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1 Introduction

The equation to be studied in this paper is
(As) PP ®) £ at)e@(@®)) £ D ri)e@(h;(1) =0,
i=1 j=1

(0(€) = |€]*71E = |€]*sgn &, a > 0, € € R, Double-sign corresponding),

where p, ¢, ; : [a,00) = (0,00), a 2 0 are continuous functions, g;, h; are continuous

and increasing functions with g;() < ¢ and h;(t) >t and tlim gt)y=oc0fori=1,2,---,m
—00
and 7 = 1.2,--- ,n. In what follows we always assume that the function p(t) satisfies
© dt
(1.1) ] — = 00.
a P(t)a

It is shown in the monograph ([8]) that the class of regularly \}arying functions in the
sense of Karamata is a well-suited framework for the asymptotic analysis of nonoscillatory
solutions of second order linear differential equation of the form

2'(t) = q(t)z(t), q(t) > 0.

The study of asymptotic analysis of nonoscillatory solutions of functional differential
equations with deviating arguments in the framework of regularly varying functions (called
Karamata functions) was first attempted by Kusano and Marié ([5, 6]). They established
a sharp condition for the existence of a slowly varying solution of second order functional
differential equation with retarded argument of the form

(1.2) " (1) = q(t)x(g(1)),
and the following functional differential equation of the form
(1.3) 2"(t) + q(t)z(g(t)) £ r(t)z(h(t)) = 0,

where ¢, 7 : [a,00) = (0,00), @ = 0 are continuous functions, g. h are continuous and
increasing with g(¢) < ¢, h(t) > t for ¢t 2 a, atlim g(t) = .
—00
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It is well known that there is the qualitative similarity between linear differential equa-
tions and half-lincar differential equations (sce the book Dosly and Rehdk ([2])). Thercfore,
in our previous papers ([4, 7]) we proved how useful the regularly varying functions were for
the study of nonoscillation and asymptotic analysis of the half-lincar differentail cquation
involving nonlinear Sturm-Liouville type differential operator of the form

(Bx) (Pt () f(B)p(x(t)) =0,  p(t) >0,

and the half-linear functional differential equation with both retarded and advanced argu-
ments of the form

(14) (e (1)) £ a()(z(9(t))) £ r{D)p(z(h(1))) = O,

where f : [a,00) = (0,00), @ 2 0 is a continuous function, p, g. h are as in the above
equations.

Theorem A (J. Jaros, T. Kusano and T. Tanigawa ([4])) Suppose that (1.1) holds. The
equations (By) have a normalized slowly varying solution with respect to I’(L) and a nor-
malized regularly varying solution of index 1 with respect to P(t) if and only if

(1.5) tll)rg P(t)* /too f(s)ds =0,

where the function P(t) is defined by

(1.6) P(t) = / ‘_ds

p(s) =
Theorem B (J. Manojlovi¢ and T. Tanigawa ([7])) Suppose that
lim@=1 and 1im£(t—)=1
t—oo 1§ too ¢

hold. Then, the equations (1.4) have a slowly varying solution and a regularly varying
solution of indezx 1 if and only if

00 o0 .
M a — W a —_
tlir{.lot /t g(s)ds = }ironot /z r(s)ds = 0.

The objective of this paper is to establish a sharp condition of the existence of a nor-
malized slowly varying solution with respect to I’({) and a normalized regularly varying
solution of index 1 with respect to P(t) of the equation (A;). Our main result is the
following.

Theorem 1.1 Suppose that

(1.7) tli)r&%=l for i=1,2,---,m
and
(1.8) lirnm=l for i=1,2,---,n

t—o0 P(t)
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hold. The equation (Ay) possess a normalized slowly varying solution with respect to P(t)
and a normalized regularly varying solution of index 1 with respect to P(t) if and only if
(1.9) '

i PO

00 00

gi(s)ds = lim P(t)”’/ ri(s)ds=0 fori=1,2,--- mandj=12.--- ,n
t t—00 t

This paper is organized as follows. In Section 2 we briefly recall the definitions and
properties of the slowly varying and regularly varying functions of index p with respect
to P(t) which are called the generalized regularly varying functions introduced by Jaros
and Kusano ([3]). An explicit expressions for the normalized slowly varying solution with
respect to P(t) and the normalized regularly varying solution of index 1 with respect to
P(t) of the equations (By) obtained in ([4]) do not meet our need for application to the
functional differential equations (A4 ), and so we present a modified proof of Theorem A in
Section 3. Some examples illustrating our result wiil also be presented in Section 4.

2 Definitions and properties of the generalized regularly varying

functions

For the reader’s convenicnce we first state the definitions and some basic properties of
the regularly varying functions and then refer to the generalized regularly varying func-
tions. The generalized regularly varying functions are introduced for the first time by Jaros
and Kusano ([3]) in order to gain useful information about the asymptotic behavior of
nonoscillatory solutions for the self-adjoint differential equations of the form

(p(t)7' (1)) + f(t)=(t) = 0.
(The definitions and properties of regularly varying functions):

Definition 2.1 A measurable function f : [a,00) — (0,00) is said to be a regularly
varying of index p if it satisfies

limf—(/\—t)=/\*° forany A >0, p€ER.

=0

Proposition 2.1 (Representation Theorem) A measurable function [ : [a,00) —
(0. 00) is regularly varying of indez p if and only if it can be written in the form

ft) = c(t)exp{ :@ds} , t2=t,

for some to > a where c(t) and 6(t) are measurable functions such that

lim ¢(t) = c€ (0,00) and lim 6(t) = p.

t—o0 {—o0

The totality of regularly varying functions of index p is denoted by RV(p). The symbol
SV is used to denote RV(0) and a member of SV=RV(0) is referred to as a slowly varying
function. If f(¢) € RV(p), then f(t) = t*L(¢t) for some L(t) € SV. Therefore, the class of
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slowly varying functions is of fundamental importance in the theory of regular variation. In
addition to the functions tending to positive constants as ¢ — oo, the following functions

N N
' ms ) log ¢
g(logi )™ (m; €R), exp {g(logi t)”t} (0<n;<1), exp {log2 t} ,

where log; t = logt and log, ¢ = loglog;,_;t for k = 2,3,---, N, also belong to the set of
slowly varying functions.

Proposition 2.2 Let L(t) be any slowly varying function. Then, for any v > 0,

lim t"L(t) =c0 and limt™"L(t) =0.
t—o0

t—o0

Proposition 2.3 (Karamata’s integration theorem) Let (1) €SV. Then,

(i) 'Lf’)’ > _17
y+1

7+1

¢
/ sTL(s)ds ~

L(t), as t— oo

(i) of v < -1,

(&3] t’y+1
v ~ =
/t sTL(s)ds ) L(t), as t— o0.

Here and hereafter the notation p(t) ~ ¥(t) as ¢t — oo is used to mean the asymptotic
equivalence of p(t) and ¥%(t): tli)m P(t)/p(t) = 1.
o0

For an excellent explanation of the theory of regularly varying functions the reader is
referred to the book ([1]).

(The definitions and properties of generalized regularly varying functions):

Definition 2.2 A measurable function f : [e,00) — (0,00) is said to be slowly varying
with respect to P(t) if the function f o P(¢)~! is slowly varying in the sense of Karamata,
where the function P(t) is defined by (1.6) and P(¢)~! denotes the inverse function of P(t).
The totality of slowly varying function with respect to P(t) is denoted by SVp.

Definition 2.3 A measurable function g : [a,00) — (0, c0) is said to be regularly varying
function of index p with respect to P(t) if the function g o P(t)~! is regularly varying of
index p in the sense of Karamata. The set of all regularly varying functions of index p with
respect to P(t) is denoted by RVp(p).

Of fundamental importance is the following representation theorem for the generalized
slowly and regularly varying functions, which is an immediate consequence of Proposition
2.1.

Proposition 2.4 (i) A function f(t) is slowly varying with respect to P(t) if and only if
it can be expressed in the form

(2.1) F() =c(t)exp {/j %ds} , L2t
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for some to > a, where c(t) and 6(t) are measurable functions such that
tll)rg c(t)=ce(0,00) and tlirg () =

(ii) A function g(t) is regularly varying of indezx p with respect to P(t) if and only if it has
the representation v

(2.2) g(t) = c(t) exp { / —

for some ty > a, where c(t) and §(t) are measurable functions such that

tli’m c(t)=ce(0,00) and lmé(t) =

t—o0

If the function c(1) in (2.1) (or (2.2)) is identically a constant on [lg,00), then the
function f(t) (or g(t)) is called normalized slowly varying (or normalized regulalrly varying
of index p) with respect to P(t). The totality of such functions is denoted by n-SVp (or
n-RVp).

It is easy to see that if g(t) €RVp(p) (n-RVp(p)), then g(t) = P(t)*f(t) for some
f(t) €SVp (or n-SVp).

Proposition 2.5 Let f(t) €SVp. Then, for any v > 0,
N 2 Y — r N 2 Y[ —
(2.3) tllgloi O f(t)y=00 and tllfﬁ,’ O™ f()=0
Karamata’s integration theorem is generalized in the following manner.

Proposition 2.6 (Generalized Karamata’s integration theorem) Let f(t) €n-SVp.
Then,

- P(s)? P(t)™! _
(2.4) / oI ~ TR0 e e

(i) If v < =1, [ P(t)"f(t)/p(t)adt < oo and

G LI 0
¢ pls)a Js)ds y+1

(2.5) —=—f(t) as t—» 0.

3 The existence of generalized regularly varying solution of self-

adjoint differential equation without deviating arguments

Theorem 3.1 Put F(t) = P(t)* [° f(s)ds, F(t) = sup,>; F(s),

(3.1) Fy(t,w) = |1+ F(t) — w|**= + (1 + -(1;) w—1,
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and
32 Fltw)=1+ (1 + é) w— (14 F(t) — w5

(i) The equation (B.) possesses a n-SVp solution z(t) having the expression

(3.3) (t) :-exp { /t t (%) : ds} , L2k

for some to > a, in which v(t) satisfies
lo'e} F 1+%
(vfs) + F(s)'*

3.4 v(t) = aP(t)* . =l
@49 ) ) t p(s)= P(s)a+1 b=t
and

(35) 0<u(t) S Fto) for t21to

if and only if (1.5) holds.
(i) The eguation (B.) possesses a n-RVp(1) solution z(t) having the ezpression

(36) #(t) = exp { /t lt (%%#) : ds} Lotz

for some t; > a, in which w(t) satisfies

(3.7) w(t):-l;z‘—t) /tooF+(s,w(s))ds, t>
and ,
(38) 0Sw(t) S\F(t) for t2h

if and only if (1.5) holds.
(ili) The equation (B_) possesses a n-SVp solution z(t) having the expression

(3.9) o(t) = exp { [ (%) : ds} it
for some to > a, in which v(t) satisfies
(3.10) o(t) = aP()° /t * %d& =

and (3.5) if and only if (1.5) holds. Here the meaning of the asterisk notation is defined by
& =I[€["sgng, >0, ECR.
(iv) The equation (B_) possesses a n-RV p(1) solution z(t) having the expression

(3.11) z(t) = exp {/t (1—_—1)2(%11(_:—)5@) : ds} , t2t
for some t; > a, in which w(t) satisfies
(3.12) w(t) = % /;0 F_(s,w(s))ds, t=t

and (3.8) if and only if (1.5) holds.



4 Examples

We here present four examples illustrating application of Theorem 1.1 to the functional
differential equations of the type (A;) and (A_), respectively. We begin with two examples
of the existence of n-SVp and n-RVp(1) solutions of the type (A.) with the case i =1, 2
and j = 1.

Example 4.1 Consider the following functional differential equation with both retarded

and advanced arguments 1
—ot / _
) a0 (2 (- ) ) +

(4.1) + mito (x (t B loig/, _ 10;2L)) +r(t)y <1 (t - @)) =0, tze

where the functions ¢;(t), 7 = 1, 2 and r(¢) are given by

ql(t):L(1+—)‘—>a_1 [1——/\——M+—)\—}x

3taeat logt tlogt t(logt)?  logt

3

—aX
—a log(1—+)
x(l— 1 ) 14 tlogt

tlogt logt

A)"“l[l A oA )\}X

) = e (147
A= Shaeat log ¢ tlogt t(logt)?  logt

1 1 —al
« (1_ 1 1 )—a 1+10g(1—@_tlog2t>

tlogt tlogyt log ¢

and

Y A\t A AA=1)
0= S (”@) [l“tlogt' t(logt)? +@}"

—a log {1+ 7= )
% (1 1 ) 14 ( tlogt

+ tlogt logt

—a

for A being a positive constant. The function p(t) = e~ satisfies (1. 1) and that the function
P(t) given by (1.6) is P(t) ~ e*. Moreover, the functions

1 1 1 1
t) =1~ — )=t — — — —— = —_
9(t) logt’ (1) logt logyt and  h{t) =+ logt

satisfy conditions (1.7) and (1.8). The condition (1 9) is satisfied for this equation since

e d a ) h a
t qi(s)ds ~ Fpagat’ i=1,2 and ~ e B t = 00.

Therefore, equation (4.1) has a n-SV,: solution a:(t) by Theorem 1.1. One such solution is
z(t) = t(logt)*.

17
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Example 4.2 Consider the following functional differential equation

4.2) (o' ()) + a()p(a(te ) + g(Op(z(te™Tme)) + r(l)p(z(let)) = 0, L2 ¢,

where the functions ¢;(t), i = 1,2 and r(¢) are given by

a—1
ap Iz u+1l
= 1- 1-
a(t) 3t(logt)ottlog,t < log, t) < log, t

) x
fmtoy

log, t
a—1
ap B pt1
a(!) 3t(logt)otllog, t ( log, t) ( log, t)

X <14

bl

1 1 - 8
tlogt (logt)?

1 1 s
log (1 ~ 7 ~ i)
log, t

and

a—1 —«
ap U p+1 1
= - 1- 1
) 3t(logt)tllogy t (1 log, t) ( log, t) ( * tlog t) %

1 ap
log (1 + ;EE;)

1
X + logy ¢

K

respectively, and p is a positive constant. The function p(t) = ¢~ satisfies (1.1) and the

1 1
function P(t) reduces to P(t) ~ logt, while the functions gi(t) = te™%, go(t) = te™ ¢ Tos?
and h(t) = tet satisfy conditions (1.7) and (1.8). Moreover, since

00 ap . °° ap
/t 9:(s)ds 3t(logt)atllog,t’ T and /t (s)ds 3t(log t)>+1log, ¢

as t — 0o, condition (1.9) is satisfied and thus, the equation (4.2) possesses a n-RV)og; sO-
lution by Theorem 1.1. One such solution is log¢/(log, ¢)*.

Next, two examples illustrating application of Theorem 1.1 to the functional differential
equation of the type (A_) with the case 7 =1, 2 and j = 1 will be presented below.

Example 4.3 We consider the functional differential equation with both retarded and
advanced arguments

(13) (o ®)) = ab)e ( (a - rlg—z)) T (bl ( (t- s - 1';‘2)) N

+r(t)p (x (t+$)) L,
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where the functions ¢;(t), i = 1, 2 and r(¢) are given by

a A\ 2 A A A A
H=—[1-2 U | QUAT, R ARN | [NATI, | —
a:(t) 3leat ( logl.) [( + L) ( log/,) + tlogt ( logl,) * l,(logl,)2} X

—oh
x(l- 1 )" 1+——log(l_“‘}?)

tlogt logt ’
o A\ 2 A A AA=1)
)= (1--2- 1+2)(1- =) -4 222
a(t) 3taeat( logt> [( +t)( logt) tlogt+t(logt)2}x
—al
< (1 1 1 * 14 log (1 - @ - tlolgzt)
tlogt tlog,t logt

and

o A a—1 9 A A /\(/\—1)
=g () [(+3) (i) - e * i)

—ai

@ log (1 + 72

1 g( tlogt)
14— 14— o8t/

X( +tlogt) { + logt ’

for X being a positive constant. As in Example 4.1 it could be shown without difficulty that
all conditions of Theorem 1.1 are satisfied, so that the cquation (4.3) has a n-SV,: solution
z(t) by Theorem 1.1. One such solution is (log?)*/t.

Example 4.4 Consider the following functional differential equation
(44) (e 1)) = aOp(a(te) + q)e(z(te”:m) +r(t)p(alte?)), 12 e,

where the function ¢;(¢), 1 = 1, 2 and r(l) are given by

a—1
ap 1 p—1
i) = 1 1
a(t) 3t(logt)etllog,t ( + log2t> ( + log,t

) x
x {1 + Lo (1 _ “ggt) -

log, ¢

a—1 —a
L I p—1 1 1
t) = 1 1 1~ -
%(!) 3t(logt)tllog, ¢ ( + log2t) ( + log2t> tlogt (log t)z) X

1 1 Bas
log (1 - 7z — )

log, ¢




and

a—1 —o
ap Iz p—1 1
t) = 1 1 1
r(t) 3t(logt)etilogyt ( + logzt) ( + log2t> ( + tlogt) X

—oyL
1
X {1 + Los | (1 M “ogt)

log, t

respectively, and p is a positive constant. As in Example 4.2 it can be verified that all con-
ditions of Theorem 1.1 are satisfied. Therefore, the equation (4.4) possesses a n-RVi; so-
lution z(t). One such solution is z(¢) = log t(log, )*.
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