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Abstract

The multi-gluon exchange is a fundamental process and dominates
high-energy hadron-hadron scattering processes at forward scatter-
ing angles, known as the Pomeron exchange in Regge theory. The
Pomeron is a gluon-rich non-perturbative object and is universal for all
high-energy hadronic processes. However, very little is known about
its fundamental properties, and its physical nature is not fully under-
stood within Quantum Chromo Dynamics. In general, it is difficult to
study the Pomeron and multi-gluon exchange processes at low ener-
gies because the contribution from meson exchange processes becomes
significant and masks the contribution from the Pomeron and multi-
gluon exchange processes. Coherent ϕ-meson photoproduction from
helium-4 (γ4He → ϕ4He) provides a unique and clean way of inves-
tigating such gluonic interactions at low energies because unnatural-
parity exchange processes are absent owing to the target with spin-
parity JP = 0+, and thus the natural-parity Pomeron and multi-gluon
exchanges are much enhanced.

We have measured the differential cross sections and ϕ → K+K−

decay angular distributions for coherent ϕ-meson photoproduction
from helium-4 at forward angles (−t < 0.2 GeV2) using linearly po-
larized photons in the energy range of Eγ = 1.685–2.385 GeV. This
measurement provides the first-ever data for this reaction. The ex-
periment was carried out at the SPring-8/LEPS facility. The mea-
surement of the decay angular distributions demonstrates the strong
dominance (> 94%) of the natural-parity Pomeron exchange, and also
indicates strongly the presence of double helicity-flip transitions from
the incident photon to the produced ϕ-meson (λγ = ±1 → λϕ = −λγ).
The latter suggests that the Pomeron exchange can be considered as
an effective tensor exchange. To evaluate the Pomeron contribution
to the forward cross section (θ = 0◦) for the elementary γp → ϕp reac-
tion as well as other possible natural-parity contribution, the energy
dependence of the forward cross section (θ = 0◦) for the γ4He → ϕ4He
reaction was analyzed. The comparison to available low-energy data
for the γp → ϕp reaction suggests the presence of additional natural-
parity exchange processes beyond the Pomeron exchange such as the
daughter Pomeron exchange in ϕ-photoproduction and/or the need to
modify a conventional Pomeron exchange model.
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1 INTRODUCTION

1 Introduction

1.1 Photon interaction with hadron

It is one of our most important missions in hadron physics today to un-
derstand the internal structures of hadrons from Quantum Chromo Dynam-
ics (QCD). Electromagnetic interactions of hadrons are widely used as a
probe for this purpose: for example, the nucleon structure has been inten-
sively studied via electron scattering off proton, or a bound neutron in a
deuteron target. The MIT-SLAC experiment concerning deep inelastic scat-
tering of electrons off protons [1] revealed that the proton is made of ex-
tremely small and hard particles, later called quarks. Taylor, Friedman and
Kendall were awarded the Nobel Prize in 1990 for this discovery [2].

It is well known that electromagnetic interactions are mediated by pho-
tons. If a photon has a hadronic component, i.e, a photon state |γ⟩ is a
superposition of a “bare” state |γ⟩bare and a hadron state |qq̄⟩:

|γ⟩ = a |γ⟩bare + b |qq̄⟩ (|a|2 + |b|2 = 1), (1.1)

then the charge distribution of protons measured by elastic electron scat-
tering, for example, is different from that expected from the bare photon
state |γ⟩bare. Such a speculation was first made by Nambu [3], who sug-
gested that the charge distribution of protons and neutrons, as determined
by electron scattering, could be accounted for by introducing an isoscalar
vector (I = 0, JP = 1−) meson, now known as ω-meson. A similar attempt
was made by Frazer and Fulco [4] to explain the nucleon form factors by
considering a ππ resonance with I = 1, JP = 1− around a total energy of
∼ 770 MeV, now called ρ-meson.

On the other hand, experimental data on the total γp cross section as well
as vector meson photoproduction at high energies also support the “hadronic
structure” of photons, which is discussed in the next section.

1.2 Vector meson photoproduction

High-energy photo-reactions with a hadron have been discussed on the
basis of “Vector Meson Dominance” (VMD) [5]. Since neutral vector mesons
have the same quantum numbers as those of photons, namely JPC = 1−−,
Heisenberg’s uncertainty principle allows a photon to fluctuate into a qq̄ pair,
forming a virtual vector meson for a short time before interactions. The

1



1.2 Vector meson photoproduction 1 INTRODUCTION

VMD picture relates the photoproduction amplitude for vector mesons (≡
MγN →V N) to the amplitude of the V N ′ → V N transition (≡ MV ′N →V N),
so that

MγN →V N =
∑
V ′

√
α

4
· 4π
γ2V ′

MV ′N →V N , (1.2)

where the summation runs over possible vector meson states V ′, α is the
fine structure constant and 4π/γ2V measures a photon coupling to a vector
meson V . A constant γV can be evaluated from the decay of a vector meson
into a lepton pair [6]. Since the V N → V ′N (V ̸= V ′) amplitudes cannot
be measured, it is unknown whether or not the right-hand side of Eq. (1.2)
is diagonal (i.e., MV ′N →V N = 0 for V ′ ̸= V ). Commonly, the off-diagonal
amplitudes are assumed to be negligible compared to the diagonal ones. In
such case, Eq. (1.2) becomes

MγN →V N =

√
α

4
· 4π
γ2V

MV N →V N . (1.3)

Thus, in the context of VMD, vector meson photoproduction from nucleons
can be regarded as elastic scattering of a vector meson off nucleons.

In fact, high-energy photon-hadron collision, including vector meson pho-
toproduction, has common characteristics to high-energy hadron-hadron col-
lision:

• The total cross section rises very slowly as the energy
√
s increases

(Fig. 1.1).

• Differential cross section for elastic hadron-hadron scattering (vector
meson photoproduction) exhibits a strong forward-peaking behavior,
and the forward peak shrinks with increasing energy1 (a so-called “shrink-
age” mechanism ) (Fig. 1.2).

These characteristics can be well understood by the t-channel exchange of
“Pomeron trajectory” in the framework of VMD.

1These phenomena resemble those of the diffraction of light on a black disk. Therefore,
the term “diffraction” is often used in high-energy scattering.

2



1.2 Vector meson photoproduction 1 INTRODUCTION

Figure 1.1: Total photon-proton hadronic cross section, together with the
total (integrated) cross sections for the elastic vector meson (ρ, ω, ϕ, J/ψ)
photoproduction off protons, as a function of the total energy W =

√
s. The

solid curves for σtot(γp), σ(γp→ ρp), σ(γp→ ωp) and σ(γp→ ϕp) and the
dashed curve for σ(γp→J/ψp) correspond to predictions from a “Pomeron”
exchange model (see Sect. 1.3 and Appendix A for Pomeron), whereas the
solid curve for σ(γp→J/ψp) corresponds to a prediction from perturbative
QCD models. The figure is taken from Ref. [7].

3



1.2 Vector meson photoproduction 1 INTRODUCTION

Figure 1.2: Differential cross sections as a function of momentum transfer
−t for the π−p → π−p reaction (left figure), the γp → ρp reaction (middle
figure) and the γp → γp reaction (right figure). The figures are taken from
Ref. [5].

4



1.3 Introduction to Pomeron 1 INTRODUCTION

1.3 Introduction to Pomeron

An introduction to “Pomeron”2 is presented here. The details about
Pomeron and related topics are described in Appendix A.

Before the advent of QCD, Regge theory [9] was developed and success-
fully described high-energy hadron-hadron scattering. Since Regge theory
is based on the general properties of scattering amplitudes (i.e., Lorentz in-
variance, unitary and analyticity), even nowadays it is an effective tool for
describing high-energy soft processes3, where perturbation theory is inappli-
cable.

In Regge theory, a strong interaction is described by the exchange of a
family of particles characterized by the quantum numbers other than spin.
Chew and Frautschi [10, 11] found that such a family of particles exchanged
in a scattering process falls along a straight line by plotting their spins (J)
against their squared masses (m2) (see for example Fig. A.1); namely

J = α(m2) = α(0) + α′ ·m2. (1.4)

This is a so-called “Regge trajectory”. In the above equation, α(0) and
α′ are the intercept and slope, respectively, of a Regge trajectory. All the
experimentally established hadrons (both mesons and baryons) belong to a
Regge trajectory with an intercept of α(0) ≲ 0.5 and a “universal slope” of
α′ ≈ 0.9 GeV−2.

Historically, a linear relation of Eq. (1.4) for meson trajectories has been
explained by a string model [12], in which a meson is regarded as a rotating
open string or a massless quark-anti-quark pair connected by a string with a
constant tension σq, which is responsible for the “confinement” property of
quarks. In this picture, the angular momentum excitations of such an open
string are given by

J =
1

2πσq
m2. (1.5)

This mimics a linear behavior of Eq. (1.4). Comparing Eqs. (1.4) and (1.5),

2We should distinguish two pomerons (soft and hard ones) [8]. In this thesis,
“Pomeron”, where the first letter is capitalized, refers to the soft one.

3A soft process means a process in which the momentum transferred between two
colliding particles is small enough compared to the QCD scale ΛQCD ≃ 210 MeV.
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a a'

b b'

a a'

b b'

Particle w/ 
"fixed" mass M
 and spin J

Reggeon w/ 
"runnning" mass t
 and spin (t)

(a) (b)

Figure 1.3: Schematic diagrams (a) for the t-channel exchange of a parti-
cle with fixed mass M and spin J and (b) for the t-channel exchange of a
Reggeon [α(t)].

one finds a relation between the Regge slope and the string tension:

α′ =
1

2πσq
. (1.6)

The string tension σq calculated by this equation with a universal slope
α′ ≈ 0.9 GeV−2 is in excellent agreement with the values obtained from
quarkonium4 spectroscopy [13].

According to Regge theory, the amplitude for a two-particle to two-
particle scattering process (i.e., a + b → a′ + b′) at high energies and at
small scattering angles is approximately expressed as

A(s, t) ∼ iβ(t)sα(t), (1.7)

where s is the total energy, t is the 4-momentum transferred in the process,
α(t) is the leading Regge trajectory for the process written in terms of t [i.e.,
α(t) = α(0) + α′t], and β(t) is a residue function.

The term sα(t) in Eq. (1.7) can be viewed as the t-channel exchange of a
particle with spin equal to α(t). In the language of Regge theory, this particle-
like object is called a “Reggeon”. The t-channel exchange of a Reggeon
corresponds to the exchange of all possible particles in t-channel (Fig. 1.3).

By means of the optical theorem, which relates the forward elastic scatter-
ing amplitude to the total cross section, one can deduce the high-energy be-

4A quarkonium refers to a flavorless meson consisting of a heavy quark and its own
antiquark (cc̄ or bb̄). Note that a quarkonium made of a top quark and an anti-top quark
does not exist due to the quite large mass of the top quark.

6
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havior of the total cross section for hadron-hadron scattering from Eq. (1.7):

σtot =
1

s
ImA(s, t = 0) ∼ sα(0)−1. (1.8)

Since all the known mesonic trajectories have an intercept of α(0) ≲ 0.5, one
expects total hadron-hadron cross sections to fall down with increasing energy√
s. However, the total cross sections for pp and p̄p scattering, for example,

exhibit a slow growth at
√
s > 10 GeV (see Fig A.2). Pomeron trajectory is

a hypothetical object that were introduced to account for slowly-rising total
hadron-hadron cross sections at high energies [14].

Pomeron trajectory has an intercept nearly equal to but slightly greater
than unity, and is known to carry the quantum numbers of the vacuum [15,
16]. The intercept αP(0) and slope α′

P of Pomeron trajectory were determined
in detail from total hadron-hadron and photon-hadron cross section data and
from elastic pp and p̄p scattering data, respectively, as [17,18]:

αP(t) = αP(0) + α′
Pt,

αP(0) = 1.08, α′
P = 0.25 GeV−2.

(1.9)

The physical particles lying on Pomeron trajectory have not been iden-
tified yet, but there has been a long-standing speculation that the phys-
ical particles responsible for Pomeron trajectory might be glueballs, i.e.,
bound states of gluons [19–21] (see also Appendix A.3) because all the known
hadronic states fall on Regge trajectories with slopes close to 0.9 GeV−2 but
different intercepts (≲ 0.5). In fact, experimental data on deep inelastic ep
scattering [22] and on diffractive p̄p collision [23, 24] have revealed that a
substantial fraction of the Pomeron momentum is carried by “hard” gluons,
i.e. constituent gluons.

Experimentally, the t-channel exchange of such an object with the vacuum
quantum numbers is characterized by a region in the rapidity5 space devoid
of particles, i.e. a so-called “rapidity gap”, in pp or p̄p diffraction dissociation

5In collider physics, “rapidity”, y, is often used for representing the angle of a particle
momentum relative to the beam axis (z), and is defined as

y =
1

2
ln

E + pz
E − pz

, (1.10)

where E and pz are the energy and the z-component of the momentum, respectively, of a
particle. Practically, “pseudo-rapidity” is used instead of rapidity. A pseudo-rapidity η is

7
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P

p

p

X

Y

Double

Diffraction

0 ̀

̀

̀̀

P

p

p

X

p

Single

Diffraction

0 ̀

̀

̀̀
X

X Y

p

Figure 1.4: (Left figures) illustrations for single (top) and double (bottom)
diffraction dissociation with the Pomeron (P) exchange. (Right figures) cor-
responding event patterns in a two-dimensional plot for pseudo-rapidity η
versus azimuthal angle ϕ. ∆η stands for a “rapidity gap”.

at high energies; see e.g. Refs. [25,26]. In diffraction dissociation, one of the
colliding hadrons emits a Pomeron, loosing a very small fraction of its energy,
and then dissociates into a system with a small invariant mass, i.e. a bundle
of hadrons with small relative momenta. The other colliding hadron, on the
other hand, is scattered off by the Pomeron, remaining intact (called “single
diffraction dissociation”), or absorbs the Pomeron, dissociating into a low-
mass system (called “double diffraction dissociation”). In both cases, we see
a characteristic event pattern in a two-dimensional angular plot as in Fig. 1.4:
a forward (backward) region or both of forward and backward regions are
filled with particles from hadron dissociation whereas the rest is empty. This
empty space is thought to be an experimental signature of the exchange of
a colorless object, i.e. a Pomeron6, between the two hadrons. Diffraction
dissociation is explained well by phenomenological models based on Regge

given by

η =
1

2
ln

|p|+ pz
|p|+ pz

= − ln

(
tan

θ

2

)
, (1.11)

where |p| is the magnitude of a particle momentum, and θ is the angle of a particle momen-
tum relative to the beam axis. From Eqs. (1.10) and (1.11), pseudo-rapidity corresponds
to rapidity in the limit where the velocity of a particle is close to the speed of light, or
equivalently the mass of a particle is negligible. Note that we often refer to η just as
rapidity, not as pseudo-rapidity.

6The exchange of secondary Reggeons such as ρ and ω trajectories, which are also
colorless objects, could make a rapidity gap. However, the contribution from secondary
Reggeon exchanges is small at high energies, as is expected from the Regge phenomenology.

8



1.4 Low-energy ϕ-photoproduction off ... 1 INTRODUCTION

theory [27–32], although new data from Large Hadron Collider (LHC) call
for a significant modification of the current models (see Ref. [33]).

The Pomeron exchange is often described in terms of the two-gluon ex-
change, which was first proposed individually by Low [34] and Nussinov [35,
36]. In fact, even the simplest QCD diagram involving the exchange of two
gluons can reproduce some properties inherent in the Pomeron exchange such
as the constancy of the total cross sections at high energies [37], although the
full understanding of the Pomeron exchange in terms of the QCD degree of
freedom, i.e. quarks and gluons, remains a challenge due to the inapplicabil-
ity of perturbation theory. Nevertheless, the Pomeron hypothesis is regarded
as an effective description for soft gluonic interactions between hadrons, es-
pecially at high energies.

The simplest and basic diagram in QCD is the one-gluon exchange be-
tween quarks. At the level of hadrons, such a process, i.e. the one-gluon
exchange between hadrons, is forbidden because hadrons are in total col-
orless whereas a gluon has intrinsic color charge. Thus, in a sense, the
exchange of two gluons in the color-singlet configuration between hadrons,
which mimics the Pomeron exchange, is one of the most fundamental pro-
cesses in hadron-hadron interactions. In general, for example, in elastic
scattering between hadrons with common flavors, meson (quark) exchanges
play a significant role at low energies and mask the contribution from the
Pomeron (multi-gluon) exchange. Thereby, the applicability of “the concept
of the Pomeron exchange” to the low-energy regime is not completely clear
(see e.g. Refs. [38, 39]).

1.4 Low-energy ϕ-photoproduction off nucleon

1.4.1 Overview

As already discussed in Sect. 1.2, at high energies, vector meson pho-
toproduction can be well described by the t-channel Pomeron exchange in
the VMD framework. Among light vector meson (ρ, ω, ϕ) photoproduction,
ϕ-meson photoproduction off nucleons is of particular interest. Since the
ϕ(1020)-meson is a vector meson (JPC = 1−−) mostly consisting of a strange
quark (s) and an anti-strange quark (s̄), which are hidden in the sea of nu-
cleons, meson and baryon (quark) exchange processes are suppressed by the
Okubo-Zweig-Iizuka (OZI) rule [40–42] [see also Fig. 1.5(a)]. Consequently,
the multi-gluon exchange (or the Pomeron exchange) is expected to be dom-

9
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N N'N N'

OZI
suppressed

̀(ss) ̀, ̀̀ ̀

Meson ex.
(̀, ̀, ...)

Meson ex.
(̀, ̀, ...)

(a) (b)

Figure 1.5: Feynman diagrams for (a) ϕ-photoproduction from nucleons via
meson-exchange processes and (b) ρ and ω-photoproduction from nucleons
via meson-exchange processes. In the diagram (a), quark lines are discon-
nected at the upper vertex. Thereby, such processes are suppressed (the OZI
rule).

inant even at low energies. This is not the case for other light vector meson
(ρ, ω) photoproduction [Fig. 1.5(b)], in which meson-exchange processes have
a significant contribution at low energies [see the low-energy enhancements
of σ(γp→ ρp) and σ(γp→ ωp) in Fig. 1.1]. Therefore, ϕ-photoproduction
off nucleons is a clean system for investigating gluonic interactions at low
energies. Traditionally, this reaction has been considered as a tool for the
direct study of the Pomeron exchange at low energies [43], and there has
also been a speculation that low-energy ϕ-photoproduction will give access
to an exotic gluonic interaction [44] (see also Sect. 1.4.3), although the π and
η exchanges are now known to have a non-negligible contribution near the
production threshold [38,39].

1.4.2 Theoretical models for conventional Pomeron, π and η ex-
changes

As mentioned above, ϕ-photoproduction off protons predominantly pro-
ceeds via the multi-gluon exchange even at low energies. Since there is no
reliable model for describing soft gluon exchange processes in this energy
regime (W =

√
s ⪅ 5 GeV), a Pomeron exchange model, which is well es-

tablished at high energies, is conventionally used to describe such processes.
Besides the Pomeron exchange, at low energies, the pseudoscalar π and η-
meson exchanges play a non-negligible role [38, 39], which can be, though,

10
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considered as a small correction to the production mechanism.

The Pomeron exchange is usually described based on the Donnachie-
Landshoff (DL) Pomeron model (see Appendix A.2), together with a mod-
ification to consider the Pomeron exchange as the non-perturbative two-
gluon exchange (hereafter, this model is referred to as the modified DL
model) [37, 45, 46]. In Ref. [47], the Lorentz-invariant amplitude for the
Pomeron exchange in the γp→ ϕp reaction is given by

T P
fi = −MP(s, t)Γ

P
fi,

ΓP
fi = ε∗µ(λϕ)ūfh

µν
P uiεν(λγ),

(1.12)

where εµ(λϕ) [εν(λγ)] is the polarization vector of the outgoing ϕ-meson (the
incoming photon), and ui ≡ umi

(p) [uf ≡ umf
(p′)] is the Dirac spinor of the

proton with four-momentum p (p′) and its spin projection mi (mf ). A scalar
function MP(s, t) takes an ordinary Regge form:

MP(s, t) = CPF1(t)Fϕ(t)
1

s

(
s

sP

)αP(t)

exp

[
− i

2
παP(t)

]
, (1.13)

where F1(t) and Fϕ(t) are the form factors for the Pomeron-proton vertex and
the Pomeron-ϕ-meson vertex, respectively, which take the following forms:

F1(t) =
4M2

N − 2.8t

(4M2
N − t)(1− t/t0)2

,

Fϕ(t) =
2µ2

0

(1− t/M2
ϕ)(2µ

2
0 +M2

ϕ − t)
,

(1.14)

where MN (Mϕ) is the nucleon (ϕ-meson) mass, t0 = 0.7 GeV2, and µ2
0 =

1.1 GeV2. A Pomeron strength factor CP in Eq. (1.13), which governs the
overall strength, is given by

CP =
6g2

√
4παem

γϕ
, (1.15)

where αem = e2/4π, and g2 is the product of two dimensionless Pomeron-
quark coupling constants; g2 ≡ gPssgPqq = (

√
sPβs)(

√
sPβq) with sP = 4 GeV2,

βs = 1.61 GeV−1 and βq = 2.05 GeV−1.

11
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A vertex function ΓP
fi in Eq. (1.12), which is derived from the analogy be-

tween the Pomeron exchange and the non-perturbative two-gluon exchange,
is written explicitly as

ΓP
fi =ūf/kui(ε

∗
λϕ

· ελγ )− ūf/ελγui(ε
∗
λϕ

· k)

− ūf/ε
∗
λϕ
ui

(
ελγ · q −

(ελγ · p̄)(k · q)
p̄ · k

)
,

(1.16)

where k (q) denotes the four-momentum of the incoming photon (the out-
going ϕ-meson). p̄ is introduced to guarantee the gauge invariance as p̄ ≡
(p+ p′)/2, where p (p′) is the four-momentum of the initial (final) proton.

The vertex function ΓP
fi is responsible for the spin structure of the Pomeron-

quark couplings; that is, ΓP
fi can be rewritten in the Gottifried-Jackson (GJ)

frame (see for the definition Sect. 1.4.4) approximately as

ΓP
fi ∼δλϕλγ ūf/kūi − δλϕ0kγūf/ελγui

−
√
2λγpx

k · q
2p · k − k · q

ūf/ε
∗
λϕ
ui,

(1.17)

where kγ and px are the photon momentum and the x-component of the
proton momentum, respectively, and λγ (λϕ) is the helicity of the incoming
photon (the outgoing ϕ-meson). The first term represents helicity-conserving
processes (λϕ = λγ), whereas the last two terms represent helicity-flip (helicity-
nonconserving) processes (λϕ ̸= λγ); that is, the second term is responsible
for single helicity-flip transitions from the incident photon to the outgoing
ϕ-meson (λγ = ±1 → λϕ = 0), and the third one for double helicity-flip
transitions (λγ = ±1 → λϕ = −λγ) [47]. At high energies, the first term of
Eq. (1.17) dominates over the last two terms, leading to helicity-conservation,
but at low energies, the last two terms become significant and give rise to
helicity-flips (λϕ ̸= λγ).

From the slowly-rising total hadron-hadron cross sections, one infers that
the Pomeron will behave like a spin-1 particle. Donnachie and Landshoff [18]
postulated that the Pomeron couples to individual quarks like an isoscalar
C = +1 photon, leading to a vector (γµ) coupling as the Pomeron-quark
coupling. From this, it follows that the Pomeron does not flip the quark
helicity at the vertex [48]. On the other hand, Titov et al. [47] deduced the
Pomeron-quark couplings from the two-gluon exchange and showed that the
Pomeron amplitude contains the helicity-flip terms that are negligible at high

12
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energies but become important at a few GeV of the photon energy. Thus, the
difference between these two models (the original and modified DL models)
becomes significant at low energies.

The pseudoscalar meson (π, η) exchange amplitudes are often described
in terms of a one-boson-exchange model [38, 47, 49]. These amplitudes are
purely real [38, 49], whereas the Pomeron amplitude is almost purely imag-
inary at small |t| [see the phase term7 in Eq. (1.13)]. This means that the
interference effects between the Pomeron and pseudoscalar meson exchanges
in the forward cross sections are small. Further, the pseudoscalar meson ex-
change amplitudes take a simple helicity-conserving form in the GJ frame,
i.e. TPS

fi ∝ (εϕ · εγ) = δλγ ,λϕ
, and thus do not contribute to helicity-flip

amplitudes [38, 47, 49]. Accordingly, the presence of helicity-flip processes
in ϕ-photoproduction will support the success of the modified DL Pomeron
model (i.e., the Pomeron-two-gluon analogy).

1.4.3 Daughter Pomeron trajectory

Thanks to the OZI suppression of meson exchange processes, low-energy
ϕ-photoproduction off nucleons offers a possibility of searching for an exotic
gluonic interaction, i.e. the exchange of a new glueball-associated trajectory,
as suggested by Nakano and Toki [44]

Figure 1.6 shows lattice QCD predictions of the squared masses of scalar
(JPC = 0++) and tensor (2++) glueballs against their spins [50–56]. The
predicted masses for a 2++ glueball are populated close to Pomeron trajec-
tory. On the other hand, since a 0++ glueball cannot be a physical particle
on Pomeron trajectory [, which can be verified by substituting J = 0 into
Eq. (1.4)], it could be a member of a daughter Pomeron trajectory8, which
is given by

α0+(t) = α0+(0) + α′
0+t,

α0+(0) = −0.75, α′
0+ = 0.25 GeV−2.

(1.18)

Since the intercept α0+(0) is much smaller than unity, the contribution
from the daughter Pomeron exchange to the forward cross section (θ = 0◦)

7The phase of the Pomeron amplitude is definitely determined by Regge theory.
8A daughter Regge trajectory means a trajectory parallel to the parent one in the

M2–J plane, but with a different intercept.
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0

2

4

0 5 10
Mass squared M2 (GeV2/c4)
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Daughter Pomeron
J = -0.75 + 0.25•M2

Pomeron
J = 1.08 + 0.25•M2

Figure 1.6: Lattice QCD prediction of the squared masses of a scalar (JPC =
0++) glueball (red points) and a tensor (2++) glueball (blue points), against
their spins. Data are taken from Refs. [50] (filled circles), [51, 52] (filled
squares), [53] (filled triangles), [54] (open circles), [55] (open squares) and
[56] (open triangles). For clarity, each data is slightly shifted in the vertical
direction. A red line represents a “daughter” Pomeron trajectory whose
intercept is determined from the predicted 0++ glueball mass, whereas a
blue ones represents Pomeron trajectory, whose intercept is determined from
total hadron-hadron cross sections (see Appendix A.2).

would become significant near the threshold. Figure 1.7 shows the pre-
dicted energy dependence of the forward cross section (θ = 0◦) for the
γp→ ϕp reaction. For this plot, the Pomeron contribution was fixed by high-
energy light vector meson (ρ, ω, ϕ) photoproduction data [58–82], whereas
the daughter Pomeron contribution was determined from the low-energy ϕ-
photoproduciton data by the ABBHHM Collaboration (, indicated by an
open triangle in Fig. 1.7) [57]. If the daughter Pomeron trajectory really
exists, the forward cross section (θ = 0◦) would be enhanced near the thresh-
old.

Titov et al. [38] pointed out that, as is expected from the Regge phe-
nomenology, the conventional π and η meson exchanges would also enhance
the forward cross section near the threshold, and that polarization observ-
ables will be helpful for disentangling the daughter Pomeron exchange from
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Figure 1.7: Predicted energy dependence of the differential cross section at
t = 0 (θ = 0◦) for ϕ-photoproduction off protons. A solid curve shows the
sum of the contribution from the t-channel Pomeron and daughter Pomeron
exchanges, whereas a dashed curve shows the contribution from Pomeron
exchange. The calculation was made within Regge theory. An open trian-
gle represents the experimental data from the ABBHHM Collaboration [57],
while filled circles represent the data from DESY [58]. The figure is taken
from Ref. [44].

the conventional π and η exchanges.

1.4.4 Polarization observables with linearly polarized photons

Besides the information on the cross sections, polarization observables,
namely spin density matrix elements (SDMEs), with linearly polarized pho-
tons provide further insights on the reaction mechanism, specifically on the
spin and parity of the particles exchanged in t-channel, and isolate the
Pomeron and daughter Pomeron exchanges from the π and η exchanges.
The SDMEs describe the distribution of the spin states of the produced ϕ-
meson, and are related to the ϕ → K+K− decay angular distributions in
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Figure 1.8: Schematic views of (a) the center-of-mass frame and (b) the
Gottifried-Jackson (GJ), Helicity (H) and Adair (A) frames.

the ϕ-meson rest frame. There are several choices of the reference frame to
analyze the decay angular distributions; the Gottfried-Jackson (GJ), Helicity
and Adiar frames (Figs. 1.8). The difference between these frames is just a
choice of the quantization axis of spin (z-axis). Among these frames, the
GJ frame is suitable for investigating t-channel exchange processes because
some amplitudes take a helicity-conserving form for an arbitrary production
angle of the ϕ-meson [38]. Therefore, we chose the GJ frame as a reference
one in the present analysis. Note that although the general formalism for
the analysis of the ϕ-meson decay is common in all the reference frames, the
SDMEs depend on the reference frame.

In the GJ frame, the z-axis is defined in a direction parallel to the photon
momentum in the ϕ-meson rest frame, whereas the x and y-axes are defined
in such a way that the y-axis is perpendicular to the production plane, and
that the x-axis is parallel to the vector product of the y- and z-axes ŷ × ẑ.

A three-dimensional angular distribution of the ϕ → K+K− decay, W (
cosΘ,Φ,Ψ), as a function of the polar (Θ) and azimuthal (Φ) angles of
the K+ meson in the ϕ-meson rest frame and the azimuthal angle (Ψ) of
the photon polarization vector with respect to the production plane, can be
parametrized by using nine SDMEs (ρ0, ρ1, ρ2) and the degree of photon
polarization (Pγ) [47,83]:

W (cosΘ,Φ,Ψ) = W 0(cosΘ,Φ)

− Pγ

[
W 1(cosΘ,Φ) cos 2Ψ +W 2(cosΘ,Φ) sin 2Ψ

]
,

(1.19)

where W 0 is the unpolarized part of the decay angular distribution, whereas
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W 1 and W 2 are the polarized parts, which can be accessed only by using
polarized photons. Here, W 0, W 1 and W 2 are given by

W 0(cosΘ,Φ) =
3

4π

[
1

2
(1− ρ000) +

1

2
(3ρ000 − 1) cos2Θ

−
√
2Reρ010 sin 2Θ cosΦ

−ρ01−1 sin
2Θcos 2Φ

]
, (1.20)

W 1(cosΘ,Φ) =
3

4π

[
ρ111 sin

2Θ+ ρ100 cos
2Θ

−
√
2Reρ110 sin 2Θ cosΦ

−ρ11−1 sin
2Θcos 2Φ

]
, (1.21)

W 2(cosΘ,Φ) =
3

4π

[√
2Reρ210 sin 2Θ sinΦ

+Imρ21−1 sin
2Θsin 2Φ

]
. (1.22)

The SDMEs (ρ0, ρ1, ρ2) are defined, in terms of helicity amplitudes Tα;λ,λγ ,
as

ρ0λ,λ′ =
1

N

∑
α,λγ

Tα;λ,λγT
†
α;λ′,λγ, (1.23)

ρ1λ,λ′ =
1

N

∑
α,λγ

Tα;λ,−λγT
†
α;λ′,λγ

, (1.24)

ρ2λ,λ′ =
i

N

∑
α,λγ

λγTα;λ,−λγT
†
α;λ′,λγ

, (1.25)

where λγ and λ (λ′) denote the helicities9 of the incoming photon and the out-
going ϕ-meson, respectively, whereas a symbol α includes the polarizations
of the incoming and outgoing baryons (protons). A normalization factor N
is given by

N =
∑
α,λ,λγ

Tα;λ,λγT
†
α;λ,λγ

. (1.26)

According to Ref. [47], one can obtain five one-dimensional decay angular

9Here, the definition of the term “helicity” is different from the normal one. Throughout
this thesis, the term “helicity” stands for the spin projection onto the z-axis (of the GJ
frame), not the spin projection onto the direction of momentum.
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distributions by integrating Eq. (1.19) over the remaining variables; i.e.,

W (cosΘ) =
3

2

[
1

2
(1− ρ000) sin

2Θ+ ρ000 cos
2Θ

]
, (1.27)

W (Φ) =
1

2π
(1− 2Reρ01−1 cos 2Φ), (1.28)

W (Φ−Ψ) =
1

2π

[
1 + 2Pγ ρ̄

1
1−1 cos 2(Φ−Ψ)

]
, (1.29)

W (Φ + Ψ) =
1

2π
[1 + 2Pγ∆1−1 cos 2(Φ + Ψ)] , (1.30)

W (Ψ) = 1− Pγ(2ρ
1
11 + ρ100) cos 2Ψ. (1.31)

Here, we define ρ̄11−1 ≡ (ρ11−1 − Imρ21−1)/2 and ∆1−1 ≡ (ρ11−1 + Imρ21−1)/2.
Hereafter, we call ρ̄11−1 a “decay asymmetry”.

When helicity-conservation holds [i.e., λγ = λ (λ′)], only two SDMEs,
ρ11−1 and Imρ21−1, can take non-zero values, and the others vanish (= 0). We
also have a relation ρ11−1 = −Imρ21−1 [83]. Thus, among the five SDMEs
in Eqs. (1.27)–(1.31), only ρ̄11−1 can take a non-zero value under helicity-
conservation.

The decay asymmetry ρ̄11−1 has a special meaning: ρ̄11−1 can be rewrit-
ten in terms of the contribution of natural-parity exchange processes (σN =
|TN|2) and that of unnatural-parity exchange processes (σU = |TU|2) under
helicity-conservation [47]:

ρ̄11−1 =
1

2

σN − σU

σN + σU
. (1.32)

Thus, ρ̄11−1 provides the relative contribution from natural-parity and unnatural-
parity exchange processes in t-channel. It gives +0.5 for pure natural-parity
exchange processes (e.g., Pomeron, daughter Pomeron, multi-gluon and scalar
meson exchanges), whereas it gives −0.5 for pure unnatural-parity exchange
processes (e.g., pseudoscalar π and η exchanges).

Non-zero values of the SDMEs other than ρ11−1 and Imρ21−1 indicate the
existence of helicity-nonconserving processes. In particular, ρ000 measures
the probability of single helicity-flip transitions from the incident photon to
the outgoing ϕ-meson (λγ = ±1 → λϕ = 0) and is explicitly written from
Eq. (1.23) as [64]:

ρ000 =
2

N

∑
α

|Tα;01|2, (1.33)
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Figure 1.9: (Left figure): Example of t-channel exchange processes. The
figure illustrates ϕ-photoproduction off nucleons with the t-channel Pomeron
(P) exchange. (Right figure): Illustration of the photon-Pomeron-ϕ vertex
viewed in the GJ frame. Simbols λγ, λϕ and λP stand for the helicities (z-
components of spin) of the photon, the ϕ-meson and the Pomeron, respec-
tively.

whereas Reρ01−1 measures the interference of helicity-nonflip (λϕ = λγ) and
double helicity-flip (λγ = ±1 → λϕ = −λγ) amplitudes [64]:

Reρ01−1 =
2

N
Re

∑
α

Tα;11T
†
α;1−1. (1.34)

In the GJ frame, the presence of single helicity-flips indicates that the
helicity of the particle exchanged in t-channel is ±1, whereas the presence
of double helicity-flips indicates that the helicity of the exchanged particle is
±2. This is illustrated in Fig. 1.9. Since the momentum of the exchanged
particle is always collinear with the z-axis (the quantization axis of spin), the
following equation holds for an arbitrary production angle of the ϕ-meson:

λt-channel = λϕ − λγ, (1.35)

where λt-channel is the helicity of the particle exchanged in t-channel.
We again emphasize that among the conventional processes (i.e., the

Pomeron, π and η exchanges), only the Pomeron exchange can contribute
to helicity-flip amplitudes10 and that the presence of helicity-flips will sup-
port the modified DL model (see Sect. 1.4.2).

10Besides the conventional processes, the scalar meson exchanges [a0(980), f0(980), σ =
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1.5 Coherent ϕ-meson photoproduction from helium-4

It has been shown in the previous sections that ϕ-meson photoproduction
off nucleons is a good probe for gluonic interactions at low energies owing
to the OZI suppression of meson exchanges. In coherent ϕ-meson photopro-
duction from helium-4 (i.e., γ4He → ϕ4He), the Pomeron and multi-gluon
exchange processes are further enhanced thanks to the following reason.

Photoproduction of mesons off nuclei is mostly categorized into two reac-
tions: “coherent” and “incoherent” reactions (Fig. 1.10). In the case of coher-
ent reactions, the incident photon interacts with the whole nucleus, and the
nucleus remains intact in the final state. In the case of incoherent reactions,
the incident photon interacts with a single nucleon inside the nucleus, and
the nucleus breaks up in the final state. Coherent meson photoproduction is
of particular interest. With an appropriate choice of the quantum numbers
of the target nucleus such as spin and parity, coherent reactions can be used
to project out specific parts of the elementary reaction amplitudes (i.e., they
act as a “spin and parity filter”).

Coherent meson photoproduction off 4He is an interesting channel because
the quantum numbers of 4He nuclei filter out unnatural-parity exchange pro-
cesses such as the π and η exchanges. Here, a natural-parity (unnatural-
parity) exchange process means a process where the exchanged particle in
t-channel has a natural-parity P = (−1)J [unnatural-parity P = −(−1)J ],
where J is the spin of the particle. The above statement can be derived as
follows: let us consider a process A → A′ + B such that a JP = 0+ parti-
cle (A) emits an unnatural-parity particle (B), remaining unchanged in spin
and parity, as shown in Fig. 1.11. Let L be the orbital angular momentum
of the particle B with respect to the particle A′ in the final state. Then
the spin of the particle B must be equal to L because both the particles A
and A′ have spin 0 (spin-conservation). Thus, the parity of the particle B
is P = −(−1)L (unnatural-parity). The total parity of the initial state is
P = +1, whereas that of the final state is P = −(−1)L × (+1) × (−1)L =
−(−1)2L = −1. This violates parity-conservation. Thus, this process (i.e.,

f0(500)] and the tensor f ′
2(1525) exchange are possible due to their large coupling to the

K̄K channel, Among them, the scalar meson exchanges do not contribute to helicity-flip
amplitudes, whereas the tensor f ′

2 exchange can contribute to helicity-flip amplitudes [47].
Note that vector meson exchanges such as the ρ and ω exchanges, which can also contribute
to helicity-flip amplitudes, are forbidden in ϕ-photoproduction due to their negative charge
conjugation (C = −1) [84].
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Figure 1.10: Coherent (top) and incoherent photoproduction (bottom) of
ϕ-mesons from nuclei. In coherent production, the nucleus remains intact in
the final state, whereas in incoherent production, the nucleus breaks up in
the final state (see also the text).

LA(JP=0
+
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A'(JP=0
+
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L

)

Figure 1.11: Schematic diagram for a process A → A′ + B such that a
JP = 0+ particle A emits an unnatural-parity particle B with an orbital
angular momentum L with respect to the particle A′, remaining unchanged
in spin and parity. See the text for the assignments of spin and parity for
the particle B.
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unnatural-parity exchange processes) is forbidden.
With the elimination of unnatural-parity exchanges as well as the suppres-

sion of meson exchanges, coherent ϕ-meson photoproduction off 4He provides
an ideal laboratory for investigating gluonic interactions at low energies.

1.6 Experimental status of low-energy ϕ-photoproduction

1.6.1 ϕ-photoproduction off proton

Due to the inherent smallness of the ϕ-photoproduction cross sections, the
data on the γp → ϕp reaction are, in general, sparse with limited statistical
precision, and most of them exist in the high-energy regime. The first precise
measurement near the production threshold was performed by the LEPS
Collaboration [85], who reported that the energy dependence of the forward
cross section (θ = 0◦) exhibits a localized “bump” around Eγ ∼ 2 GeV,
as indicated by blue open circles in Fig. 1.12, whereas a simple Pomeron
exchange model predicts a smooth rise from the threshold. Later, the CLAS
Collaboration published high-statistics data [86,87] and confirmed this non-
monotonic behavior (black open squares in Fig. 1.12), though the data were
obtained by extrapolating from rather large scattering-angle regions. More
recently, the LEPS Collaboration extended the maximum beam energy from
2.4 to 2.9 GeV and also observed an excess from a model prediction from the
Pomeron, π and η exchanges [88] (red filled circles in Fig. 1.12).

The LEPS Collaboration [85, 88, 89] also measured SDMEs with linearly
polarized photons, which help us to understand the production mechanism.
Figure 1.13 shows the energy dependence of the SDMEs ρ000, Reρ

0
1−1, ρ̄

1
1−1,

∆1−1 and 2ρ11−1+ρ
1
00 in the GJ frame. While ρ000 and Reρ01−1 ensure helicity-

conservation in t-channel, the decay asymmetry ρ̄11−1 indicates a sizable 20–
30% contribution from unnatural-parity exchange processes11, decreasing
with increasing energy, which is compatible with a theoretical calculation
for the Pomeron, π and η exchanges.

There are several interpretations of this non-monotonic behavior: Ozaki
et al. [90] and Ryu et al. [84] conjectured the non-monotonic behavior as
coupled-channel effects between the ϕp and K+Λ(1520) channels. Since both
channels have the same final state K+K−p, they could affect each other.
Kiswandhi et al. [91, 92] made an attempt to attribute the non-monotonic
behavior to an excitation of missing nucleon resonances with non-negligible

11This can be evaluated from Eq. (1.32) under helicity-conservation.
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Figure 1.12: Energy dependence of the forward cross section (θ = 0◦). Blue
open circles show the first LEPS data [85], whereas red filled circles show
the LEPS 2017 data [88]. Black open squares show the CLAS data [86]. A
green solid curve shows the sum of theoretical curves for the Pomeron (pink
dashed) and (π+η) (blue dash-dotted) exchanges [47]. Note that the overall
strength for the Pomeron exchange is adjusted from the LEPS 2017 data
and, is different from that in Ref. [47]. The figure is taken from Ref. [88].

amount of ss̄ contents. However, this seems to be unlikely because the CLAS
data [86,87] show that the non-monotonic behavior appears only at forward
production angles. The manifestation of the daughter Pomeron trajectory,
which is already discussed in Sect. 1.4.3, could also account for the non-
monotonic behavior.

Despite considerable theoretical efforts, a definitive interpretation of the
non-monotonic behavior has not been obtained yet. This is mainly because
there always exist uncertainties in modeling the Pomeron exchange in the
low-energy regime. Therefore, it is important to pin down the low-energy
behavior of the Pomeron amplitude experimentally if any.

1.6.2 Coherent ϕ-photoproduction off deuteron

As discussed in Sect. 1.5, coherent meson photoproduction off nuclei can
be used as a “filter” to project out specific parts of the elementary reaction
amplitudes. Another example for such a reaction is coherent ϕ-meson pho-
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Figure 1.13: Energy dependence of the SDMEs (ρ000, Reρ
0
1−1, ρ̄

1
1−1, ∆1−1

and 2ρ11−1 + ρ100) in the GJ frame for the γp → ϕp reaction. Here, a range
for momentum transfer t is restricted to 0 < |t| − |t|min < 0.05 GeV2, where
|t|min is the minimum momentum transfer |t|. Filled and open circles show
the recent LEPS data (2017) [88] and the previous LEPS data (2009) [89],
respectively. A red solid curve shows the same theoretical calculation as that
in Fig. 1.12, while a green dashed curve shows the original work by Titov et
al. [47]. The figures are taken from Ref. [88].

toproduction from deuteron (γd→ ϕd). With the use of the isoscalar target,
this reaction filters out the isovector part of the ϕ-photoproduction ampli-
tudes (i.e., the π-exchange amplitude). This, in conjunction with negligible
contribution from the η exchange12, enables us to investigate the Pomeron
dynamics at low energies [93,94].

The LEPS Collaboration measured the differential cross section and de-
cay asymmetry for the coherent γd → ϕd reaction at forward angles near
the threshold using linearly polarized photons [95]. In this measurement,
the production of ϕ-mesons was identified by detecting K+K− pairs from
the ϕ → K+K− decay with a forward spectrometer, whereas the coherent
production events were disentangled from the incoherent ones by looking at

12This stems from a small value of the ηNN coupling constant gηNN [38].
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Figure 1.14: Principle of how to identify the coherent production events in
a MM(K+K−) distribution. The horizontal axis represents the missing mass
MM(K+K−). Md and MN denote the masses of a deuteron and a nucleon,
respectively. See the text for the detailed explanation.

the missing mass of the d(γ,K+K−)X reaction13 [MM(K+K−)]. Figure 1.14
shows the principle of how to identify the coherent events in a MM(K+K−)
distribution. Since the missing mass MM(K+K−) is equivalent to the center-
of-mass energy of a pn pair in the final state, the missing mass MM(K+K−)
corresponds to the deuteron mass (Md) in the case of the coherent process,
whereas in the case of the incoherent process, it is distributed with an end-
point of the two-nucleon mass14 (= 2MN). Ideally, these two distributions
are separated by the deuteron binding energy (∼ 2.2 MeV), but are practi-
cally overlapped due to detector resolutions. Therefore, for the evaluation
of the number of the coherent events, MM(K+K−) distributions were fitted
with Monte-Calro-simulated coherent and incoherent components as shown
in Fig. 1.15(a).

Figure 1.15(b) shows the decay asymmetry ρ̄11−1 in the GJ frame at for-
ward angles, 0 < |t| − |t|min < 0.1 GeV2, as a function of the photon energy.
Here, |t|min is the minimum momentum transfer |t| for the deuteron tar-
get. No strong energy dependence of ρ̄11−1 was found, and the averaged ρ̄11−1

13At forward production angles, the momenta of recoil deuterons is too small to detect
them directly.

14This energy corresponds to the case where the relative momentum of a pn pair is equal
to zero.

25



1.6 Experimental status of low-energy ϕ- ... 1 INTRODUCTION

0

50

100

150

1.8 1.85 1.9 1.95 2 2.05

MM
d
( ,̀KK) (GeV/c

2
)

E
v
e

n
ts

̀
2
/ndf= 1.07

Coherent Incoherent

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
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Figure 1.15: (a) Missing mass spectrum for the d(γ,K+K−)X reaction.
A bold dotted curve represents the fit result with Monte-Carlo-simulated
coherent and incoherent components (dashed curves) (b) Decay asymmetry
ρ̄11−1 for the γd → ϕd reaction in the GJ frame at forward angles (0 <
|t|− |t|min < 0.1 GeV2) as a function of the photon energy. The smaller error
bars represent the statistical errors, whereas the larger ones represent the
sum of statistical and systematic ones in quadrature. (c) Differential cross
section dσ/dt at t = −|t|min for the γd → ϕd reaction as a function of the
photon energy. The meanings of the error bars are the same as those of
(b). A dashed curve shows a theoretical calculation for a Pomeron exchange
model including a small contribution from the η-exchange [94]. The figures
are taken from Ref. [95].

was determined to be 0.48 ± 0.07(stat) ± 0.10(syst). This value is consis-
tent with the maximum boundary (+0.5), showing a complete dominance of
natural-parity exchange processes, or a negligibly small contribution of the
unnatural-parity η exchange.

Figure 1.15(c) shows the energy dependence of the differential cross sec-
tion dσ/dt extrapolated to t = −|t|min. A dashed curve shows a model cal-
culation for the Pomeron and η exchanges [94]. Here, large systematic errors
were caused by the disentanglement of the coherent production events. This
is because, since the separation energy of deuteron is small (∼ 2.2 MeV),
the coherent production events are not clearly identified in the MM(K+K−)
spectra [see Fig. 1.15(a)]. Although the precise energy dependence cannot
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Figure 1.16: Schematic diagrams for (a) single-scattering and (b) double-
scattering processes.

be discussed due to the large systematic errors, the experimental data are
obviously underestimated by the theoretical model.

Coherent photoproduction of vector mesons from nuclei has been de-
scribed well by using the Glauber multiple-scattering theory [96]. In the case
of a deuteron target, the coherent process consists of two sub-processes [Figs.
1.16(a) and (b)]: the one corresponds to the single-scattering process, which
dominates at small |t|, whereas the other corresponds to the double-scattering
process, which has a significant contribution at larger (intermediate) |t| [97].
In ϕ-photoproduction at low energies with Eγ < 3 GeV and at forward
production angles with |t| ≲ 0.4 GeV2, which is relevant for LEPS measure-
ments, the single-scattering assumption is a good approximation. Titov et
al. [94] related the differential cross section for the coherent γd → ϕd reac-
tion (dσγd/dt) to that for ϕ-photoproduction from free nucleons via isoscalar
t-channel exchange processes (dσγN ;T=0/dt). as

dσ

dt

γd

≃ 4Z(t)
dσ

dt

γN ;T=0

, (1.36)

where a factor of 4 comes from the nuclear mass number A = 2, and Z(t) is
a structure factor, which is given by

Z(t) = F 2
C (t) + 4F 2

Q(t), (1.37)

where FC(t) and FQ(t) are the charge and quadrupole form factors for deuterons,
respectively. At small |t| under consideration, the structure function Z(t) is
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also related to the well-known structure function A(t) for elastic ed → ed
scattering15 as

A(t) ≃ Z(t)G2
N(t), (1.40)

where GN(t) = 1/(1− t/0.71)2 is the dipole nucleon form factor.
Using Eq. (1.36), one can deduce the energy dependence of the dσγN ;T=0/dt

at zero degrees from the coherent γd → ϕd data. Figure 1.17 shows the en-
ergy dependence of the deduced dσγN ;T=0/dt at zero degrees, together with
available forward cross section data for the γp → ϕp reaction (dσγp/dt).
A solid curve represents a theoretical calculation for the Pomeron and η
exchanges, whereas a dashed curve represents a model calculation for the
Pomeron, π and η exchanges [94]. Interestingly, the two highest data points
for dσγN ;T=0/dt exhibit a different energy dependence from that for dσγp/dt;
that is, a smooth rise with energy, which is compatible with the theoretical
calculation. Due to the large systematic errors, any definitive conclusion can-
not be drawn, but this may hint at the origin of the non-monotonic behavior.

Although the LEPS measurement on the coherent γd→ ϕd reaction suc-
cessfully demonstrated the elimination of the π exchange, there still remain
the following issues:

• The large systematic errors caused by the disentanglement of the co-
herent events make it difficult to precisely determine the energy depen-
dence of the forward amplitude for any specific process.

15The cross section for the elastic ed → ed scattering can be written in terms of
two structure functions A(Q2) and B(Q2) as a function of the virtual photon four-
momentum (Q2) (Rosenbluth separation);

dσ

dΩ
=

(
dσ

dΩ

)
Mott

[
A(Q2) +B(Q2) tan2

θe
2

]
, (1.38)

where (dσ/dΩ)Mott is the Mott cross section and θe is the electron scattering angle. The
structure functions A(Q2) and B(Q2) are related to the charge (GC), quadrupole (GQ)
and magnetic (GM ) form factors:

A(Q2) = G2
C(Q

2) +
8

9
η2G2

Q(Q
2) +

2

3
ηG2

M (Q2),

B(Q2) =
4

3
η(1 + η)G2

M (Q2),

(1.39)

where η = Q2/(4m2
d) and md is the deuteron mass. GC(Q

2), GQ(Q
2) and GM (Q2) are

normalized according to GC(0) = 1, GQ(0) = Qd and GM (0) = µdmd/mN , where Qd

and µd are the electric quadrupole moment and magnetic dipole moment of deuterons,
respectively, and mN is the nucleon mass.
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Figure 1.17: Energy dependence of the differential cross section at zero
degrees for the ϕ-photoproduction from free nucleons by isoscalar t-channel
exchange processes dσγN ;T=0/dt (Filled circles). Open squares and open cir-
cles show the LEPS data [85] and old experimental data, respectively, on
the γp → ϕp reaction (dσγp/dt). Solid and dashed curves represent theoret-
ical calculations for dσγN ;T=0/dt and dσγp/dt, respectively, with a Pomeron
exchange model including the π and η exchanges [94]. Here, dσγN ;T=0/dt
has no contribution from the π-exchange. Note that the LEPS γp data are
shifted by −50 MeV for clarity. The figure is taken from Ref. [95].
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• There still exists a possibility of unnatural-parity exchange processes
other than the π exchange, which could be background processes for
investigating the Pomeron exchange and other gluonic interactions at
low energies.

1.7 Aim of this study

The aim of this study is to investigate gluonic interactions at low ener-
gies. Since gluons are flavor-blind, the information on gluonic interactions
obtained here would be universal and applicable to all hadronic processes: for
example, the possible formation of a bound state of a charmonium [a meson
made of a charm quark (c) and an anti-charm quark (c̄)] with a nucleon or
a nucleus has been discussed for many years on the basis of the static force
mediated by gluons, known as the QCD van der Waals force16 [98–101]. Re-
cently, since the observation of new resonance states Pc(4380)

+ and Pc(4450)
+

with the minimum quark contents of uudcc̄ was announced by the LHCb Col-
laboration [102], theoretical interest in such a bound state has been revived
regarding the internal structures of these new states. There are intensive dis-
cussions on their internal structures, including non-resonant interpretations
as well [see Ref. [103] for a recent review on the exotic hadronic states with
hidden-charm (cc̄) contents]. As these new states were observed in the J/Ψp
channel, one naively expects them to be a bound state of a charmonium with
a proton [104–108].

Furthermore, low-energy coherent ϕ-meson photoproduction off 4He will
offer a new insight on the Pomeron exchange. The Pomeron is a univer-
sal object appearing in all high-energy hadronic processes, especially in the
diffractive regime (i.e., at very forward scattering angles). The concept of
the Pomeron exchange successfully explains various phenomena inherent in
high-energy hadron-hadron collisions. However, very little is known about
its fundamental properties, and its derivation from QCD is yet to come. For
example, we do not know exactly how the Pomeron couples to hadrons. The
measurement of the decay angular distributions of photo-produced ϕ-mesons
will answer this question (see Sect. 1.4).

The importance of this study is further emphasized by the recent obser-
vations of the non-monotonic behavior of the forward (θ = 0◦) cross sec-

16In atomic and molecular physics, the van der Waals force refers to a relatively weak
electric force that binds neutral atoms or molecules together, which arises from instanta-
neous fluctuations of the internal charge of a neutral particle.
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tion present in the γp → ϕp reaction [85–88] (see also Sect. 1.6.1). Several
theoretical models [38, 44, 84, 90–92, 109] have been proposed to explain the
non-monotonic behavior, but all of them are not conclusive. This is mainly
because all the models strongly depend on the near-threshold behavior of the
Pomeron-exchange amplitude.

Coherent ϕ-meson photoproducion off deuteron was thought to be a sim-
ple and useful reaction for investigating the Pomeron and multi-gluon ex-
changes at low energies because of the absence of the isovector π exchange,
which is a main background contribution for this purpose [93,94]. In the pre-
vious LEPS measurement [95], however, the systematic errors coming from
the disentanglement of the coherent production events were too large to dis-
cuss the energy dependence of the forward (θ = 0◦) cross section in detail.
By contrast, in coherent ϕ-photoproduction off 4He, one expects better sep-
aration of the coherent events than that with a deuteron target because of
the large separation energy of 4He nuclei (∼ 28 MeV; cf. ∼ 2.2 MeV for
deuteron; see Fig. 1.14). Therefore, one can investigate the Pomeron and
multi-gluon exchanges at low energies with better accuracies.

We have measured the differential cross sections and decay angular dis-
tributions for coherent ϕ-meson photoproduction from 4He at forward an-
gles (−t < 0.2 GeV2) in the energy range of Eγ = 1.685–2.385 GeV with
linearly polarized photons at LEPS/SPring-8. In this thesis, we present the
first-ever results on both the differential cross sections and decay angular
distributions for this reaction.

This thesis is organized as follows. Section 2 describes the LEPS/SPring-8
facility and the experimental setup. Section 3 describes the reconstruction of
the charged particles detected by a spectrometer, the determination of photon
energy, the event selection and the analysis on the coherent-ϕ-production
events. The results and discussions for the decay angular distributions and
the differential cross sections are presented in Sect. 4, in which we first look
at the decay angular distributions to verify the absence of unnatural-parity
exchange processes in this reaction, and then discuss the results on the cross
sections. This thesis ends with a conclusion in Sect. 5.
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2 Experiment

The experiment was carried out at the LEPS/SPring-8 facility. It is a
unique facility in the world, which can provide a high-intensity and highly
linearly-polarized photon beam. Linearly-polarized photons are produced via
backward Compton scattering between laser photons and the 8-GeV electrons
circulating in the storage ring [110]. The maximal beam energy reaches 2.4
GeV or 2.9 GeV, depending on the wavelength of the laser used. The beam
energy is sufficient to produce, especially, hadrons with a strange (or anti-
strange) quark.

A spectrometer was used to detect the K+K− pairs from the ϕ→ K+K−

decay and to analyze their momenta. The K+K− pairs were identified
through the reconstructed mass and charge of charged particles detected
by the LEPS spectrometer.

A series of experiments using a linearly polarized photon beam has been
started since 2000. Based on Refs. [111–113], the details of the LEPS/SPring-
8 facility and the LEPS spectrometer are described here.

2.1 SPring-8 facility

SPring-8 (Super-Photon ring-8 GeV) is a third-generation synchrotron-
radiation (SR) facility, which has been completed in 1997. Third-generation
facilities are optimized to achieve a high-brightness Synchrotron Orbital Ra-
diation (SOR) light source [Vacuum UV (VUV) and soft X-ray source) by
using insertion devices, mainly undulators. There are three third-generation
SR facilities with the electron energy Ee > 5 GeV in the world; ESRF (Greno-
ble), APS (Argonne) and SPring-8 (Japan). Among them, SPring-8 is the
largest facility, and provides the brightest light source.

The accelerator complex of SPring-8 consists of an injector Linear Ac-
celerator (LINAC), a booster synchrotron, and a low-emittance and high-
brightness storage ring. Figure 2.1 shows a schematic view of the accelerator
complex of SPring-8. Electrons are generated at the electron gun, and ac-
celerated up to an energy of 1 GeV in the injector LINAC with a length
of 140 m. The 1-GeV electrons are transported to the booster synchrotron
with a circumference of 396 m, and are accelerated up to 8 GeV. The 8-
GeV electrons are injected from the synchrotron into the storage ring with a
circumference of 1436 m, and are stored.

The 8-GeV electrons form a bunch and circulate in the storage ring with
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Figure 2.1: Schematic view of the accelerator complex of SPring-8. The
picture is taken from the SPring-8 web cite [114].

a frequency of 0.2088 MHz. The time interval of successive electron bunches
is 1.966 nsec. In the storage ring, there are about 2440 electron bunches,
which are filled with several filling patterns17 [114]. The nominal current
of the stored beam is 100 mA. The electron beam has a small emittance of
2.4 nm · rad with average beam widths of σx = 75 µm and σy = 25 µm in
the horizontal and vertical directions, respectively.

The stored electron beam is used to generate synchrotron radiation pho-
tons at bending magnets, undulators and wigglers. The photons produced
via synchrotron radiation are provided to various beamlines in the experi-
mental hall. The photon beams with a high brightness and low emittance
are commonly used for researches mainly on material and life science. There
are 57 beamlines in SPring-8, and 56 of them are now under operation. One
of these beamlines is used by our LEPS group, called BL33LEP. In the LEPS
beamline, High-energy photon beam produced via backward Compton scat-
tering are used for hadron physics, instead of radiation photons.

17The time interval between successive bunches is basically equal to 1.966 nsec, except
that it corresponds to 23.6 nsec for A-mode (one of the bunch modes).
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2.2 LEPS facility

At the Laser-Electron-Photon (LEPS) facility at SPring-8, a multi-GeV
photon beam is produced via Backward Compton Scattering (BCS) between
laser photons and the 8-GeV electrons circulating in the storage ring.

A schematic view of the LEPS beamline is shown in Fig. 2.2. The LEPS
beamline consists of three parts; (a) a laser-electron collision part in the stor-
age (SR) ring, (b) a laser hatch for laser injection, and (c) an experimental
hatch, where the spectrometer is placed. A BCS process is illustrated in the
same figure: laser photons, which are optimized in the laser hatch, are in-
jected to the storage ring. As shown in Fig. 2.2, we have a 7.8 m long straight
section between two bending magnets in the storage ring. In this straight
section, the BCS process takes place when a laser photon collides with an
8-GeV electron. The photons produced via the BCS process are delivered
to the experimental hatch, and irradiate an experimental target. The recoil
electrons are detected and momentum-analyzed by a tagging system placed
at the exit of the bending magnet to measure the photon energy.

In the next section, the BCS process and devices to produce linearly-
polarized photons are described.

2.2.1 Backward Compton scattering

General properties of backward Compton scattering are summarized here.
Kinematic variables of backward Compton scattering (BCS) process in the
laboratory frame are defined as shown in Fig. 2.3: Ee (E

′
e) is the energy of the

incident (scattered) electron, k1 is the energy of the laser photon, Eγ is the
energy of the BCS (scattered) photon, θ1 ≃ 180◦ is the relative angle between
the directions of the incident electron and the laser photon, and θ2 is the scat-
tering angle of the BCS photon with respect to the direction of the incident
electron. If Ee ≫ k1, a photon is scattered in an extremely-forward direction
due to the Lorentz boost. In such case, the scattered (BCS) photon gains an
enormous energy from the incident electron by the Fitzgerald-Lorentz effect
in the recoil process. Then the energy of the BCS photon is given by

Eγ = k1
1− β cos θ1

1− β cos θ2 +
k1(1−cos θ)

Ee

, (2.1)

where β is the velocity of the incident electron in unit of the speed of light
c, and θ = θ2 − θ1. Assuming that the incident electron is relativistic; i.e.,
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Figure 2.2: Schematic view of the LEPS facility at SPring-8. The LEPS
facility consists of three parts: (a) a laser-electron collision part in the storage
ring (SR). (b) a laser hutch for laser injection. (c) an experimental hatch.
The explanation of the collision between a 8-GeV electron and a laser photon
in the backward Compton scattering is illustrated in this figure.

γ = Ee/me ≫ 1, β ≃ 1, θ1 ≃ 180◦ and θ2 ≪ 1, Eq. (2.1) can be rewritten as

Eγ =
4E2

ek1
m2

e + 4Eek1 + θ22γ
2m2

e

, (2.2)

where me is the electron mass (= 0.511 MeV) and γ ∼ 1.6 × 104 for 8-GeV
electrons. The maximum energy of the BCS photon, i.e., the Compton edge,
is obtained at θ2 = 0◦:

Emax
γ =

4E2
ek1

m2
e + 4Eek1

. (2.3)

The differential cross section of a BCS process as a function of the (BCS)
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Figure 2.3: Kinematic variables of backward Compton scattering in the
laboratory frame.

photon energy is given by [115]

dσ

dEγ

=
2πr2ea

Emax
γ

(χ+ 1 + cos2 α),

a =
m2

e

m2
e + 4Eek1

,

χ =
ρ2(1− a)2

1− ρ(1− a)
,

cosα =
1− ρ(1 + a)

1− ρ(1− a)
,

ρ =
Eγ

Emax
γ

,

(2.4)

where γe = 2.818 fm is the classical electron radius. Figure 2.4 shows the
differential cross section for the BCS process between the 8-GeV electrons
and the laser photons with a wavelength of 355 nm as a function of the photon
energy. A sub-GeV photon beam can be sufficiently obtained through the
BCS process.

Linearly-polarized (circularly-polarized) BCS photons can be produced
by using linearly-polarized (circularly-polarized) laser photons. Since the
spin-flip amplitude is small in BCS process, the BCS photons retain most of
the polarization of the incident laser photons. The degree of the BCS photon
polarization is proportional to that of the laser photons (Plaser), and is given
by

Pγ = Plaser
(1− cosα)2

2(χ+ 1 + cos2 α)
for linear polarization, (2.5)
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Figure 2.4: Differential cross section of the BCS process between the 8-GeV
electrons and the laser photons with a wavelength of 355 nm as a function
of photon energy.

and

Pγ = Plaser

∣∣∣∣ (2 + χ) cosα

χ+ 1 + cos2 α

∣∣∣∣ for circular polarization. (2.6)

Figure 2.5 shows the degrees of linear and circular polarization for the pho-
tons produced via the BCS process between the 8-GeV electrons and the laser
photons with a wavelength of 355 nm as a function of the photon energy,
with the assumption of 100% laser polarization. The degree of polarization
is maximum at the Compton edge, where the spin-flip amplitude for highly-
relativistic electrons vanishes, and the scattered photons almost retain the
initial laser polarization. In the case of linear polarization, the maximum
polarization is obtained as Pγ = Plaser[2a/(1+a

2)] from Eq. (2.5). This gives
about 94% of polarization at maximum with the 8-GeV electrons and the
351-nm laser photons with 100% polarization.

In the present experiment, a linearly-polarized photon beam was pro-
duced from the laser photons with a wavelength of 355 nm. The size of the
BCS photon beam for Eγ = 1.5–2.4 GeV corresponds to σx ∼ 3.5 mm and
σy ∼ 2.0 mm in the horizontal and vertical directions, respectively. Note
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Figure 2.5: Polarization of the photons produced via the BCS process
between the 8-GeV electrons and the laser photons with a wavelength of 355
nm as a function of the photon energy, with the assumption of 100% laser
polarization. A red solid curve represents linear polarization, whereas a blue
dashed curve represents circular polarization.

that the difference between the sizes σx and σy is due to the emittance of the
8-GeV electron beam.

2.2.2 Laser operating system

Figure 2.6 shows a schematic drawing of the laser operating system. In
order to achieve a intense LEP beam, the photons from two laser systems are
injected simultaneously into the storage ring. Two solid -state lasers (Coher-
ent Paladin) are used as a photon source. A typical power of the lasers is 8
W. The lasers oscillate with a single line mode with a wavelength of 355 nm.
The corresponding maximal LEP beam energy is 2.385 GeV. The size of the
laser beams is 1 mmϕ. The laser photons are vertically-polarized initially.
The beam intensity was typically 1.0 Mcps in the present experiment.

The laser photon beams travel about 36 m before colliding with the cir-
culating electrons. Beam expanders are used to tune the beam size at the
collision point. The beam expanders enlarge and focus the laser beams with
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Figure 2.6: Schematic drawing of the laser operating system.

a set of concave and convex lenses made of UV grade quartz. The magnifica-
tion factor of the beam expander is 28, corresponding to 28 mm of the laser
beam size just after the expander.

The polarization of the laser beams is controlled by λ/2 plates. Since
the laser beams themselves are vertically-polarized, the optic axis of the
λ/2 plates is set to 0 degrees to obtain vertically-polarized photons, whereas
it is set to 45 degrees to obtain horizontally-polarized photons. The laser
polarization was changed once a day during data-taking periods.

Four mirrors and one prism are used to guide the laser beams to the
storage ring. The angles of the 3rd and 4th mirrors are controlled by pulse
motors to tune the directions of the laser beams. The 3rd and 4th mirrors
are made of quartz with a size of 80 mmϕ × 12 mm in thickness. The two
laser beams are reflected by the both sides of the prism, which is made
of quartz (Fig. 2.7), and are guided to the 2nd mirror. The 1st and 2nd
mirrors are placed inside a vacuum chamber. They are made of Si base with
aluminum coating which have a good heat conductivity. The sizes of the 1st
and 2nd mirrors are 100 mmϕ×6 mm in thickness and 100 mmϕ×19 mm in
thickness, respectively. The 1st mirror is made thin and is cooled by water
circulation because a LEP beam passes it.

The laser polarization is determined by measuring the polarization of the
laser photons that do not interact with the circulating electrons using a Glan-
laser prism as a polarimeter. The Glan-laser prism has a special axis such
that only the photons with polarization parallel to it can pass through the
prism. Therefore, with the rotation of the prism, the intensity of the laser
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Figure 2.7: Schematic view of the prism.
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Figure 2.8: Typical intensity distributions of the laser photons measured by
the photo-diode as a function of the rotation angle (ϕ) of the prism (a) for
vertical and (b) horizontal polarization.

photons that can pass through the prism would exhibit a oscillation pattern.
The intensity distribution as a function of the rotation angle (ϕ) of the prism
is measured by a photo-diode (HAMAMATSU S1406-05). Figures 2.8(a)
and (b) show typical intensity distributions of the laser photons measured
by the photo-diode as a function of the angle ϕ for vertical and horizontal
polarization, respectively. By fitting these distributions with a function sinϕ,
the angle and degree of the laser polarization are determined. Note that the
laser beams are optimized to maximize the polarization.
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2.2.3 Tagging system

The energy of the BCS photons, Eγ, is determined by measuring the
energy of the recoil electrons, Ee′ , as

Eγ = Ee − Ee′ . (2.7)

The energy of the electrons circulating in the storage ring, Ee, was calculated
on the basis of the measured magnetic field distributions in the storage ring,
and was determined to be 7.975±0.003 GeV [116]. The recoil electron energy
Ee′ is measured by a tagging system, which is located in the storage ring.
Since the scattered electrons in the BCS process loose their energy, they
are kicked rather strongly by the bending magnet at the end of the straight
section (see Fig. 2.2), and deviate from a normal orbit in the storage ring.
To detect such recoil electrons, the tagging system is placed just downstream
of the bending magnet at the end of the straight section.

Figure 2.9 shows a schematic view of the tagging system. The tagging
system is put outside a beam vacuum pipe for 8-GeV electrons. It covers
an energy region of 4.0–6.6 GeV for the recoil electrons, corresponding to
an energy region of 1.5–3.5 GeV for the BCS photons. The lower limit of
the photon energy is determined by the acceptance of the tagging system,
which is closest to a nominal orbit for the circulating electrons. The tag-
ging system consists of scintillating fibers (TAG-SF) and plastic scintillator
hodoscope (TAG-PL).
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A hit position of electron tracks is measured by TAG-SF, which consists
of two layers (TAG-SFF and TAG-SFB). Each fiber layer consists of 55 fiber
bundles. Each fiber bundle is made of six fibers with a cross section of
1× 1 mm2 . Figure 2.10 shows a schematic view of the fiber. There exists a
4.2% inefficient region in one fiber. Two layers are arranged with an overlap
of 0.5 mm to cover the inefficient region in one layer. The signals from the
fiber bundles are read by the photomultiplier tubes (HAMAMATSU PMT
R5900-00-M4, H6568-10).

Since the tagging system is placed near the vacuum pipe for the circu-
lating electrons, it could be suffered from accidental backgrounds. To avoid
them, a coincidence signal from TAG-SF and TAG-PL is required at the
trigger stage (see Sect. 2.6 for the trigger circuit). TAG-PL consists of 2
layers of 5 plastic scintillation counters. The size of the plastic scintillator
is 10.0 mm (hight) × 7.4 mm (width) × 5.5 mm (thickness). The width for
the plastic scintillator closest to the circulating electrons is 5.5 mm. The
plastic scintillators are arranged with an overlap of 2.7 mm. The signals
from TAG-PL are read through the PMTs (HAMAMATSU H3164-10). The
timing information of TAG-PL is used for solving a “2-ns ambiguity” of the
RF signals for the time-of-flight measurement.

2.2.4 Beamline setup

The BCS photons travel from the collision point to the experimental
hutch through the laser hutch. Figure 2.11 illustrates the setup of the LEPS
beamline. There are several materials in the path of the BCS photon beam:
the 1st mirror, aluminum windows of the beam pipes and a X-ray absorber.
If the BCS photons hit the materials, some of them would convert into e+e−

pairs. Table 2.1 summarizes the materials and their conversion rates to e+e−

pairs. The 1st mirror is made of silicon with a thickness of 6 mm. Since the
1st mirror is tilted by 45 degrees to inject the laser photons to the storage
ring, the effective thickness is

√
2 × 6 mm. Al plates with a thickness of

0.55 mm are used as a window of the beam pipes, i.e., the exit of the beam
pipe from the SR ring and the enter and exit of the beam pipe that connect
the laser and experimental hutches. In total, three aluminum plates are
used in the beamline. A lead absorber with a thickness of 2.0 mm is placed
downstream of the beam pipe connected to the SR ring to absorb X-rays.
All the detectors of the spectrometer are protected from radiation damages
by the absorber. Its thickness was determined to be 2.0 mm for radiation
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Figure 2.11: Schematic view of the LEPS beamline setup.

safety and detector performance. The conversion rate of the BCS photons
is 32.5% in total. The intensity of the BCS photons is reduced by 32.5%
before arriving at a target in the experimental hutch. The transmission of
the BCS photons from the collision point to the target was measured by the
tagging counters and gamma counters. The BCS electrons with an energy of
6.7 GeV, corresponding to the photon energy of 1.3 GeV, hit the wall of the
shield, and would cause electro-magnetic (EM) showers. The EM showers
hitting the tagging counters are discarded in an offline analysis. The effective
transmission including the EM shower effects was measured to be 53%.

The e+e− pairs produced in the materials must be removed before arriving
at the target. To remove them, a sweep magnet is placed in the laser hutch.
Figure 2.12 shows the structure of the sweep magnet. The size of an iron yoke
is 176 mm (hight) × 560 mm (width) × 1000 mm (depth). Two permanent
magnets are attached on the top and bottom of the iron yoke. The size of

Table 2.1: Materials inserted in the beamline.

Material
Radiation length

(mm)
Thickness
(mm)

Conversion rate
(%)

First mirror Si 93.6 6×
√
2 6.77

Vacuum windows Al 89.0 0.55× 3 0.44× 3
Absorber Pb 5.6 2.0 24.25
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Figure 2.12: Structure of the sweep magnet.

each magnet is 35 mm (hight) × 58 mm (width) × 1000 mm (depth). The
strength of the magnetic field is 0.6 T at the center. With the use of the sweep
magnet, the e+e− pairs produced at the 1st mirror, the aluminum windows,
the X-ray absorber and the residual gas in the beam pipe are swept out from
the beamline. Lead collimators are placed upstream and downstream of the
sweep magnet. The thickness of the upstream (downstream) collimator is
50 (150) mm. The upstream (downstream) collimator has a hole with a
diameter of 20 (25) mm. The e+e− pairs with a momentum of < 2.1 GeV/c
are blocked by the downstream collimator, whereas those with a momentum
> 2.1 GeV/c could pass through the hole of the downstream collimator.

2.3 LEPS spectrometer

The LEPS spectrometer is located in the experimental hutch to detect
the charged particles produced at the target and to analyze their momenta.
Figure 2.13 shows an overview of the LEPS spectrometer. The incident pho-
tons come from the bottom-left side of this figure. The LEPS spectrometer
consists of an upstream-veto counter (UPveto), trigger counters, a silica-
aerogel Čelenkov counter (AC), a dipole magnet, four multi-wire drift cham-
bers (DC0, DC1, DC2 and DC3) and a TOF wall. The charged particles pro-
duced upstream of the experimental hutch are vetoed by the upstream veto
counter. The silica-aerogel Čerenkov counter is used to eliminate the e+e−

background events at the trigger stage. The four multi-wire drift chambers,
together with the dipole magnet, are used as a tracking device to measure
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Figure 2.13: Overview of the LEPS spectrometer. In the data-taking period
of this work, a vertex detector (SSD) is replaced with a multi-wire drift
chamber (DC0), and a target chamber and a trigger counter are replaced
with different ones. See the text for details. Blue arrows indicate a definition
of the coordinate system used in the present analysis (see Sect. 3.3 for details).

the momenta of charged particles. The time-of-flights of charged particles
are measured by using the TOF wall. There exists a beam dump behind the
LEPS spectrometer for a radiation shielding.

Besides the LEPS spectrometer, a solenoid magnetic spectrometer, which
consists of a Time Projection Chamber (TPC), trigger counters and a solenoid
magnet, is equipped surrounding a liquid helium-4 target to detect the charged
particles emitted sideway. Therefore, the experimental setup for this exper-
iment is different from standard LEPS experiments [111, 112], in which the
solenoid spectrometer system is not equipped. Note that the hit information
on the TPC and its trigger counters was not used in the present analysis.
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Figure 2.14: Schematic drawing of the upstream-veto counter.

Some of the BCS photons would convert to charged particles mostly by
the e+e− pair production in air, the residual gas, or aluminum windows of
the beam pipe. Such charged particles must be vetoed at the trigger stage
to reduce the trigger rate.

An upstream-veto counter, which is located 4 m upstream of the target,
is used to reject the events triggered by such charged particles at the trigger
stage. Figure 2.14 shows a schematic drawing of the upstream-veto counter.
It is made of a plastic scintillator (BC-408) with a size of 200 mm (hight)×
190 mm (width)× 5 mm (thickness). The plastic scintillator is viewed by a
2-inch fine-mesh PMT (HAMAMATSU H7195) through a light guide.

2.3.2 Liquid helium-4 target

A liquid helium-4 target was used in this work. The target system is
combined with the solenoid magnetic spectrometer, which is described in
detail later. Figures 2.15 and 2.16 show schematic drawings of the target
system and the target cell, respectively. The target system has a long nose
with a length of 700 mm. The target cell is attached to the distal end of
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the nose. The target cell has a cylindrical shape, and is made of capton
film. The size of the target cell is 40 mmϕ × 150 mm (length). The target
cell is covered by a CFRP cap in order to sustain vacuum. The thickness of
the CFRP cap is 1 mm. The nose of the target system is inserted into the
inner bore of the TPC. The center of the target cell corresponds to 1710 mm
upstream of the center of the dipole magnet.

700 mm

Figure 2.15: Schematic drawing of the liquid helium-4 target system.
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Figure 2.16: Schematic drawing of the target cell.
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2.3.2.1 Forward counter (FWD)

To identify the charged particles produced at the target and entering into
the acceptance of the LEPS spectromter at the trigger stage, two plastic scin-
tillation counters (forward counters, FWDs) are placed 995 mm downstream
of the center of the target. Figure 2.17 shows a schematic drawing of the
forward counters. Two plastic scintillators with a size of 340 mm (hight) ×
780 mm (width) × 10 mm (thickness) are vertically arranged. Each plastic
scintillator is viewed by two 2-inch fine-mesh PMTs (HAMAMATSU H6614)
from the left and right sides through light guides. The FWD counters are
used as a reference counter in time-of-flight measurements. Note that the
time-of-flight of forward charged tracks can be also obtained in a different
manner (see Sect. 3.4.2).

Figure 2.17: Schematic drawing of the forward counters.

2.3.3 Silica-aerogel Čerenkov counter (AC)

The main background in the present experiment is the e+e− pair produc-
tion from the target and the FWD counters. Since the cross section of the
e+e− pair production from liquid helium-4 or from plastic scintillator is two
orders of magnitude larger than those for hadronic reactions, it have to be
suppressed at the trigger stage to reduce the trigger rate.

A silica-aerogel Čerenkov counter (AC) is used to reject such e+e− events
at the trigger stage. Figure 2.18(a) shows the relation between momentum
and velocity β for e+e−, π and K particles. Since during passing through a
material with a refractive index of n, a charged particle with a velocity of
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Figure 2.18: (a) Relation between momentum and velocity β for e+e−, π
and K particles. A vertical line corresponds to an index of n = 1.03. (b)
Design of the silica-aerogel Čerenkov counter.

β > 1/n emits Čerenkov lights, the refractive index of the radiator is set to be
1.03. It corresponds to the threshold momenta of 0.002 GeV/c, 0.57 GeV/c
and 2.0 GeV/c for pions, kaons and protons, respectively. The signals from
the AC counter are used as a veto signal in the trigger logic to reject the
e+e− events.

Figure 2.18(b) shows the design of the AC counter. The body of the
counter is made of black paper. The size of the counter box is 150 mm (hight)×
120 mm (width) × 60 mm (thickness). Two sheets of the silica-aerogel ra-
diator are arranged in a column as shown in Fig. 2.18(b). The size of each
radiator is 110 mm (hight)×110 mm (width)×25 mm (thickness). The radi-
ators are viewed by four 2-inch fine-mesh PMTs (HAMAMATSU H6614-01),
two of which are from the upper side and the others are from the bottom side.
To collect Čerenkov lights efficiently, the inside of the counter box except for
the photocathodes is covered with GORTEX sheets (white sheets) as a ran-
dom reflector. The reflectivity of GORTEX sheets is about 95% [117]. The
AC counter is placed just behind the FWD counters. Even such a configura-
tion makes it possible to detect e+e− pairs efficiently because e+e− pairs are
produced at the target with a small relative angle (< 12◦). The efficiency for
the e+e− detection is about 99.9%.
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2.3.4 e+e− Blocker

The e+e− pairs produced in the target and FWD counters, which are
initially emitted in a small relative angle, are spread out mostly in a hor-
izontal direction due to the magnetic field of the dipole magnet. Some of
electrons or positrons with a low energy would escape from the acceptance of
the beam dump, which is located behind the LEPS spectrometer, and would
hit directly a thin wall of the experimental hutch. This causes a problem on
radiation safety.

Dipole magnet

e e blocker+ -

Pb bar

4 cm

44 cm
15.5 cm

x

y

x

z

Top view

Front view
150 deg

Figure 2.19: Schematic view of the e+e− blocker.

A e+e− blocker is used in the dipole magnet to absorb such low-energy
particles. Figure 2.19 shows a schematic view of the e+e− blocker. The e+e−

blocker, made of two lead bars, is placed 20 cm downstream of the center of
the dipole magnet and is allowed to move within ±2 m in the beam direction.
The y-position of the e+e− blocker is set to the beam hight. The size of each
Pb bar is 4 cm (hight)×44 cm (width)×10 cm (thickness). The gap distance
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between two Pb bars is 15.5 cm. e+e− pairs with momenta above 1 GeV/c
can go through the gap. The gap distance can be adjusted by using small
pieces of Pb blocks. Most of e+e− pairs are asymmetric in energy. In such
case, one of a e+e− pair is blocked by the Pb bars, whereas the other escapes
through the 15.5 cm gap and is stopped by the beam dump. The Pb bars
are supported by two thin channels with a thickness of 0.2 cm. The thin
channels are connected to each other at the center with a V-shaped thin
bar (SUS) with a thickness of 0.5 cm. The V-shaped structure is open with
an angle of 150◦ and has the depth of 15 cm to allow the photon beam to
pass through (see Fig. 2.19).

2.3.5 Multi-wire drift chamber (DC)

x-x’v

Field wire

Shield wire

Sense wire

Beam directionBeam direction

x'' v u-u' x-x'

Figure 2.20: Configuration of the field, shield and sense wires for the multi-
wire drift chambers.

Four multi-wire drift chambers (DC0, DC1, DC2 and DC3) are used as a
tracking device for the charged particles entering the acceptance of the LEPS
spectrometer. The design parameters for the multi-wire drift chambers are
summarized in Table 2.2.

DC1 is placed at the entrance of the dipole magnet. The active area
is 600 × 300 mm2. Figure 2.20 shows the configuration of the field, shield
and sense wires for DC1. DC1 has six planes (X1 X2 U1 U2 V X3). The
X3 plane is added because charged particles begin to be spread out due to
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Table 2.2: Design parameters for the multi-wire drift chambers. The ori-
entation of wires is defined with respect to the horizontal axis. Each drift
chamber is centered in the x-y plane. The position of z = 0 is defined as the
center of the dipole magnet.

Coordinate Orientation
Number of
sence wires

Wire spacing
(mm)

Active area
x× y (mm2)

Position
z (mm)

DC0
Y1–Y2 90◦ 48 14

600 mmϕ
(hexagonal)

-832.0U1–U2 30◦ 48 14
V1–V2 150◦ 48 14

DC1

X1–X2 0◦ 48 6

600× 300 -466.0
U1–U2 45◦ 48 6

V 135◦ 48 12
X3 0◦ 48 12

DC2
X1–X2 0◦ 104 10

2000× 800 860.5U1–U2 120◦ 78 10
V 60◦ 79 20

DC3
X1–X2 0◦ 104 10

2000× 800 1260.5U1–U2 120◦ 78 10
V 60◦ 79 20

the magnetic field around DC1. The planes X1, X2, U1 and U2 have a 6-
mm sense-wire spacing, whereas the X3 plane has a 12-mm one. The field
wires are arranged in a hexagonal shape. There exist shield wires along the
windows to shape the electric field. The wires of the U1 and U2 planes are
tilted by 45◦ with respect to the horizontal axis. DC2 and DC3 are placed at
the exit of the dipole magnet. They have an active area of 2000× 800 mm2

and consist of five planes (X1 X2 U1 U2 V). The designs of DC2 and DC3 are
almost the same as that of DC1, except that DC1 and DC2 do not have the
X3 plane. The planes X1, X2, U1 and U2 have a 10-mm sense-wire spacing,
whereas the V plane has a 20-mm one. The wires of the UV planes are tilted
by ±30◦ with respect to the vertical axis. DC0 is newly installed instead of a
silicon vertex detector (SVTX) to reconstruct the reaction vertices of charged
particles together with the other drift chambers. It is placed just behind the
solenoid spectrometer (see Fig. 2.27). It has a hexagonal-shaped active area
with a diameter of 600 mm, and consists of six wire planes (Y1 Y2 U1 U2
V1 V2) with a 14-mm spacing. Aluminized-mylar sheets with a thickness
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of 12.5 µm are inserted between every two planes as a cathode plane. Each
sense wire is spaced with an interval of 14 mm. The wires of the Y planes
are parallel to the horizontal axis, whereas those of the U and V planes are
tilted by ±30◦ with respect to the vertical axis. The sense wires are made of
gold-plated tungsten (Au-W) with a diameter of 25 µm for DC1 and 30 µm
for DC0, DC2 and DC3, respectively. The field and shield wires are made
of Au-BeCu with a diameter of 80 µm for DC0, and 100 µm for DC1, DC2
and DC3, respectively. The windows for all the DCs are made of mylar with
a thickness of 125 µm. All the DCs are operated at a gas mixture of 70%
argon and 30% isobutane. The efficiencies for the DCs are achieved to be
more than 98%, and are typically 99%.

2.3.6 TOF wall

PMT
Front view

4 cm

200 cm

12 cm

Light guide

3 cm

Top view

Beam

Figure 2.21: Schematic view of the TOF wall.

The time-of-flight of charged particles is measured by a TOF wall. The
TOF wall is placed at the downstream end of the LEPS spectrometer. Fig-
ure 2.21 shows a schematic view of the TOF wall. The TOF wall consists
of 40 plastic scintillator bars (BC-408) with a size of 200 cm (length) ×
12 cm (width)× 4 cm (thickness). Each plastic scintillator bar is viewed by
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two 2-inch PMTs (HAMAMATSU H7195) from the both sides through light
guides with a length of 3 cm, and is overlapped with the adjacent bars by 1
cm. Twenty sideway bars are aligned in the planes tilted by ±15◦, as shown
in the upper half of Fig. 2.21. Ten of them are in the right side, while the
others in the left sides. There exists a 4-cm gap between the middle two
counters to allow a photon beam to pass through. The TOF wall is movable
on the rails between 1.5 and 4.5 m downstream of the center of the dipole
magnet. In the present experiment, the z-position of the TOF wall was set
to be 3151.5 mm downstream of the center of the dipole magnet.

2.3.7 Dipole magnet
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Figure 2.22: y-component of the magnetic field By for the dipole magnet
as a function of the z-position on the beam axis (x, y = 0). Note that the
z-position z = 0 corresponds to the center of the dipole magnet (see Sect. 3.3
for details).

A dipole magnet is used as a momentum-analyzer magnet to bent charged
particles, which is placed at the center of the LEPS spectrometer. It has an
aperture of 55 cm (hight)× 135 cm (width). The depth along the beam axis
is 60 cm. The current for the magnet was set to 800 A, providing a magnetic
field with a strength of 0.7 T at the center (designed value). Figure 2.22
shows the y-component of the magnetic field By for the dipole magnet as a
function of the z-position on the beam axis (x, y = 0), which was calculated
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by a TOSCA simulation program. The magnetic field map obtained by
TOSCA was used in the track reconstruction. The simulation was tuned to
reproduce the measured magnetic field with a hole probe. The differences
between the calculated and measured values of the magnetic field are at most
0.001 T (0.5%).

2.4 Solenoid spectrometer

As already mentioned before, a solenoid spectrometer is equipped sur-
rounding the target in addition to the LEPS spectrometer. Since the infor-
mation on the TPC was not used in the present analysis, the solenoid spec-
trometer system is briefly described here. More details about the solenoid
spectrometer system can be found in Ref. [113].

2.4.1 Solenoid magnet
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Figure 2.23: z-component of the magnetic field Bz for the solenoid magnet
as a function of the z-position on the beam axis (x, y = 0). The definition
of the x.y.z-coordinates is common through this thesis. The high-voltage
membrane corresponds to the downstream end of the TPC.

A superconducting solenoid magnet is used to analyze the momenta of
the charged particles detected by the TPC. The solenoid magnet has an
aperture of 300 mm in radius and a depth of 1000 mm. The center of the
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magnet is placed at z = −1617 mm along the beam axis18, surrounding
the target (the target center: z = −1710 mm). The designed value of the
field strength is 2 T at the center of the magnet. The magnetic field map
for the solenoid magnet was calculated by the TOSCA simulation program,
which is the same one as described in Sect. 2.3.7. The differences between
the calculated and measured values of the magnetic field are at most 0.01
T (4%)19 Figure 2.23 shows the TOSCA result for the z-component of the
magnetic field as a function of the z-position on the beam axis (x, y = 0).
Note that the magnetic field map used in the present analysis takes into
account the effects of the solenoid magnetic field.

2.4.2 Time Projection Chamber (TPC)

Figure 2.24: Schematic drawing of the time projection chamber.

A time projection chamber (TPC) is used to detect charged particles
nearby the target. Figure 2.24 shows a schematic drawing of the TPC. The
TPC has a hexagonal-cylinder shape with a length of 910 mm and a circum-
radius of 280 mm. It also has a hexagonal bore with a circumradius of 60
mm to insert the liquid target system. The active volume of the TPC is

18z = 0 corresponds to the center of the dipole magnet.
19Such discrepancies happen around the overlapped region of the solenoid and dipole

magnetic fields at a large radial distance. Therefore, this does not affect the momentum
measurement of forward-going particles.
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hexagonal-cylinder-shaped with a length of 760 mm and a arm length of 225
mm, and is filled with the P10 gas (Ar:CH4 = 90%:10%). The azimuthal and
polar angular coverages of the TPC are 2π and 0.35–2.25 rad, respectively.
The signals from the TPC are read through 1,350 rectangular cathode pads.
The spatial resolutions in the x-y plane and in the beam direction (z-axis)
are typically 200–400 µm and 400–4000 µm, respectively, depending on the
direction of charged particles.

2.4.3 Trigger counter for TPC

2.4.3.1 Inner counter (TPCInner)

Six plastic scintillation counters (inner counters, TPCInners), surround-
ing the liquid helium-4 target, are used to detect the charged particles en-
tering the TPC acceptance nearby the target and to determine the start
time of the TPC events. Figure 2.25 shows a schematic drawing of the inner
plastic scintillator. The size of each plastic scintillator is 230 mm (length)×
542 mm (width) × 3 mm (thickness). Each plastic scintillator is bend by
30◦ at the length of 170 mm to detect the forward-going particles, and has
a tapered shape to be combined with other inner counters in a hexagonal
shape, as shown in Figs. 2.25 and 2.26. Each plastic scintillator is viewed by
a fine-mesh PMT through a scintillation-fiber light guide.

30
°

Figure 2.25: Schematic drawing of the inner plastic scintillator.
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Figure 2.26: Picture of the combined six inner plastic scintillators.

2.4.3.2 Outer counter (TPCOuter)

Twelve plastic scintillation counters (outer counters, TPCOuters), sur-
rounding the TPC, are used to detect the charged particles from the target,
together with the inner counters. The size of each plastic scintillator is
850 mm (length) × 145 mm (width) × 5 mm (thickness). Each plastic scin-
tillator is viewed by two fine-mesh PMTs from the both sides through light
guides. One rectangle side of the TPC hexagonal cylinder is covered by two
outer counters.

An enlarged view around the target cell is illustrated in Fig. 2.27.
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Figure 2.27: Enlarged view around the target cell.

2.5 RF signal

The electrons circulating in the 8-GeV storage ring lose their energies
by emitting synchrotron radiation when they are deflected by the magnetic
field. A 508 MHz radio frequency (RF) system is used to restore these energy
losses. This frequency corresponds to the time interval of successive electron
bunches, i.e., 1.966 nsec. In the LEPS experiment, the RF signals are used to
determine the start time in time-of-flight measurements. Figure 2.28 shows
the circuit diagram for the RF signals. The RF signals are pre-scaled by a
factor of 1/87 by the prescaler modules (DIGITAL LABORATORY 17K32
508-MHz 30 bit). Two of the three output signals, one of which is delayed
by 86 nsec , are read by the FASTBUS TDC 1877S module and are used for
time-of-flight measurements. The other signal is sent to the prescaler with
a factor of 1/28, and the three output signals, two of which are delayed by
1.8 µsec and 3.6 µsec, respectively, are read by the FASTBUS TDC 1877A
module and are used to study an accidental-hit rate in the tagging system.
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Use as a Start timing

Figure 2.28: Circuit diagram for the RF signals.

2.6 Electronics and circuit

Four types of readout modules are used to collect the ADC and TDC
data from the detectors. The readout modules for each detector system are
summarized in Table 2.3. LeCroy 4300B FERA (Fast Encoding & Read-
out ADC) modules are used with a CAMAC system to read out the analog
signals from the plastic scintillator hodoscopes of the tagging system, the
upstream-veto counter, the FWD counters, the AC counter, the TPC inner
and outer counters, and the TOF counters. FASTBUS 1877S TDC modules,
which provide a timing resolution of 0.5 nsec/channel with a dynamic range
of 1 µsec, are used with a FASTBUS system to read out the logic signals
from the TAF-SFF and TAG-PL detectors, and the multi-wire drift cham-
bers (DC0, DC1, DC2and DC3). LeCroy FASTBUS 1875A TDC modules,
which provide a timing resolution of 0.25 nsec/channel with a dynamic range
of 100 nsec, are used with a FASTBUS system to read out the logic signals
from the TAG-PL counters, upstream-veto counters, the FWD counters, the
AC counter, the TPC inner and outer counters, and the TOF counters.

Figure 2.29 shows the circuit diagrams for the tagging system, the upstream-
veto counter, the FWD counters, the AC counter and the TOF counters. A
trigger for the LEPS spectrometer system, which we call the “standard (STD)
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Table 2.3: Readout modules (digitizers) for the detectors.

Detector ADC TDC Abbrev. for trig.
TAG-PL FERA FASTBUS 1875A/1877S TAG
TAG-SF – FASTBUS 1877S TAG
UPveto FERA FASTBUS 1875A UPveto
FWD FERA FASTBUS 1875A FWD
AC FERA FASTBUS 1875A AC
DCs – FASTBUS 1877S –

TPCInner FERA FASTBUS 1875A SECTOR
TPCOuter FERA FASTBUS 1875A SECTOR

RF – FASTBUS 1875A/1877S –

trigger”, is made of trigger signals from each detector system (TAG, UPveto,
FWD, AC and TOF).

TAG
To identify the recoil electrons from the BCS process at the trigger
level, a coincidence signal between the TAG-SF and TAG-PL is used.
For TAG-SF, at least one hit is required in either of the SFF or SFB.

UPveto
A logic signal from the upstream-veto counter is used to reject the
events triggered by charged particles at the trigger stage.

FWD
To identify the production of forward-going charged particles, at least
one hit is required in either of the two counters. A coincidence signal
between the PMTs on the both sides of the counter is used.

AC
A logic signal from the AC counter is used to reject e+e− production
events at the trigger stage.

TOF
At least one hit is required in the TOF counters at the trigger level.
Two signals from the top and bottom PMTs of a TOF counter are sent
to the mean timer module (CAMAC C561), and the output signal is
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sent to the majority logic unit module (CAMAC 4532) to select the
multiplicity of the TOF counters at the trigger level.

The STD trigger is a logical sum of two trigger signals, namely signals from
the “hadron trigger” and the “e+e− trigger” as shown in Fig. 2.32:

hadron trig. = TAG⊗ UPveto⊗ FWD⊗ AC⊗ TOF,

e+e− trig. = TAG⊗ UPveto⊗ FWD⊗ TOF,
(2.8)

where ⊗ represents a logical product. Since the trigger rate for the e+e−

events is too high to be taken by the DAQ system, signals from the e+e−

trigger are pre-scaled to be ∼ 20% of the rate for the hadron trigger. To
obtain the trigger timing definitively, a logical sum of the signals from the
FWD counters and the hadron or e+e− trigger is taken at the final stage (see
Fig. 2.32).

A trigger signal for the Solenoid spectrometer, which we call the “TPC
trigger”, is made of some combination of the logic signals from the TPC inner
and outer counters (“Sector triggers”): A Sector trigger is a coincidence signal
between one inner counter and one of the six corresponding outer counters,
as shown in Figs. 2.30 and 2.31. Then we have six Sector triggers in total.
The TPC trigger is a logical sum of six Sector triggers (“SectorOR trigger”):

SectorOR = Sector 1⊕ Sector 2⊕ Sector 3⊕ Sector 4⊕ Sector 5⊕ Sector 6,
(2.9)

where ⊕ represents a logical sum.

The data analyzed here was basically taken with the STD trigger. There-
fore, when we consider the acceptance of a specific reaction, the hit informa-
tion of the Solenoid spectrometer system can be completely ignored.
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Figure 2.29: Circuit diagrams for readouts and triggers.
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2.7 Data summary

The experiment had been carried out from 29th November in 2008 to
24th July in 2009. The data was taken with the liquid helium-4 (LHe)
target, as well as with a liquid hydrogen (LH2) target, which was used for
data calibration and consistency check with previous LEPS measurements.
The LHe data was taken with the STD trigger, whereas the LH2 data was
taken with the STD⊕TPC trigger. The total beam time for the LHe (LH2)
data was about 47 (39) days. At the end of each data-taking period, the
empty (gas) target data was also taken, which was used for vertex studies (see
Appendix G).

4.6 × 1012 (1.1 × 1012) tagged photons irradiated the LHe (LH2) target
in total. Here, a beam transmission from the collision point to the tar-
get (52.6%) and a dead time correction for the tagging counters [112] (see
also Appendix L) are taken into account in the total number of photons.
The hit rate of the tagging counters was 1.0–2.0 MHz20, and the trigger rate

20The hit rate of the tagging counters, which corresponds to the beam rate, depends
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was 100–200 Hz through the data-taking periods. The beam polarization
was changed once a half-day to balance the amount of the data with each
polarization (horizontal and vertical). The ratio between the two data sets
is Horizontal : Vertical = 1.00 : 0.98 (1.00 : 0.92) for the LHe (LH2) data.
The integrated luminosity is 0.679 (0.653) pb−1 for the LHe (LH2) data.

During the data-taking periods, DC1 was broken twice, and DC0 and
DC1 were moved to repair DC1. Thus, we have three data sets with different
DC alignment parameters (, denoted in order as data-1, data-2 and data-3;
see Appendix C for DC alignment). Note that the LHe data is a part of
data-3.

on the condition of the laser optics as well as the filling pattern of the electron bunches.
During data-taking, the positions and angles of the 3rd and 4th mirrors were tuned to
keep the hit rate of the tagging counters constant (see Sect. 2.2.2 for the laser operating
system).
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3 Data analysis

3.1 Overview of data analysis

The present analysis aims to measure the differential cross sections and
decay angular distributions [see Eqs. (1.27)–(1.31)] for coherent ϕ-meson pho-
toproduction from 4He. The production of ϕ-mesons was identified according
to the invariant mass of theK+K− pairs [M(K+K−)] detected with the LEPS
spectrometer:

M(K+K−) =
√
(pK+ + pK−)2, (3.1)

where pK+ = (EK+ ,pK+) [pK− = (EK− ,pK−)] is the four-momentum of
a K+ (K−). The coherent-production events were disentangled from the
incoherent ones on the basis of the missing mass for the 4He(γ,K+K−)X
reaction [MM(K+K−)]:

MM(K+K−) =
√

(Eγ +Mα − EK+ − EK−)2 − (pγ − pK+ − pK−)2, (3.2)

where pγ = (Eγ,pγ) is the four-momentum of a photon beam and Mα is the
4He mass. Thus, in order to identify the coherent ϕ-production events, we
need to measure the photon energy (Eγ) and the four-momenta of a K+K−

pair (pK+ and pK−).
In the present analysis, we finally obtain the differential cross sections

as a function of the momentum transfer t [= (pγ − pϕ)
2, where pϕ is the

four-momentum of a ϕ-meson] for several photon-energy bins:

dσ

dt
=
Ncoh-ϕ/Bϕ→K+K−/εacc

Nγ ·Ntarg ·∆t
, (3.3)

where Ncoh-ϕ is the number of the coherent-ϕ-production events, Bϕ→K+K−

is the branching ratio of the ϕ → K+K− decay, εacc is the acceptance for
K+K− pairs from the ϕ → K+K− decay, Nγ is the number of photons
arriving at the target, and ∆t is the t-bin size. Since εacc is a function of two
momentum vectors pK+ and pK− , we have to know a three-dimensional ϕ→
K+K− decay angular distribution as defined by Eq. (1.19) even when dσ/dt
is calculated. The details about the acceptance evaluation are described in
Sect. 3.9.

The following sections describe a common analysis procedure to measure
the differential cross sections and the decay angular distributions. Since the
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absolute scale of the photon energy is determined using the p(γ,K+)Λ(1116)
and p(γ, π+π−)p reactions with the LH2 data, we start with the four-momentum
reconstruction of forward charged particles (Sect. 3.4). Then the absolute
scale of the photon energy is determined (Sect. 3.5). After the determina-
tion of the absolute scale of the photon energy, we move onto the analysis of
K+K− events with the LHe data. The selection criteria for K+K− events
are described in Sect. 3.6. Once K+K− events are selected, the number
of the coherent ϕ-production events can be evaluated from M(K+K−) and
MM(K+K−) distributions (Sect. 3.7). As for the acceptance calculation, we
use a GEANT3 [118]-based Monte Calro simulation code, which is introduced
in the next section.

The detector calibration and the adjustment of DC alignment parameters
are described in Appendices B and C.

3.2 GEANT3-based Monte Calro Simulation

A GEANT3 [118]-based Monte Calro (MC) simulation code was used to
calculate the acceptance of the LEPS spectrometer and to check the perfor-
mance of the spectrometer system. It simulates the generation of particles
in a specific reaction and various processes during the passage of particles
through materials such as decay in flight, energy loss and multiple scatter-
ing. The GEISHA package was used to simulate such processes. The photon
energy resolution, the timing resolutions of the TOF counters and the spa-
tial resolutions and detection efficiencies of the DCs were evaluated from the
data (see Appendices D, B.1, B.2 and E, respectively), and were taken into
account in MC simulation.

3.3 Definition of coordinate system

Before getting into the data analysis, we introduce a coordinate system
used in this analysis (Fig. 3.1). The z-axis is defined as the direction of
the beam axis, the y-axis is defined along the vertical direction, and the
x-axis is defined as a vector product ŷ × ẑ, where ŷ and ẑ are the unit
vectors which determine the y and z-axes, respectively. The origin of the
coordinate system is defined as the center of the dipole magnet. Note that
this coordinate system is different from that used in the analysis on the decay
angular distributions (see Sect. 1.4.4).
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Figure 3.1: Definition of the coordinate system for the present analysis,
together with the z-positions of each detector component.

3.4 Four-momentum reconstruction

The vertex point and 3-momentum of a charged particle were recon-
structed from the hit information of the DCs, whereas its mass was recon-
structed from the measured momentum and the time-of-flight between the
vertex point and the TOF wall and was used for particle identification.

3.4.1 Momentum reconstruction

The momentum of a charged particle was reconstructed from the particle
trajectory in the magnetic field. The trajectory of a charged particle was
reconstructed from the hit information of DC0, DC1, DC2 and DC3.

The tracking procedure in an off-line analysis program [111] consists of
the following steps:

Step-1: To collect nearby hits in each DC, and to form a cluster.

Step-2: To perform a straight-line fit to all combinations of clusters in DC0
and DC1 or in DC2 and DC3, and to select full-track candidates (i.e.
combinations of upstream and downstream tracks).

Step-3: To perform a track fit with a Runge-Kutta method to each full-track
candidate, and to determine its momentum.

In Step-1, a clustering is performed in each DC. Here, a “cluster” does not
mean a combination of adjacent hits in the same plane, but a combination
of hits in each plane of (X, U, V, Y) in the same DC. To form a cluster, at
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least two different planes of (X, U, V, Y) are required to have a hit. At this
stage, each DC is required to form at least one cluster, and if the number of
cluster in a DC exceeds 100, such an event is skipped.

In Step-2, a straight-line fit is performed to all combinations of clusters
in DC0 and DC1 or in DC2 and DC3 separately to search for upstream or
downstream track candidates. Since the DCs only measure the drift dis-
tances, one cannot distinguish whether a particle has passed the left or right
side of the wire (so-called “left-right ambiguity”). A left-right ambiguity is
once solved by a straight-line fit in Step-2. However, for low-momentum
particles, the left-right ambiguity cannot be correctly solved at this stage
because a straight-line fit is not applicable for low-momentum particles due
to the magnetic field. Therefore, the left-right ambiguity is solved again with
a full-track fit in Step-3 so as to obtain a better fit χ2 [112].

The best 30 combinations of clusters, given in terms of χ2 in straight-line
fits, are selected as an upstream/downstream track candidate. Among them,
the combinations of upstream and downstream tracks which have passed the
consistency checks between upstream and downstream tracks (i.e., the slopes
of two tracks in the y-z plane, and the crossing point of two tracks in the x-z
plane) are accepted as a full-track candidate, and proceed to Step-3.

The goodness of a full-track fit in Step-3 is judged in terms of the prob-
ability of χ2, which is given by

Prob(χ2; ndf ) =

∫ ∞

χ2

f(χ′2; ndf )dχ′2, (3.4)

where f(χ2; ndf ) is the standard χ2 distribution with the number of degree
of freedom ndf . If a track fit fails, the χ2 probability yields a small value.

The momentum resolution of the LEPS spectrometer was estimated by
MC simulations. Figure 3.2 shows the momentum resolution as a function
of the kaon momentum. The momentum resolution for 1-GeV/c kaons is
∼ 0.9% in δp/p, which is relevant for kaons from the ϕ-meson decay in the
present experiment.

The validity of estimating the momentum resolution as well as the photon
energy resolution was checked by comparing the missing mass resolutions for
the the p(γ,K+)Λ(1116), p(γ,K+)Σ(1192), p(γ,K+)Λ(1520), p(γ, π+π−)p
and p(γ,K+K−)p reactions with those obtained by MC simulations. The
results are presented in Appendix F.

70



3.4 Four-momentum reconstruction 3 DATA ANALYSIS

0

0.01

0.02

0.03

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Kaon momentum (GeV/c)

M
o

m
en

tu
m

 r
es

o
lu

ti
o

n
 (

δp
/p

)
γp → K+K-p
γp → K+Λ(1116)

Figure 3.2: Momentum resolution (δp/p) of the LEPS spectrometer as a
function of the kaon momentum. Red circles represent those obtained from
MC data on non-resonant K+K− production, whereas blue squares represent
those obtained from MC data on the γp→ K+Λ(1116) reaction.

3.4.2 Time-of-flight measurement

The time-of-flight of a charged particle (∆TTOF) is given by

∆TTOF = Tstop − Tstart, (3.5)

where Tstart (Tstop) is the start (stop) time. Tstop was determined from the
timing information of the TOF counters, whereas Tstart was determined in two
different ways: the one uses the timing information of the RF signals (TRF

start),
and the other uses the timing information of the FWD counters (TFWD

start ).
The time-of-flight using the RF signal (the FWD counters) is denoted as
∆TRF

TOF = Tstop − TRF
start (∆T

FWD
TOF = Tstop − TFWD

start ). Since the RF signal has
a good timing resolution of 12 ps, the timing resolution for ∆TRF

TOF is much
better than that for ∆TFWD

TOF . A typical timing resolution is 150 ps and 220
ps for ∆TRF

TOF and ∆TFWD
TOF , respectively (see Appendix B.1).

Since the electrons circulating in the storage ring are bunched according
to the RF signal, the collision time of a laser photon and an electron is
synchronized with the RF signal. Therefore, one can know the arrival time
of a BCS photon at the target from the timing information of the RF signal
because the traveling time of BCS photons between the collision point and
the target is constant. Figure 3.3 shows the TDC difference between the
RF signal and the TAG-PL slat of the tagging counter that detects a BCS
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electron. Here, to select a TAG-PL slat hit by a BCS electron correctly, the
corresponding TAG-SF channel was required to have a hit. A clear time-
structure corresponding to the electron bunches is seen with an interval of
∼ 2 ns.
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Figure 3.3: TDC difference between the RF signal and the TAG-PL slat
corresponding to the BCS electrons. One TDC channel corresponds to 0.025
ns.

How to solve a “2-ns ambiguity”
To determine the start time (TRF

start), one has to know which of the peaks
in Fig. 3.3 corresponds to the collision time for a BCS process (a so-called
“2-ns ambiguity”). Here, we explain how to solve the 2-ns ambiguity: let ti
be the i-th peak position, and find an integer n so that (tn−1+tn)/2 ≤ Tdiff <
(tn + tn+1)/2, where Tdiff denotes the TDC difference between the RF signal
and TAG-PL. This tn corresponds to a time offset due to the 2-ns ambiguity.
Therefore, the start time (TRF

start) is obtained from the time offset tn as

TRF
start = (TDCRF − tn)× 0.025 (ns/ch), (3.6)

where TDCRF is the TDC channel of the RF signal, and 0.025 ns/channel
corresponds to the timing resolution of the TDC modules.
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3.4.3 Mass reconstruction

The mass of a charged particle (m) was reconstructed by using the mo-
mentum (p = |p|), the time-of-flight (∆TTOF) and the path length (L) as

m2 = E2 − p2 = p2
(

1

β2
− 1

)
,

β =
v

c
=

L

∆TTOF · c
,

(3.7)

where c is the speed of light. We see from Eq. (3.7) that the resolution of
the reconstructed mass depends on the resolutions in momentum and time-
of-flight measurements. In the present analysis, a time-of-flight was obtained
with two different methods (∆TRF

TOF and ∆TFWD
TOF ; see Sect. 3.4.2). The former

one provides a better mass resolution thanks to a better timing resolution of
the start timing in time-of-flight measurements.

Figure 3.4 shows a distribution of the square of the reconstructed mass.
Here, the mass was calculated by using ∆TRF

TOF. Clear peaks corresponding
to pions, kaons, protons, deuterons and tritons/helium-3 are seen.
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Figure 3.4: Distribution of the square of the reconstructed mass. The mass
was calculated by using ∆TRF

TOF. The inset shows the same distribution for a
higher mass region.
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3.4.4 Vertex reconstruction

The vertex point of a charged particle was reconstructed by tracing back
the trajectory with a Runge-Kutta method. For the events in which one track
was reconstructed, the closest point between the beam and the track was
regarded as a vertex point. On the other hand, for the events in which two
tracks were reconstructed, the closest point between the tracks was regarded
as a vertex point.

We found that a reconstructed z-vertex position is shifted depending on
the configuration of tracks due to an imperfect magnetic field map. To obtain
a better z-vertex resolution, a reconstructed z-vertex position was corrected
event by event according to the track configuration (see Appendix G for de-
tails). A z-vertex distribution with the empty-target data is well reproduced
by MC simulation (see Fig. G.2).

Figure 3.5 shows distributions of the reconstructed z-vertex position for
π+π− tracks and that for a single π+ track and a beam, respectively, after
the correction. A clear peak for the CFRP cap of the target chamber is seen
in the z-vertex distribution for π+π− tracks, whereas it disappears in the
z-vertex distribution for single π+ tracks. This is because a beam direction
cannot be measured and was assumed to be identical to the z-axis in the
vertex reconstruction.
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Figure 3.5: Distributions of the reconstructed z-vertex position for π+π−

tracks (black) and for a single π+ track and a beam (blue) with the LH2

data. A peak around z = −1600 mm corresponds to the CFRP cap of the
target chamber.
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3.4.5 Energy loss correction

When a charged particle passes through materials, it looses the energy.
Therefore, the momentum measured at the dipole magnet is different from
that at the vertex point due to the energy loss. There are several materials
between the target and the entrance of the dipole magnet: a CRFP cap of the
target chamber, plastic scintillators, silica-aerogel of AC and a structure (a
frame) of the TPC field cage made of aluminum or G10 (see Fig. 3.1). A
energy loss correction was applied to each track after particle identification
(see for kaon ID Sect. 3.6).

The energy loss per unit length, dE/dx in MeV/mm, for each material
was evaluated by using a GEANT3 package [118], and was obtained as a
function of particle velocity β(= v/c). The energy loss of each track was
corrected by tracing back the trajectory with a Runge-Kutta method from
the entrance of the dipole magnet to the vertex point. Note that the velocity
was calculated in each Runge-Kutta step and was used for calculating the
energy loss in the next step.

3.5 Photon energy and Momentum scaling

The photon energy was determined event by event by measuring the hit-
position of an electron track with TAG-SF. A photon energy function, i.e. a
conversion function from a TAG-SF channel to photon energy, was obtained
by using the p(γ,K+)Λ(1116) and p(γ, π+π−)p reactions with the LH2 data.
Once the K+Λ(1116) final state is selected, the photon energy is calculated
as21

Ecal
γ =

M2
Λ(1116) −M2

p −M2
K + 2MpEK+

2(Mp − EK+ + pzK+)
, (3.8)

where pzK+ is the z-component of the K+ momentum, EK+ is the energy of
K+, and MK+ , MΛ(1116) and Mp are the masses of K+, Λ(1116) and protons,
respectively. On the other hand, if the π+π−p final state is selected, then the
photon energy is calculated as

Ecal
γ =

2MpE2π − (E2
2π − p2

2π)

2(Mp − E2π + pz2π)
, (3.9)

21A beam direction is assumed to be parallel to the z-axis.
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Figure 3.6: Missing mass distributions for (a) the p(γ,K+)X and (b)
p(γ, π+π−)X reactions.

where pz2π is the z-component of the momentum (p2π) of the π
+π− system.

Thus, two photon energy functions were obtained separately with Eqs. (3.8)
and (3.9), and were finally averaged.

Figures 3.6(a) and (b) show missing mass spectra for the p(γ,K+)X and
p(γ, π+π−)X reactions, respectively. Clear peaks for hyperon resonances and
protons are seen in each spectrum.

Figures 3.7(a) and (b) show the Ecal
γ calculated by Eq. (3.8) [p(γ,K+)

Λ(1116)] as a function of the TAG-SFF and TAG-SFB channels, respectively.
The photon energy functions for SFF and SFB were separately obtained by
fitting these plots with a 3rd-polynomial function. Figures 3.8(a) and (b)
show the same plots for the p(γ, π+π−)p reaction.

In the actual analysis, the photon energy was determined as follows.
When only one of the SFF and SFB layers had a hit, the photon energy was
calculated by the photon energy function for the corresponding layer (SFF
or SFB). On the other hand, when both layers had hits, two values of the
photon energy calculated by the photon energy functions for each layer were
averaged.

Since the determination of the photon energy function is strongly coupled
to the momentum scale of the LEPS spectrometer in the above methods, a
momentum scaling factor, which is introduced to tune the momentum scale
of the spectrometer, was also determined at the same time. To obtain the
photon energy functions and the momentum scaling factor correctly, the
following procedure (1–3) was iterated:
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Figure 3.7: Ecal
γ calculated by Eq. (3.8) [p(γ,K+)Λ(1116)] as a function of

(a) the TAG-SFF channel and (b) the TAG-SFB channel. Blue curves are
the fits to the data with a 3rd polynomial function.
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Figure 3.8: Same plots as Fig 3.7, but for the p(γ, π+π−)p reaction.

1. The photon energy functions are determined with the above method.

2. The momentum scaling factor is roughly determined so that the po-
sitions of missing-mass peaks for the p(γ,K+K−)p, p(γ, pK−)K+ and
p(γ, π+π−)p reactions are consistent with the PDG values.

3. The positions of the Compton edges in photon energy spectra calculated
by Eqs. (3.8) and (3.9) are checked, and the momentum scaling factor
is adjusted if necessary.
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Figure 3.9: (a) Missing mass spectra for the p(γ,K+K−)X and (b)
p(γ, pK+)X reactions. (c) Positions of missing mass peaks for the
p(γ, π+π−)p, p(γ,K+K−)p and p(γ, pK−)K+ reactions as a function of the
momentum scaling factor. The values on the vertical axis are those after
subtracting the PDG values. A dashed horizontal line corresponds to the
PDG values. An appropriate value of 1.0055 is obtained from this figure.
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Figure 3.9(a) and (b) show missing mass spectra for the p(γ,K+K−)X
and (b) p(γ, pK+)X reactions. Clear peaks for protons and kaons are seen
in each plot. Figure 3.9(c) shows the positions of missing mass peaks for the
the p(γ, π+π−)p, p(γ,K+K−)p and p(γ, pK−)K+ reactions as a function of
the momentum scaling factor. From this figure, an appropriate value for the
momentum scaling factor is 1.0055.

Figures 3.10(a) and (b) show distributions of the photon energy calculated
by Eq. (3.8) [p(γ,K+)Λ(1116)] and Eq. (3.9) [p(γ, π+π−)p], respectively. The
Compton edge in Fig. 3.10(a) was fitted with an error function (i.e., Gaussian-
convoluted step function). Since the spectrum in Fig. 3.10(b) rapidly rises
toward the Compton edge, the edge was fitted with the following function:

h(x) = A

∫ ∞

∞
f(t) · g(x− t)dt,

f(x) =

{
Bx+ 1 (x < C)

0 (x ≥ C),

g(x) =
1√
2πD2

exp

(
− x2

2D2

)
,

(3.10)

whereA, B, C andD are free parameters. By fitting the spectra in Figs. 3.10(a)
and (b), the positions of the Compton edges are obtained to be 2.3839 ±
0.0004 GeV and 2.3856±0.0006 GeV, respectively, which are consistent with
the expected value (Eγ = 2.385 GeV22).

Table 3.1 summarizes the momentum scaling factor for each data set.
Note that since the momentum scaling factor includes the effects due to
displacement of DCs, the scaling factor was determined for each data set (see
Sect. 2.7 for the data summary).

Table 3.1: Summary of the momentum scaling factor for each data set.

Data set Momentum scaling factor
data-1 1.0040
data-2 1.0045
data-3 1.0055

22It is assumed that the electron energy is Ee = 7.975 GeV, and the wavelength of laser
photons is λlaser = 355 nm.
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Figure 3.10: Distributions of the photon energy calculated by (a) Eq. (3.8)
[p(γ,K+)Λ(1116)] and (b) Eq. (3.9) [p(γ, π+π−)p]. From these plots, the
positions of the Compton edges are obtained to be (a) 2.3839± 0.0004 GeV
and (b) 2.3856± 0.0006 GeV, respectively.
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Figure 3.11: (a) Peak positions of Λ(1116), Σ(1192) and Λ(1520) in missing
mass p(γ,K+)X spectra as a function of the photon energy. Black open
circles, red open squares and blue open triangles represent the peak positions
of Λ(1116), Σ(1192) and Λ(1520), respectively. (b) Proton peak position in
missing mass p(γ, π+π−)X spectra as a function of the photon energy. For
both plots, the values on the vertical axis are those after subtracting the PDG
values. Dash-dotted horizontal lines correspond to a ±1 MeV/c2 deviation
from the PDG values.

80



3.6 Selection of K+K− event 3 DATA ANALYSIS

Finally, we checked the photon energy dependence of the peak positions of
hyperon resonances in missing mass p(γ,K+)X spectra and that of protons in
missing mass p(γ, π+π−)X spectra [Figs. 3.11(a) and (b)]. The peak positions
are consistent with the PDG values, and are independent of the photon
energy.

3.6 Selection of K+K− event

Now we are ready for analyzing the LHe data. In this section, the criteria
for selecting K+K− events are described. Table 3.2 summarizes the number
of the survived events and the ratio of the survived events under selection
cuts. The details are explained in the following paragraphs.

Table 3.2: Cut summary: the number of the survived events, and the ratio
of the survived events. See the text for the details.

Cut Number of events Survived ratio Comment

All 109,710,616 –
Tagger 82,590,960 0.75 fntag = 1
ntrk = 2 1,516,435 0.018 # of tracks

PID (K+K−) 9,896 0.0065 4σ
TOF match 9,845 0.99
χ2 prob. 7,619 0.77 prbchi2 > 0.02

Decay-in-flight 7,619 1.00 noutl < 7
e+e− cut 7,362 0.97 e+e− veto
z-vertex 6,145 0.83

MM(K+K−) cut 4,523 0.74 π rejection

Tagger cut

An electron track in the tagging system was identified by searching for
hits in TAG-SF and the corresponding TAG-PL channel. Here, at least one
hit was required in either of TAG-SFF or TAG-SFB. Since the tagging system
is placed near the orbit of the circulating electrons, there would be multiple
tracks in the tagging system. In such case, one cannot distinguish a true
electron track from the others. Therefore, the number of electron tracks in
the tagging system (fntag) was required to equal one (fntag = 1).
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Kaon identification

Kaon tracks were identified according to the square of the reconstructed
mass by the LEPS spectormeter [Eq (3.7)]. Figure 3.12 (a) shows a scatter
plot for the momentum/charge versus the square of the reconstructed mass
by using ∆TRF

TOF. Black curves correspond to the 4σ boundaries for the
kaon identification, where σ is the momentum-dependent resolution of the
reconstructed mass squared. The momentum-dependent mass resolution was
evaluated from the data by fitting mass distributions in different momentum
slices with a Gaussian function.

Since TAG-PLs, which are used for solving the 2-ns ambiguity, are placed
near the electron orbit in the storage ring, they suffer from accidental hits by
electrons. This would cause a failure in solving the 2-ns ambiguity. If one fails
to solve the 2-ns ambiguity, it makes a locus in a scatter plot for the momen-
tum versus the reconstructed mass squared, as can be seen in Fig. 3.12(a). To
reduce the pion/proton contamination due to such events, two types of par-
ticle identification (PID) were combined: the one uses ∆TRF

TOF (PID-RF),
and the other uses ∆TFWD

TOF (PID-FWD). Figure 3.12 (b) show a scatter
plot for the momentum/charge versus the reconstructed mass squared af-
ter roughly selecting kaons with PID-FWD. You see that the contamination
of low-momentum pions and protons are removed after the rough selection
of kaons with PID-FWD.

Figures 3.13(a) and (b) show scatter plots for the momentum/charge
versus the square of the reconstructed mass by using ∆TFWD

TOF before and
after PID-RF, respectively. Black curves show the boundaries for roughly
selecting kaons with PID-FWD. The boundary for the low mass side was set
to 4σ, whereas that for the high mass side was set to 5.5σ.

Even after applying PID-FWD, there still exists the contamination of
high-momentum pions inside the PID boundaries [see Fig. 3.12(b)]. Fig-
ure 3.14 shows a missing mass distribution for the 4He(γ,K+K−)X reaction
after applying the PID cuts with PID-RF and PID-FWD. A peak around a
mass of 3.5 GeV/c2 corresponds to the events in which pions are misidentified
as a kaon. By requiring the missing mass of the 4He(γ,K+K−)X reaction
to be above 3.62 GeV/c2, such pion events can be reduced to a negligible
level [a MM(K+K−) cut].

If one fails to solve the 2-ns ambiguity, K+K− tracks are lost. TheK+K−

event loss in the kaon identification was estimated by using the p(γ, p)π0

reaction, and was found to be 3% (see Appendix H).
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Figure 3.12: Scatter plots for the momentum/charge versus the square of the
reconstructed mass by using ∆TRF

TOF (a) before and (b) after roughly selecting
kaons with PID-FWD (see the text for the definition). Black curves show
the boundaries for the kaon identification (4σ). Besides the pion, kaon and
proton bands, there exist loci, which are due to a failure in solving the 2-ns
ambiguity.
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Figure 3.13: Scatter plots for the momentum/charge versus the square of
the reconstructed mass by using ∆TFWD

TOF (a) before and (b) after the kaon
identification with PID-RF. Black curves show the boundaries for roughly
selecting kaons (4σ/5.5σ for a lower/higher mass region).
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Figure 3.14: Missing mass distribution for the 4He(γ,K+K−)X reaction
after applying the PID cuts with PID-RF and PID-FWD. A red arrow rep-
resents the cut point for pion rejection.

Track quality cut

The quality of tracks was checked on the basis of the χ2 probability in
track fits and the consistency of the hit positions of tracks at the TOF wall.

The probability of χ2 in a track fit is given by Eq. (3.4). A typical
distribution of the χ2 probabilities is shown in Fig. 3.15. A sharp peak
around zero corresponds to the tracks for which the quality of the track
fit is poor. Therefore, the χ2 probability was required to be greater than
0.02 (prbchi2 > 0.02).

In addition, we checked the consistencies between the hit position ob-
tained from the TOF hit information and that predicted from a track. Fig-
ure 3.16(a) shows the difference between the TOF slat predicted from a
track (iTof trk) and the fired TOF slat nearest to the predicted one (iTof tof).
Figure 3.16(b) shows the difference between the y-position at TOF predicted
from a track (ytrk) and that obtained from the TDC information of the TOF
counter (ytof). The difference of the TOF slat was required to be within
1 (|iTof trk − iTof tof| ≤ 1), whereas the difference of the y-hit position was
required to be within 80 mm (|ytrk − ytof| < 80 mm).
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Figure 3.15: A typical distribution of the χ2 probabilities. A red
filled histogram represents the distribution for the tracks passing the χ2

cut (prbchi2 > 0.02). A sharp peak around zero corresponds to tracks with
poor fit quality.
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Figure 3.16: (a) A typical distribution of the difference of the TOF
slat (iTof trk − iTof tof). A red filled histogram shows the distribution for the
tracks passing the iTof cut (|iTof trk−iTof tof| ≤ 1). (b) A typical distribution
of the difference of the y-hit position (ytrk−ytof). A red filled histogram shows
the distribution for the tracks passing the y-TOF cut (|ytrk−ytof| < 80 mm).
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Decay-in-flight cut

Some of kaon tracks decay mainly into µ+νµ (µ−ν̄µ) before arriving at
the TOF wall with a life time of cτ = 3.711 m. In such case, a muon
track deviates from its parent trajectory. In the tracking procedure (see
Sect. 3.4.1 for details), the hits largely deviating from the expected trajectory
are regarded as an outlier hit, and are excluded in a track fit. Figure 3.17
shows a distribution of the number of outlier hits for kaon tracks in the
γp → ϕp reaction followed by the ϕ → K+K− decay (MC data). The
number of outlier hits decreases rapidly up to 6, and then rises up. This is
due to the kaon tracks decaying in flight. Therefore, the number of outlier
hits was required to be less than 7 (noutl < 7).
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Figure 3.17: Number of outlier hits for kaon tracks in the γp→ ϕp reaction
followed by the ϕ→ K+K− decay. The data was obtained by MC simulation.

e+e− cut

The e+e− blocker is placed inside the dipole magnet to block e+e− pairs.
A cut on the y-coordinate of tracks at the e+e− blocker was used to reject the
e+e− events in the off-line analysis. Figure 3.18 shows a typical distribution
of the y-coordinate of tracks at the e+e− blocker. A dip around y ∼ 0
corresponds to the e+e− blocker. Therefore, the y-coordinate at the e+e−

blocker was required to be less than -35 mm or greater than 16 mm (ybar <
−35 mm or ybar > 16 mm).
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Figure 3.18: A typical distribution of the y-coordinate of tracks at the e+e−

blocker. A red filled histogram shows the distribution for the tracks passing
the e+e− cut (ybar < −35 mm or ybar > 16 mm).

z-vertex cut

To select the K+K− pairs produced inside the target, a cut was imposed
on the reconstructed z-vertex position of K+K− pairs. Figure 3.19(a) shows
the z-vertex distribution of K+K− pairs with the LHe data. A shoulder-
like structure around z ∼ −1600 mm corresponds to the CFRP cap of the
target chamber (see also Fig. 3.5). Cut points for this selection were set to
z = −1820 mm and z = −1620 mm, respectively, as indicated by arrows in
Fig. 3.19(a).

Under the z-vertex cut, the contamination of the K+K− events from the
CFRP cap was estimated by fitting the z-vertex distribution with two MC-
simulated distributions (templates): the one is a template for K+K− tracks
from the CFRP cap, and the other is that for K+K− tracks from the target.
Since the z-vertex resolution depends on the opening angle of a K+K− pair,
the events from ϕ-production and those from non-resonant K+K− produc-
tion were mixed in MC simulation according to the ratio determined from a
M(K+K−) distribution (e.g., see Fig. 3.20). The fit result is represented by
colored histograms in Fig 3.19(a). The sum of the MC-simulated distribu-
tions (a blue histogram) well reproduces the z-vertex distribution with the
LHe data. From the fit, the contamination of the K+K− events from the
CFRP cap was evaluated to be 2.3%.
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Figure 3.19: z-vertex distributions of K+K− pairs with (a) the LHe data
and (b) the LH2 data. Red and green histograms show MC-simulated z-
vertex distributions of the K+K− pairs produced from the CFRP cap and
the target, respectively, and blue histogram shows the sum of them (explained
in the text in detail). Arrows represent cut points for the z-vertex cut.

To check the validity of the above evaluation, a template fit was also
applied to the z-vertex distribution for the LH2 data [Fig. 3.19(b)], and the
number of the CFRP events divided by the number of photons was compared
with that obtained with the LHe data. Here, the number of photons for each
target data was corrected on the basis of the DAQ efficiency and the dead
time of NIM modules. The number of the CFRP events per the number of
photons obtained with the LH2 data [= (8.45± 0.87)× 10−11] was found to
be consistent with that with the LHe data [= (8.01± 0.68)× 10−11].

The systematic error on the event contamination from the CFRP cap
was evaluated to be 0.2% by fixing the number of the CFRP events in the
template fit to be the value determined from the LH2 data.

3.7 Yield calculation for coherent ϕ-production

There are three steps in the yield calculation for the coherent ϕ-production
events. First, the ϕ-meson yields including both the coherent and incoherent
production events (Nϕ) were evaluated from M(K+K−) spectra. Second, the
ratios of the coherent production events to the total events (Rcoh) were eval-
uated from MM(K+K−) spectra. Finally, the ϕ-meson yields for coherent
production (Ncoh) were calculated by multiplying the total ϕ yields Nϕ and
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the coherent ratios Rcoh as

Ncoh = Nϕ ×Rcoh. (3.11)

3.7.1 Total ϕ-meson yield

The ϕ-meson yields including both the coherent and incoherent pro-
duction events, Nϕ, were obtained by fitting M(K+K−) spectra with MC-
simulated distributions (templates) for signal and background processes. Here,
quasi-free K+Λ(1520) production followed by the Λ(1520) → K−p decay was
found to be negligible at small momentum transfers of our interest (−t <
0.2 GeV2). Therefore, we considered non-resonant K+K− production as a
background process. Here, “non-resonant” production means that particles
are generated uniformly in the phase space. Realistic spectral shapes of
M(K+K−) distributions for each process were reproduced by MC simula-
tion. To model the kinematical distributions for ϕ-photoproduction in MC
simulation, a phenomenological function was used in the event generator (see
Sect 3.9 for details).

A template fit was performed by minimizing a negative log-likelihood
with a Poisson distribution, which is defined by

L(θ) = − lnL(θ) = − ln
N∏
i=1

F(Xi|θ),

F(Xi|θ) = f(Xi = x; θ1c
(i)
1 + θ2c

(i)
2 = λ)

=
e−λλx

x!
,

(3.12)

where θ = {θ1, θ2} is a set of parameters representing a normalization factor
for each MC template, Xi denotes the histogram contents of the i-th bin for
the present data, c

(i)
1 and c

(j)
2 denote the histogram contents of the i-th bin

for each MC template and N denotes the number of bins. Here, each MC
template was normalized so that the total histogram contents were equal to
1. The value of each parameter θj is then exactly the same as the number
of events for each process. A minimization was done by using a MINUIT
package [119]. The error on each parameter was defined as the change of the
parameter which makes a change of the log-likelihood [Eq. (3.12)] equal to
0.5.
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Figure 3.20: M(K+K−) spectrum. A green filled histogram shows the
MC-simulated background (BG). A red histogram shows the result for the
template fit (Signal+BG). See the text for the MC templates. Arrows rep-
resent cut points for the disentanglement of the coherent production events
(Sect. 3.7.2).

Figure 3.20 shows a typical M(K+K−) spectrum, together with the result
for the template fit. A clear peak for ϕ-mesons is seen around M(K+K−) ∼
1.02 GeV/c2 on a small background contribution from the non-resonant
K+K− production events. The sum of the signal and background templates
well reproduces the spectrum.

It turned out that a template fit sometimes underestimates the data point
on the top of a peak. This may result in incorrect evaluation of the ϕ-meson
yields. To avoid this, the ϕ-meson yields were calculated according to the
following equation:

Nϕ =
N∑
i=1

Xi
θ1c

(i)
1

θ1c
(i)
1 + θ2c

(i)
2

, (3.13)

where θ1 denotes the parameter for the signal (ϕ→ K+K−) events.
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Figure 3.21: MM(K+K−) spectrum after selecting the ϕ-meson production
events. Red and green dashed histograms show the MC templates for the
coherent and incoherent production events, respectively. A blue histogram
shows the sum of the MC templates. The reduced χ2 for this fit is shown on
the right top corner.

3.7.2 Disentanglement of coherent production events

The coherent production events can be distinguished from the incoher-
ent ones by looking at the missing mass MM(K+K−) (see Fig. 1.14 for the
deuteron case). The ratios of the coherent ϕ-production events to the total-ϕ
events, Rcoh, were evaluated by fitting MM(K+K−) spectra with two MC-
simulated spectra (templates) for the coherent and incoherent production
events. The details of the MC simulation for the incoherent process are de-
scribed in the next section (Sect. 3.8). To select the ϕ-production events, the
invariant mass M(K+K−) was required to be within 1.008 < M(K+K−) <
1.030 GeV/c2, as indicated by arrows in Fig. 3.20. Figure 3.21 shows a typ-
ical MM(K+K−) spectrum after selecting the ϕ-meson production events,
together with the result for the template fit. A clear peak for the coherent
production events is seen around MM(K+K−) ≈ 3.73 GeV/c2, correspond-
ing to the mass of 4He nuclei. The reduced χ2 for this fit was found to be
95.34/69 = 1.34. The missing mass spectrum is nicely reproduced by the
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Figure 3.22: The number of the ϕ-production events as a function of the
momentum transfer t̃ (= |t| − |t|min). Red points show the t-distribution
with MM(K+K−) < 3.75 GeV/c2, whereas blue ones show that with
MM(K+K−) > 3.75 GeV/c2.

MC-simulated spectra of the coherent and incoherent events.
To check the validity of the above evaluation, t-distributions were exam-

ined for two event samples with different MM(K+K−) [i.e., MM(K+K−) <
3.75 GeV/c2 and MM(K+K−) > 3.75 GeV/c2]. Figure 3.22 shows the
number of the ϕ-production events as a function of the momentum transfer
t̃ (≡ |t|−|t|min), where |t|min is the minimum momentum transfer |t| for a 4He
target. Red points show the t-distribution with MM(K+K−) < 3.75 GeV/c2,
whereas blue ones show that with MM(K+K−) > 3.75 GeV/c2. The t-
distribution with small MM(K+K−) is much steeper than that with large
MM(K+K−). This implies that the events with small MM(K+K−) come
mostly from the coherent reaction because in the case of the coherent pro-
cess, a quite strong t-dependence is expected due to the 4He form factor [see
for example Eq. (1.36)].

With the above method, a value of Rcoh could be affected by shapes
of MC-simulated MM(K+K−) distributions for each process, and thus this
could be a source of systematic errors. In the analysis on the coherent
γd → ϕd reaction [95] (see also Sect. 1.6.2), the systematic errors caused
by the disentanglement of the coherent events were estimated by studying
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Figure 3.23: MC-simulated MM(K+K−) spectra for the coherent (red),
incoherent (green), semi-coherent γt/γ3He (cyan) and semi-coherent γd pro-
cesses (pink).

two kinds of the off-shell correction for the incoherent process in MC sim-
ulation (see Sect. 3.8.1 for the off-shell correction). In the present analysis,
such systematic errors were estimated by considering additional processes, in
MM(K+K−) fits, such that

γ + ‘t’ → ϕ+ t,

γ + ‘3He’ → ϕ+ 3He,
(3.14)

and
γ + ‘d’ → ϕ+ d, (3.15)

where ‘t’ (‘d’) represents the wave function of a triton (deuteron) cluster in-
side a 4He nucleus23. In this thesis, these processes are called “semi-coherent”
processes. Figure 3.23 shows MC-simulated MM(K+K−) spectra for the
semi-coherent processes, together with those for the coherent and incoherent
processes. The semi-coherent events are distributed between the coherent
and incoherent ones. This is because the masses of deuteron, triton and 3He
lie between those of nucleon and 4He. Thus, the systematic errors on Rcoh

23These reactions mean that a photon interacts with a nuclear cluster inside a 4He
nucleus “coherently”, and a ϕ-meson is produced.
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due to event contamination other than the coherent ones can be estimated
by taking into account the semi-coherent processes in MM(K+K−) fits. We
found that there is not much change in fit χ2 whichever of the semi-coherent
processes [Eq. (3.14) or Eq. (3.15)] is used. Therefore, the semi-coherent
process of Eq. (3.14) was used in the estimation of the systematic errors as
an extreme case.

3.8 Monte Carlo simulation for non-coherent process

In the present analysis, it is essential to reproduce realistic shapes of
MM(K+K−) distributions for “non-coherent” processes, i.e. the incoherent
and semi-coherent processes. In this section, the details of the MC simula-
tions for the incoherent and semi-coherent processes are described.

3.8.1 Incoherent process

The slope of dσ/dt and the ϕ → K+K− decay angular distributions for
this process were taken into account in MC simulation. Since there is no
available data on them, they were assumed to be the same as those for the
γp→ ϕp reaction [85].
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Figure 3.24: Momentum distributions of a proton (red circles), a triton (blue
squares) and a deuteron (green triangles) inside a 4He nucleus. These distri-
butions were obtained by VMC calculations [120].
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The Fermi momenta of nucleons inside a 4He nucleus were simulated ac-
cording to the numerical results of Variational Monte Carlo (VMC) calcula-
tions [120]. Figure 3.24 shows the momentum distribution of a proton inside
a 4He nucleus obtained by the VMC method, together with those for nuclear
cluster states inside a nucleus. There are several efficient methods for solving
the Schrödinger equations for four-nucleon bound states accurately (e.g.,the
Faddeev-Yakubovsky method). The reliability of seven different many-body
methods including the VMC method has been proven in a benchmark test
of a four-nucleon bound state [121].

The treatment of the off-shell effects of nucleons inside a 4He nucleus is
essential because it could affect the shapes of MM(K+K−) distributions. In
the analysis on the coherent γd → ϕd reaction [95], two schemes for the
off-shell correction were examined:

“Full off-shell correction”
In the initial state, the spectator nucleon is assumed to be on-shell,
whereas the target nucleon is assumed to be off-shell to the full scale;
namely, the energy of the target nucleon in the laboratory frame is
given by

Etarg =Md −
√
M2

N + p2
spec,

where Md and MN are the masses of a deuteron and a nucleon, respec-
tively, and pspec denotes the three-momentum of the spectator nucleon.
In the final state, both nucleons are assumed to be on-shell.

“Random off-shell correction”
In the initial state, both the target and spectator nucleons are assumed
to be off-shell, and the degree of “off-shellness” is randomly determined
event by event; namely, the energy of the target nucleon is given by

Etarg = x
(√

M2
N + p2

spec

)
+ (1− x)

(
Md −

√
M2

N + p2
spec

)
,

where x represents the degree of off-shellness, ranging between 0 and
1. In the final state, both nucleons are assumed to be on-shell.

In the present analysis, the full off-shell correction was adopted because in the
random off-shell correction the energy conservation law is obviously violated.
Note that the residue nucleons were assumed to form a nucleus in both the
initial and final states for simplicity.
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Figure 3.25: Weight function (a red curve) as a function of the photon
energy, together with experimental data on the energy dependence of the
forward cross section (θ = 0◦) for the γp → ϕp reaction. Black filled, blue
open and black open circles show the LEPS data [85], the CLAS data [87]
and old data [64,81,122–125], respectively.

Since the energy region of the present measurement is near the production
threshold for the γN → ϕN reaction, the cross section for ϕ-production
would drastically change even at a specific photon energy, depending on the
Fermi motion of the target nucleons. Here, we introduce an effective photon
energy as defined by

Eeff
γ =

s−M2
N

2MN

, (3.16)

where
√
s represents the center-of-mass energy of a photon and an off-shell

target nucleon. Thus, the incoherent events were weighted according to the
effective photon energy Eeff

γ . A weight function was determined from avail-
able experimental data on the energy dependence of the forward cross sec-
tion (θ = 0◦) for the γp → ϕp reaction by assuming isospin symmetry24 in
ϕ-photoproduction from free nucleons. Figure 3.25 shows the weight function
as a function of the photon energy, together with available experimental data
on the forward cross section for the γp → ϕp reaction. Since there exists a

24Here, isospin symmetry means that the cross sections for the γp → ϕp and γn → ϕn
reactions are the same.
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non-monotonic structure around Eγ ∼ 2 GeV, the weight function was made
so as to reproduce the non-monotonic structure, as depicted by a red curve.

3.8.2 Semi-coherent process

Since there is no available data on the slope of dσ/dt and the decay angu-
lar distributions for the coherent γt/γ3He reaction, they were determined as
follows: (i) The slope of dσ/dt was simply determined from the charge r.m.s
radii for triton and 3He (rt = 1.86 fm and r3He = 1.96 fm [126]) by assuming
a Gauss-type form factor. (ii) The decay angular distributions were deter-
mined from the measured ones with the assumption of the semi-coherent
process. Note that the extracted SDMEs were found to be very similar to
those for the γp→ ϕp reaction [85].

The fermi momenta of nuclear clusters inside a helium-4 nucleus were
simulated according to the numerical results of VMC calculations [120], as
shown in Fig 3.24. Here, the momentum distribution for 3He clusters was
assumed to be the same as that for triton clusters. The off-shell effects were
corrected by the full off-shell correction.

The semi-coherent events were also weighted according to the effective
photon energy Eeff

γ [Eq. (3.16)]. Since there is no available data on the co-
herent γt/γ3He reaction, a weight function was made from the forward cross
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Figure 3.26: (a) Weight function for the semi-coherent γt reaction as a
function of the photon energy. (b) Energy dependence of the forward cross
section (θ = 0◦) for the coherent γd reaction with a simple calculation in
comparison with available experimental data [95]. See the text for the cal-
culation.
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section for the elementary process and the form factor, as with a deuteron
target [see Eq. (1.36)]. Here, the Pomeron exchange was considered as the
reaction mechanism for the elementary process, and the form factor was as-
sumed to be a Gauss-type one. Figure 3.26(a) shows the weight function for
the semi-coherent γt reaction as a function of the photon energy. To check the
validity of the simple assumption, the same calculation was made for the co-
herent γd reaction, and was compared with available experimental data [95],
as shown in Fig. 3.26(b). The experimental data are well reproduced by the
simple calculation.

3.9 Acceptance evaluation

The acceptance was evaluated by MC simulation. Here, the acceptance
includes the geometrical acceptance of the LEPS spectrometer, the detector
efficiencies, the tracking efficiency and the efficiencies for all the selection
cuts described in Sect. 3.6. Since there is a difference in the geometrical
acceptance of the LEPS spectrometer between horizontal and vertical polar-
ization data, MC data for each polarization were separately generated, and
were mixed according to the ratio determined from the number of photons
for each polarization (see Sect. 2.7). The same analysis criteria and selection
cuts as those for the data analysis were applied to MC data. The acceptance
is given by the number of accepted events divided by the number of generated
events in MC simulation.

In the event generator, coherent ϕ-photoproduction off 4He was simu-
lated as follows. First, a ϕ-meson was generated according to the following
phenomenological function:

dσ

dt̃
= σ0(Eγ) exp(−bt̃), (3.17)

where σ0(Eγ) is the differential cross section dσ/dt̃ at t̃ = 0 (t = −|t|min),
which is a function of the photon energy Eγ, and b is a slope of dσ/dt̃. Next,
the ϕ-meson decayed into a K+ and a K− according to the three-dimensional
decay angular distribution W (cosΘ,Φ,Ψ) [Eq. (1.19)] in the GJ frame.

Since all the input parameters for the event generator [i.e. σ0(Eγ), b and
the SDMEs] are unknown and to be measured, they must be determined
iteratively by changing their values so that MC data reproduces both the
measured t-distribution and decay angular distributions.
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For σ0(Eγ), it was simply assumed, as a starting point, that σ0(Eγ) follows
the energy dependence determined from that for the elementary process and
the form factor (see Sect. 4.2.6), as with a deuteron target [see Eq. (1.36)].
Here, the form factor was assumed to be a Gauss-type one with a r.m.s.
radius of 1.68 fm, i.e. the charge r.m.s. radius of 4He nuclei [127]. We
found that such a simple assumption can explain the measured σ0(Eγ) (see
Sect. 4.2.6).

The slope b was initially set to 26 GeV−2, which was estimated from the
charge r.m.s radius of 4He nuclei. After three iterations, the slope parame-
ter obtained from acceptance-corrected t-distributions became stable, which
means that no further iteration was needed.

The SDMEs were initially set by assuming helicity-conserving and pure
natural-parity exchange processes; namely

ρ000 = Reρ010 = Reρ01−1 = ρ111 = ρ100 = Reρ110 = Imρ210 = 0,

ρ11−1 = −Imρ21−1 = 0.5.

After one iteration, the extracted SDMEs became stable, and no further
iteration was needed. Note that the effect of the slope b on the SDMEs
was found to be negligibly small [i.e., a variation of the slope b just affects
the overall normalizations of the decay angular distributions of Eqs. (1.27)–
(1.31).].

To check the validity of evaluating the geometrical acceptance of the
spectrometer including the detector efficiencies, as well as that of the nor-
malization of the photon flux for the cross section measurement (Sect. 4.2),
we compared the differential cross sections for the γp → K+Λ(1116), γp →
K+Σ(1192), γp → π0p and γp → ϕp reactions obtained with the LH2 data
with the previous LEPS measurements [85, 128, 129]. These results are pre-
sented in Appendix I.
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4 Results and Discussion

4.1 ϕ → K+K− decay angular distribution for γ4He →
ϕ4He reaction

First, we verify the absence of unnatural-parity exchange processes in
the γ4He → ϕ4He reaction by looking at the ϕ → K+K− decay angular
distributions. The decay angular distributions measured here are given by

W (cosΘ) =
3

2

[
1

2
(1− ρ000) sin

2Θ+ ρ000 cos
2Θ

]
, (4.1)

W (Φ) =
1

2π
(1− 2Reρ01−1 cos 2Φ), (4.2)

W (Φ−Ψ) =
1

2π

[
1 + 2Pγ ρ̄

1
1−1 cos 2(Φ−Ψ)

]
, (4.3)

W (Φ + Ψ) =
1

2π
[1 + 2Pγ∆1−1 cos 2(Φ + Ψ)] , (4.4)

W (Ψ) = 1− Pγ(2ρ
1
11 + ρ100) cos 2Ψ, (4.5)

where Θ and Φ denote the polar and azimuthal angles, respectively, of a
K+ in the GJ frame, and Ψ denotes the azimuthal angle of the photon
polarization vector with respect to the production plane. ρ000, Reρ

0
1−1, ρ̄

1
1−1,

∆1−1 and 2ρ111+ρ
1
00 are the SDMEs to be extracted. These distributions were

measured at forward angles, i.e., 0 < |t| − |t|min < 0.2 GeV2. The incident
photon energy was divided into two regions (El: 1.985 < Eγ < 2.185 GeV,
Eh: 2.185 < Eγ < 2.385 GeV), where sufficient statistics were obtained. Each
angle [cosΘ ∈ [0, 1], Φ,Φ − Ψ,Φ + Ψ,Ψ ∈ [0, 2π)] was divided into 10 bins
with an equal width (a-1, a-2, · · · , a-10). In order to get better statistics
and to identify the coherent production events more clearly, the horizontal
and vertical polarization data were merged.

4.1.1 Number of coherent-ϕ-production events as a function of
cosΘ, Φ, Φ−Ψ, Φ +Ψ and Ψ

The number of the coherent-ϕ-production events for each angular and
energy bin was evaluated in the same method as described in Sect. 3.7. For
the disentanglement of the coherent production events, the property of sym-
metries in each distribution was taken into account; namely, the events in the
i-th and j-th (j = 11 − i) angular bins were merged for W (cosΘ), whereas
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the events in the i-th and j-th (j = i+5) angular bins were merged for other
distributions.

The total ϕ-meson yields were obtained by fitting the M(K+K−) spectra
with the MC templates for the ϕ→ K+K− and background events, as shown
in Fig. 4.1. Figure 4.2 shows the total ϕ-meson yields as a function of the
angles cosΘ, Φ, Φ−Ψ, Φ + Ψ and Ψ for each energy region.

The ratios of the coherent production events (Rcoh) were evaluated by
fitting the MM(K+K−) spectra with the MC templates for the coherent and
incoherent events, as shown in Fig. 4.3. Figure 4.4 shows the ratios Rcoh as a
function of the angles cosΘ, Φ, Φ−Ψ, Φ+Ψ and Ψ for each energy region.

The yields for the coherent ϕ production events were calculated using
Eq. (3.11). Figure 4.5 shows the yields for the coherent ϕ production events
as a function of the angles cosΘ, Φ, Φ − Ψ, Φ + Ψ and Ψ for each energy
region. The estimation of the systematic errors due to the contamination of
the events other than the coherent ones is described in Appendix K.

4.1.2 Acceptance as a function of cosΘ, Φ, Φ−Ψ, Φ +Ψ and Ψ

The acceptance was evaluated by MC simulation, as described in Sect. 3.9.
Figure 4.6 shows the acceptance as a function of the angles cosΘ, Φ, Φ−Ψ,
Φ + Ψ and Ψ for each energy region.
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4.1.3 Spin density matrix elements (SDMEs)

To extract the SDMEs (ρ000, Reρ01−1, ρ̄
1
1−1, ∆1−1 and 2ρ111 + ρ100), the

acceptance-corrected distributions were fitted by Eqs. (4.1)–(4.5). Here, in
the fitting procedure, the SDMEs and the overall normalizations of Eqs. (4.1)–
(4.5) were treated as free parameters. Since the degree of BCS photon polar-
ization Pγ is a function of the photon energy, i.e., not a constant value (see
Fig. 2.5), it was evaluated for each energy region: Pγ = 0.8847 and 0.9158
for the El and Eh regions, respectively25. The details are described in Ap-
pendix J.

Figure 4.7 shows the acceptance-corrected distributionsW (cosΘ),W (Φ),
W (Φ − Ψ), W (Φ + Ψ) and W (Ψ) for each photon energy region. Here, the
data are normalized so that∫ 1

−1

W (cosΘ)d(cosΘ) = 1,∫ 2π

0

W (x)dx = 1 (x = Φ,Φ−Ψ,Φ +Ψ,Ψ).

(4.6)

As shown in Fig. 4.7, a quite large oscillation is seen in W (Φ − Ψ), and
therefore a finite bin size could affect the extracted values of the SDMEs. To
avoid such a finite-bin-size effect, a fit chi-square, χ2, was newly defined as

χ2(ρ̃, α) =
N∑
i=1

(
Ôi − αÊi

)2

σ2
i

,

Êi =
1

∆x

∫ x̄i+
1
2
∆x

x̄i− 1
2
∆x

W (x)dx (x = cosΘ,Φ,Φ−Ψ,Φ +Ψ,Ψ),

(4.7)

where ρ̃ is a SDME to be determined, N is the number of data points (bins),
Ôi is the number of counts in the i-th bin, α denotes an overall normalization
factor being a free parameter, σi is the statistical error in the i-th bin, ∆x is
the bin size, and x̄i is the mean value of the i-th bin.

The fit results are depicted as blue curves in Fig. 4.7. The numerical
results are summarized in Tables 4.1 and 4.2 for the El and Eh regions,
respectively. On the basis of the reduced chi-squares χ2/ndf , the quality of
the fits is reasonably good for all the distributions.

25Errors in the laser polarization measurement are taken into account as a systematic
error (see Sect. 4.1.4).
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The SDMEs obtained in this measurement are summarized in Table 4.3.
Systematic errors on the extracted SDMEs are discussed in the next section.

Table 4.1: Summary of the fit results and the extracted SDMEs for the El

region.

Angle SDME χ2 ndf χ2/ndf

cosΘ −0.015± 0.016 4.68 8 0.59
Φ 0.116± 0.030 11.36 8 1.42

Φ−Ψ 0.454± 0.024 5.78 8 0.72
Φ + Ψ −0.111± 0.033 11.69 8 1.46
Ψ 0.132± 0.066 9.52 8 1.19

Table 4.2: Summary of the fit results and the extracted SDMEs for the Eh

region.

Angle SDME χ2 ndf χ2/ndf

cosΘ 0.016± 0.012 3.54 8 0.44
Φ 0.054± 0.020 11.38 8 1.42

Φ−Ψ 0.436± 0.014 8.90 8 1.11
Φ + Ψ −0.034± 0.017 17.86 8 2.23
Ψ 0.074± 0.041 4.91 8 0.61

Table 4.3: Summary of the extracted SDMEs for the El and Eh regions. The
first and second uncertainties represent the statistical and systematic ones,
respectively.

SDME El Eh

ρ000 −0.015± 0.016+0.000
−0.002 0.015± 0.012+0.002

−0.000

Reρ01−1 0.116± 0.030+0.000
−0.006 0.054± 0.020+0.000

−0.004

ρ̄11−1 0.454± 0.024+0.014
−0.000 0.436± 0.014+0.004

−0.000

∆1−1 −0.111± 0.033+0.006
−0.000 −0.034± 0.017+0.009

−0.000

2ρ111 + ρ100 0.132± 0.066+0.000
−0.033 0.074± 0.041+0.011

−0.000
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4.1.4 Systematic errors on SDMEs

Systematic errors on the SDMEs are as follows:

• The systematic errors due to the event contamination other than the
coherent ones were estimated by considering the semi-coherent process
in the template fits on the MM(K+K−) spectra. These results are
presented in Appendix K.

• The systematic error in the degree of BCS photon polarization. This
is caused by systematic errors in the laser polarization measurements.
It was estimated to be 0.1% and 0.08% for the horizontal and vertical
polarizations, respectively (see Appendix J for details).

The systematic errors due to the event contamination other than the
coherent ones were found to be smaller than the statistical errors (see Ta-
ble 4.3). The systematic error caused by the laser polarization measurements
was found to be negligibly small.

4.1.5 Discussion on the extracted SDMEs

The matrix elements ρ000, which reflect the probability of single helicity-
flip transitions (λγ = ±1 → λϕ = 0), were found to be consistent with
zero and to exhibit no energy dependence. This indicates the dominance of
helicity-conserving processes in t-channel. The obtained matrix elements ρ000
were compared with those obtained in the γp → ϕp and γd → ϕd reactions,
as shown in Fig. 4.8. The matrix elements ρ000 obtained here are in good
agreement with those for the γp and γd reactions. The smallness of ρ000 at
small |t| is compatible with a conventional Pomeron exchange model [47].
In contrast to the LEPS measurements at small |t|, a non-zero value of ρ000
was observed in the γp → ϕp reaction at large momentum transfers (−t >
2.5 GeV2) by CLAS [130]. This suggests that the u-channel contribution to
ϕ-photoproduction would begin to dominate at large |t| [131].

The decay asymmetry ρ11−1 determines the relative contribution of natural
and unnatural-parity exchange processes in t-channel, and gives +0.5 (−0.5)
for pure natural-parity (unnatural-parity) exchange processes when helicity-
conservation holds. ρ11−1 was found to be very close to +0.5 for both the El

and Eh regions. This indicates the strong dominance (> 94%) of natural-
parity exchange processes. Figure 4.9 shows the comparison of ρ11−1 between
those obtained in the γp → ϕp, γd → ϕd and γ4He → ϕ4He reactions. For
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the γd and γ4He reactions, ρ11−1 is very close to +0.5, whereas, for the γp
reaction, it is positive but largely deviates from +0.5. This can be understood
by the unnatural-parity π exchange. In the former cases, the isovector π
exchange is forbidden, whereas it is allowed in the latter case. Further, for
the γ4He reaction, ρ11−1 sizably deviates from +0.5 (, corresponding to a
4.6σ deviation for the Eh region). In this case, unnatural-parity exchange
processes are forbidden.

As pointed out by Titov et al., the existence of helicity-flip processes
modifies Eq. (1.32) into [47]:

ρ11−1 =
1

2

σN − σU + |T 1−1
1 |2

σN + σU + |T 10|2 + |T 1−1
2 |2

, (4.8)

where |T 10|2 = Tr[Tα;10T
†
α;10] represents the contribution from single helicity-

flip transitions (λγ = ±1 → λϕ = 0), whereas |T 1−1
1 |2 = Tr[Tα;1−1T

†
α;−11] and

|T 1−1
2 |2 = Tr[Tα;1−1T

†
α;1−1] represent the contribution from double helicity-

flip transitions (λγ = ±1 → λϕ = −λγ). Therefore, the observed deviation
of ρ11−1 from +0.5, along with the smallness of ρ000, strongly indicates the
existence of double helicity-flip transitions. In fact, a rather large oscillation
was observed inW (Φ) for the El region (see Fig. 4.7), giving Reρ01−1 of∼ 0.11.
This means that the interference between helicity-nonflip and double helicity-
flip amplitudes has a non-zero value. A non-zero value of Reρ01−1 was also
observed in the γp [85, 88] and γd reactions [89]. In order to make sure
that the observed deviation of ρ11−1 is not due to the contamination from
the incoherent events with ρ11−1 ≈ 0.25 [132], the decay asymmetry with a
tight mass cut, MM(K+K−) < 3.72 GeV/c2, was examined. In this case, the
event contamination other than the coherent ones was evaluated to be 0.6%.
The result is indicated by a cyan filled circle in Fig. 4.9. ρ11−1 was found to be
0.44± 0.02, and still deviates from +0.5. Therefore, the observed deviation
is not due to the contamination from the incoherent events.

The presence of double-helicity flip transitions indicates that the helicity
of the particle exchanged in t-channel is ±2 [see Eq. (1.35)]. A model that
treats the Pomeron exchange as an effective tensor exchange [133, 134] suc-
cessfully describes the experimental data on the helicity structure of elastic
pp scattering at

√
s = 200 GeV and small |t| from the STAR experiment [135]

as well.
In the modified DL Pomeron model [47], motivated by the analogy be-

tween the Pomeron and two-gluon exchanges, the term responsible for dou-
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Figure 4.10: Comparison of Reρ01−1 between the γp (black open squares) [85]
and γ4He data (red filled circles). The both data are for a t-range of 0 <
|t| − |t|min < 0.2 GeV2, where |t|min represents the minimum |t| for each
reaction. The error bars represent the sum of the statistical and systematic
errors in quadrature. A solid curve represents a theoretical calculation for
the Pomeron, π and η exchanges in the γp→ ϕp reaction [47, 94]. Here, the
calculation is averaged over the t region (0 < |t| − |t|min < 0.2 GeV2) for
comparison.

ble helicity-flip transitions [last term in Eq. (1.16)] naturally arises to restore
the guage invariance. In the original DL Pomeron model, on the other hand,
the Pomeron exchange does not contribute to helicity-flip amplitudes [see
Eq. (3.1) of Ref [45] for an explicit form of the Pomeron amplitude]. There-
fore, the non-zero value of Reρ01−1 obtained here supports the modified DL
model, i.e., the Pomeron-two-gluon analogy. However, there is one problem:
Figure 4.10 shows the energy dependence of Reρ01−1 for the γp and γ4He
reactions, in comparison with a theoretical calculation for the Pomeron, π
and η exchanges in the γp reaction [47, 94]. The experimental data for both
reactions are in good agreement, whereas they are in contradiction with the
model calculation. As pointed out by Titov et al. [94], a double helicity-flip
transition comes from the spin-orbital interaction generated by the two-gluon
exchange [see Eq. (1.17)], and its contribution should monotonically increase
with energy. This contradiction may be accounted for by the appearance of
additional natural-parity exchange processes beyond the Pomeron exchange
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such as the tensor f ′
2(1525) exchange

26.

26It is followed from Eq. (1.35) that besides the Pomeron exchange, the tensor f ′
2 ex-

change can also contribute to double helicity-flip transitions.
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4.2 Differential cross section for γ4He → ϕ4He reaction

In the previous sections, we have demonstrated the strong dominance (>
94%) of natural-parity exchange processes in the γ4He → ϕ4He reaction.
In this section, the differential cross sections for the γ4He → ϕ4He reaction
are presented as a function of the momentum transfer t̃ (= |t| − |t|min) for
various photon energy bins. The momentum transfer t̃ from 0 to 0.16 GeV2

was binned with an equal width of 0.02 GeV2 (t-1, t-2, . . . , etc.). The photon
energy was divided into six bins as defined in Table 4.4.

Table 4.4: Definition of the photon energy bins.

Photon energy bin Eγ range (GeV)

e-1 1.685–1.885
e-2 1.885–1.985
e-3 1.985–2.085
e-4 2.085–2.185
e-5 2.185–2.285
e-6 2.285–2.385

The differential cross section as a function of the momentum transfer t̃ is
given by

dσ

dt̃
=

Ycohϕ

Nγ ·Ntarg · εacc ·Bϕ→K+K− ·∆t
, (4.9)

where Ycohϕ is the number of the coherent ϕ production events in each t̃ and
Eγ bin, Nγ is the number of photons in each Eγ bin, Ntarg is the number of
target nuclei (4He), εacc is the acceptance for each t̃ and Eγ bin, Bϕ→K+K− is
the branching ratio of the ϕ→ K+K− decay (= 0.489), and ∆t is the width
of t bins (= 0.02 GeV2).

The number of target nuclei Ntarg was calculated as follows:

Ntarg = ρ · NA

Ar

· Leff, (4.10)

where ρ is the density of liquid 4He (= 0.1249 g/cm3), NA is the Avogadro
constant (= 6.0221× 1023 mole−1), Ar is the standard atomic weight for 4He
atoms (= 4.0026 g/mole), and Leff is an effective target length, which is given
as

Leff = 15 cm× (1−RCFRP). (4.11)
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Here, RCFRP = 0.023 represents the contamination of the K+K− events from
the CFRP cap of the target chamber (see Sect. 3.6).

The number of photons Nγ in each Eγ bin was calculated in an ordinary
way. The details are described in Appendix L.

4.2.1 Number of coherent ϕ production events as a function of t̃
and Eγ

The number of the coherent-ϕ-production events for each t and Eγ bin was
evaluated as described in Sect. 3.7. The total ϕ-meson yields were obtained
by fitting the M(K+K−) spectra with the MC templates for the ϕ→ K+K−

and background events. Figure 4.11 shows the M(K+K−) spectra for various
t̃ bins in the e-6 bin, together with the fit results. The contribution from non-
resonant K+K− production becomes larger as t̃ increases. This is because
the production of K+K− pairs with large M(K+K−), which come from non-
resonantK+K− production, involves a large momentum transfer. Figure 4.12
shows the total ϕ-meson yields as a function of t̃ for various Eγ bins.

The ratios of the coherent production events Rcoh were obtained by fitting
the MM(K+K−) spectra with the MC templates for the coherent and inco-
herent events. Figure 4.13 shows the MM(K+K−) spectra for various t̃ bins
in the e-6 bin, together with the fit results. While the events in large-t̃ bins
are spread over a wide mass region, those in small-t̃ bins are concentrated
in a low-mass region. This means that the coherent production events are
concentrated in a small t̃ region, whereas the incoherent ones are distributed
in a large t̃ region (see Fig. 3.22). Figure 4.14 shows the ratios Rcoh as a
function of t̃ for various Eγ bins.

The yields for the coherent ϕ production events were calculated by Eq. (3.11).
Figure 4.5 shows the yields for the coherent ϕ production events as a func-
tion of t̃ for various Eγ bins. The estimation of the systematic errors due to
the contamination of the events other than the coherent ones is described in
Appendix M.

117



4.2 Differential cross section for ... 4 RESULTS AND DISCUSSION

0

25

50

75

100

χ2/ndf=
82.3/34

t-1

0

20

40

60

80

χ2/ndf=
25.7/26

t-2

0

20

40

60

χ2/ndf=
38.5/33

t-3

0

10

20

30

E
ve

n
ts χ2/ndf=

29.9/30

t-4

0

20

40

60

χ2/ndf=
24.4/17

t-5

0

10

20

30

1 1.05

χ2/ndf=
19.3/17

t-6

0

10

20

30

1 1.05

χ2/ndf=
5/12

t-7

0

5

10

15

20

1 1.05
M(K+K-) (GeV/c2)

χ2/ndf=
16/14

t-8
Present data

Signal+BG (MC)

BG (MC)

Figure 4.11: M(K+K−) spectra for various t̃ bins in the e-6 bin. Red
histograms show the results for the template fits. Green filled areas show the
MC-simulated distributions for the background events.
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Figure 4.12: Total ϕ-meson yields as a function of t̃ for various Eγ bins.
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Figure 4.14: Ratios of the coherent events (Rcoh) as a function of t̃ for
various Eγ bins.
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Figure 4.15: Yields for the coherent ϕ production events as a function of t̃
for various Eγ bins.

122



4.2 Differential cross section for ... 4 RESULTS AND DISCUSSION

4.2.2 Acceptance as a function of t̃ and Eγ

The acceptance for each t and Eγ bin was calculated by MC simulation,
as described in Sect. 3.9. Figure 4.16 shows the acceptances as a function of t̃
for various Eγ bins with a slope parameter of b = 24 GeV−2. The validity of
the acceptance calculation was checked with the LH2 data (see Appendix I).
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Figure 4.16: Acceptance as a function of t̃ for various Eγ bins. These plots
were obtained with a slope parameter of b = 24 GeV−2.

4.2.3 Systematic errors on dσ/dt̃

Systematic errors in the cross section measurement are as follows:

• The systematic errors due to the event contamination other than the
coherent ones were estimated by considering the semi-coherent process
in the fits on the missing mass MM(K+K−) spectra. These results are
presented in Appendix M.
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• The systematic error on the normalization of the photon flux was esti-
mated to be 3%.

• The systematic error on the K+K− event loss in the kaon identification
was estimated to be 1% (see Appendix H).

• The systematic error on the contamination of the K+K− events from
the CFRP cap of the target chamber was estimated to be 0.2% (see
Sect. 3.6).

4.2.4 dσ/dt̃ for various Eγ

The differential cross sections dσ/dt̃ for various Eγ bins were calculated
by using Eq. (4.9). Figure 4.17 shows dσ/dt̃ for various Eγ bins. A strong
forward-peaking behavior of dσ/t̃ predominantly comes from the helium-4
form factor. To extract a slope parameter (b) and the dσ/dt̃ at t̃ = 0 (t =
−|t|min) [(dσ/dt)0], each spectrum was fitted with an exponential function,
namely

dσ

dt̃
=

(
dσ

dt

)
0

exp(−bt̃). (4.12)

The fit results are summarized in Table 4.5. Judging from the reduced chi-
squares χ2/ndf , the quality of the fits is reasonably good.

Figure 4.18 shows the energy dependence of the extracted slopes b. There
is no strong energy dependence beyond the statistical errors, and the common
slope was determined to be 23.81±0.95(stat)+5.16

−0.00(sys) GeV−2. Here, the sys-
tematic error comes solely from the assumption of the semi-coherent process
in the MM(K+K−) fits (see Appendix M). The common slope b is consistent
with a simple estimate from a single-scattering assumption (see Sect. 1.6.2),
in which the slope b is approximately expressed as b ≈ b0+bF , where b0 is the
slope for the elementary γp→ ϕp reaction (3.38±0.23 GeV−2 [85]) and bF is
the slope of the squared charge form factor of 4He nuclei (≈ 22 GeV−2 [136];
see also Fig. 4.19). This indicates that the contribution from the double-
scattering process is negligible. The common slope b is also quite reasonable
in comparison with that for other elastic scattering of a hadron off 4He in
the diffractive regime [137, 138]27. This suggests that the VMD framework
works well in this energy region.

27In Ref. [137], the measurement of the absolute differential cross sections for the elastic
αp scattering at small |t| is reported with an α-beam momentum of 17.9 GeV/c. The
slope was obtained to be b = 33.2 ± 0.6 GeV−2, which is consistent with a diffraction
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Figure 4.17: Differential cross section dσ/dt̃ for various Eγ bins. The smaller
error bars represent the statistical error, whereas the larger ones represent
the sum of the statistical and systematic errors in quadrature. Blue dashed
curves show the fit results by an exponential function [Eq. (4.12)] with the
common slope b = 23.81 GeV−2.

multiple-scattering model (Glauber-Sitenko). In Ref. [138], the measurement of the abso-
lute differential cross sections for the elastic πα scattering at small |t| is reported with a
π-beam momentum of 40.4 GeV/c. The slope was obtained to be b = 29.3 ± 1.1 GeV−2,
which is in good agreement with a Glauber calculation.
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Table 4.5: Summary of the fit results on dσ/dt̃ with a variable slope.

Eγ N0 (µb/GeV2) b (GeV) χ2 ndf χ2/ndf

e-1 1.704± 0.277 27.18± 7.42 3.35 2 1.67
e-2 3.293± 0.543 35.55± 8.40 1.03 3 0.34
e-3 3.415± 0.352 23.39± 3.78 5.66 4 1.41
e-4 4.088± 0.309 22.60± 2.07 5.32 6 0.89
e-5 4.331± 0.339 26.93± 2.52 11.14 6 1.86
e-6 4.902± 0.248 23.15± 1.27 15.94 6 2.82
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Figure 4.18: Energy dependence of the slope b. A blue line represents an
average value of b = 23.81± 0.95 GeV−2.
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Figure 4.19: Charge form factor |FC |2 as a function of the momentum
transfer −t. The data were obtained from the numerical results of a VMC
calculation [136] unfolded with a dipole nucleon form factor Gd(q

2) = 1/(1+
q2/0.71 GeV2)2. A blue curve represents the fit result by an exponential
function for the relevant t region. A slope of b ≈ 22 GeV−2 is obtained.

The differential cross sections dσ/dt̃ were also fitted by fixing a slope pa-
rameter to be the common one (= 23.81 GeV−2). The fit results are depicted
as blue dashed curves in Fig. 4.17. The numerical results are summarized in
Table 4.6. We found that it does not make any significant difference in fit
quality whether a variable slope or a fixed one is used.

Table 4.6: Summary of the fit results on dσ/dt̃ with a fixed slope of b =
23.8 GeV−2.

Eγ N0 (µb/GeV2) χ2 ndf χ2/ndf

e-1 1.604± 0.226 3.56 3 1.19
e-2 2.628± 0.229 3.49 4 0.87
e-3 3.443± 0.227 5.67 5 1.13
e-4 4.212± 0.265 5.64 7 0.81
e-5 3.985± 0.236 12.79 7 1.83
e-6 4.996± 0.231 17.20 7 2.45
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4.2.5 Energy dependence of dσ/dt̃ at t̃ = 0

Figure 4.20 shows the comparison of the intercepts (dσ/dt)0 (i.e., dσ/dt̃ at
t̃ = 0) between those obtained with fixed and variable slopes. No difference
was found in the intercepts (dσ/dt)0 beyond the statistical errors. Therefore,
the common slope b = 23.81 GeV−2 was used to evaluate the intercepts
(dσ/dt)0.

Figure 4.21 shows the energy dependence of dσ/dt̃ at t̃ = 0 [(dσ/dt)0] .
The numerical results are summarized in Table 4.7. The present data exhibit
a different energy dependence compared to that for the γp→ ϕp reaction (see
Fig. 1.12). This is due to the 4He form factor (, explained in the next section).
The systematic errors due to the event contamination other than the coherent
ones were found to be less than the statistical errors (see Appendix M).
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Figure 4.20: Comparison of the intercepts (dσ/dt)0 between those obtained
with fixed (red open circles) and variable slopes (blue open squares) as a
function of the photon energy.
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Figure 4.21: Energy dependence of the dσ/dt̃ extrapolated to t̃ = 0 with
the common slope b = 23.81 GeV−2. The meanings of the error bars are the
same as in Fig. 4.17.

Table 4.7: Summary of dσ/dt̃ at t̃ = 0 for various Eγ bins. The first and sec-
ond uncertainties represent the statistical and systematic ones, respectively.

Eγ range (GeV) (dσ/dt)0 (µb/GeV2)

1.685–1.885 1.604± 0.226+0.095
−0.068

1.885–1.985 2.629± 0.229+0.112
−0.119

1.985–2.085 3.443± 0.277+0.146
−0.268

2.085–2.185 4.212± 0.265+0.201
−0.179

2.185–2.285 3.985± 0.236+0.170
−0.169

2.285–2.385 4.996± 0.231+0.371
−0.212
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4.2.6 Discussion on the energy dependence of dσ/dt̃ at t̃ = 0

In this section, we first compare the present results with scaled γp →
ϕp data. We then discuss the Pomeron contribution to the forward cross
section (θ = 0◦) for the elementary γp reaction as well as other possible
natural-parity contribution, using the present data.

As already discussed in Sect. 1.6.2, a theoretical calculation for the co-
herent γd → ϕd reaction was done by Titov et al. [93, 94], in which they
describe the forward cross section (θ = 0◦) by using the amplitudes for the
elementary γp → ϕp reaction and the deuteron form factor [see Eq. (1.36)].
Similarly, the forward cross section (θ = 0◦) for the coherent γ4He → ϕ4He

reaction [(dσ/dt)γ
4He

0 ] is described by using the 4He charge form factor (|FC |2)
as (

dσ

dt

)γ4He

0

= 16|FC |2
(
dσ

dt

)γp;NP

0

, (4.13)

where (dσ/dt)γp;NP
0 denotes the forward cross section (θ = 0◦) for the γp

reaction arising from natural-parity exchanges, a factor of 16 represents the
square of the number of nucleons in a 4He nucleus, and |FC |2 is evaluated at
t = −|t|min.

By using Eq. (4.13), γp data can be scaled to that of the γ4He → ϕ4He
reaction if one neglects the π and η exchanges and other possible unnatural-
parity exchanges in the γp reaction. Figure 4.22 shows the energy depen-

dence of (dσ/dt)γ
4He

0 in comparison with scaled γp data. Here, the origi-
nal γp data were taken from Refs. [85, 87], and the form factor |FC |2 was
taken from the numerical results of a VMC calculation [136]. Even though
the unnatural-parity π and η exchanges are absent in the γ4He reaction,

the present data [(dσ/dt)γ
4He

0 ] are in excellent agreement with the scaled
γp data. In particular, both the data exhibit a similar structure around
Eγ ∼ 2.2 GeV. Here, the structure present in the scaled γp data stems from
the non-monotonic structure around Eγ ∼ 2 GeV in the original data (see
Fig. 1.12), but looks milder than the original one. This is due to the form
factor |FC |2; that is, as shown in Fig. 4.23, |t|min decreases largely with in-
creasing energy for 1.5 < Eγ < 2.4 GeV, and thus |FC |2 at t = −|t|min

rapidly increases with energy (see Fig. 4.19), thereby dominating over the
energy dependence of the elementary cross section. Consequently, it is dif-
ficult to discuss any “structure” or the energy dependence of the Pomeron
amplitude in detail, directly from the γ4He data.
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In order to evaluate the Pomeron contribution to the forward cross sec-
tion (θ = 0◦) for the elementary γp reaction as well as other possible natural-
parity contribution, we constructed three models for describing the energy
dependence of (dσ/dt)γp;NP

0 , where their overall strengths are unknown and
to be determined:

Model-1
In this model, the amplitude is assumed to be independent of the energy
s, and therefore the energy dependence of (dσ/dt)γp;NP

0 is determined
just kinematically [139]; namely(

dσ

dt

)γp;NP

0

∝
(
kϕ
kγ

)2

, (4.14)

where kϕ (kγ) is the 3-momentum of ϕ-mesons (photons) in the center-
of-mass frame. This model corresponds to a simple description of the
Pomeron contribution28.

Model-2
This model is a conventional Pomeron exchange model as described
in Ref. [47] (see also Sect. 1.4.2). This model corresponds to just an
extrapolation of the Pomeron exchange model established at high en-
ergies. The difference between models 1 and 2 is that model-1 yields
exactly zero of the (dσ/dt)γp;NP

0 at the threshold, whereas model-2 yields
a finite value at the threshold.

Model-3
This model describes a threshold enhancement in the energy depen-
dence of (dσ/dt)γp;NP

0 . This could be realized by modifying a conven-
tional Pomeron exchange model and/or a manifestation of additional
natural-parity exchanges near the threshold. For this model, we used
the Pomeron and daughter Pomeron exchange model in Refs. [38, 47].
The relative strength of the daughter Pomeron contribution was ad-
justed so as to fit available γp data [64,81,85,87,122–125]. More details
about this model are described in Appendix N.

To fix the overall strengths for the above models, we used the relation
of Eq. (4.13) in the fits to the γ4He data with the overall strengths being

28The forward Pomeron amplitude is approximately expressed as T (s, t = 0) ∼ s0.08, so
it is almost independent of energy.

132



4.2 Differential cross section for ... 4 RESULTS AND DISCUSSION

free parameters. Figure 4.24(a) shows the energy dependence of (dσ/dt)γ
4He

0 ,
together with the best fits for models 1, 2 and 3. The reduced chi-squares,
χ2/ndf , are 48.5/5, 39.8/5 and 10.2/5 for models 1, 2 and 3, respectively.
First of all, although model-3 is preferable on the basis of χ2/ndf , all the

models describe the measured energy dependence of (dσ/dt)γ
4He

0 fairly well.
Therefore, all the models are treated “equally” hereafter. It is also worth
noting that the Pomeron strength factor CP [see Eq. (1.13)] determined here
is in good agreement with the original one in Ref. [47] [= (0.95 ± 0.01)CP],
where the strength factor CP was determined from a global fit to high-energy
data for ρ, ω and ϕ-photoproduction off protons. This means that the present
data are consistent with not only high-energy ϕ-photoproduction data but
also other light vector meson photoproduction data at high energies [58–82].

Figure 4.24(b) shows the contribution from natural-parity exchanges to
the forward cross section (θ = 0◦) for the γp reaction with each model, in
comparison with the experimental data from LEPS [85,88].

Models 1 and 2 give similar results, and we see that the both curves are
slightly above the data points for Eγ > 2.4 GeV. On the other hand, the
experimental data on the decay asymmetry ρ11−1 [88] show a sizable contri-
bution of 20–30% from unnatural-parity exchanges to the γp reaction for
1.8 < Eγ < 2.9 GeV (see Fig. 1.13). If the unnatural-parity contribution is
simply added to the natural-parity one (i.e., the interference term is ignored),
then models 1 and 2 obviously overestimate the data points. Therefore, to ex-
plain the experimental data, destructive interference between natural-parity
and unnatural-parity exchanges is needed. This is in contradiction with
a conventional model for ϕ-photoproduction off protons, in which interfer-
ence effects between the natural-parity Pomeron exchange and the unnatural-
parity π and η exchanges are small (see Sect. 1.4.2).

By contrast, model-3 gives a different result. We see that the curve is
below the data points for Eγ > 1.9 GeV by ∼ 20%, except for a few data
points. If the unnatural-parity contribution (∼ 30%) is considered, model-3
can describe the experimental data fairly well. In this case, large interference
effects are not needed, which is compatible with a conventional Pomeron, π,
η exchange model. Note that destructive interference is also needed for Eγ <
1.9 GeV because simply adding the natural-parity contribution overestimates
the experimental data.

From the above discussion, it turns out that enhancement of the forward
cross section arising from natural-parity exchanges and/or destructive inter-

133



4.2 Differential cross section for ... 4 RESULTS AND DISCUSSION

ference between natural-parity and unnatural-parity exchanges are needed in
the γp→ ϕp reaction near the threshold. This suggests the presence of addi-
tional natural-parity exchange processes beyond the Pomeron exchange such
as the daughter Pomeron exchange and/or the need to modify a conventional
Pomeron exchange model, specifically the phase term of the Pomeron ampli-
tude in a conventional model. In particular, the necessity of modifying the
phase term of the Pomeron amplitude implies that Regge theory is inappli-
cable to the low-energy regime because the phase of the Pomeron amplitude
is definitively determined by Regge theory.

The information on the phase of the Pomeron amplitude is important
not only for modeling the Pomeron exchange at low energies but also for
ϕ-photoproduction experiments concerning the strange degree of freedom in
a nucleon [140] or light vector meson (ρ, ω and ϕ) photoproduction experi-
ments searching for so-called missing resonances [141]: in such experiments, a
“signal”, whose contribution is in general small compared to the major contri-
bution of the Pomeron exchange and thus is undetectable in cross sections,
can be seen in polarization observables that are generated by interference
terms of the contributing amplitudes.
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Figure 4.24: (a) Energy dependence of (dσ/dt)γ
4He

0 . The meanings of the
error bars are the same as in Fig. 4.17. Red dashed, green solid and pink dash-
dotted curves are the best fits for models 1, 2 and 3 (explained in the text),
respectively. (b) Contribution from natural-parity exchanges to the forward
cross section (θ = 0◦) for the γp reaction with models 1 (red dashed), 2 (green
solid) and 3 (pink dash-dotted), in comparison with available experimental
data. The experimental data are represented by black filled squares [85] and
blue open circles [88].
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5 Conclusion

In this thesis, we have presented the differential cross sections and decay
angular distributions for coherent ϕ-meson photoproduction from helium-
4 at forward angles with linearly polarized photons in the energy range of
Eγ = 1.685–2.385 GeV. This measurement provides the first-ever data for
this reaction. The production of ϕ-mesons was identified in the invariant mass
spectra of K+K− pairs from the ϕ → K+K− decay, whereas the coherent
production events were separated from the incoherent ones by looking at
the missing mass distributions for the 4He(γ,K+K−)X reaction. Thanks
to the target with spin-parity JP = 0+, this reaction completely eliminates
the contribution from unnatural-parity exchanges. As a result, this reaction
provides a unique and clean way of investigating the Pomeron and multi-
gluon exchanges at low energies.

The five one-dimensional ϕ → K+K− decay angular distributions were
measured in the Gottifried-Jackson frame, and the corresponding spin den-
sity matrix elements were extracted. The spin density matrix element ρ000,
which measures the probability of single helicity-flip transitions (λγ = ±1 →
λϕ = 0), was found to be consistent with zero. This indicates the dominance
of helicity-conserving processes in t-channel. The decay asymmetry ρ11−1,
which determines the relative contribution of natural-parity and unnatural-
parity exchanges, was shown to be very close to the maximal value. This
ensures the strong dominance (> 94%) of natural-parity exchanges in this
reaction. Further, we found that the decay asymmetry ρ11−1 sizably deviates
from the maximal value. This, in conjunction with the observed non-zero
value of Reρ01−1, strongly indicates the existence of double helicity-flip tran-
sitions (λγ = ±1 → λϕ = −λγ). Our observation supports the modified
Donnachie-Landshoff Pomeron model based on the Pomeron-two-gluon anal-
ogy.

The differential cross section was measured as a function of the momen-
tum transfer, and the slope parameter b and the intercept (dσ/dt)0 were
extracted. No strong energy dependence of the slope b was found, and the
common slope b was determined to be 23.81 ± 0.95(stat)+5.16

−0.00(sys) GeV−2.
The common slope b is consistent with a simple estimate from a single-
scattering assumption, i.e., the sum of the slope for the elementary reaction
and that of the form factor. This indicates that the contribution from the
double-scattering processes is negligibly small. Further, the common slope
is reasonably compared to the slope for other elastic scattering of a hadron
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off helium-4 in the diffractive regime, showing that the VMD picuture is still
valid in this energy regime.

Based on the SDMEs ρ000, Reρ01−1 and ρ11−1 and the common slope b,
we confirmed that the coherent production events are successfully separated
from the incoherent ones, and thus the unnatural-parity contribution is ab-
sent (i.e., the natural-parity Pomeron exchange is dominant).

To evaluate the Pomeron contribution to the forward cross section (θ =
0◦) for the elementary γp → ϕp reaction as well as other possible natural-
parity contribution, three models were constructed for describing the energy
dependence of the forward cross section (θ = 0◦) arising from natural-parity
exchanges for the elementary process, and their overall strengths were de-
termined from the present data. The comparison of them to available γp
data revealed that threshold-enhancement of the forward cross section aris-
ing from natural-parity exchanges and/or destructive interference between
natural-parity and unnatural-parity exchanges are needed in the γp → ϕp
reaction near the threshold. This suggests the presence of additional natural-
parity exchange processes beyond the Pomeron exchange such as the daughter
Pomeron exchange and/or the need to modify the phase term of the Pomeron
exchange amplitude.

We have obtained the valuable information on the Pomeron exchange,
i.e., the helicity structure of the Pomeron-quark couplings and the phase of
the Pomeron amplitude. These information will be important constraints on
modeling the Pomeron exchange especially at low energies. Further theoret-
ical and experimental efforts are of great help for understanding the detailed
mechanism of the Pomeron exchange.
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A SOFT POMERON

Appendix A Soft pomeron

In this Appendix, a soft pomeron and related topics are reviewed.

A.1 Regge theory and Pomeron trajectory

In the 1960s, before the arrival of QCD, Regge theory [9] was devel-
oped by the successive work of T. Regge, S. Mandelstam, M. Froissart, G.
Chew and S. C. Frautschi, and served as an effective tool for describing
high-energy scattering processes between strongly-interacting particles, i.e.
hadrons. Regge theory, as its name suggests, originates from the work of Tul-
lio Regge [142]: he studied the analytic properties of the non-relativistic scat-
tering equation for a spherically-symmetric potential with the introduction
of complex angular momenta, in which angular momenta are not restricted
to a non-negative integer, but can take any complex value. His original idea
was for the non-relativistic case, but was soon taken over for application to
relativistic scattering of hadrons.

It is commonly known that the scattering amplitude A(E, θ) for two-
particle collision, which is characterized by the total energy E and the scat-
tering angle θ for one of the scattered particles, can be decomposed into
a set of partial wave amplitudes Al(E) with a fixed angular momentum
l = 0, 1, 2, . . ., etc. If the two particles are able to bind together to form a
bound state or a resonance with a given angular momentum l = L, then the
partial wave amplitude AL(E) has a pole in the complex E plane. In the
case of a stable bound state with a negative energy of EB (< 0), for example,
the pole locates at the negative real value E = EB in the complex E plane.
Thus, the continuation of the energy E from real positive physical values to
complex and negative values allows us to deal with scattering processes and
the existence of bound states or resonances in a unified way.

In Regge theory, it has been proven that as AL(E) has a pole at the
energy E for which a bound state with the angular momentum l = L exists,
so the amplitude A(l, E), which is an analytic function of the partial wave
amplitudes Al(E) with the continuation of angular momenta to complex
values, has a pole, i.e. a “Regge pole”, in the complex angular momentum
plane. The position of Regge poles can be written as a function of the energy
E. By introducing the the Mandelstam variables (s, t, u) [143] and using the
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properties of “crossing symmetry”, it becomes

l = α(t). (A.1)

This is a so-called Regge trajectory. A Regge trajectory is associated with
a family of the particles with the same quantum numbers except for spin:
When a value of α(t) happens to be a non-negative integer, the Regge pole
corresponds to a physical bound state or resonance with the mass of M =√
t.A Regge trajectory α(t) can be approximated by a linear function of

momentum transfer t
α(t) ≈ α(0) + α′t, (A.2)

where α(0) is the Regge intercept and α′ is the slope. Chew and Frautschi ver-
ified this linear relation by plotting the spins of hadrons versus their squared
masses t = M2 [10, 11]. Figure A.1 shows a typical Chew-Frautschi plot for
mesonic Regge trajectories; ρ, ω, f2 and a2 trajectories. These leading meson
trajectories are degenerate, and give almost the same intercepts of α(0) ≈ 0.5.
Note that the experimentally observed mesons and baryons appear to lie
on nearly linear and parallel Regge trajectories with α′ ≈ 0.9 GeV−2 and
α(0) ≲ 0.5.

Suppose that the amplitude A(l, t) has simple Regge poles at l = α(t),
then the amplitude A(s, t), as a function of s and t, has an asymptotic
form (s≫ |t|, s→ ∞):

A(s→ ∞, t) ∼ β(t)

Γ(α(t))

(
1 + ηe−iπα(t)

)
2 sin πα(t)

sα(t) (A.3)

where β(t) is the residue of Regge poles, Γ(x) is the gamma function, and
η is a signature that takes ±1. The signature η is introduced when partial
wave amplitudes Al(E) are analytically continued to the complex angular
momentum plane. This is because partial wave amplitudes Al(E) cannot be
represented by values of a single analytic function A(l, E) with the required
properties for all integer l, and the partial wave amplitudes with even and
odd spin l have to be treated separately. The signature is closely related
to the crossing properties of scattering amplitudes under the interchange of
s and u. Under the interchange s ↔ u, the amplitudes with η = +1 are
symmetric (even), while those with η = −1 are antisymmetric (odd). For
example, meson trajectories with even-spin (angular momentum) particles
correspond to even signature η = +1, whereas those with odd-spin particles
correspond to odd signature η = −1.
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Figure A.1: Relationship between squared mass and spin for various
mesons (A Chew-Frautschi plot). ρ, ω, f2 and a2 trajectories are degen-
erate. The figure is taken from Ref. [144].

The term sα(t) in Eq. (A.3) can be physically interpreted as the t-channel
exchange of an object with its angular momentum equal to α(t). This, of
course, not a physical particle since the angular momentum is not an inte-
ger (or half-integer) and is a continuous function of t. In the Regge picture,
whatever is exchanged is called a “Reggeon”. The t-channel exchange of a
Reggeon corresponds to the superposition of amplitudes for the exchange
of all possible particles in t-channel. On the other hand, β(t) contains all
the information on the coupling of a Reggeon to interacting particles. This
coupling depends only on t, and thus it leads to the “factorization” property.

If the scattering process under consideration is elastic, the asymptotic
behavior of the total cross section can be deduced from Eq. (A.3) by using
the optical theorem, so that

σtot ∼ 1

s
ImA(s, t = 0) ∼ sα(0)−1. (A.4)

Since all the known Regge trajectories have an intercept of α(0) ≲ 0.5, one
expects that the total cross section would fall down as a power of energy
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s−0.5. In fact, at
√
s < 10 GeV, the observed total cross sections for proton-

proton and proton-antiproton scattering decrease as the energy
√
s increases.

However, above the energy of
√
s ∼ 10 GeV, the total cross sections for both

pp and pp̄ collisions rise with increasing energy, which cannot be accounted
for by the exchange of any known Regge trajectories (see Fig. A.2).

As Regge theory was developing, Pomeranchuk proved a theorem, i.e. the
so-called Pomeranchuk theorem [145], which states that total cross sections
for collisions of a particle and the corresponding antiparticle on the same
target become asymptotically equal at high energies under the assumptions
that the cross sections are asymptotically constant and that the ratio of real
to imaginary parts of the forward scattering amplitude does not increase more
rapidly than ln s. Gribov introduced a new Regge trajectory which assures
these assumptions [14]. This new Regge trajectory, which we call “Pomeron
trajectory”, named after Pomeranchuk, has an intercept greater than but
nearly equal to unity, and carries the quantum numbers of the vacuum29.
The exchange of Pomeron trajectory accounts for slowly-rising total hadron-
hadron cross sections, as well as total photon-hadron cross sections.

A.2 Donnachie-Landshoff Pomeron model

Donachie and Landshoff analyzed high-energy hadron-hadron and photon-
hadron scattering data. They fitted various types of hadronic total cross
section data [17] by using the following formula:

σab
tot(s) = Xabsϵ + Y absη, (A.5)

where the first term represents the contribution from Pomeron trajectory,
and the second one the contribution from mesonic Regge trajectories such as
ρ, ω, f2 and a2 trajectories. ϵ = αP(0)−1 refers to the Pomeron intercept and
is positive, whereas η = αR(0) − 1 refers to the intercept of the degenerate
ρ, ω, f2 and a2 trajectories and is negative. The intercepts ϵ, η are the
universal ones, while the coefficients Xab, Y ab depend on the reaction types
ab → X(anything). Since a Pomeron carries the vacuum quantum number,
its couplings to a particle a and its antiparticle ā are the same, so that the
coefficients Xab and X āb should be equal. A simultaneous fit to pp and p̄p

29It has been proven that for a particular scattering process, if the total cross section
does not fall down as

√
s increases, then the process must be dominated by the exchange

of vacuum quantum numbers [15,16]
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data for
√
s > 10 GeV [Fig. A.2(a)], by requiring the same values of X, ϵ

and η, gives
ϵ = 0.0808 ⇒ αP(0) = 1.08 (A.6)

and
η = −0.4525 ⇒ αR(0) = 0.55. (A.7)

Fits to the other data by using the same values of ϵ and η and also requiring
that Xab = X āb are also shown in Figs. A.2(b)–(e). It is remarkable that a
simple parametrization given by Eq. (A.5) well describes total cross section
data for any reactions. Note that the obtained value of ϵ does not correspond
to a simple, single Pomeron pole, but is an effective power, incorporating
the effects of multiple Pomeron exchanges. It should be also noted here
that the single Pomeron exchange is obviously in conflict with the Froissart-
Martin bound30 [146, 147]. It is, however, believed that multiple Pomeron
exchanges could reduce the power ϵ effectively so as to meet the Froissart
bound, although it has not been proven yet from QCD.

The fits to the total cross section data reveal the following features of the
Pomeron exchange:

• Since a Pomeron carries the vacuum quantum numbers, the coefficients
Xab and X āb should be equal. This could be extended to the cases for
pp and pn data, namely Xpp = Xpn (flavor-blind). A fit to pn data
without this constraint gives Xpn = 22.15, which is almost equal to
Xpp.

• The ratio of the coefficients X for πp and pp scattering is equal to
0.63, which is very close to the value 2/3 of the “addictive quark rule”.
This means that a Pomeron couples to single quarks inside a hadron
separately, and that the total cross sections is, to a good approximation,
given by the sum of the quark-quark cross sections for each valence
quark of two colliding hadrons.

• The magnitude of the Pomeron contribution to Kp scattering is a little
less than that to πp scattering; namely, the coupling of a Pomeron to
a strange quark is about 70% of that to a light (u, d) quark.

30It has been proven individually by Froissart [146] and Martin [147] that the total cross
section for hadron-hadron collision can never grow with energy faster than ln2 s.
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Figure A.2: Total cross sections as a function of the total energy
√
s for

(a) p̄p and pp scattering, (b) π−p and π+p scattering, (c) K−p and K+p
scattering, (d) γp scattering, and (e) p̄n and pn scattering. Solid curves are
the fits to the data by Eq. (A.5). The figures are taken from Ref. [17].
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(a) (b)

Figure A.3: Differential cross sections for elastic (a) pp and (b) p̄p scatterings
as a function of the momentum transfer |t| at small |t| for

√
s = 53 GeV. Solid

curves represent a Pomeron exchange model including the Coulomb (photon)
exchange, which is responsible for a rise at very small |t|. The figures are
taken from Ref. [148].

To determine the Pomeron slope α′
P, elastic pp and p̄p scattering data were

also analyzed [18,148–150]. Since the Pomeron intercept αP(0) is nearly equal
to 1, the coupling of a Pomeron to a quark would be vector-like at small |t|,
so that the amplitude for quark-quark scattering can be written as

Aqq
P (s, t) ∼ CP(ū3γ

µu1)(ū4γµu2)

(
s

s0

)αP(t)

exp

(
− i

2
παP(t)

)
, (A.8)

where CP = s0β
2
P is a constant, which determines the strength of the Pomeron-

quark coupling, ui (ūi) denotes the Dirac spinors, γµ denotes the Dirac
gamma matrices, and s0 is an energy scale for long-distance strong inter-
actions, which is set to s0 = 1/α′

P
31. For pp and p̄p scattering, one needs to

consider the wave function of the valence quarks inside a nucleon, leading to
some form factor as a consequence of elastic scattering processes. The anal-
ogy of the Pomeron-quark coupling with the photon-quark coupling, i.e. a
γµ coupling, leads to the conjecture that this form factor would be the elastic
Dirac form factor F1(t) for proton

32, so that the differential cross sections for

31The energy scale s0 was originally taken to be the nucleon mass, but it was found that
this choice, i.e. s0 = (α′

P)
−1, gives a better description of p̄p scattering [148].

32There exist two kinds of form factor; the Dirac form factor F1(t) and the Pauli form
factor F2(t). These form factors have been measured in ep scattering, and the former is
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elastic pp and p̄p scattering at small |t| are given by

dσ

dt
=

[3βPF1(t)]
4

4π
(α′

Ps)
2(ϵP+α′

Pt), (A.9)

where a factor of 3 in the numerator arises from the addictive quark rule, and
ϵP = αP(0) − 1. The values of βP and ϵP are known from total cross section
data, so the only free parameter is α′

P. The value of α′
P was determined by

fitting small-|t| elastic pp and p̄p scattering data with Eq. (A.9) to be

α′
P = 0.25 GeV−2, (A.10)

as shown in Fig. A.3. Donnachie and Landshoff extended the formula of
Eq. (A.9) to larger |t| data, and found that the formula also works well [148].
Further, it was found that formulae such as Eq. (A.9) (i.e. a Pomeron couples
to a quark through a γµ coupling with a strength proportional to isoscalar
elastic form factors.), together with the parameters of Pomeron trajectory,
are also applicable to other high-energy reactions involving the Pomeron
exchange [150,152].

At small |t|, the differential cross sections for elastic pp and p̄p scattering
are often parametrized by an exponential form, namely (dσ/dt)0e

−b|t|, where
(dσ/dt)0 is the differential cross section at t = 0 and b is a slope parame-
ter. By comparing Eq. (A.9) with an exponential form, taking the natural
logarithm of them, and solving it with respect to b, then one obtains

b = 2b0 + 2α′
P ln (α

′
Ps), (A.11)

where b0 is the slope for the Dirac form factor |F1(t)|2 at small |t|. Eq. (A.11)
says that the slope b becomes larger as the energy s grows: this is just the
“shrinkage” mechanism of the forward peak, as mentioned in Sect. 1.2.

responsible for helicity-nonflip processes and the latter for helicity-flip processes. In ep
scattering, the exchanged particle is a photon, which has C = −1, not C = +1 for a
Pomeron. To overcome this, it is simply assumed that the C = +1 and C = −1 form
factors are the same. Further, it is assumed that the Pomeron exchange does not flip
the nucleon helicity because the isoscalar part of F2(t) (the sum of F2(t) for proton and
neutron), which is at t = 0 the sum of the anomalous magnetic moments of proton and
neutron, is small. In fact, the smallness of F2(t) for the Pomeron exchange was turned
out to be true [151]. For neutron, F1 is, by definition, 0 at t = 0, and remains small away
from t = 0. Accordingly, the form factor for the Pomeron-nucleon vertex is the F1(t) for
proton.
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A.3 Pomeron and glueball trajectories

According to Regge theory, Regge trajectories describing scattering pro-
cesses should be also connected to physical hadron states. In fact, as you
can see from Fig. A.1, all the experimentally observed hadronic resonances
(both mesons and baryons) belong to Regge trajectories with an universal
slope of α′ ≈ 0.9 GeV2 but a different intercept of α(0) ≲ 0.5. Therefore, one
question naturally arises: what are the physical particles lying on Pomeron
trajectory?

Since the Pomeron slope (α′
P = 0.25 GeV−2) is quite different from the

universal ones for meson trajectories, the physical particles on Pomeron tra-
jectory cannot be associated with the usual flavor-singlet mesons. This leads
to one conjuncture that the physical particles on Pomeron trajectory would
be gluonic objects. The signature of Pomeron trajectory must be even be-
cause the signature term in Eq. (A.3), which determines the phase of the
amplitude, with odd signature η = −1 has zero imaginary part at t = 0.
This can be verified by rewriting the signature term as

(
1 + ηe−iπα(t)

)
2 sin πα(t)

=


cos

πα(t)
2

−i sin
πα(t)

2

2 sin
πα(t)

2

(η = +1)

sin
πα(t)

2
+i cos

πα(t)
2

2 cos
πα(t)

2

(η = −1),
(A.12)

and substituting αP(t) = 1 (t → 0). Thus, the lowest physical state would
be a tensor (JPC = 2++) glueball33 with a mass of M ∼ 2 GeV.

Interestingly, there are some experimentally observed tensor (JPC = 2++)
states around a mass of 2 GeV: e.g., f2(1950) and fJ(2220). While f2(1950) is
a well-established state [153] and is located very close to Pomeron trajectory
in the M2–J plane (a Chew-Frautschi plot), fJ(2220), alternatively known
as ξ(2230), is of particular interest for some reasons: (i) Its mass is well
consistent with lattice QCD calculations for the tensor glueball [50–56]. (ii)
A narrow decay width of ∼ 23 MeV cannot be explained by qq̄ mesons, multi-
quark states and qq̄g hybrids, and is consistent with a naive estimate of the
width for a tensor glueball (∼ 20 MeV) [154]. (iii) The decays of fJ(2220) to
K+K−, π+π− and π0π0 are flavor-symmetric [155,156]. (iv) The coupling of
fJ(2220) to a photon is very small34 [157]. These experimental facts naturally

33A state with J = 0 is not a physical particle and would belong to its daughter trajec-
tories because M2 = −αP(0)/α

′
P < 0 for J = αP(t = M2) = 0

34Since gluons have no intrinsic charge, their coupling to a photon should be small.
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lead to the expectation that fJ(2220) may be the lightest tensor glueball,
although positive results were obtained solely from the radiative decays of
J/ψ [155,156,158] but none from pp̄ annihilation (see Ref. [159] and therein).
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Appendix B Detector calibration

Physical quantities such as the time-of-flight and momentum of forward-
going charged particles were obtained from raw data through an off-line anal-
ysis program with appropriate input parameters. In this appendix, the cal-
ibration for each detector system (the tagging counters, the TOF counters
and the DCs) is described.

B.1 TOF calibration

A time-of-flight (∆TTOF) is given by the time difference between start
time (Tstart) and stop time (Tstop) as

∆TTOF = Tstop − Tstart. (B.1)

In the LEPS experiment, Tstop is obtained from the timing information of the
TOF counters, whereas Tstart is obtained in two different ways: the one uses
the timing information of the RF signals (TRF

start, and ∆TRF
TOF ≡ TRF

stop − Tstop),
and the other uses the timing information of the FWD counters (TFWD

start , and
∆TFWD

stop ≡ TFWD
stop −Tstart ). The former one provides a better timing resolution

due to a good timing resolution of the RF signals (12 ps).
Since the circulating electrons are bunched according to the RF signal, the

collision time of a laser photon and an electron, i.e., the arrival time of a BCS
photon at the target35, is synchronized with the RF signal. Therefore, one
can use the timing information of the RF signal as start timing. Figure B.1(a)
shows a scatter plot for the ADC channel of TAG-PL versus the difference
between the TDC channels of the RF signal and TAG-PL. There exist loci
with an interval of ∼ 40 channels, corresponding to the time interval of
successive electron bunches (∼ 2 ns). You also see a correlation between the
ADC and TDC channels. To obtain a better separation between two adjacent
loci, a time-walk correction was applied to the TDCs of each TAG-PL counter
as follows:

TTAG-PL =

(
TDCTAG-PL −

P1√
ADCTAG-PL

− P2

ADCTAG-PL

− P3

)
× 0.025, (B.2)

35The speed of light c is constant. Therefore, the collision time and the arrival time are
equivalent.
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where TDCTAG-PL and ADCTAG-PL represent the TDC and ADC channels
of a TAG-PL counter, respectively, P1 and P2 are free parameters, and
P3 is an offset to compensate for differences in TDC channel between every
counters, being also a free parameter. A factor of 0.025 represents the timing
resolution of TDC modules (0.025 ns/ch). Figure B.1(b) shows a scatter
plot for the ADC channel of TAG-PL versus the TDC difference between
the RF signal and TAG-PL after the correction. The correlation between
the ADC and TDC channels disappears. The timing resolution of TAG-PL
was evaluated by projecting the two-dimensional plot [Fig. B.1(b)] onto the
x-axis and fitting a peak with a Gaussian function. Figure B.2 shows the
timing resolution of TAG-PL. A timing resolution of < 300 ps was achieved
for all slats, and is good enough for distinguishing an individual electron
bunch (≲ 400 ps).
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Figure B.1: Scatter plots for the ADC channel of TAG-
PL (ADCTAG-PL) versus the TDC difference between the RF signal and
TAG-PL (∆TDCRF−TAG-PL = TDCRF − TDCTAG-PL) (a) before and (b)
after a time-walk correction. One channel of the TDC channels corresponds
to 0.025 ns.

To obtain a good resolution in time-of-flight measurements, a time-walk
correction was also applied to the TOF counters. For this correction, charged-
pion tracks were selected as |pm2 | < 0.15 GeV2, where pm2 represents the
square of the reconstructed mass by the LEPS spectrometer. Once a pion
track is selected, the time-of-flight between the reaction vertex point and the
TOF wall can be calculated from the track information (the momentum and
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Figure B.2: Timing resolution σ (nsec) of TAG-PL.

path length of a track) as

∆T trk
TOF = L×

√
p2 +m2

π

|p|
, (B.3)

where L is the flight length between the reaction vertex and the TOF wall,
p is the 3-momentum of a pion track and mπ is the pion mass. Since the
timing resolution of ∆T trk

TOF is much better than that of ∆TRF
TOF

36, ∆T trk
TOF can

be used as a timing reference. A correction function for the TOF counters is
given by

∆TRF; cor.
TOF =∆TRF

TOF

−

P1 +
P2√

ADC top
TOF

+
P3√

ADC bot.
TOF

× 0.025, (B.4)

where ADC top
TOF and ADC bot.

TOF represent the ADC channels of the top and
bottom PMTs, respectively, P1 , P2 and P3 are free parameters, and a factor
of 0.025 represents the timing resolution of TDC modules. Figures B.3(a) and
(b) show correlation plots between the time difference (= ∆TRF

TOF −∆T trk
TOF)

36For typical 1 GeV/c pions, the momentum resolution of the LEPS spectrometer is
δp/p ∼ 0.9%. Therefore, the timing resolution of ∆T trk

TOF is estimated from Eq. (B.3) to
be ∼ 3 psec for 1 GeV/c pions.
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and the ADC channel of the top/bottom PMT before and after the correction,
respectively. You see no correlation between the ADC channel and the time
difference after the correction. Figure B.4 shows the timing resolution of the
TOF counters, which was evaluated from one-dimensional distributions of
the time difference. A typical timing resolution of the TOF counters was
estimated to be ∼ 150 ps.
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Figure B.3: Correlation between the time difference and the ADC channel
of the top/bottom PMT (left/right figures) for the TOF counter (a) before
and (b) after a time-walk correction.

A time offset for time-of-flight (∆TRF
TOF) measurements, a so-called t0

parameter, was determined so that the square of the reconstructed mass for
pion tracks peaked at the nominal value independently of the momentum.
Figure B.5(a) and (b) show the run dependence of the peak position of the
reconstructed mass squared for pion and proton tracks, respectively. For
all the runs, the peak positions for pion and proton tracks are close to the
nominal values (0.02 and 0.88 for pions and protons, respectively).

The timing information of the FWD counters were also used as start tim-
ing in time-of-flight measurements instead of that of the RF signals. There-
fore, a time-walk correction, as well as the adjustment of t0 parameters, was
made in the same manner as those for the TOF counters. Figures B.6(a) and
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Figure B.4: Timing resolution of the TOF counters.

(b) show correlation plots between the time difference (= ∆TFWD
TOF −∆T trk

TOF)
and the ADC channel of the left/right PMT before and after the correc-
tion, respectively. Obviously, a correlation disappears after the correction.
The timing resolution of ∆TFWD

TOF was evaluated by fitting a one-dimensional
distribution of the time difference with a Gaussian function. Table B.1 sum-
marizes the timing resolution of ∆TFWD

TOF , together with the intrinsic reso-
lution of the FWD counters. The FWD counters have a good timing res-
olution (∼ 150 ps) as a trigger counter. The t0 parameters for the FWD
counters were determined so that a distribution of the time difference be-
tween ∆TFWD

TOF and ∆T trk
TOF peaked at zero after the time-walk correction.

Figure B.7(a) and (b) show the run dependence of the mean value of the
time difference (= ∆TFWD

TOF − ∆T trk
TOF) for the FWD counters #1 and #2,

respectively.

Table B.1: Timing resolution of ∆TFWD
TOF (σFWD

TOF ) and the intrinsic timing
resolution of the FWD counters (σFWD

intr ). The intrinsic resolution is estimated
by assuming the intrinsic resolution of the TOF counters to be 150 ps.

FWD ID σFWD
TOF (ps) σFWD

intr (ps)
#1 225± 3 167
#2 211± 3 148
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Figure B.5: Run dependence of the peak position of the reconstructed mass
squared (a) for pion and (b) proton tracks.
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Figure B.6: Correlation between the time difference and the ADC channel
of the left/right PMT (left/right figures) for the FWD counter (a) before and
(b) after a time-walk correction.
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Figure B.7: Run dependence of the mean value of the time difference (=
∆TFWD

TOF −∆T trk
TOF) for the FWD counters (a) #1 and (b) #2.

B.2 DC calibration

The trajectories of forward-going charged particles were reconstructed
from the hit information of the multi-wire drift chambers (DC0, DC1, DC2
and DC3). To obtain hit-positions, the leading edge timing of the signals
from fired wires was collected. A drift time tdrift was determined from the
time difference between a timing offset T0 and leading edge timing T , which
is given by

tdrift = −(T − T0)× 0.5 ns/ch. (B.5)

A drift length was calculated from the drift time tdrift through a x-t func-
tion (curve), which is given by

xdrift = c1tdrift + c2t
2
drift + c3t

3
drift, (B.6)

where c1, c2 and c3 are the parameters for a x-t curve to be determined. The
timing offsets T0 were determined channel by channel (wire by wire), whereas
the x-t curves (c1, c2 and c3) were determined plane by plane.

Figure B.8 shows a typical TDC distribution of the DCs. The edge of the
distribution corresponds to the timing offset T0. The offsets T0 for each wire
were determined by fitting the TDC distributions with an error function (a
Gaussian-convoluted step function), as indicated by a blue curve in the figure.

The x-t curves for each plane were determined from a relation between the
drift time calculated by Eq. (B.5) and the drift length obtained from tracks.
Here, a track fit was performed without the corresponding plane. According
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to Ref. [112], the x-t curves were made for six incident angles of tracks,
θtrk, to obtain a better spatial resolution: 0 ≤ θtrk < 5◦, 5 ≤ θtrk < 10◦,
10 ≤ θtrk < 15◦, 15 ≤ θtrk < 20◦, 20 ≤ θtrk < 25◦ and θtrk ≥ 25◦. Figure B.9
shows a typical correlation plot between the drift length and the drift time.
The parameters c1, c2 and c3 were determined by fitting such correlation
plots with Eq. (B.6), as indicated by a blue curve in the figure.

The spacial resolution of the DCs was estimated plane by plane with
the same method as described in Ref. [112]: let us consider, as an example,
the intrinsic resolution for the DC1X1 plane (σX1). The width of the resid-
ual (σres) between the drift length determined from the TDC information
and that from a track37 is given by

σres =
√
σ2
X1 + σ2

trk, (B.7)

where σtrk represents a width due to track fits. Since σtrk is common to
the paired X1 and X2 planes (see Fig. 3.9 in Ref. [112]), its contribution
could be canceled out by calculating the difference between the residuals for
the X1 and X2 planes event by event. Consequently, the width of such a
distribution (σdiff) is given by

σdiff =
√
σ2
X1 + σ2

X2, (B.8)

where σX2 is the intrinsic resolution for the X2 plane. By assuming that
σX1 = σX2, Eq. (B.8) can be rewritten as

σX1 =
1√
2
σdiff. (B.9)

Thus, an approximate value of σX1 can be obtained from the data. On the
other hand, σtrk can be evaluated by MC simulation with the approximate
value of σX1 as an input. As a result, σX1 can be calculated by Eq. (B.7). Note
that the resolutions for the planes which have no paired plane (i.e. DC1X3
and the V-planes) were evaluated in a different way38 after the evaluations for
the X- and U-planes. Figure B.10 shows the intrinsic resolution for each plane
for two different periods (2008B and 2009A cycles). A spacial resolution of

37Of course, a track fit is performed without the corresponding plane (i.e., DC1X1)
38The widths σtrk for DC1X3 and all the V-planes were evaluated simultaneously by

MC simulation, in which the corresponding planes are not used in track fits. The intrinsic
resolutions for each plane can be then calculated by Eq. (B.7)
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≲ 250 µm was achieved for all the planes, which is consistent with the LEPS
2006/2007 data [112].

The run dependence of the width (σ) of the residual distributions for
various DC planes is shown in Fig. B.11. Note that the corresponding plane
was included in the track fits for this evaluation. Figure B.12 shows the run
dependence of the mean value of a χ2 probability distribution in track fits.
A mean value of ≳ 0.5 is achieved for all runs.
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bution in track fits.
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Appendix C DC alignment

The alignment parameters for the DCs were basically determined from
e+e− data without the magnetic field, which were taken before and after the
experiment. During the experiment, however, DC0 and DC1 were moved
twice to repair DC1. Therefore, the alignment parameters for DC0 and DC1
were tuned using the LH2 data with the magnetic field.

The relative shifts and rotations for each wire plane were tuned by requir-
ing the mean values of the residual distributions for each wire plane to be
close to zero, whereas the global positions and rotations for each drift cham-
ber (DC0 and DC1) were tuned by looking at the missing-mass peaks for
the p(γ,K+)Λ(1116), p(γ,K+)Σ(1192), p(γ,K+)Λ(1520) and p(γ, π+π−)p
reactions. Figures C.1(a) and (b) show two-dimensional plots for the recon-
structed mass squared versus the momentum, together with the boundaries
for the kaon and pion identifications, respectively. In the kaon/pion identi-
fication, the square of the reconstructed mass was required to be within the
±3σ regions, where σ is the momentum-dependent resolution of the recon-
structed mass squared. For the kaon identification, besides the momentum-
dependent boundaries, a boundary between pions and kaons was set at
0.16 GeV2/c4 as a straight line in order to reduce the pion contamination
in a high-momentum region. Figures C.2(a) and (b) show missing mass dis-
tributions for the p(γ,K+)X and p(γ, π+π−)X reactions, respectively. Clear
peaks for Λ/Σ resonances and protons are seen.

Figures C.3(a) and (b) show the peak positions of the Λ(1116), Σ(1192)
and Λ(1520) hyperons as a function of the x and y-positions at DC1, re-
spectively. Here, the peak positions for Λ(1116) and Σ(1192) were obtained
simultaneously by fitting the spectra with two Gaussians plus a linear func-
tion, whereas the peak position for Λ(1520) was obtained together with that
for Λ(1405)/Σ(1385) by the fits with two Gaussians plus a linear function.
Figures C.4(a) and (b) show the peak position of protons as a function of the
x and y-positions at DC1, respectively. The proton peak position was ob-
tained by fitting the spectra with a Gaussian plus a linear function. To check
the effects on positive-charged and negative-charged particles separately, it
was required that |p+| > 2|p−| (|p−| > 2|p+|) for the position dependence
of π+ (π−), where p+ (p−) represents the 3-momentum of π+ (π−). There is
no position dependence, and the peak positions for the hyperon resonances
and protons are consistent with the PDG values.

Figure C.5(a) shows the peak positions of Λ(1116), Σ(1192) and Λ(1520)
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as a function of the K+ momentum, whereas Fig. C.5(b) shows the peak
position of protons as a function of the π+/π− momentum. No momentum
dependence is found, and all the peak positions are almost consistent with
the PDG values within ±1 MeV/c2.
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Figure C.1: PID boundaries for (a) kaons and (b) pions in scatter plots for
the momentum versus the reconstructed mass squared (pm2 ). A PID cut
for kaons with this boundaries is applied after roughly selecting kaons by
PID-FWD.
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Figure C.3: Peak positions of Λ(1116), Σ(1192) and Λ(1520) as a function of
(a) the x-position and (b) the y-position at DC1. The values on the vertical
axis are those after subtracting the PDG values. Horizontal dash-dotted lines
correspond to a ±1 MeV/c2 deviation from the PDG value.

-0.04

-0.02

0

0.02

0.04

-200 0 200
x-pos (mm) at DC1

M
ea

n
 -

 P
D

G
 (

G
eV

/c
2 ) (a) π+

π-

-0.04

-0.02

0

0.02

0.04

-100 0 100
y-pos (mm) at DC1

M
ea

n
 -

 P
D

G
 (

G
eV

/c
2 ) (b) π+

π-

Figure C.4: Peak positions of protons as a function of (a) the x-position and
(b) the y-position at DC1 for π+ and π− tracks. The values on the vertical
axis are those after subtracting the PDG values. Horizontal dash-dotted lines
correspond to a ±1 MeV/c2 deviation from the PDG value.

169



C DC ALIGNMENT

-0.04

-0.02

0

0.02

0.04

0.5 1 1.5 2
Momentum (GeV/c)

M
ea

n
 -

 P
D

G
 (

G
eV

/c
2 ) (a) Λ(1116)

Σ(1192)
Λ(1520)

-0.04

-0.02

0

0.02

0.04

0.5 1 1.5 2
Momentum (GeV/c)

M
ea

n
 -

 P
D

G
 (

G
eV

/c
2 ) (b) π+

π-

Figure C.5: (a) Peak positions of Λ(1116), Σ(1192) and Λ(1520) as a func-
tion of the K+ momentum. (b) Peak position of protons as a function of the
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Appendix D Photon energy resolution

The photon energy resolution was estimated as follows: let us consider the
difference between the photon energy determined by the tagging system (Eγ)
and that calculated by Eq. (3.8) or (3.9) (Ecal

γ ):

∆Eγ = Eγ − Ecal
γ . (D.1)

Here, the difference is calculated event by event. Then the width of the
distribution of Eq. (D.1) is given by

σ∆Eγ =
√
σ2
Eγ

+ σ2
Ecal

γ
, (D.2)

where σEγ is the photon energy resolution, and σEcal
γ

is the resolution for the

photon energy obtained from the p(γ,K+)Λ(1116) or p(γ, π+π−)p reaction,
which can be estimated by MC simulation. Here, σ∆Eγ can be evaluated
from the LH2 data, so the photon energy resolution σEγ can be obtained
from Eq. (D.2). In principle, σEγ is determined by the size (width) of scintil-
lation fibers, and should be independent of the photon energy. On the other
hand, σEcal

γ
depends on the momentum of K+ or the π+π− system, in other

words, the photon energy [see Eqs. (3.8) and (3.9)]. Therefore, the intrinsic
resolutions of the DCs (Appendix B.2) were worsened so that the photon
energy dependence of σEγ became flat.

Figure D.1(a) shows the σ∆Eγ obtained from the p(γ,K+)Λ(1116) reac-
tion and the σEcal

γ
estimated by MC simulation as a function of the pho-

ton energy. Figure D.1(b) shows the photon energy resolution calculated by
Eq. (D.2) as a function of the photon energy. A flat dependence was obtained
by worsening the intrinsic resolutions of the DCs by 30%. By averaging the
obtained resolutions over the photon energy, the photon energy resolution
was estimated to be 13.54 ± 0.05 MeV. Figures D.2(a) and (b) show the
same plots for the p(γ, π+π−)p reaction. In this case, a flat dependence was
also obtained by worsening the intrinsic resolutions of the DCs by 30%. The
average photon energy resolution was calculated to be 13.35 ± 0.06 MeV,
which is consistent with that obtained from the p(γ,K+)Λ(1116) reaction.

In MC simulation, the photon energy resolution was set to σEγ = 13.5 MeV.
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Figure D.1: (a) The σ∆Eγ obtained from the p(γ,K+)Λ(1116) reaction (red
open circles) and the σEcal

γ
estimated by MC simulation (blue open squares)

as a function of the photon energy. (b) Photon energy resolution as a function
of the photon energy. A blue line corresponds to the average value (13.54±
0.05 MeV).
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Figure D.2: The σ∆Eγ obtained from the p(γ, π+π−)p reaction (red open
circles) and the σEcal

γ
estimated by MC simulation (blue open squares) as a

function of the photon energy. (b) Photon energy resolution as a function
of the photon energy. A blue line corresponds to the average value (13.35±
0.06 MeV).
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Appendix E DC efficiency

The efficiencies of the multi-wire drift chambers were evaluated channel
by channel (wire by wire) from the data, and were taken into account in MC
simulation.

The efficiency for the i-th wire of the a-plane is defined as

Efficiency =

(Number of hits in the i-th wire, judged from TDC info.)

(Number of hits in the i-th wire, predicted from tracks)
. (E.1)

To select “good” events, it was required that ntrk = 1, noutl = 0, prbchi2 >
0.02 and |ybar | > 30 mm.

Figure E.1 shows the efficiencies of the wires in each DC planes for dif-
ferent data-taking periods (2008B and 2009A cycles). There is no significant
difference between the data for two data-taking periods. Note that for the
wires outside the spectrometer acceptance or those near the edge of the ac-
ceptance, the averaged value of the efficiencies for the corresponding plane
was taken as an efficiency in MC simulation.
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show the data for the 2008B and 2009A cycles, respectively.
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Appendix F Missing mass resolution

The missing mass resolutions for the p(γ,K+)Λ(1116), p(γ,K+)Σ(1192),
p(γ,K+)Λ(1520), p(γ, π+π−)p and p(γ,K+K−)p reactions were evaluated
with the LH2 data, and were compared with those obtained by MC simula-
tions. Here, the photon energy resolution was set to 13.5 MeV in MC simu-
lations (see Appendix D). As for the DC spatial resolutions, 30%-worsened
values of the intrinsic resolutions were taken (see Appendices B.2 and D).

Figures F.1(a), (b), (c), (d) and (e) show the missing mass resolutions
for the p(γ,K+)Λ(1116), p(γ,K+)Σ(1192), p(γ,K+)Λ(1520), p(γ, π+π−)p
and p(γ,K+K−)p reactions, respectively, as a function of the photon energy.
The MC data well reproduce the missing mass resolutions for all reactions.
This validates the estimation of the photon energy resolution as well as the
intrinsic spacial resolutions of the DCs (Appendices B.2 and D). In particu-
lar, the missing mass resolution for the p(γ,K+K−)p reaction was found to
be 12–14 MeV/c2, which is important for reproducing missing mass distri-
butions for the 4He(γ,K+K−)X reaction.

By extending these MC studies to the case of a 4He target, the missing
mass resolution for the 4He(γ,K+K−)4He reaction was estimated. Figure F.2
shows the missing mass resolution for the 4He(γ,K+K−)4He reaction as a
function of the photon energy. The missing mass resolution was found to be
14–17 MeV/c2 in this case. The difference of the missing-mass resolutions
between the γp and γ4He reactions reflects the difference of the kinematics
between the two reactions39.

39In the γ4He → K+K−4He reaction, the recoil momenta of 4He nuclei are smaller due
to the heavier target mass, compared to those in the γp → K+K−p reaction. This results
in larger momenta of K+K− pairs.
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Figure F.1: Missing mass resolution for the (a) p(γ,K+)Λ(1116),
(b) p(γ,K+)Σ(1192), (c) p(γ,K+)Λ(1520), (d) p(γ, π+π−)p and (d)
p(γ,K+K−)p reactions as a function of the photon energy. Red open cir-
cles show the results for the LH2 data, whereas blue open squares show the
results for MC simulations.

176



F MISSING MASS RESOLUTION

0

0.01

0.02

0.03

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
Photon energy (GeV)

R
es

o
lu

ti
o

n
 (

σ)
 (

G
eV

/c
2 )

Figure F.2: Missing mass resolution for the 4He(γ,K+K−)4He reaction as
a function of the photon energy. The data were obtained by MC simulation.
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Appendix G Correction for reconstructed z-

vertex position

In this appendix, a correction for the reconstructed z-vertex position is
described.

Figure G.1(b) shows distributions of the reconstructed z-vertex position of
two opposite-charged particles with the empty-target data. Each colored his-
togram corresponds to two different types of the track configurations (cases-1
and 2), respectively, as shown in Fig. G.1(a). Peaks around z = −1600 mm
correspond to the CFRP cap just downstream of the target cell. A clear shift
can be seen between the CFRP peaks for cases-1and 2. This is due to an
imperfect magnetic field map. In fact, a shift becomes lager when a construc-
tive interference region of the solenoid and dipole magnetic fields (ydc0 < 0,
where ydc0 represents the y-coordinate of a track at DC0) is selected. To
obtain a better z-vertex resolution, a reconstructed z-vertex position was
corrected event by event according to the track configuration. The correc-
tions for the reconstructed z-vertex position for several track configurations
are summarized in Table G.1.

Negative (-) Positive (+)
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Positive (+)
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Figure G.1: (a) Configurations for two tracks with opposite charges (cases
1and 2). (b) Reconstructed z-vertex position of two opposite-charged par-
ticles for case-1 (red) and case-2 (blue) with the empty-target data. Peaks
around z = −1600 mm correspond to the CFRP cap just downstream of the
target cell.
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Table G.1: Corrections for the reconstructed z-vertex positions. The first
four rows represent those for one-track events, and the others for two-
track events. xdc0 (+/−) [ydc0 (+/−)] represents the x (y) position of a
positive/negative-charged track at DC0.

Configuration Selection z-correction (mm)
Conf#1 (1trk) xdc0 (+) > 0, ydc0 (+) > 0 0
Conf#2 (1trk) xdc0 (+) ≦ 0, ydc0 (+) > 0 26.7
Conf#3 (1trk) xdc0 (+) ≦ 0, ydc0 (+) ≦ 0 3.6
Conf#4 (1trk) xdc0 (+) > 0, ydc0 (+) ≦ 0 −14.7

Conf#1 (2trk)
ydc0 (+) > 0, ydc0 (−) > 0

0
xdc0 (+) > xdc0 (−)

Conf#2 (2trk)
ydc0 (+) > 0, ydc0 (−) > 0

7.1
xdc0 (+) ≦ xdc0 (−)

Conf#3 (2trk)
ydc0 (+) ≦ 0, ydc0 (−) ≦ 0 −4.8

xdc0 (+) > xdc0 (−)

Conf#4 (2trk)
ydc0 (+) ≦ 0, ydc0 (−) ≦ 0

3.5
xdc0 (+) ≦ xdc0 (−)

Conf#5 (2trk)
ydc0 (+) > 0, ydc0 (−) ≦ 0 −3.9

xdc0 (+) > xdc0 (−)

Conf#6 (2trk)
ydc0 (+) > 0, ydc0 (−) ≦ 0

4.2
xdc0 (+) ≦ xdc0 (−)

Conf#7 (2trk)
ydc0 (+) ≦ 0, ydc0 (−) > 0 −2.3

xdc0 (+) > xdc0 (−)

Conf#8 (2trk)
ydc0 (+) ≦ 0, ydc0 (−) > 0

0.8
xdc0 (+) ≦ xdc0 (−)
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Figure G.2: Reconstructed z-vertex position for π+π− tracks with the
empty-target-data after the correction (a black solid-line histogram). A red
dashed-line histogram represents a MC-simulated z-vertex distribution for
π+π− tracks from the CFRP cap. Note that in MC simulation, π+π− were
generated by assuming the non-resonant π +π− production on free protons.

Figure G.2 shows a distribution of the reconstructed z-vertex position for
π+π− tracks with the empty-target data after the correction. For comparison,
a MC-simulated z-vertex distribution for π+π− tracks is overlaid in the same
figure. The CFRP peak in the empty-target data is well reproduced by the
MC-simulated distribution, and thus the z-vertex resolution is understood
well.
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Appendix H K+K− event loss

We estimated the K+K− event loss in the kaon identification due to the
failure in solving the 2-ns ambiguity. The result is presented here.

As described in Sect. 3.6, while the contamination of pions and protons
can be removed by the PID cuts and the MM(K+K−) cut, some of the
K+K− events are lost if one fails to solve the 2-ns ambiguity. The rate
of such events was estimated by comparing the π0 yields in the p(γ, p)π0

reaction obtained with two PID methods; namely, the proton identification
was made individually by PID-RF and PID-FWD, the π0 yields with each
PID method were obtained as a function of the proton momentum, and were
compared with each other40. Here, a π0 loss rate (Rloss) is defined as

Rloss =
NFWD −NRF

NFWD

, (H.1)

where NRF (NFWD) is the π
0 yield obtained with PID-RF (PID-FWD). Note

that Rloss is equivalent to the loss of proton events in the proton identification
due to the failure in solving the 2-ns ambiguity.

Figures H.1(a1) and (a2) show the boundaries for the proton identification
with PID-RF and PID-FWD, respectively. The boundaries for both the PID
cuts were set to 4σ, where σ is the momentum-dependent mass resolution.
Figure H.1 (b) shows squared missing mass spectra for the p(γ, p)X reaction
with PID-RF and PID-FWD, respectively. A clear peak for the π0 production
is seen around a squared mass of 0.02 GeV2/c4. The π0 yields were obtained
by fitting the squared missing mass spectra with two MC templates; the one
for the π0 production and the other for the non-resonant π+π− production.

Figure H.1(c) shows the π0 loss rate (Rloss) as a function of the proton
momentum. The π0 loss rate increases slightly with the proton momen-
tum but is less than 5%. By extrapolating it to a relevant momentum re-
gion (∼ 1 GeV/c), the rate of the K+K− event loss was estimated to be
3%. Since the event loss rate depends on the filling patterns of the electron
bunches, the differences in Rloss between the filling patterns were assigned to
the systematic error (1%).

40The proton identification with PID-FWD is an easy task because a proton band is
well separated from pion and kaon bands in a scatter plot of momentum versus squared
mass. Therefore, the proton sample obtained with PID-FWD can be used for estimating
the event loss in PID-RF due to the failure in solving the 2-ns ambiguity.
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Figure H.1: (a1) Scatter plots (momentum vs mass squared) for the proton
identification with PID-RF and (a2) PID-FWD. Black curves correspond
to boundaries for a 4σ cut. (b) Distributions of the square of the missing
mass for the p(γ, p)X reaction with the LH2 data. Black solid and red dashed
histograms represent the missing mass squared with PID-RF and PID-FWD,
respectively. (c) π0 loss rate (Rloss) as a function of the proton momentum.
A blue line represents the fit to the data with a linear function. As a result,
the π0 loss rate was obtained as a function of the proton momentum: Rloss =
−0.0310− 0.0018 · p, where p is the proton momentum in unit of GeV/c.
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MEASUREMENTS

Appendix I Consistency check with previous

LEPS measurements

To check the validity of the acceptance calculation as well as the nor-
malization of the photon flux, the differential cross sections for the γp →
K+Λ(1116), γp → K+Σ(1192), γp → π0p and γp → ϕp reactions were cal-
culated with the LH2 data, and were compared with the the results obtained
in the previous LEPS measurements [85,128,129].

Differential cross section for γp→ K+Λ(1116)/Σ(1192) re-
action

The differential cross sections for the γp → K+Λ(1116)/K+Σ(1192) re-
actions were calculated at three production angles; 0.85 < ΘCM

K+ < 0.90,
0.90 < ΘCM

K+ < 0.95 and 0.95 < ΘCM
K+ < 1.00, where ΘCM

K+ denotes the
K+ production angle in the center-of-mass frame. The yields for Λ(1116)
and Σ(1192) were simultaneously obtained by fitting the missing mass spec-
tra for the p(γ,K+)X reaction with two signal templates and one back-
ground template. Here, the source of background events was found to be
the γp → π+π−p reaction with the π+ detection as a K+. The signal tem-
plates were obtained by MC simulations, whereas the background template
was obtained from the missing mass spectra for the p(γ., π+)X reaction in
real data. The contamination of the events from the CFRP cap of the target
chamber was estimated with the empty-target data. The acceptance was
calculated by MC simulations, in which a K+ was assumed to be produced
isotropically in the center-of-mass frame. Figures I.1(a), (b) and (c) show the
differential cross sections dσ/d(cosΘ) for the γp → K+Λ(1116) reaction as
a function of the photon energy at each production angle, together with the
LEPS 2006 results [128]. Figures I.2(a), (b) and (c) show the differential cross
sections dσ/d(cosΘ) for the γp → K+Σ(1192) reaction as a function of the
photon energy at each production angle, in comparison with the LEPS 2006
results [128]. The present results for both reactions are in good agreement
with the previous LEPS results.
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Differential cross section for γp→ π0p reaction

The differential cross sections for the γp → π0p reaction were calculated
at four production angles; −0.85 < ΘCM

π0 < −0.80, −0.90 < ΘCM
π0 < −0.85,

−0.95 < ΘCM
π0 < −0.90 and −1.00 < ΘCM

π0 < −0.95, where ΘCM
π0 denotes

the π0 production angle in the center-of-mass frame. The π0 yields were
obtained by fitting the missing mass spectra for the p(γ, p)X reaction with
two MC templates: the one for the π0 production and the other for the
non-resonant π+π− production. The event contamination from the CFRP
cap of the target chamber was estimated with the empty-target data. The
acceptance was calculated by MC simulation, in which a π0 was assumed to
be produced isotropically in the center-of-mass frame. Figures I.3(a), (b),
(c) and (d) show the differential cross sections dσ/d(cosΘ) for the γp→ π0p
reaction as a function of the photon energy at each production angle, together
with the LEPS 2007 results [128]. The present results are in good agreement
with the previous LEPS results.

Differential cross section for γp→ ϕp reaction

The differential cross sections dσ/dt for the γp → ϕp reaction were cal-
culated at 0.0 < |t|− |t|min < 0.1 GeV2 as a function of photon energy. Here,
|t|min is the minimum momentum transfer |t| for protons. The ϕ-meson yields
were obtained by fitting the invariant mass spectra of K+K− pairs with two
MC templates: the one for the ϕ-meson events and the other for the non-
resonant K+K− production. The event contamination from the CFRP cap
of the target chamber was estimated in the same manner as described in
Sect. 3.6. The acceptance was calculated by MC simulation, in which the
slope of dσ/dt and the spin density matrix elements were set to the values
obtained in the previous LEPS measurement [85]. Figure I.4 shows the com-
parison of dσ/dt at 0.0 < |t| − |t|min < 0.1 GeV2 between the present results
and the LEPS 2005 ones [85]. The present results are consistent with the
previous LEPS results.
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Figure I.1: Differential cross sections dσ/d(cosΘ) for the γp→ K+Λ(1116)
reaction as a function of the photon energy at (a) 0.85 < ΘCM

K+ < 0.90, (b)
0.90 < ΘCM

K+ < 0.95 and (c) 0.95 < ΘCM
K+ < 1.00. Red circles shows the results

for the present analysis, and blue ones show the results for the LEPS 2006
data [128].
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Figure I.2: Differential cross sections dσ/d(cosΘ) for the γp→ K+Σ(1192)
reaction as a function of the photon energy at (a) 0.85 < ΘCM

K+ < 0.90, (b)
0.90 < ΘCM

K+ < 0.95 and (c) 0.95 < ΘCM
K+ < 1.00. Red circles shows the results

for the present analysis, and blue ones show the results for the LEPS 2006
data [128].
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Figure I.3: Differential cross sections dσ/d(cosΘ) for the γp→ π0p reaction
as a function of the photon energy at (a) −0.85 < ΘCM

π0 < −0.80, (b) −0.90 <
ΘCM

π0 < −0.85, (c) −0.95 < ΘCM
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π0 < −0.95.
Red circles shows the results for the present analysis, and blue ones show the
results for the LEPS 2007 data [129].

187



I CONSISTENCY CHECK WITH PREVIOUS LEPS
MEASUREMENTS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
Photon energy (GeV)

d
σ/

d
t~  (

µb
/G

eV
2 ) 

(0
.0

 <
 t~  <

 0
.1

) This work
LEPS (2005)

Figure I.4: Differential cross section dσ/dt̃ for the γp → ϕp reaction as a
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Appendix J Polarization degree of BCS pho-

tons

The degree of BCS photon polarization (Pγ) was calculated by the fol-
lowing equation:

Pγ = Plaser ×Fconv(Eγ), (J.1)

where Plaser is the laser polarization, and Fconv is a conversion function of
polarization from laser photons to BCS photons, as shown in Fig. 2.5.

The laser polarization Plaser was measured run by run. Figure J.1 shows
the run dependence of the laser polarization. Since the laser polarization does
not change in principle, the measured ones were averaged over all the runs.
Here, the data during r42065–42400 and the data with Plaser > 100% were
excluded in the average because their measurements seem to have failed. The
laser polarization was evaluated to be 0.9772 and 0.9818 for the horizontal
and vertical polarizations, respectively.
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Figure J.1: Run dependence of the laser polarization. Red and blue points
represent the horizontal and vertical polarization, respectively.

Next, the BCS photon polarization was calculated event by event by
Eq. (J.1) with the above values of Plaser. Here, the coherent ϕ production
events were selected by the K+K− invariant mass and the missing mass
for the 4He(γ,K+K−)X reaction as 1.008 < M(K+K−) < 1.030 GeV/c2

and MM(K+K−) < 3.72 GeV/c2, respectively. Figures J.2(a) and (b) show
the distributions of the BCS photon polarization for the E1 and E2 regions,
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respectively, after selecting the coherent ϕ production events. Thus, the
averaged BCS photon polarization was determined to be 0.9929 (horizontal),
0.8878 (vertical) and 0.8847 (total) for the E1 region, and 0.9140 (horizontal),
0.9185 (vertical) and 0.9158 (total) for the E2 region.

The systematic error on the BCS photon polarization was estimated to
be 0.1% and 0.08% for the horizontal and vertical polarizations, respectively,
from the r.m.s. of the laser polarization measurements.
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Figure J.2: Distributions of the BCS photon polarization for (a) E1: 1.985 <
Eγ < 2.185 GeV and (b) E2: 2.185 < Eγ < 2.385 GeV after selecting
the coherent ϕ production events. Red and blue histograms represent the
horizontal and vertical polarization data, respectively.
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Appendix K Decay angular distribution with

semi-coherent process

The systematic errors on the SDMEs due to the event contamination
other than the coherent ones were estimated by considering the semi-coherent
process in MM(K+K−) fits. These results are presented here.

Figure K.1 shows the MM(K+K−) spectra together with the fit results
for the angle Φ − Ψ and the Eh region (see also Fig. 4.1 for comparison).
The inclusion of the semi-coherent process improves the fit χ2. Figure K.2
shows the ratios of the coherent production events (Rcoh) as a function of the
angles cosΘ, Φ, Φ−Ψ, Φ+Ψ and Ψ for each energy region. For comparison,
those obtained without the semi-coherent process are overlaid in the same
figures. We found that the inclusion of the semi-coherent process slightly
reduces the coherent production yields, but does not affect the shapes of the
distributions so much.

Figure K.3 shows the acceptance-corrected distributionsW (cosΘ),W (Φ),
W (Φ − Ψ), W (Φ + Ψ) and W (Ψ) for each energy region, together with the
fit results. The fit results and the extracted spin density matrix elements are
summarized in Tables K.1 and K.2 for the El and Eh regions, respectively.
The quality of the fits is reasonably good for all the distributions.

Figure K.4 shows the comparison of the extracted SDMEs between those
obtained with and without the semi-coherent process. The systematic errors
on the SDMEs due to the event contamination other than the coherent ones
were found to be smaller than the statistical errors.

Table K.1: Summary of the fit results and the extracted SDMEs for the El

region.

Angle SDME χ2 ndf χ2/ndf

cosΘ −0.017± 0.016 5.28 8 0.65
Φ 0.110± 0.031 13.01 8 1.63

Φ−Ψ 0.468± 0.024 6.52 8 0.81
Φ + Ψ −0.105± 0.034 12.91 8 1.61
Ψ 0.099± 0.067 9.93 8 1.13
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Table K.2: Summary of the fit results and the extracted SDMEs for the Eh

region.

Angle SDME χ2 ndf χ2/ndf

cosΘ 0.017± 0.013 2.89 8 0.36
Φ 0.051± 0.020 10.36 8 1.29

Φ−Ψ 0.441± 0.014 9.06 8 1.13
Φ + Ψ −0.025± 0.008 19.20 8 2.40
Ψ 0.084± 0.043 5.34 8 0.67
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Appendix L Normalization of photon flux

In the cross section measurement, the number of BCS photons in each
energy bin was calculated as follows:

Nγ = N cor
γ × d(ωγ · εtag)

dEγ

×∆Eγ × Pfntag=1 × Cdigi × Tbeam, (L.1)

where N cor
γ is the corrected number of photons, d(ωγ · εtag)/dEγ is a density

distribution of the photon flux as a function of the photon energy, ∆Eγ is
the bin width, Pfntag=1 is the probability of fntag = 1, Cdigi is a correction
for digitalized photon energies, and Tbeam is a beam transmission from the
collision point to the target (= 0.53).

Table L.1 summarizes the number of BCS photons in each energy bin for
the cross section measurement.

Table L.1: Number of BCS photons in each energy bin for the cross section
measurement.

Eγ Nγ (×1011) Error (×107)

e-1 3.593 3.847
e-2 1.999 3.014
e-3 2.169 1.935
e-4 2.545 2.780
e-5 2.431 3.410
e-6 3.372 1.945

Corrected number of photons

The corrected number of photons (N cor
γ ) was calculated as follows:

N cor
γ = Nscaler × ηDAQ × Ctag, (L.2)

where Nscaler represents the scaler counts for the tagger trigger, ηDAQ is the
DAQ efficiency, and Ctag is a dead time correction for the tagger scaler counts,
which depends on the filling patterns and the tagger hit rate. Each value
was evaluated run by run from the scaler counts.
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Density distribution of photon flux

A density distribution of the photon flux [d(ωγ · εtag)/dEγ] was obtained
from the cross section for the BCS process (Fig. 2.4) and the efficiencies
of the tagging system (εtag). The density distribution d(ωγ · εtag)/dEγ was
normalized so that ∫ Emax

Emin

d(ωγ · εtag)
dEγ

dEγ = 1, (L.3)

where Emin (Emax) is the minimum (maximum) photon energy (Emin =
1.475 GeV, Emax = 2.385 GeV).

The tagger efficiencies εtag were estimated channel by channel for TAG-
SF and TAG-PL. For these estimation, a proton was required in the LEPS
spectrometer by PID-FWD to select a true electron track in the tagging
system. For the estimation of the TAG-SFF (SFB) efficiencies, an electron
track was identified by searching for the corresponding TAG-SFB (SFF) and
TAG-PL hits, whereas, for the estimation of the TAG-PL efficiencies, it was
identified by searching for the corresponding TAG-SFF and TAG-SFB hits.

Since at least one layer of TAG-SFF and TAG-SFB was required to have
a hit at the trigger stage, the tagger efficiency εtag is given by

εtag = [1− (1− εSFF)(1− εSFB)]× εPL, (L.4)

εSFF, εSFB and εPL are the TAG-SFF, TAG-SFB and TAG-PL efficiencies,
respectively. Figures L.1(a) and (b) show the efficiencies for TAG-SF and
TAG-PL, respectively. Figure L.2 shows the resulting density distribution as
a function of the photon energy.
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Figure L.1: (a) Efficiencies for TAG-SFF (red) and TAG-SFB (blue), and
(b) those for TAG-PL.
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Figure L.2: Density distribution of the photon flux as a function of the
photon energy.

Probability of fntag = 1

The probability of fntag = 1 was estimated for each filling pattern. It
is known that the electron tracks corresponding to low-energy BCS photons
hit the side wall of the tagging system, producing electromagnetic (EM)
showers, and these effects are already taken into account in the beam trans-
mission (Tbeam). To avoid the EM shower events, a high-momentum pro-
ton (> 2 GeV/c) was required in the LEPS spectrometer by PID-FWD. The
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probabilities of fntag = 1 for each filling pattern are summarized in Table L.2.

Table L.2: Probabilities of fntag = 1 for each filling pattern. Values in the
brackets represent an error.

Filling pattern (Run number) Prob. of fntag = 1

C-mode (r41811–41871) 0.7243 (0.0019)
D-mode (r41872–41946) 0.7243 (0.0021)
E-mode (r41948–41992) 0.7400 (0.0017)

Multi-bunch (r42032–42108) 0.8734 (0.0013)
C-mode (r42110–42188) 0.7793 (0.0017)
D-mode (r42193–42282) 0.7829 (0.0024)
E-mode (r42283–42385) 0.8036 (0.0025)
A-mode (r42424–42522) 0.9075 (0.0012)

Correction for digitalized photon energy

Since the scintillation fibers of TAG-SF have a finite width, the photon
energy obtained from fired TAG-SF channels is digitalized. This could make
a zigzag structure in the energy dependence of cross sections. To correct
this, a correction factor, Cdigi, was introduced. Figure L.3(a) shows the
distribution of the photon energy obtained by the tagger, together with that
predicted from the p(γ, π+π−)p reaction with Eq. (3.9). The distribution of
the predicted photon energy is smooth, whereas the distribution of the tagger
photon energy shows a jump around Eγ ∼ 2.3 GeV due to digitalizations.
Therefore, the correction factor can be obtained by the number of events
in each bin for the tagger photon energy divided by that for the predicted
photon energy. Figure L.3(b) shows the correction factors for each energy
bin.
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Figure L.3: (a) Distributions of the photon energy by the tagger (red)
and the predicted photon energy (blue). (b) Correction factor for digitalized
photon energies for each energy bin.
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Appendix M Differential cross section with

semi-coherent process

The systematic errors on the differential cross sections dσ/dt̃ due to the
event contamination other than the coherent ones were estimated by consid-
ering the semi-coherent process in the MM(K+K−) fits. In this appendix,
these results are presented.

Figure M.1 shows the MM(K+K−) spectra for various t bins in the e-
6 bin. The fit chi-squares slightly improve by including the semi-coherent
process. Figure M.2 shows the ratios of the coherent events (Rcoh) as a
function of t̃ for various Eγ bins. The inclusion of the semi-coherent process
reduces the ratios Rcoh at large t̃, whereas it does not affect so much at small
t̃.

Figure M.3 shows dσ/dt̃ for various Eγ bins with the assumption of the
semi-coherent process. Each spectra was fitted with an exponential func-
tion [Eq. (4.12)]. The fit results are summarized in Table M.1. The fit
quality is reasonably good for all the Eγ bins.

Figure M.4 shows the energy dependence of the slope b in comparison with
the slopes obtained without the semi-coherent process. Both the results are
in agreement within the statistical errors. The averaged slope was determined
to be 28.97 ± 1.11 GeV−2, which is steeper than that obtained without the
semi-coherent process.

The differential cross sections dσ/dt̃ were also fitted by an exponential
function with a fixed slope of b = 28.97 GeV−2, as indicated by blue dashed
curves in Fig. M.3. The fit results are summarized in Table M.2. The inter-
cepts (dσ/dt)0 are compared with those obtained with a variable slope b in
Fig. M.5. It makes no significant difference in (dσ/dt)0 whether a fixed or
variable slope is used.

Figure M.6 shows the comparison of the intercepts (dσ/dt)0 between those
obtained with and without the semi-coherent process. The systematic errors
on the intercepts (dσ/dt)0 due to the event contamination other than the
coherent ones were found to be much smaller than the statistical errors.
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Figure M.1: MM(K+K−) spectra for various t̃ bins in the e-6 bin. Blue
histograms show the results for the template fits. Red, green and cyan
dashed histograms show the MC templates for the coherent, incoherent, semi-
coherent production events, respectively.
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Figure M.2: Ratios of the coherent events (Rcoh) as a function of t̃ for
various Eγ bins. Red filled circles are the results obtained with the semi-
coherent process, whereas blue open circles are the results obtained without
the semi-coherent process.

203



M DIFFERENTIAL CROSS SECTION WITH SEMI-COHERENT
PROCESS

10
-2

10
-1

1

1.685 < Eγ < 1.885 1.885 < Eγ < 1.985

10
-2

10
-1

1

1.985 < Eγ < 2.085

d
σ/

d
t~  (

µb
/G

eV
2 )

2.085 < Eγ < 2.185

10
-2

10
-1

1

0 0.05 0.1 0.15

2.185 < Eγ < 2.285

0 0.05 0.1 0.15

2.285 < Eγ < 2.385

|t| - |t|min (GeV2)
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fer t̃ (= |t|−|t|min) for various Eγ bins. Blue dashed curves show the fit results
by an exponential function [Eq. (4.12)] with a fixed slope of b = 28.97 GeV−2.
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Table M.1: Summary of the fit results on dσ/dt̃ with a variable slope.

Eγ N0 (µb/GeV2) b (GeV) χ2 ndf χ2/ndf

e-1 1.693± 0.280 29.73± 8.25 3.91 1 3.91
e-2 3.500± 0.589 46.16± 9.83 0.55 2 0.28
e-3 3.551± 0.409 33.72± 5.39 5.22 4 1.30
e-4 4.752± 0.337 33.05± 2.63 23.56 6 3.93
e-5 4.217± 0.331 31.29± 2.39 9.17 6 1.53
e-6 4.867± 0.264 25.88± 1.51 10.48 6 1.75

Table M.2: Summary of the fit results on dσ/dt̃ with a fixed slope of b =
29.0 GeV−2.

Eγ N0 (µb/GeV2) χ2 ndf χ2/ndf

e-1 1.670± 0.245 3.92 2 1.96
e-2 2.589± 0.315 4.79 3 1.60
e-3 3.219± 0.289 5.98 5 1.20
e-4 4.304± 0.288 26.75 7 3.82
e-5 3.996± 0.254 9.86 7 1.41
e-6 5.231± 0.255 14.13 7 2.02
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Appendix N On model-3

In this Appendix, the details of model-3 are described. For this model,
we used a Pomeron and daughter Pomeron exchange model as described in
Refs. [38, 47].

The amplitude for the Pomeron exchange is basically identical to that
described in Sect. 1.4.2, except that the term (s/sP)

αP(t) in Eq. (1.13) was
replaced with [(s − sth)/sP]

αP(t). Here, sth is a threshold parameter, which
is introduced to get a better shape of the energy dependence of the forward
cross section (θ = 0◦) near the threshold [38]. To maximize a threshold
enhancement, we chose

√
sth =Mp +Mϕ, where Mp and Mϕ are the masses

of protons and ϕ-mesons, respectively.
Regarding the daughter Pomeron exchange, we used basically the same

formalism and parameter set as in Ref. [47]. One exception is that a strength
factor Cgl, which governs the overall strength, was tuned so as to fit available
experimental data on the forward cross section (θ = 0◦). Figure N.1 shows
a comparison of the forward cross section (θ = 0◦) between model-3 and the
available experimental data [64, 81, 85, 87, 122–125] when Cgl is set to a 5
times larger value41 than that in Ref. [47]. By choosing the 5 times larger
value, model-3 reproduces the experimental data fairly well.

41This choice is comparable to the extreme case in the appendix of Ref. [47], in which
the daughter Pomeron exchange becomes dominant near the threshold.
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Figure N.1: Comparison of the forward cross section (θ = 0◦) between
model-3 (black curve) and the experimental data [64, 81, 85, 87, 122–125].
A red curve represents the contribution from the daughter Pomeron ex-
change [38,47]. Here, the strength factor for the daughter Pomeron exchange,
Cgl, is set to a 5 times larger value than that in Ref. [47].
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