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Abstract

A magnetic storm is the world-wide geomagnetic disturbance taking place in near-Earth space environment, lasting

for a few days. Geomagnetic fields can be depressed by ~ 1% on the ground for large magnetic storms. The prime
cause of the long-lasting, world-wide geomagnetic disturbance is the development of the ring current that surrounds
the Earth. The ring current is an electric current carried by charged particles. Thus, the growth and decay of the ring
current correspond to accumulation and loss of the ring current particles, respectively. The ring current is strong
enough to modulate near-Earth space environment, and leads to many observable effects. In this sense, the ring current
can be regarded as an important mediator in the near-Earth space environment. Here, the dynamics and structure of
the ring current and its active role are briefly reviewed on the basis of numerical simulation results.
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Introduction

Magnetic storms are characterized by irregular disturb-
ance of the geomagnetic field. A magnetic storm starts
with an initial phase, followed by a main phase and a re-
covery phase. The initial phase is characterized by a sharp
increase in the horizontal component (H-component) of
the geomagnetic field, but the initial phase is not always
involved in all the magnetic storms. The main phase is
characterized by a substantial decrease in the geomagnetic
field, lasting for a few hours, or more (Gonzalez et al.
1994). Magnetic storms were first recognized by von
Humboldt (1808) who observed magnetic declination in
Berlin (Lakhina and Tsurutani 2016). Nowadays, the mag-
netic storms are known as world-wide magnetic disturb-
ance. In 1917, Schmidt postulated the existence of a ring
current encircling the Earth to cause the decrease in the
H-component of the magnetic field (Egeland and Burke
2012). Satellite observations confirmed the existence of
the ring current (Frank 1967; Smith and Hoffman 1973;
Lui et al. 1987; Le et al. 2004). In the recovery phase, the
H-component of the geomagnetic field returns to the
pre-storm level, which is primarily caused by the decay of
the ring current.
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The term “ring current” gives the impression that the ring
current is completely symmetric about the dipole axis of
the Earth. However, according to ground-based observa-
tions, the negative disturbance of the magnetic field
depends on a magnetic local time (MLT), suggesting asym-
metric ring current (Akasofu and Chapman 1964). This is
confirmed by satellite observations (Le et al. 2004). To pro-
vide a unified measure of the strength of the magnetic dis-
turbance, a Dst index (disturbance storm time index) is
invented (Sugiura 1964). The Dst index is basically a
weighted average of AH-H,,,. observed at four different
longitudes at low latitudes (Honolulu, San Juan, Hermanus,
and Kakioka), where Hy,s is the baseline for quiet days
(Sugiura and Kamei 1991). The Dst index is reasonably pre-
dicted by an empirical formula, which is a function of the
solar wind speed, the solar wind density, and the southward
component of IMF Bz (Burton et al. 1975). The Burton et
al’s formula is derived based on an energy balance equa-
tion. To understand the growth and decay of the ring
current deeply, one has to take into consideration the parti-
cles that are the carrier of the ring current.

The major carrier of the storm-time ring current is
known to be ions with energy of tens of keV (Frank 1967;
Smith and Hoffman 1973). The AMPTEE/CCE satellite
measured substantial contribution from O" to the
storm-time ring current (Hamilton et al. 1988). This is a
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striking finding in the ring current research because it im-
plies that the source of the ring current particles is not only
the Sun, but also the Earth. As for quiet time (non-storm
time), the ring current consists of ions with energy greater
than 100 keV. This means that the ring current always
exists regardless of magnetic storms. Investigation of
the growth and decay of the ring current is equivalent
to investigating the accumulation and loss of the ions
with energy of the order of tens of keV in the inner
magnetosphere.

The charged particles trapped by Earth’s magnetic
field undergo three different types of motion, gyromo-
tion, bounce motion along a field line between two
mirror points, and drift motion perpendicular to the
magnetic field. The current density is defined by the
electric current per unit area of cross section. When
the first adiabatic invariant is conserved, the current
density is given by summing up the currents associ-
ated with gyromotion, grad-B drift and curvature drift
as (Parker 1957)

Py-P,
BZ

B
J=— x[VP, +

7 (B-V)B|, 1)

where B, P,, and P)| are the magnetic field, perpendicular
plasma pressure, and parallel plasma pressure, respectively.
Observations show that the first term of the right-hand side
of Eq. (1) dominates the second one, although the second
one is non-negligible in the ring current (Lui et al. 1987).
The first term is called “diamagnetic current,” and is associ-
ated with gyromotion of the particles. The peak of the pres-
sure takes place at L ~2-3 (Lui et al. 1987). Because of the
dominance of the diamagnetic current, the ring current
flows westward in the outer region, and flows eastward in
the inner region. The distribution of the current density is
investigated by Le et al. (2004) in detail.
The plasma pressure is given by

P = /%mvzf(v)sinzocdp,
(2)
Py = /mvzf(v)coszadp,

where m, v, f, «, and p are mass, velocity, phase space
density, pitch angle, and momentum vector, respectively.
For gyrotropic plasma, dp =2mm’v*sinadadv. The
phase space density fis related to the directional differ-
ential flux j as f=j/p*. According to Liouville’s theorem,
the phase space density must be conserved when source
and loss of particles are absent.

Equations (1) and (2) imply that understanding the
ring current is equivalent to understand the phase space
density of the charged particles. Because motion of
charge particles depend on kinetic energy and pitch
angle as well as local magnetic and electric fields, it is
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essential to track motion of charged particles properly
for the purpose of understanding the ring current and
the magnetic storms.

Storm main phase (development of ring current)
The ring current is known to develop when the interplan-
etary magnetic field (IMF) is southward (Kokubun 1972).
Coronal mass ejection (CME) and a corotating interaction
region (CIR) are thought to deliver prolonged southward
IMF (Tsurutani et al. 1988). A magnetic cloud is embed-
ded in the ejecta of CME. In front of the magnetic cloud,
the solar wind is compressed. This compressed region is
called a sheath, and strong southward IMF can be formed.
When the strong southward IMF is embedded in either
the sheath or the magnetic cloud, a magnetic storm oc-
curs. The magnetic storm would develop in a two-step
manner when the strong southward IMF is embedded in
both the sheath and the magnetic cloud (Kamide et al.
1998). The CIR is accompanied with high speed solar
wind streams originating from a coronal hole on the sur-
face of the Sun. In the CIR, IMF is highly fluctuated (Tsur-
utani and Gonzalez 1987). The southward component of
the fluctuated IMF can cause a magnetic storm. Statistical
studies show that the CME-driven magnetic storms tend
to be larger than the CIR-driven magnetic storms in terms
of the Dst index (Borovsky and Denton 2006; Denton et
al. 2006).

The fundamental process for the development of the
ring current is the accumulation of particle energy in the
inner magnetosphere where the Earth’s dipolar magnetic
field dominates (Dessler and Parker 1959; Sckopke
1966). There are two competing processes for the accu-
mulation of the particle energy. One is that the particle
energy is accumulated by a succession of substorms
(Akasofu 1968). Hot plasma is known to be injected into
the inner magnetosphere by short-lived impulsive elec-
tric field at the substorm expansion (DeForest and Mcll-
wain 1971; Kamide and Mcllwain 1974). If the substorm
injection occurs frequently with a sufficiently short
interval, the particle energy would increase stepwisely.
The other process is that hot plasma is transported by
the persistent, large-scale convection electric field
(Axford 1969). As the particles move into the inner
magnetosphere, they adiabatically gain kinetic energy,
resulting in a substantial increase in the net particle en-
ergy. In both the processes, dawn-dusk electric field is
responsible for the earthward transport of the particles
stored in the plasma sheet on the nightside. A question
arises: What is the essential cause of the storm-time ring
current?

In 1940s-1950s, Hannes Alfvén divided motion of
charged particles into gyromotion and its guiding center
motion. Introducing a uniform electric field and the di-
pole magnetic field, he suggested drift paths of particles
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in the equatorial plane, and field-aligned current associ-
ated with the asymmetric paths of them (Egeland and
Burke 2012). The invention of the guiding-center ap-
proximation helps reduce computational cost signifi-
cantly. The state of charged particles is described by six
dimensional independent parameters, that is, three for
real space and three for momentum space. With the
guiding-center approximation, the number of the dimen-
sion can be reduced to five because information about
gyro phase is lost. With the bounce-averaged approxi-
mation (Roederer 1970), the number of the dimension
can be reduced to four because information about gyro
phase and bounce phase are lost. The bounce-averaged
approximation has been preferred to track motion of the
charged particles in the inner magnetosphere because
the gyro phase and the bounce phase do not matter in
many cases.

When there are no sink and source, the number of parti-
cles must be conserved in phase space. One of the practical
schemes to solve the evolution of the phase space density is
based on the Boltzmann equation (Fok et al. 1995; Jorda-
nova et al. 1996; Kozyra et al. 1998b; Liemohn et al. 1999).
Another scheme is based on weighted particle tracing (Ebi-
hara and Ejiri 1998; Chen et al. 1998; Ebihara and Ejiri
2000), which is similar to the ones that have employed to
calculate the evolution of the ring current in terms of en-
ergy (Lee et al. 1983; Wodnicka 1989; Takahashi et al.
1990). The Rice Convection Model solves the evolution of
the particle content in a flux tube (Toffoletto et al. 2003)

Simulation studies show that the fundamental evo-
lution of the ring current ions can be achieved when
the dipole magnetic field, the convection electric field,
and the corotation electric field are taken into consid-
eration. The strength of the convection electric field
is known to increase when the southward component
of the IMF is strong and the solar wind speed is high
(Matsui et al. 2013). The total potential drop of the
convection electric field is ~20 kV for quiet time,
and is ~200 kV and more during the magnetic
storms (Ebihara et al. 2005a; Hairston et al. 2005). In
the equatorial plane, the direction of the convection
electric field is duskward, corresponding to the sun-
ward Ex B drift. A simple form of the convection
electric field (Volland 1973; Stern 1975) has been
widely used to describe the transport of charged par-
ticles in the inner magnetosphere, which is given by

D, = A (2) " sing, (3)

where A is the intensity of the convection electric
potential, a is the Earth’s radius, y is a shielding factor,
and ¢ is MLT. The convection electric field is uniform
when y=1. The moderately shielded condition, in
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which y =2, is often used by simulations. Ejiri (1981)
suggested that y depends on the Kp index as y = 7.3/Kp.
The corotation electric field arises from the Earth’s
rotation with partially ionized atmosphere. The electric
potential of the corotation electric field is given by

D (r) = - LrE -dr, (4)
where
E=-(Q xr)xB, (5)

and Q is the angular frequency of Earth’s rotation. In the
equatorial plane, Eq. (4) yields

Cl)wz/ QrBdr. (6)

Assuming the dipole magnetic field,
3
a
B =By 5 (7)

where By is the magnetic field at the equator. Substitut-
ing Eq. (7) into Eq. (6), we have

rQB 3
CDCO:/ 0d dar

72
QB()!ZS (8)

r

Equation (8) implies that the Earth is negatively charged
from ambient in quasi-inertial frame of reference due to
Earth’s rotation. According to the 12th generation of the
International Geomagnetic Reference Field (Thébault et al.
2015), By is 30,829 nT in 1970, and 29,868 nT in 2015. The
total corotation potential drop is 91 kV in 1970, and 88 kV
in 2015. The decrease in the total potential drop results
from the secular variation of the geomagnetic field.

When the first adiabatic invariant g is conserved, the
bounce-averaged trajectory of a non-relativistic particle
follows the equipotential as

1
qDq, + gD + uB + imvﬁ = const, 9)

where g is charge, m is mass, and v, is parallel compo-
nent of the velocity. The bounce-averaged drift velocity
for the grad-B and curvature drifts is provided by Roederer
(1970). By summing up the E x B drift velocity and the
bounce-averaged drift velocity for the grad-B and curvature
drifts, one can trace the motion of charged particles in a
time-dependent manner. A precise approximation for the
bounce-averaged drift velocity in the dipole magnetic field
is given by Ejiri (1978).

Figure 1 shows an example of calculated Dst (SYM-H)
values for a large magnetic storm (Ebihara et al. 2005a).
SYM-H is essentially equivalent to Dst. The calculation
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Fig. 1 Simulated storm-time Dst (SYM-H) index during the magnetic storm of 20-21 November 2003. The input parameters (plasma sheet density Ny,
plasma sheet temperature Ty, strength of the convection electric field Opcp, magnetic latitude of the polar cap boundary at which Opcp is imposed)
used to drive the simulation are summarized in the top 4 panels. (Ebihara et al. 2005a)
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was performed by the comprehensive ring current model
(CRCM) (Fok et al. 2001). The electric potential, which
depends on the solar wind and IMF (Siscoe 2002), is im-
posed to the outer boundary of the simulation. The
plasma sheet density and temperature measured by geo-
synchronous satellites are imposed to the outer boundary
of the simulation. The calculated Dst (SYM-H) shows a
negative excursion, and roughly follows the observed one.
When the plasma sheet density and temperature are held
constant through the simulation, the amplitude of the
negative excursion is much smaller than that observed.
This suggests that the intensification of the ring current is
caused by not only the enhancement of the convection
electric field but also the enhancement of the plasma sheet
density and/or temperature (Ebihara and Ejiri 1998; Kozyra
et al. 1998b; Ebihara and Ejiri 2000; Liemohn et al. 2001).
The plasma sheet density is known to increase when the
solar wind density is high (Terasawa et al. 1997; Ebihara

and Ejiri 2000). It is thought that the intensity of the ring
current is proportional to the plasma sheet density. How-
ever, because of the shielding effect described below, the
magnitude of the ring current is no longer proportional to
the plasma sheet density (Ebihara et al. 2005b).

Figure 2 shows the calculated plasma pressure and the
azimuthal component of the current density in the equa-
torial plane (Ebihara and Ejiri 2000). The dawn-dusk
convection electric field, the corotation electric field, and
the dipole magnetic are taken into consideration in the
simulation. The strength of the convection electric field is
changed in accordance with the solar wind parameters. As
the storm main phase proceeds (from A to B), the plasma
pressure increases in the midnight-dusk sector, whereas it
decreases in the noon-dawn sector. Figure 3 shows drift
trajectories of the ions originating in the nightside plasma
sheet. When the strength of the convection electric field is
kept constant (left panel of Fig. 3), the drift paths are
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Fig. 3 Bounce-averaged drift trajectories of protons with magnetic moment of 0.030 keV/nT with initial equatorial pitch angle of 25° at L =10 in
the presence of the convection electric field, the corotation electric field, and the dipole magnetic field. A filled circle is marked every 1 h along

the trajectory. (Ebihara et al. 2004)
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symmetric about the dawn-dusk meridian. After departing
the nightside plasma sheet, they gradually penetrate into
the inner region. As they approach the Earth, they travel
duskward, and gain kinetic energy, resulting in the en-
hancement of the plasma pressure. After passing through

the dusk meridian, they travel dawnward, and lose kinetic
energy. An interesting feature is that the plasma pressure
decreases in the noon-dawn sector as shown in Fig. 2b.
This is explained by the change of the drift paths. When
the strength of the convection electric is enhanced in the
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Fig. 4 Energy density of protons with energy 1-200 keV observed by the Polar satellite near the equatorial plane. (After Ebihara et al. 2002)
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Table 1 Decay processes for ring current (Ebihara and Ejiri 2003)
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Process Region or cause

Fate

Charge exchange Geocorona

Coulomb collision Plasmasphere

Resonant interaction with
ion cyclotron wave

Wave-particle interaction

Adiabatic loss cone loss Inward transport of ions

Field line curvature Curved magnetic field line

Sudden decrease in
plasma sheet density

Entire ring current

Energetic neutral atom (Dessler and Parker 1959)

Precipitation into ionosphere (Wentworth et al. 1959;
Fok et al. 1991; Jordanova et al. 1996)

Precipitation into ionosphere (Cornwall et al. 1970)

Precipitation into ionosphere (Jordanova et al. 1996)

Precipitation into ionosphere (Sergeev et al. 1983;
Ebihara et al. 2011)

Replacement of ring current ions with tenuous ones
(Ebihara and Ejiri 1998)

course of the earthward drift motion (right panel of Fig. 3),
the ions start traveling sunward immediately. In the noon-
dawn sector, the preexisting ions also start traveling
sunward, resulting in the removal of the preexisting ones
from the noon-dawn sector. The sudden decrease in the
ion flux in the noon-dawn sector is observed by global
images of energetic neutral atoms when the convection
electric field is enhanced (Brandt et al. 2002). The simula-
tion result is also consistent with the magnetic distur-
bances on the ground (Hashimoto et al. 2002).

The bottom panel of Fig. 2 shows the current density,
that is, the electric current per unit area. The westward
current flows in the outer region, and the eastward one
flows in the inner region. The current density also shows
the asymmetric distribution during the main phase,

50 keV H*

&
N
-

0840 UT on 12 August 2000

Fig. 5 The ratio of the gyroradius of protons with energy of 50 keV
to the curvature radius of the magnetic field line for intense storm.
(Ebihara et al. (2011)

which is consistent with the observation (Le et al. 2004).
Because of the dipolar geometry, the cross-sectional area
of the outer region where the westward current flows is
larger than the inner region where the eastward current
flows. Thus, the net current flowing westward is larger
than that flowing eastward (Ebihara and Ejiri 2000). The
dominance of the net westward current causes the
decrease in the geomagnetic field on the ground.

Figure 4 shows the averaged energy density of the pro-
tons with energy from 1 to 200 keV (Ebihara et al. 2002).
For isotropic pressure (P, = Py)), the energy density is 1.5
times larger than the plasma pressure. The data was
acquired when the Polar satellite traversed the equatorial
plane. During the storm main phase, the energy density
significantly increases on the nightside, whereas it de-
creases on the decreases. The increase and decrease in
the energy density can be reasonably explained by the
intensification and relaxation of the convection electric
field as shown in Fig. 2.

In addition to the convective transport, substorm-asso-
ciated transport has also been simulated (Fok et al. 1999).
Fok et al. (1999) calculated the substorm-associated elec-
tric field by differentiating empirical magnetic field, and
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Fig. 6 Calculated Dst for run 1, run 2, and run3. Run 1 considers the
charge exchange and the field-line curvature scattering. Run 2 considers
the charge exchange only. Run3 considers no loss process. The black
line indicates the observed one. Ebihara et al. (2011)
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Fig. 7 Example of ring current-radiation belt coupling. Top panels show proton and electron pitch angle distributions observed by the Polar satellite.
Bottom panels show proton pitch angle distribution obtained by simulation. (After Ebihara et al. 2008a). a 80-100 keV observed proton. b 125-173 keV
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solved the evolution of the phase space density of the ions.
The ring current is intensified well when the strong con-
vection electric is incorporated. This suggests that the
substorm without enhancement of the convection electric
field has little impact on the ring current.

Storm recovery phase (decay of ring current)

The storm recovery phase is known to start when the
southward IMF becomes weak, or turns northward
(Burton et al. 1975). The northward turning of IMF results
in an immediate reduction of the convection electric field.
The characteristic decay time of the Dst value is estimated
to be 7.7 h for the magnetic storms (Burton et al. 1975).

Shorter decay time, less than 1 h, is also suggested for
large storms (Macmahon and Llop-Romero 2008). Obser-
vations show that the plasma pressure (energy density) of
the ring current protons becomes symmetric during the
recovery phase as shown in Fig. 4. This symmetrization of
the storm-time ring current can be understood to the
change in the drift paths of the ions. When the convection
electric field becomes weak, the azimuthal drift motion
(the grad-B drift and the curvature drift) dominates the
E x B drift. The plasma sheet ions cannot penetrate deep
earthward any more, and the ions that had been previ-
ously transported to the inner magnetosphere during the
main phase cannot escape from the inner magnetosphere.



Ebihara Progress in Earth and Planetary Science (2019) 6:16

Consequently, in the noon-dusk sector, the plasma pres-
sure increases in comparison with the main phase. The
simulation results (Fig. 2) are consistent with the observa-
tions (Fig. 4). The reduction of the convection electric
field, however, cannot result in the net decay of the ring
current because most of the particles still remain trapped
in the inner magnetosphere (Ebihara and Ejiri 2003). At
least, there are six processes that may be related to the
decay of the storm-time ring current. They are summa-
rized in Table 1.

Charge exchange is one of the dominant loss process for
the ring current ions (Dessler and Parker 1959). The charge
exchange frequently occurs where neutral atoms are dense,
such as low L-shells, and low altitude. According to an em-
pirical model (Rairden et al. 1986), the geocorona density is
660 cm™ at geocentric distance of 3 Re. At L=3, the
charge exchange lifetime for H" is 4 h at 10 keV, and 96 h
at 100 keV. For O, it is 16 h at 10 keV, and 11 h at
100 keV (Ebihara and Ejiri 2003). As the ion travels toward
Northern Hemisphere, or Southern Hemisphere along a
field line, the ion undergoes short lifetime because of dense
neutral atoms. Therefore, the lifetime depends on the equa-
torial pitch angle. The two-step recovery of Dst is attributed
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to the lifetime depending on ionic species. On the basis of
the observation that O" dominates H" in the storm-time
ring current, it is suggested that the first rapid recovery is
caused by the charge exchange of O, followed by the slow
recovery caused by the charge exchange of H (Hamilton et
al. 1988). Numerical simulation, however, shows that the
charge exchange is insufficient to explain the rapid recov-
ery, and that precipitation into the ionosphere is necessary
(Kozyra et al. 1998a). Kozyra et al. (1998a) pointed out that
in addition to charge exchange, the precipitation loss is sig-
nificant for the rapid recovery of Dst. This is supported by
the evidence of a filled loss cone observed by satellites
(Amundsen et al. 1972; Williams and Lyons 1974; Hultqvist
et al. 1976; Sergeev et al. 1983; Walt and Voss 2001). How-
ever, the mechanism for the pitch angle scattering that
leads to the filled loss cone is not well known.

Coulomb collision with thermal plasma, and resonant
interaction with ion cyclotron waves result in the pitch
angle scattering, but their role in the overall reduction of
the ring current is suggested to be minor (Jordanova et al.
2001). As recently suggested, resonant interaction with ion
cyclotron waves may cause pitch angle scattering signifi-
cantly during extremely intense magnetic storms (Tsurutani

Increase
in magnetic field
at off-equator

J

Mirror point

between mirror points

Shortening of distance

p
Decrease

in magnetic field
near equatorial plane
o

Mirror point

Fig. 8 Adiabatic deceleration (near the equatorial plane) and acceleration (at off-equator) of ions in the storm-time magnetic field. The dashed line
indicates the magnetic field line in the pre-storm time, and the solid line indicates the magnetic field line deformed by the storm-time ring current
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(See figure on previous page.)

Fig. 9 Example of ring current-ionosphere coupling (overshielding). In b, the fan shape indicates the field of view of the SuperDARN Hokkaido radar, and
the contour indicates the ionospheric electric potential. (After Ebihara et al. 2008b). a Simulated plasma pressure in the equatorial plane. b Simulated field-
aligned current in the ionosphere and electric potential. ¢ Observed IMF Bz d Observed line-of-sight velocity. e Simulated line-of-sight velocity

et al. 2018). The field-line curvature (FLC) scattering occurs
where the curvature of a magnetic field line is short in
comparison with the gyroradius of the particle (Sergeev et
al. 1983; Birmingham 1984; Biichner and Zelenyi 1989;
Young et al. 2002). Using empirical magnetic field model,
one can predict the region where the FLC scattering occurs.
For example, the ratio of the gyroradius of a 50 keV H" to
the curvature radius of the field line exceeds 0.1 at L ~ 4.8,
and 1 at L~ 55 for a large storm condition as shown in
Fig. 5 (Ebihara et al. 2011). Strong pitch angle scattering is
expected to occur in such limited regions.

Figure 6 shows the calculated Dst together with ob-
served one. The Dst is calculated by comprehensive ring
current model (CRCM) (Fok et al. 2001) together with
self-consistent magnetic field (Ebihara et al. 2008a). Run 1
takes into account the charge exchange and the FLC scat-
tering, showing that Dst recovers with an e-folding time of
~3 h. The difference between the observation and the
simulation is probably attributed to the underestimation
of the plasma sheet density. Run 2 takes into account the
charge exchange only. The e-folding time is ~ 12 h. Obvi-
ously, inclusion of the FLC scattering appears to give rise
to rapid recovery of Dst. However, the impact of the FLC
scattering on the rapid recovery of Dst may be limited to
small and moderate magnetic storms. For large magnetic
storms, the inner edge of the ring current could reach very
close to the Earth, like L ~ 1.5 (Ebihara et al. 2005a). In
the deep inner region (L < 3), the magnetic field is rigid
(that is, low plasma beta), so that the magnetic field is
hardly stretched.

Precipitation of particles can occur without pitch angle
scattering. The adiabatic loss cone loss, which arises when

dao
dL’

dC(L
A (10)
where a; and ap are the loss cone angle and the equator-
ial pitch angle. As an ion moves earthward adiabatically,
the equatorial pitch angle becomes large to conserve the
first two adiabatic invariants. The loss cone angle also
becomes large. As the ion moves earthward, the loss cone
angle increases faster than the equatorial pitch angle does
(Ebihara and Ejiri 2003). Some of the ions with equatorial
pitch angle near the loss cone will precipitate into the
ionosphere as the ions drift earthward. The contribution
from the adiabatic loss cone loss is estimated to be very
small (Jordanova et al. 1997). It amounts to ~ 1-2% of the
net loss of the ring current (Ebihara and Ejiri 2003).

Alternative idea to explain the rapid decay of the ring
current is a replacement of the ring current population
with tenuous one. This can be achieved when the plasma
sheet density rapidly decreases and the convection electric
field remains high (Ebihara and Ejiri 1998; Ebihara and Ejiri
2000). During the large magnetic storm on 20—21 Novem-
ber 2003, the rapid recovery of Dst can be explained by the
sudden decrease in the plasma sheet density N, as shown
in Fig. 1 (Ebihara et al. 2005a). When the plasma sheet
density is constant in time, Dst shows slow recovery.

Active role of ring current

The ring current is strong enough to change the magnetic
field in the inner magnetosphere (Akasofu and Chapman
1961). One of the observable effects of this is an adiabatic
change in the trapped particles. Relativistic particle flux
tends to decrease during the storm main phase, and in-
crease during the recovery phase as if the flux follows the
Dst variation (Mcllwain 1966). This is called a ring current
effect. Satellite observations also show energy-dependent
variation during the magnetic storms. The ion flux with en-
ergy greater than 200 keV substantially decreases, whereas
the ion flux with energy less than 63 keV increases at L ~ 4
during an intense storm (Lyons and Williams 1976; Lyons
1977). The increase in the low-energy ions (< 63 keV) most
likely corresponds to the storm-time ring current, which
decreases the magnetic field near the equatorial plane,
resulting in the adiabatic deceleration of the high energy
ions (>200 keV) (Williams 1981). This can be regarded as
energy-domain coupling. Temporin and Ebihara (2011)
show the similar tendency. They also show that during the
recovery phase, the high-energy ion flux (125-173 keV) in-
creases, and sometimes it exceeds the pre-storm level. This
may imply the presence of non-adiabatic processes.

Figure 7 shows the pitch angle distribution of the pro-
tons and electrons measured by the Polar satellite near the
equatorial plane (Ebihara et al. 2008a). The flux of protons
(80-173 keV) and electrons (1.7-2.1 MeV) near the pitch
angle of ~ 90° appears to decrease in comparison with the
pre-storm condition. The simulated pitch angle distribu-
tion is shown in the bottom panels of Fig. 7. The differen-
tial flux of the ions is calculated by comprehensive ring
current model (CRCM) (Fok et al. 2001) together with
self-consistent magnetic field (Ebihara et al. 2008a). The
flux near the pitch angle of ~90° decreases in comparison
with the pre-storm condition, which is consistent with the
observation (Lyons and Williams 1976; Lyons 1977). A
remarkable point to be noted is the increase in the flux of
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(a) 17 Apr 2002 19:05 (b)

\

[EUV images]

(C) 17 Apr 2002 20:07 (d)

DGCPM/CRCM plasmasphere density

Fig. 11 Influence of ring current-ionosphere coupling on the plasmasphere. An indentation of the plasmapause propagates sunward. Top panels
show the observation by the IMAGE satellite. The bottom ones show the cold electron density obtained by the simulation. (Fok et al. 2005)

17 Apr 2002 20:37

nearly field-aligned particles (<30° and > 150°). The de-
crease (at pitch angles of ~90°) and increase (at pitch
angles of <30° and >150°) in the flux of the ions cor-
respond to deceleration and acceleration of the ions.
The deceleration occurs near the equatorial plane
where the magnetic field decreases. The acceleration

occurs at off-equator where the magnetic field in-
creases. The acceleration can also be explained in terms
of Fermi acceleration because the distance between two
mirror points in the Northern Hemisphere and the
Southern Hemisphere becomes short. Figure 8 provides
schematic illustration for the deceleration and

(a) Observation (39-50 keV)

b Simulation (44 keV)

0840 UT 12 August 2000

Fig. 12 Influence of ring current-ionosphere coupling on the ring current protons in terms of shielding. The flux of energetic neutral atoms is indicated
by red color in the unit of 1/cm? s str keV. Precipitating proton flux into the ionosphere is indicated by blue color in the unit of 10 eV/cm? s. The left
panel shows the observation made by the IMAGE satellite. The right one shows the simulation result. (Ebihara et al. 2011). a Observation (39-50 keV).

(b) Run 1 (44 keV)
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Fig. 13 Influence of ring current-ionosphere coupling on the ring current protons in terms of Rayleigh-Taylor type instability. Proton flux
with energy 32 keV is shown in the left panel. The outer edge of the flux population shows undulation due to interaction between the
magnetosphere and the ionosphere. The contour indicates the ionospheric potential. The schematic illustration is provided in the right
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(2) Schematic representation

acceleration of the charged particles in the magnetic
field line changed by the ring current.

The current density of the ring current is stronger on
the nightside than on the dayside during the magnetic
storms (Le et al. 2004). This means that the storm-time
ring current is essentially asymmetric, and that the
current cannot be closed in the inner magnetosphere.
From the requirement of the current continuity, the
remnant of the current must flow into and out of the
ionosphere as previously suggested by Hannes Alfvén
(Egeland and Burke 2012). In the ionosphere, secondary
electric field must be established to satisfy the current
continuity. The electric field is expected to feed back to
the magnetosphere. Motion of particles trapped in the
inner magnetosphere will be modified by the additional
electric field. This feedback process is suggested by
Vasyliunas (1970) and Wolf (1970).

The ring current tends to generate downward FAC on
the duskside, and upward FAC on the dawnside. A pair of
these FACs is called region 2 current (lijima and Potemra
1976). To close the current originating from the ring
current, dusk-dawn electric field is expected to appear in
the ionosphere. The direction of the electric field is oppos-
ite to that of the convection electric field. The additional
electric field is called shielding electric field, and is sub-
stantially investigated by Spiro and Wolf (1984). Figure 9
shows an example of the ionospheric plasma flow associ-
ated with shielding electric field (Ebihara et al. 2008b).
The second panel from the bottom shows the ionospheric

plasma flow observed by the SuperDARN Hokkaido radar.
The warm color represents the flow away from the radar,
which is approximately in the geomagnetically north-east
direction. The field of view of the radar was situated in
the afternoon sector as shown in Fig. 9. The observation
shows that the north-east flow (away from the radar) is in-
tensified when IMF turns northward (event 1). The flow
direction is opposite to the usually expected direction.
This can be regarded as the overshieldling in which the
shielding electric field dominates the convection electric
field. The bottom panel shows the simulation result. The
flow toward the radar is intensified, which is consistent
with the observation for event 1. In the second row from
the top, the FACs associated with the ring current are pro-
vided, together with ionospheric convection pattern. The
downward current (positive value) and the upward current
(negative value) persist for this interval, whereas the iono-
spheric potential pattern is significantly changed by an
abrupt reduction of the convection electric field. The dir-
ection of the ionospheric flow is changed from westward
to eastward (as indicated by blue allows near a fan shape).
The fan shape shows the field of views of the SuperDARN
Hokkaido radar, which observed an abrupt intensification
of the flow away from the radar. The plasma pressure in
the inner magnetosphere, as shown in the top panel,
decreases due to the dominance of the dusk-dawn electric
field. The maximum pressure decreases from ~ 90 to ~ 60
nPa in 6 min. After a while, another overshielding occurs
during the prolonged southward IMF (event 2). Event 2 is
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(1) Inflation of magnetosphere

(3) Fast ionospheric flow
y— Region Tfield-aligned current

Poleward _{
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(Partial ring current)
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Region 2 field-aligned current

\— High-pressure region
(Partial ring current)

(4) Multiple fast ionospheric flows
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Fig. 14 Active role of the storm-time ring current; 1 inflation of the magnetic field, 2 development of the shielding/overshielding electric field
(dusk-dawn electric field), 3 development of fast ionospheric flow (poleward electric field), and 4 development of multiple fast ionospheric flow

(poleward electric field)

associated with a substorm activity, and is not reproduced
by the ring current simulation (CRCM) that considers the
inner magnetosphere only. Later on, the global MHD
simulation, REPPU, is found to reproduce the overshield-
ing condition during the recovery phase of a substorm
(Ebihara et al. 2014). The geomagnetic field variation asso-
ciated with the overshielding is consistent with the
observation.

Another observable effect of the ring current-ionosphere
coupling is a localized westward flow in the subauroral
ionosphere. Region 1 current flows poleward of the region
2 current. To satisfy the current continuity, the poleward

electric field is established on the duskside, resulting in a
localized westward flow in the subauroral ionosphere
(Anderson et al. 1993). Figure 10 shows the SuperDARN
Hokkaido radar observation of the ionospheric fast flow at
magnetic latitudes from ~ 50° to ~ 55° (Ebihara et al. 2009).
The direction of the fast flow is westward as indicated by
blue color. The fast flow occurs intermittently, not continu-
ously. The fast flow belongs to a class of subauroral
polarization stream (SAPS) (Foster and Vo 2002). In the
top panels of Fig. 10, the plasma pressure distribution cal-
culated by the CRCM simulation is shown. The simulation
employs time-varying plasma sheet density observed by
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Ring current (~keV)

Fig. 15 Cross energy and cross region coupling in the inner magnetosphere and the ionosphere

Plasmasphere (~eV)
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E: Electric field

F: Field-aligned current

M: Inflation of magnetic field

P: Particle precipitation

T: Thermal conductance

W: Wave growth,
wave-particle interaction

Radiation belt (~MeV)

geosynchronous satellites as a boundary condition of the
ring current. Because of the time-varying plasma sheet
density, the plasma pressure shows multiple-peak distribu-
tion. The multiple-peak distribution of plasma pressure
moves earthward due to the sunward convection. The FAC
accompanied by the plasma pressure distribution also
moves westward equatorward. As the FAC moves, the elec-
tric field changes accordingly. In the third panel, the calcu-
lated line-of-sight velocity of the ionospheric plasma is
provided, which is roughly consistent with the observation.
When the plasma sheet density is kept constant in time,
the ionospheric flow is rather continuous as shown in the
bottom panel of Fig. 10.

Figure 11 shows an example of the impact of the ring
current-ionosphere coupling on the plasmasphere (Fok et
al. 2005). The top panels show the plasmasphere observed
by the IMAGE satellite. An indentation appears suddenly
on the duskside, and propagates sunward. The bottom
panels show the cold electron density calculated by the
CRCM. When the plasma sheet density increases abruptly,
the ring current grows locally, generating localized FACs.

The electric field associated with the localized FACs initi-
ates the indentation propagating sunward. Thus, the in-
dentation of the plasmasphere may be regarded as the
ring current-plasmasphere coupling.

Figure 12 shows an example of the impact of the ring
current-ionosphere coupling on the energetic protons in
the inner magnetosphere (Ebihara et al. 2011). The red
color indicates the flux of energetic neutral atom (ENA)
with energy of ~ 44 keV. The peak flux of ENA takes place
in the post-midnight sector, which is different from the
conventional understanding. Conventionally, the ions ori-
ginating from the nightside plasma sheet gain the kinetic
energy most in the pre-midnight sector where the ions get
closer to the Earth, as shown in Fig. 3. Thus, the peak of
the ENA is expected to take place in the pre-midnight sec-
tor. The eastward shift of the ENA peak as observed by
the IMAGE satellite can be explained by the development
of the shielding electric field (Fok et al. 2003). The shield-
ing electric field changes the drift trajectories, and some
ions originating in the plasma sheet get closer to the Earth
in the post-midnight sector.
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The ring current-ionosphere interaction can lead to a
Rayleigh-Taylor type instability (interchange-like instability)
(Sazykin et al. 2002; Ebihara et al. 2005a). Figure 13 shows
the differential flux of protons with energy 32 keV for the
intense magnetic storm of 20-21 November 2003. CRCM
is used to calculate the ions, and plasma sheet density and
temperature observed at geosynchronous orbit are used as
a boundary condition of the simulation. A remarkable
point is the spatial distribution of the flux showing undu-
lation. At the early stage of the recovery phase of this
storm, the plasma sheet density suddenly decreases as
shown in Fig. 1. Then, tenuous ion population propagates
earthward. Consequently, the earthward gradient of the
plasma pressure is established near the interface between
the outer edge of the preexisting high-pressure (dense
plasma) and the inner edge of the newly coming
low-pressure (tenuous plasma). When the interface has a
small hump, localized FACs are generated around it.
Downward FAC flows on the westside of the hump, and
upward one flows on the eastside. To satisfy the current
continuity, eastward electric field is generated. When the
eastward electric field is mapped to the magnetosphere,
the ions that are constitute of the hump start drifting out-
ward so as to enlarge the hump. This process is schemat-
ically illustrated in the right panel of Fig. 13.

The ring current is also known to result in auroral phe-
nomena. The energy of the ring current ions is transferred
to plasmaspheric thermal electrons by way of the Cou-
lomb collisions. The heat flux propagates to the iono-
sphere, resulting in stable auroral red (SAR) arcs
(Cole 1965). ENAs originating from the ring current ions
precipitate into the ionosphere, resulting in aurora at low
latitudes (Zhang et al. 2006). Magnitude of the low-
latitude aurora is inversely proportional to the Dst index.
Temperature anisotropy of the ring current ions excites
electromagnetic ion cyclotron (EMIC) waves (Kennel and
Petschek 1966). The cold and hot plasma densities deter-
mine the linear growth rate of the EMIC wave. The pitch
angle of the protons is scattered when they encounter the
EMIC waves. Some of the scattered protons precipitate
into the ionosphere, resulting in the proton aurora
(Yahnin et al. 2007). Jordanova et al. (2007) calculated
wave gain of the EMIC waves in the ring current simula-
tion, and confirmed that the EMIC waves grow efficiently
in the regions where the energetic ring current protons
overlaps with the dayside plasmaspheric plumes and
where density gradients are steep at the plasmapause. The
precipitating protons significantly increase the ionospheric
conductivity proton near the equatorward edge of the aur-
oral oval on the duskside (Galand and Richmond 2001).

The ring current is shown to have a large influence on
the magnetosphere and the ionosphere. Figure 14 sum-
marizes the active role of the ring current. (1) The ring
current is strong enough to distort the magnetic field,
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leading to adiabatic changes in the trapped particle fluxes.
The magnetic field decreases near the equatorial plane,
whereas the magnetic field increases at off-equator. This
causes the dual acceleration process (betatron deceleration
and Fermi acceleration), resulting in butterfly-like pitch
angle distribution of trapped particles (Ebihara et al.
2008a). (2) The asymmetric ring current results in a for-
mation of the region 2 FAC (flowing into the ionosphere
on the duskside and away from the ionosphere on the
dawnside). Dusk-dawn electric field appears to establish
the current continuity in the ionosphere. This electric field
is called a shielding/overshielding electric field because the
direction is opposite to that of the convection electric field
(dawn-dusk electric field). (3) The region 2 FAC is located
equatorward of the region 1 FAC. Poleward electric field
appears to establish the current continuity in the iono-
sphere. The poleward electric field gives rise to the west-
ward fast ionospheric flow in the subauroral ionosphere. (4)
When the plasma pressure shows multiple-peak distribu-
tion, multiple fast ionospheric flow appears. One observes
changes in the speed of the ionospheric flow as the multiple
plasma pressure distribution drifts.

Figure 15 summarizes possible cross energy and cross
region coupling in the inner magnetosphere and the iono-
sphere. One causes another, so that the system is rather
complicated. When the magnetic storms take place, all
these components play active and passive roles. Numerical
simulation is obviously a powerful tool to understand the
complicated system.

Conclusion

The development and the decay of the magnetic storm
are understood to accumulation and loss of the charged
particles trapped by the Earth’s magnetic field, respect-
ively. The enhancement of the convection electric field
is necessary to explain the accumulation of the particles
and the development of the ring current during the
magnetic storms. The ring current is strong enough to
change the magnetic field in the near-Earth space envir-
onment, resulting in the significant changes in the
trapped particles. The asymmetric distribution of the
ring current, which can be reasonably explained by
the development of the convection, results in the forma-
tion of the field-aligned current. The field-aligned current
flows into and away from the ionosphere, giving rise to
additional electric field. The simulation demonstrates that
the ring current is not a consequence, but can be a cause
of many observable effects during the magnetic storms.
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