was due to the
ionic conductivity of the POMs and strongly depended on their concentration. Dielectric constants of
>50 were required to initiate POM dissociation and thus ionic conductivity. The very low activation
energy for ionic conductivity by POMs indicated that the proton relay mechanism is involved in the
dielectric loss of POMs. The contribution of the proton relay mechanism was further confirmed by
varying the acid strength and cations of POMs. Namely, POMs with greater acidity exhibited more
intense ionic conduction. In addition, the protonated POM exhibited larger ionic conductivity than
the K+-form and NH4

+-form. Because a similar proton relay mechanism was previously observed
for protonated natural polysaccharides, this phenomenon may be a general mechanism during the
dielectric heating of many electrolyte materials.
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concentrations and temperature. (A) Conductivity of H3PW12O40 in water, (B) relaxation time of H3PW12O40
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