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A rigorous proof of a conjecture for the one-dimensional
perturbed Gelfand problem from combustion theory
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Department of Mathematics, National Tsing Hua University
Hsinchu 300, Taiwan

1. Introduction

We study the global bifurcation curves and exact mu]tlphclty of positive ‘solutions for the two-point
boundary value problem

{ u'(z )+)\exp(a+u):O, -l<z<1, (L.1)
u(—-1) =»(1) =0,

which is the one-dimensional case of a problem arising in the study of standard models of ignition
in a context of thermal combustion, cf. {1, 23]. In (1.1), A > 0 is the Frank—Kamenetskii parameter
or ignition parameter, a > 0 is the activation energy parameter, u is the dimensionless temperature
of the medium, and the reaction term

e (122)

is the temperature dependence obeying the simple Arrhenius reaction-rate law in irreversible chemi-

cal reaction kinetics, see, e.g. Boddington et al. [2]. Notice that nonlinearity f, € C*[0, 0o) satisfies

fa(w), fo(u) > 0 for u > 0 and a > 0. In addition, f”(u) is negative (concave) for 0 < a < 2, and
/(u) is positive and then negative (convex-concave) for a > 2.
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Figure 1.1: The global bifurcation of bifurcation curves S, with varying a > 0.

For any a > 0, on the (), |ul|,,)-plane, we study the shape and structure of bifurcation curves
. S, of positive solutions of (1.1), defined by

Sa = {(A [lualle) : A > 0 and uy is a positive solution of (1.1)}.
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We say that, on the (A, Jlua)loo)-plane, the bifurcation curve S, is S-shaped if S, has ezactly two
turning points at some points (A%, JJux«|l,o) and (A, [lu, [l,) Where A < A* are two positive
numbers such that

) Nlualloo < luralloo
(i) at (A%, Jlun+|l) the bifurcation curve S, turns to the left,

(iii) at (A, Jua,]lo) the bifurcation curve S, turns to the right.

See Figure 1.1(i).
It is important to notice that, substituting a = 1/e (e is the reciprocal activation energy
parameter) into (1.1), we obviously obtain

u”(z) + Aexp (H—%) =0, -l<z<1, (1.2)
u(—1) =u(1) = 0.

This problem (1.2) is the famous one-dimensional perturbed Gelfand problem, cf. [1, 6, 9]. It has
been a long-standing conjecture ([5, 6, 15, 16, 20, 21]) about the shapes of evolutionary bifurcation
curves and the exact multiplicity of positive solutions of (1.2) with varying e > 0. This problem is
obviously equivalent to study the shapes of evolutionary bifurcation curves and the exact multiplic-
ity of positive solutions of (1.1) with varying a > 0. The con;ecture for one-dimensional perturbed
Gelfand problem (1.2) is stated in the form of (1.1) as follows.

Conjecture 1.1. Consider (1.1) with varying a > 0. There exists a critical bifurcation value ag > 4
such that the following assertions (i)—(iii) hold:

(i) (See Figure 1.1(i).) For a > aq, the bifurcation curve S, is S-shaped on the (), ||u||,,)-plane.
More precisely, there exist two positive numbers A, < A* such that (1.1) has exactly three
positive solutions for Ax < A < \*, exactly two positive solutions for A = A\, and A = \*, and
exactly one positive solution for 0 < A < A, and A > A\*. Furthermore, all positive solutions
uy are nondegenerate except that uy, and uy+ are degenerate.

(ii) (See Figure 1.1(ii).) For a = ag, the bifurcation curve S, of (1.1) is monotoné increasing on

- the (A, ||lull,)-plane. More precisely, for all A > 0, (1.1) has exactly one positive solution uy.

Furthermore, all positive solutions uy are nondegenerate except that uy, is degenerate for
some Ag > 0.

(iii) (See Figure 1.1(iii).) For 0 < a < ay, the bifurcation curve S, of (1.1) is monotone increasing
on the (A, f|u|l.)-plane. More precisely, for all A > 0, (1.1) has exactly one positive solution
). Furthermore, all positive solutions uy are nondegenerate.

Note that Korman, Li and Ouyang [16] gave a computer-assisted proof of this conjecture. Many
researchers devoted to solve this conjecture since the 1980s. For 0 <.a < 4, it is easy to prove that
the bifurcation curve S, is monotone increasing and all positive solutions of (1.1) are nondegenerate,
and hence ag > 4 under Conjecture 1.1, see e.g. [3]. In 1981, using quadratures, Brown et. al [3]
showed that, for a > d; = 4.25 for some a1, the bifurcation curve S, is S-like shaped (i.e., S, has
at least two turning points). In 1985, using quadratures, Hastings and McLeod [8] proved that the
bifurcation curve S, is S-shaped for sufficiently large a. In 1994, again using quadratures, Wang

" [22] proved that the bifurcation curve S, is S-shaped for a > &5 ~ 4.4967 for some &g, and hence



ap < dg ~ 4.4967 under Conjecture 1.1. In 1999, Korman and Li [15] reduced the upper bound &
of ag to d3 ~ 4.35 for some d3. They used tools from bifurcation theory, particularly the Crandall-
Rabinowitz bifurcation theorem [4], and used quadratures. In 2011, again using quadratures, Hung
and Wang [12] proved that the bifurcation curve S, is S-shaped for a > a* where

a*Einf{a>4:/
0

and hence gp < a* =~ 4.166 under Conjecture 1.1. Very recently in 2015, using quadratures again
together with Sturm’s theorem, Huang and Wang. [10] proved that the bifurcation curve S, is
S-shaped for a > @ where

a{a—2)

[ufa(u) — v fi(w)] du < 0} ~ 4.166, (1.3)

u(a-2)+;\/m
a=inf{a>4: / [ufa(u) — u?fi(u)] du < 0 3 ~ 4.107, (1.4)
0

and hence ap < @ ~ 4.107 under Conjecture 1.1. So by above, we have the following theorem.
Theorem 1.2. Consider (1.1) with a > 0. Then the following assertions (i) and (ii) hold:

(i) For 0 < a < 4, the bifurcation curve S, is monotone increasing on the (), ||ul,,)-plane.
Furthermore, all positive solutions uy are nondegenerate.

(ii) For a > & =~ 4.107, the bifurcation curve S, is S-shaped on the (], ||u||,,)-plane.

Write- exp (%) = exp (H—%) with ¢ = 1/a. Thus, for fixed u, exp (H%) — exp(u) as
e — 0% (i.e,, @ — 00). In that case problem (1.1) and problem (1.2) reduce to the one-dimensional
Gelfand problem (or called Liouville-Gelfand problem)
u(z)+dexp(u) =0, -l<z<]1,
u(—1) =u(1) =0.

In 1853, Liouville [18] first studied (1.5) and found an'explicit solution. In 1959, Gelfand [7]
observed that problem (1.5) can be solved by integration exactly, with positive solution

ur(z) =a+In (sech2 (@xeaﬂ)) ,

(1.5)

where o = |Juy|l,, = ua(0). This enabled him to deduce that (1.5) has either two, one, or zero
solutions, depending on A, see [9, p. 208] and [1, p. 34].
Define

Soo ={(M lualley) : A > 0 and uy is a positive solution of (1.5)}.

Then by the quadrature method (time-map method) and the fact that the nonlinearity exp (u) has
an elementary antiderivative exp (u), one finds that

A=Aa) = [% Oa—e&l__@»d“r:%[m(zea”m‘l)r fora>0 (L6)

after some simple computation, see e.g. [14, Eq. (5)]. It is easy to show that lim, o+ A(a) =
limg—,00 A() = 0 anid A(a) has exact one critical (maximum) value -

o = max —— [1n (2e° NPy g y i 1)]2 ~0.878 (1.7)

a€(0,00) 2%
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at some critical point

oy = In (2 ”; ’\°°) ~ 1.187 (1.8)

(o]
after some simple computation; we omit the proofs. Thus the bifurcation curve S., is a D-shaped
curve on the (A, [|u|,)-plane and the next theorem follows.

Theorem 1.3. Consider (1.5). There exist a critical (maximal) value Ay = 0.878 and a critical
point cee = In 2—%) ~ 1.187 for A(a) in (1.6) such that the bifurcation curve Seo is a D-shaped

curve on the (A, ||u||,, )-plane and satisfies (1.6)—(1.8). More precisely, (1.5) has exactly two positive
solutions for 0 < A\ < Ao, €xactly one pos1t1ve solution for A = A, and no positive solution for
A > Aoo. In addition, [lur, e = Coo-

2. Main result

Theorem 2.1. Consider (1.1) with varying a > 0. There exists a critical bifurcation value ag ~
4.069 satisfying 4 < ag < @ ~ 4.107 such that the following assertions (i)—(iii) hold:

(i) (See Figure 1.1(i).) For a > ag, the bifurcation curve S, is S-shaped on the (, ||ul|,,)-plane.
More precisely, there exist two positive numbers A, < A* such that (1.1) has:

(a) exactly three positive solutions wy, uy, va With wy < uy < v) for Ay < X < A*,

(b) exactly two positive solutions wy,, uy, with wy, < uy, for A = A, and exactly two
positive solutions uyx, vy= with Uy« <-vy+ for A = A*,

(c) exactly one positive solution wy for 0 < XA < ), and exactly one positive solution vy for
A> A

Furthermore,

(d) limy g+ [lwallyo = 0 and limy—.cq [[oal, = oo.
(e) All positive solutions uy are nondegenerate except that uy, and uy« are degenerate.

() Nlurtlloo < llueanlloos imamoo flun, |loo = o0 and lime—oo fluxs|lo, = oo & 1.187.

(ii) (See Figure 1.1(ii).) If a = ay, then the bifurcation curve S, is monotone increasing on the

(A Julloo)-plane. More precisely, for all A > 0, (1.1) has exactly one positive solution uy

- satisfying limy o+ |uallo = 0 and imy—e |Juallo, = o0. Furthermore, all positive solutions
u) are nondegenerate except that uy, is a degenerate solution for some XA = \g > 0.

(iii) (See Figure 1.1(iii).) If 0 < a < ag, then the bifurcation curve S, is monotone increasing on
the (A, ||u|l,,)-plane. More precisely, for all A > 0, (1.1) has exactly one positive solution uy
satisfying limy_ g+ [lualloe = 0 and limy_,o0 |luall,, = co. Furthermore, all positive solutions
u) are nondegenerate.

3. Lemmas

To prove Theorem 2.1, we develop some new time—map techniques and apply Sturm’s theorem
stated in [11]. The ’cime—map formula which we apply to study (1.1) takes the form as follows:

VA= _/ [Fa(a) = Fa(w)] ™2 du = Ty(a) for 0 < a < oo, (3.1)
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where F,(u) = [ fa(t)dt. So positive solutions u of (1.1) correspond to
[ull, = and Tu(a) = VA

Thus, studying the exact number of positive solutions of (1.1) is equivalent to studying the shape
of the time map T, () on (0,00), ¢f. [10]. In addition, proving that the bifurcation curve S, is
S-shaped on the (), ||ul|, )-plane is equivalent to proving that T,(cx) has ezactly two critical points,
a local maximum and a local minimum, on (0, co0). We recall that a positive solution uy of (1.1) is
degenerate if T!(||ux]|.,) = 0 and is nondegenerate if T.(|lusl.,) # O.

Ty@) 7@ TI.@

0 Ohr 0 (273 0
(iya=ao (ii)0<a<ao

Figure 3.1: Graphs of T,(a) (= VA) on (0, 00) with varying a > 0, cf. Figure 1.1.

By Theorem 1.2, we see that T () is‘strictly increasing and has no critical points on (0, c0) for

0 < a £ 4, and T,(a) has exactly two critical points, a local maximum and a local minimum, on

(0,00) for a > @. So by above, to prove Theorem 2.1(i), (ii) and (iii) which solves Conjecture 1.1,

it is sufficient to prove that there exists a number ag = 4.069 satisfying 4 < a9 < @ =~ 4.107 such
-that the following parts (M1), (M2) and (M3) hold, respectively:

(M1) (See Figure 3.1(1).) For a > ag, on (0,00), Top(c) has ezactly two critical points, a lo-
cal maximum at some ajs(a) and a local minimum at some ap(a) (> op(a)), satisfying
A = T2(ap(a)), A = T2(opm(a)). In addition, lim,_ g+ Ta(@) = 0, lima—oo Tu(a) = oo,
limg 00 0m (@) = Qoo, and limg_,o0 apr(a) = 00 where @ is defined in (1.8).

(M2) (See Figure 3.1(ii).) For a = ag, Tge(c) is a strictly increasing function on (0, c0) and has
exactly one critical point at some ‘ap on (0,00). Moreover, T, (ap) = 0 and Tp () > 0 for
a € (0,00) \ {a0}. In addition, lim,_g+ Ty () = 0 and limg—ee Toe (@) = o0,

(M3) (See Figure 3.1(iii).) For 0 < a < ag, Ty(e) is.a strictly increasing function and has no
critical points on (0, 00). Moreover, T, (a) > 0 on (0, 00). In addition, lim,_,o+ To(c) = 0 and
limg 00 Tp(a) = o0.

To prove parts (M1)-(M3), we need the following Lemmas 3.1-3.3.
Lemma 3.1. Consider (1.1) with a > 0. Then lim,_,g+ Ta(a) = 0 and limy—,e0 T, () = 0.
Lemma 3.2. Consider (1.1) with a > 0. The set § defined by

a_{a> 0 : T, () has exactly two critical points ap(a) < am(a), -
a local maximum and a local minimum, on (0, co)
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is nonempty, open and connected. Moreover, Q = (ag,00) for some number ay (= 4.069) € (4, a)
where @ is defined in (1.4).

Lemma 3.3. Consider (1.1) with 4 < a'< ag. The following assertions (i)—(ii) hold:

(i) For 4 < a < ap, Ti(c) > 0 for a > 0.

(ii) For a = ag, there exists ag € (y(ag), k(ap)) such that T, (ag) = 0 and Ty, (o) > 0 for a > 0
and o # og, where k(ag) is defined in Lemma 3.5 stated below. Moreover, 4 < ag < & = 4.107.

First of all, Lemma 3.1 follows easily from [17, Theorems 2.6 and 2.9]. Before proving Lemmas
3.2 and 3.3, we need to investigate some properties of T,(a) on (0,00). In fact, we apply the next
Lemmas 3.5-3.7 and 3.12 to prove Lemma 3.2, and apply Lemma 3.2 and the next Lemmas 3.5-3.7,
3.11, 3.14 and 3.16 to prove Lemma 3.3.

Next, we divide this section into three subsections.

3.1. Basic functions estimates

We first compute and obtain that, for v > 0, -

fa(u) = a® fo(u) > 0, ' 3-2)

1
(a+u)?

: 0 fo‘ru<'y(a),
nep 20t [u—ala—=2)/2] ( au ) ~ <N ea i3
fel) A Dt e/

For the sake of convenience, we let v = y(a) for a > 2. We let

Ou() = 2Fa(w) — ufau) =2 | ult)dt = ufu(w). (3.4)
Lemma 3.4(ii) follows easily from [10, Lemma 2.1}. -
“9(’&)' v' ' A@(u)
; g : ay D, U
P i of 5 Py
A T ------ T_l ________ ! i E
ola P 7a pap

(i)

Figure 3.2: Graphs of §,(u) on [0,00). (i) fa(p2(a)) > 0. (ii) 8a(pa(a)) < 0.
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Lemma 3.4. Consider (1.1) with a > 4. Define positi‘}e numbers

p(a)= a(a—2)—2a\/a(a— 1) < po(a) = a(a—?) +;\/a(a— )_ (3.5)
Then N
0 <m(a) <) = L2 <), (36)

and the following assertions (i)—(ii) hold:
(i) (See Figure 3.2;) 0,(0) = 0, limy—00 8o (u) = 0o, and

>0 foru€ (0,p1(a)) U (p2(a),0),
0’ (’LL) =0 fOI‘ u € {Pl (0)7]’2(0')}: (37)
<0 foru € (pi(a),p2(a)).

Furthermore, there exists a unique number p3(a) > pa(a) such that 8,(p3(a)) = 64(p1(a)). In
addition, p3(a) <12 for 4 <a < = 4.107.

(ii) (See Figure 3.2(1).) For4 < a < ‘11(1)'(’; and o € [y(a), p3(a)), 8a(u) > 0 for u > 0 and there exist
two numbers & € (0,p1(a)) and & € (p1(a), p2(a)] such that 0,(&) = 0,(&) = b.(a). (Notes
that we choose & = «a if a € [y(a), p2(a)].)

Proof of Lemma 3.4. Since Lemma 3.4(ii) follows easily from [10, Lemma 2.1], it is sufficient to
prove Lemma 3.4(i). It is easy to see that (3.6) holds for a > 4. Secondly, we compute and observe
that i

0a(w) fa(u) = ufy(w)

w2 — ala — Du+ a2 >0 for u € (0,p1(a)) U (p2(a), o),
[v* — ala— 2u+ ]fa(u){

p
(a+u)? =0 for u € {p1(a),p2(a)}, (3.8)
<0 for u € (pr(a),p2(a)).

Then we simply prove that ps(a) < 12 for 4 < @ < @ in part (i) because the remainder parts follow
easily from [3, p. 482, lines 29-30] and [12, p. 228]. Since & (= 4.107) < 4.108 = 32 by (1.4), it

is sufficient to prove that p3(a) < 12 for4 < a < 1205207 Clearly, .

(a—1)vVa?—4a+a(a—3)

/ —
py(a) = 7 >0 fora > 4. (3.9
So we see that
1027 30813081 541229 1027
pi(a) < paa) < p2 (ﬁ) = 125000 + 125000 (~'5. 698) <12 ford<a< S50 (3.10)
‘We assert that
1027

8(12) — fa(ps(a)) > 0 for 4 < a < — (3.11)

250

So by (3.8), ps(a) < 12 for 4 < a < XZL. Tt implies that ps(a) < 12 for 4 < a < &.
Next, we prove assertion (3.11). We observe that

a3fa(a) _ u3fa(u) _ o _d_ tsfa(t) B [t2+a(a+4)t+3a2] t2f
(a+a)®  (a+u)? —L [dt (a+t)2] dt —/u @) d : (3.12)
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Since t? — 16t — 16 < 0 for 0 < t < 12, and by Lemma 3.4(i), (3.10) and (3.12), we compute and
obtain that, for 4 < a < 1205%7,

52 0a12) 0@ = o2 = Zow|
u=pi(a
_ 12 tzfa(t) Pi(a)fa(p(a))  (12)3fa(12)
2 et B - ey
12 2
= /()(t i(tt)) (t* — a’t — a?) dt (since a > 4)
pi(a) \G
/ " (tzf‘:(t’;)‘i (t* — 16t — 16) dt < 0. (3.13)
m) (a

So by (3.4), (3.8) and (3.10), we compute and obtain that, for 4 < a < 32T,
0a(12) — fa(p1(a))

12
= / 0, (v)du
p1(a)
_ 12 [u2 —a(a—2)u+ a2]
- /,, N T Ja(w)du
- P2(@ 42 —a(a — 2)u + o? 2 [u?—a(a—2)u+d’
2 felp2(a)) {/pl(a) (a+u)? u ./Pz(a) (a+u)? du}
_ 12,2 —afa—2)u+a? _ fa(p2(a))
= falm@) /pl(a) @ T e p@ (19
where
@, = [12—-pi(a)] {a® + a® + [12+ p1(a)] a + 12p1(a) }
+a2(a +12)[a + pi(a)]In (%4{)11—(2)) .

i ~ 1027
Since @027 (= 73.2) > 0, and by (3.13) and (3.14), we see that, for 4 < a < L5,

250

) ea(IQ) - ea(p3(a))

1027
0a(12) = Ga(p1(a)) 2 03020 (12) = 0202 (”1 ( 250 >>
N Fioz (p2 (55)) |
= ) n (B

D107 > 0.
250"

So assertion (3.11) holds. The proof of Lemma 3.4 is complete. Bl
Lemma 3.5. Consider (1.1) with a’> 4. Then the following assertions (i)-(ii) hold:

(i) There exists a continuous function &(a) € (7y,00) of a on (4, 00) such that

>0 for0<u<k(a),

Go(u) = — /Ou 26" (t)dt { =0 foru = k(a), (3.15)

<0 foru> k(a).

Furthermore, k(a) is a strictly increasing function of a on (4, 417] and k(a) <8ford<a < %.
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(ii) There exists a strictly decreasing, continuous function p(a) € (0, k(a)] of a > & such that

>0 for0<u<p(a),
=0 foru=p(a), (3.16)
<0 forp(a) < u < paa).

Hy(u) = / ’ t6,(t)dt

0

Furthermore,
v < p(a) = &(a) = p2(a) for a=a, (3.17)
v < pla) < k(a) < pa(a) fora < a < a¥, (3.18)
v = p(a) < k(a) < p2(a) for a=a*, (3.19)
p1(a) < p(a) < v < k(a) < pa(a) for a > a*. (3.20)

Proof of Lémma 3.5. We divide this proof into the next Steps 1-2.
Stepl. We prove assertion (i). Clearly, G,(0) = 0. Since limy,—,c0 fo(u) = exp(a) and by (3.3),
we compute and find that, for a > 4,

>0 for0<u<n,
Gl() = —u26(u) = P f(w){ =0 foru=1,
' <0 foru>7,

lim Go(u) = Hm [/7 3 £ (t)dt + /u t3f(’1’(t)dt] <~? lim /u fr(t)dt

U0 U—00
a?fa(u)

= o [l 210 = 0] = o* | tim 2P g0
= —7’f0)<0.

So for any a > 4, there exists a unique number x(a) > « such that (3.15) holds. Since G/,(k(a)) =
[k(a)]® f/(x(a)) < 0 by (3.3), and by the Implicit Function Theorem, x(a) is a continuous function
of a on (4,00). In addition, it is easy to observe that 4/(a) =a—1 > 0 for a > 4, and
0 2 fa(t) [+ (a® +a)t+2a%] tfa(t)
Ot (a+t) (a+1)°

Thus 0 < v(a) < ¥(5) = 7.5 < 8 for 4 < a < 73%. Then we compute that

>0 for0<t<8anda>4

8 8 8 9 _ 5
Ga(8) = _/ tzeg(t)dt:/ t3f;'(t)dt=2a2/ [t A0} (7,5 t>]dt
0 0 o Lla+ty’ \a+t /]
2,2 v 0 s T
17 LG) [/ (Vt t)dt—i—/ (7t t>dt]
(a+7) 0 a+t L\ a+t
2.2 8 42 5 92 2
_ 2a’yfa(3’r) (7t t)dt=a7f“(’;) [Sa 364+ln< a )]
(@a+7)° Jo \a+t (@t7) P o
542 .
s (3.21)
(a+7)
where ¥, = (80” - 64) /a® +In (a/ (a + 8)). Since
d 64 (—a® + 3a + 24) 417
Ly - Y
da\I/a a4(a+8) >0 ford<a< 100°
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we see that Uo < Var (v —0.03) <Oford<a< 47 So by (3.21), Ga(8) < 0ford<a < &I 1t

implies that (a) < 8 for 4 < a < $I.
In addition, by (3.3), we compute and find that, for 4 < a < % and 0 < u < 8,

%Ui"fé’(u) %_{3—(—)—)—[( —4- 2a)u + (a® + 2a% — 6a)u? + 4a u+2a]
udaf,(u) 417, 3 43 2 417, 3 3
> e —6x oL
> (a+u)6[( -4 - 2x100)u +(@+2x4 6x100) +4x4Pu+2x%x47
= ““—f“()— [2u (309u + 800) (8 — u) + u® + 205u? + 6400]
 50(a+uw)®
> 0.

So for 4 < a1 < ap < BT G, (k(ag)) = [ Bf2 (t)dt < [FD 3 f2 (H)dt = Gay((an)) = 0. It
follows that x(a1) < k(ag) for 4 < a3 < ag < % Therefore, x(a) is a strictly increasing function
of a € (4, 41].

Step 2. We prove assertion (ii). It is easy to observe that t* —a%t—a? < 0 for 0 < t < pa(a) <

a (a +Vva?+ 4) /2 and a > 4. So we further observe that
/ (t* — a®t — a?) ! Jj:(t)) dt <0 for 0 <u<ps(a)and a>4. (3.22)

Clearly, Ho(0) = 0. By Lemma 3.4(i), we see that, for a > 4,

- >0 forue(0,p1(a)) U (pa(u),o0), :
H(u) = ub,(u)§ =0 foru€ {pi(a),p2(a)}, (3.23)
<0 foru e (pi1(a),p2(a)).

So by (3.22) and (3.23), we find that

+ Hy(p2(a))po(a) = %Ha(u) ) ()<0. (3.24)

0 3]

5~ Ha(p2(a)) = 5~ Ha(u)
Oa Oa u=pa(a)
Since H,(pa(a)) = 0 for a = @ by (1.4), and by (3.24), we observe that H(pz(a)) < 0 for a > a. So
by (3.23), there exists a unique number p(a) € (p1(a), p2(a)] such that (3.16) holds. Furthermore,
p(a) = pa(a) for a = @ and p;(a) < p(a) < pa(a) for a > a. In addition, by integration by parts, we
have

Ha(u) = % [«20,(w) + Galw)] . (3.25)
y (3.23) and (3.25),

0 fora=a

GAM@)=—mmweum@>{j8 ey <a@x@>:ua@ﬂ@){io fora>a

By (3.15), we see that p(a) = pe(a) = k(a) for @ = @ and p(a) < k(a) < pg(a) for a > d@. Since
v'(a) > 0 for a > 4, and by (3:6), (3.22) and (3.23), we find that

) B
%Ha(')’) - _Ha(u)

<0 fora>4. (3.26)
Oa

u=ry

+mmﬂw<%mw

u=y
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So we observe that H,(7) is a strictly decreasing continuous function of a > 4. By (1.3), we see that
a*=1inf {a > 4: Ha(y) < 0} Thus Hy(7y) = 0 for a = a* and H,(7) < 0 for @ > a*. It follows that
p(a) =7 for a = a*, and p(a) < v for a > a*. Thus, by above discussion, (3.17)=(3.20) hold. Next,
we prove that p(a) is a strictly decreasing function of a > @. Let numbers ag > a3 > @ be given.
Then p(a;) < pa(a1) < pa(az) by (3:9). So by (3.22), we observe that Hy,,(p(a1)) < Ha, (p(a1)) = 0.
It follows that p(ag) < p(a1). It implies that p(a) is strictly decreasing for a > .

Finally, the proof of the fact that p(a) is a continuous function of a > @ is omitted.

The proof of Lemma 3.5 is complete. B

3.2. Estimates of T, and its derivatives

For Ty(a) in (3.1), we compute that

vy 1 ¢ Ga(a) — Oa(u) w for ~
Ty (a) = 2\/50/0 [Fa(a)—Fa(u)]a/zd for 0 < a < oo, (3.27)

where 6g(u) is defined by (3.4). The next Lemma 3.6(i) follows easily from [17, Lemma 3.2] and
(3.3). And the proof of next Lemma 3.6(ii) is easy but tedious and hence we omit it.

Lemma 3.6. Consider (1.1) with fixed a > 0. The following assertions (i)—(ii) hold:

(i) For any fixed a > 4, either T,(«) is strictly increasing on (0,7], or T,(«) is strictly increasing
and then strictly decreasing on (0, 7).

(ii) For any fixed oo > 0, T,() is a continuously differentiable function of a > 0.

Lemma 3.7. Consider (1.1) with a > 4. Then
T;’(a) + %Té(a) >0 for a > k(a).

Proof of Lemma 3.7. By (3.27), we compute that

T P * § [Ba(@) = 0a(w)]® + [Fa(@) — Fa(w)][¢a(c) — da(w)] u
Ta (a) + aTa(a) - 2\/5(!2 A {Fa(a) _ Fa(u)]5/2 d
1 « ¢a(a) - ¢a(u).
2\/5012/0 [Fa(a) _ Fa(u)]3/2du7 (328)

where ¢, (u) = ub,(u) — 0,(u), see [12, (3.12)]. We obtain that, by (3.3),

(<0 fér O<u<9,
()¢ =0 foru=4, (3.29)
>0 foru>n~.

$,(0) =0 and ¢(u) = uf)(u) = —u?f)

We note that x(a) > 7 for a > 4 by Lemma 3.5(i). We fix a > &(a). If ¢,(a) > 0, by (3.29),
we see that ¢, () — ¢,(u) > 0 for 0 < u < @, and hence T(a) + 2T!(a) > 0 by (3.28). While if
¢.(a) < 0, since a > k(a) > v, there exists £, € (0,7) such that ¢,(£,) = ¢,(). See Figure 3.3.
So by [12, (3.15)] and Lemma 3.5(i),

2 -1
Td(@) + ~Thle) >

a-us "
2\/56!2 [Fa(a) - Fa(ga)]3/2 /0 fa (u)du >0.

The proof of Lemma 3.7 is complete. B
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Figure 3.3: The graph of ¢,(u) with ¢,(a) < 0 and a > v > £, > 0.

Lemma 3.8. Consider (1.1) with a > a. Then Ti(a) < 0 for p(a) < a < pa(a). In particular,
p(a) < 3 for a > 6.

Proof of Lemma 3.8. Let o € [p(a), p2(a)] be given. By Lemmas 3.4 and 3.5(ii), we observe that
0 < a<pia) < pla) L a<pafa) fora>a.

Moreover, q(a) — 4(u) > 0 for 0 < u < & and Oo(a) - 0a(u) < 0 for @ < u < a. Then by Lemma
3.5(ii), we obtain that

,a‘ _ 1 (@ =bu(w) [ Ou(e)—falw)
L@ = 5 {/o Fal) - Falw) 2" +/a [Fa(a>—Fa<u>]3/2d}

L[ * tele) =), [0 ) tal)
© 2 {/ IR (a)—Fa(a)P”d“/a [Fala) — Fa(@) 2" }
1 .

"~ 2ZalFule) - ()13/2/ (6a(@) = Ba(u)] du

1
T 2VEalFa(a) - Fa@)P [ae (@)= / Bl du]
= ! /aué' (u)du |
" 2Ba[Fu(a) - F,(a)P?Je  °

) .
)1 ( )]3/2 _/0 ['U«fa,(u) - uzfé(u)] du < 0.

2v2a [Fa(a

Next, we prove that p(a) < 3 for a > 6. It is easy to compute and find that

, (a-1)va2 -4a—a(a—3)
R e

<0 for a> 4. (3.30)

So by (3.9), we compute and find that

pa(a) > p2(6) (= 22.3) >3 > p1(6) (=1.6) > pi(a) for a > 6. (3.31)
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" By Lemma 3.4(i) and (3.31),

=0 for u=p;(a), (3.32)

>0 for 0 <u< pi(a),
ubg(u)
<0 forpi(a) <u<3.

We compute that

. 2_ 2.2 2 4
/ CICR ) Mk e W S WS Y (3.33)
(a+u) 2 a+u

By (3.2) and (3.31)-(3.33), we compute and observe that, for a > 6,

) 3 p1(a) ) 3
H,(3) = / uf (u)du = / ubl(u)du + / ufl (u)du
0 0 (o)
‘ ?1(2) 4 (q +u)? — a2u? 3 u(a+u)? —au?
< fa.(Pl(a')) / —(—)2—1111 +/ —(—)—2du
0 (a+u) m@  (a+u)

3 u(a+u)? — a2u? w(p1(a
alpa(a)) /0 ( (*a lu)2 du = Siggli ;;2 . (3.34)

where
Ay

Ii

—12a3 — 1842 + 9a + 27 1 a
4a?(a+3) "\e+3)

We find that Ag = —33 —In 2 (= —7.85 x 107%) < 0, limg—o0 Ag = 0, and

o7 <0 for6<a<3+3V2,
A’(a)=4———2(a2—6a—9) =0 fora=3+3V2,
4a*(a +3) >0 fora>3+3V2.

So by (3.34),

fa(p1(a))
Ha(3) S mAa <0 fora Z 6,

which implies that p(a) < 3 for a > 6. The proof of Lemma 3.8 is complete. B
Lemma 3.9. Consider (1.1) with a > 0. Then
afa(a) — ufa(u) < Ma(u, @) [Fo(a) — Fo(u)] for0<u<a,

where ;
a‘a
1+W forOSuSaSa,

Ma(u,0)=4¢ 1+ % for0<u<a<a,
a2’u 5
1+ ara? otherwise

satisfies Mo (u, o) <14 ¢ foru >0 and o > 0.

Proof of Lemma 3.9 Since we compute that, for any a > 0,

9 pr az(a_u){>0 f0<u<a,

A = =0 ifu=a, (3.35)
du(atw?  (@+w)’ | <0 ifa>u
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we see that )

' Ma(u,a)$1+a—xa-§=1+2 foru>0and a > 0.
(a+a) 4

We let

Wo(u, @) = M, (u, a) [Fu(a) — Fo(uw)] — [afa(a) — ufa(w)] for u > 0.

To complete the proof, it is sufficient to prove that Wy(u,a) > 0 for 0 < u < @ and a > 0. We
compute and obtain that

0

5" () 2

"8 a“u
=_EMMam&@—R@HP+(+W—MwWﬂMM

( [1+W M, (u, a)]fa(u) [W (a+)]fa(u)<0 if0fu<a<a,
= [ 2 - Mo, )] flw) = [ - §] faw) <0 if0Su<a<a,  (336)

| [ Ma(u,0)] [Fale) — Fo(u)] = %&l [Fa(e) — Fa(u)] <0 if0<a<u<o

Since W, (a,@) = 0 and by (3.36), we see that W, (u, ) > 0 for 0 < u < o. The proof of Lemma
3.9 is complete. W
The proof of the following Lemma 3.10 is rather lengthy, and hence it is given in [11].

Lemma 3.10. Consider (1.1) with 4 < a < &. Then [aT! ()]’ > 0 for y(a) < a < k(a) = n(a).

Lemma 3.11. Consider (1.1) with 4 < a < a*. Then [aT"(c)]' > 0 for

K(a) for4<a<a,

pla) for a > a. (3.37)

o) e <o) = {
Moreover, one of the following assertions (a)—(c) holds:

(a) T, () is a strictly increasing function of & on [y(a),n(a)].
-(b) T}(«a) is a strictly decreasing function of « on [y(a),n(a)].

(c) T.(a) is a strictly decreasing and then strictly increasing function of & on [y(a),n(a)].

Proof of Lemma 3.11. By [10, Lemma 2.6], we obtain that [aT(a)]’ > 0 for 7(a) < a < p(a) =
n(a) and 4 < & < a < a*. By Lemma 3.10, we see that [aT”(a)] > 0 for v(a) < a < 7(a) and
4 < a<a. SolaTy(a)) > 0 for 7(a) < a < n(a) and 4 < a < a*. By Lemma 3.5, we see that
v(a) < n(a) for 4 < a < a*. Since T (a) is a strictly increasing function of a € [y(a),n(a)] for
4 < a < a*, we observe that there are three possible cases: . l

Case 1 T)(a) > 0 for a € (v(a), n(a)]..
Case 2 T"() < 0 for a € [y(a),n(a)).

Case 3 T)(a) < 0 for & € [y(a),d’), T?(a) > 0 for a € (o/,n(a)], and T/(a’) = 0 for some o/ €
(v(a);n(a)).
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So if Case 1 (Case 2 and Case 3 respectively) holds, then assertion (a) ((b) and (c) respectively)
holds.
The proof of Lemma 3.11 is complete. B

Rémark 1. By (3.37) and Lemma 3.5, we see that n(a)_ is a continuous function of a > 4.

Lemma 3.12. Consider (1.1) with a > 4. The following assertions (i)-(ii) hold:

(i)
@) <o(@={ 12 Fi<as<s,
7 =13 ifa>6
(ii) 8T (a)/Ba < 0 for 0 < @ < w(a).

Proof of Lemma 3.12. By (3.9j, Lemmas 3.5 and 3.8, we see that

n(a)<8<12=w(a) for4 < a <@,
_J pla) < pa(a) < pa(a*) <12 =w(a) fora<a<a®
n(a) = pla) < v(a) < 7(2) =12 = w(a) for a* < a <6, (3:38)
pla) <3 =w(a) for a > 6.

So n(a) < w(a), and hence assertion (i) holds.

We compute that
0, 1 / « Ne(u, @)
[Fa(

%Ta(a) = 2v3a Jo ) F,,(u)]?’/Z
where
u3 - (u 053 (a a 2 A
Malwe) = Irele) = ol [< ii)l”@.{i))fl (tlli(wtl;)zdt]
2
[Olfa 'Lbfa ]/ (t .iz:))2 (339)

y (3.12),‘(3.39) and Lemma 3.9, we obtain that

 Ny(u,a) 3 [*efu) . 1 o [2t2 + a(a+6)t + 4a?] 2 fa(t)
[afa(a) — ufa(u)] <3 w (a+t)? g M, (u, ) /u (a+1t)* d’f
= Ngi(u,a). - (3.40)

Thus, to prove assertion (ii), it is sufficient to prove the next parts (a) and (b):
(a) For 4 < a <6, Ngi(u,0) <0for 0 <u<a<12
" (b) For a > 6, Nu1(u,a) <0for0<u<a<s3.

(I) We prove part (a). ‘Assume that 4 < a < 6. By Lemma 3.9, we have that M,(u,a) <
(a+4) /4 for 0 < u < o. We compute and find that, for 4 < a < 6,

(3a—14)12% — 2a(a = 12) 12+ a® (3a — 20) = — (12— a) [3a® + 8 (6 — a)] < 0.
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Tt follows that (3a — 4) % — 2a(a—12)t +a?(3a —20) < 0 for 0 < ¢t <12 and 4 < a < 6. So by
(3.40), we obtain that, for 0 Su<a<12and4<a <6,

Nyi(u, @)

IA

3/a £ fa(t) 4 / [2t2+a(a+6)t+4a]t2fa(t)
a+t)° Ca+4 (a+t)!

= i tfa(t) - 2 _ al\a— 2 a —
= / et Deror e (- 12)t 4 e’ Ba—20)] di <0

So part (a) holds.
(II) We prove part (b). Assume that a > 6. Since a > 3 > a > 0 and by Lemma 3.9, we observe

that

2
Ma(th @) - (a -f(-aa-)l-chz aa fr0suse
So by (3.40), we obtain that
Nan(u,a) = /u (’i’:‘_’i’? wa(t, Q)dt, (3.41)
where 3 (a+a)? 2t + a(a + 6) t + 4a?
Na2(ta)52_(a+a)2+a2a[ (@+1)
We compute and observe that, fora > 6 and 0 <t < 3,
D Nualt,a) = f‘(““)z [(a+2)t—a® +2a]
ot [(a +a)?+ aQa} (a+1t)®
ala+a)?

[(a+2) x3—a?®+2a]

[(a +a)+ aQa] (a+1t)3
a(a+a)’(a+1)(6—a)
[(a +a)? + a2a] (a+1)°

< 0.

So N, 2(t, «) is a strictly decreasing function of ¢ € [0, 3] for a > 6. Since .

{o — 5) a® — 6aa — o?
2(a + a)* + 2a2a

Ngg(a,0) = <0 for0<a<3,

we see that either N,o(t,a) <0for0 <t < a, or

>0 if0o<t<r,

Nop(t,a) =< =0 ift=ry, for some 71 € (0, ).
<0 ifr<t<La

So by (3.41), we further see that, for 0 < u < a < 3,

. 8 P <0 #0<t<n,
either B_Na’l(u’ a)>0 or a—Na,l(u,a) =0 ift=ry, (3.42)
v v >0 ifrg<t<Lao
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In addition, since 3a? —8a —5 < 0 for 0 < « < 3, and by (3.41), we compute and find that, for
a>6,

0 |2(a+ a)® + 2a%a
da | (a+a)® +3a2a

Na1(0, a)] azfa(a)2 [(3a% — 8a — 5)a*
[(a +a)? + 3a2a] (a+ a)?

—16(a? + a)a® — (8a + 18)a’a® ~ 8ada — o
< 0.
It follows that

2(a + a)? + 2a%a
(a+ a)? + 3a2a

2(a + a)? + 2a2a

7 =0 for0<a<3.
(a+a)® + 3a%a

=0

Na1(0,a) < N1 (0, )

Thus, N, 1(0,0) < 0 for 0 < a < 3. Clearly, Ng1(a,a) = 0. So by (3:42), N, 1(u,a) < 0 for
0<u<aand 0 <a<3. Sopart (b) holds.
The proof of Lemma 3.12 is complete. Bl

3.3. Statements and proofs of main lemmas

Lemma 3.13. Consider (1.1) with fixed a > 4. Either one of the following assertions (i)—(ii) holds:
(i) Ta(a) is a strictly increasing function on (0, 00).
(ii) T,(a) has exactly one local maximuni and exactly one local minimum on (0, c0).

Proof of Lemma 3.13. Assume that assertion (i) does not hold. Then by Lemma 3.1, T,(c) has
a local maximum and a local minimum on (0, 00).

Assume that 7T,(c) has two local maxima at some ap; < apr,. Then there exists am €
(cuary, @ary) such that Ty(anm) is a local minimum value. If 4 < a < &, and by Lemmas 3.5(ii) and
3.6-3.8, we observe that v(a) < a,, < apg, < k(a) = n(a). It is a contradiction by Lemma 3.11. If
@ < a < a*, and by Lemmas 3.5(ii) and 3.6-3.8, we observe that y(a) < am < aum, < p(a) = n(a).
It is a contradiction by Lemma 3.11. If @ > a*, and by Lemmas 3.5(ii); 3.7 and 3.8 , we observe
that am < apg, < y(a). It is a contradiction by Lemma 3.6(i). So by above discussions, T, () has
exactly one local maximum on (0, 0).

In addition, if T,(c) has two local minima at some @, < Gm,, then by Lemma 3.1, T, () has
two local maxima at some apy, € (0, @y, ) and ang, € (my, m,). It is a contradiction. So T,(c)
has exactly one local minimum on (0, o).

The proof of Lemma 3.13 is complete. B

~Lemma 3.14. Consider (1.1) with a > 4. Either one of the following two assertions holds:

(i) To(a) is a stricﬂy increasing function on (0,00) and T,(a) has at most one critical point on
(0, 00). '

(ii) Ty(a) has exactly two critical points, a local maximum at some oy and a local minimum at
some ay, > apr on (0,00).

Proof of Lemma 3.14. By Lemma 3.13, either one of the following two cases holds:

(a) Tu(a) is a strictly increasing function on (0, co).
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Figure 3.4: Graphs of Ty, (o) and T}'(«) with b < a; sufficiently close to a;.

(b) T,(a) has exactly one local maximum at some aps and exactly one local minimum at some
am (> apr) on (0, 00).

(I) We prove assertion (i) under Case (a). We fix a; > 4. Assume that Ty, (o) has two critical
points a1(a1) < az(a1) on (0,00). We obtain that

T,,(01(a1)) = Ty, (a(a1)) = Ty, (1 (a1)) = Ty, (a2(a1)) = 0. (3.43)

So by Lemmas 3.7 and 3.8, we observe that 0 < a;(a1) < ag(a1) < n(a1) < w(a1). By (3.38) and
continuities of n(a), w(a) and py(a), we observe that

0<aifa;) <afa) < min {w(a)} for somed> 0. (3.44)

a€la1~d,a1}
Let b € (a1 — §,a1) be given. By Lemma 3.12, (3.43) and (3.44), we observe that
Ti(ai1(ar)) < T‘il(al(al)) =0 and Ty(ag(ar)) < Tél(ag(al)) =0. (3.45)

In addition, we assume that there exists an open interval I such that 7}, (e) = 0 on I. It implies that
T () = T)'(a) = 0 on I. It is a contradiction by Lemmas 3.6-3.8 and 3.11. So there exist three
numbers B € (0, a1(a1)), B; € (e1(a1), @2(a1)) and B3 € (@2(a1),n(a1)) such that T;, (8;) > 0 for
i =1,2,3. So by Lemma 3.6(ii) and (3.45), we choose b < a; sufficiently close to a; such that T}(a)
has four positive zeros oy 1, @12, @21, a2 satisfying

a1 < aeg) < arp < ogy < ag(ag) < agp.

See Figure 3.4. Furthermore, Ty(a1,1) and Tp(az,;) are local maximum values, and T3(oq2) and
Ty(crg2) are local minimum values. It is a contradiction by Lemma 3.13. Therefore, assertion (i)
holds under Case (a).

(ITI) We prove assertion (ii) under Case (b). We fix ag > 4. Assume that T;,(«) has a critical
point ag(ag) on (0,00), distinct from aps and am. It follows that T, (a3(az)) = Ty, (as(ag)) = 0.
By Lemmas 3.7 and 3.8, we obtain that 0 < a3(a2) < n(a2) < w(ag). Similarly, we have that

0 < as(ap) < {w(a)} for some & > 0.

min
a€laz—4,a2+9)
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So by Lemma 3.12, we observe that
Ty(as(az)) < Ty, (as(az)) =0 for ag — 8 < b < a, (3.46)

T,:(a3(a2)) > Ttiz (ag(az)) =0 for az < b<ay+4. (3.47)

Similarly, b'y Lemma 3.6(ii), (3.46) and (3.47), there exists b > 0 sufficiently close to ag such that
Ty(a) has two local extrema at a3 € (0, 03(a2)) and o392 € (as(az),n(az)), distinct from apr and
am. See Figure 3.5. It is a contradiction by Lemma 3.13. Therefore, assertion (ii) holds under

3
Taz(a)
\
\ ) ¢ The) 0
\‘ : '/
\ /
\y\ /; R
O a3,1‘ \\ A3(@) ’,', (/9 a'

) )

Figure 3.5: Local graphs of T, (a) and T;(a) for a near a3(az) and b > 0 sufficiently close to as.
() T2 (a5(a2)) > 0. (i) T2, (aa(aa) < 0.

Case (b). _

The proof of Lemma 3.14 is complete. B .

We are in a position to prove Lemma 3.2 by applying Lemmas 3.5(i), 3.6(ii), 3.7 and 3.12.
Proof of Lemma 3.2. By Theorem 1.2'and Lemma 3.14, we obtain that

q = a > 0:T,(a) has exactly two critical points,
- a local maximum and a local minimum, on (0, o)

= {a>4:T,(a) <0 for some a € (0,00)}. (3.48)

(I) It is obvious that © is nonempty because [@,00) C € by [12, Theorem 2.2] and Lemma 3.14.

(IT) We show that © is open. If b € Q, then T;(8) < 0 for some 3 € (0,00). By Lemma, 3.6(ii),
we observe that T,(8) < 0 for a belonging to some open neighborhood of b. So € is open.

(IIT) We then show that € is connected. First, we see that [@,00) C © by [12, Theorem 2.2(i)].
Suppose to the contrary that the set £ N (4, &] is not connected, then there exist positive numbers
a1 and ap satisfying 4 < a1 < ag < @ such that a; € Q and ag ¢ Q. Hence T,,(a) > 0 on (0,00)
by Lemma 3.14 and (3.48). Since @ (= 4.166) < % by (1.4), and by Lemma 3.5(i), we have that
k(a1) < K(az) < 8. So by Lemma 3.12,

T (@) > T,,(c) > 0 for all & 6 (0,k(a1)) C (0, k(az)). (3.49)

Since a1 € 2N (4,a) and by (3.49), there exists a number o; > (a1) such that T, (1) = 0 and
T, (01) £ 0. It is a contradiction by Lemma 3.7. So QN (4,4d] is connected. It implies that Q is
connect.
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(IV) Since £ is open and connect and (@, c0) C 2, there exists ag € (4, a) such that Q = (ao, c0).
Moreover, by numerical simulation, we find that ap ~ 4.069. :

The proof of Lemma 3.2 is complete. B

In addition to To(a) with 0 < a < oo defined in (3.1) to problem (1.1) with fo(u) = exp (a‘ﬁ‘u),
we define two time-map functions Tp(a) and Two(ex) for corresponding nonlinearities fo(u) =1 and
foo(u) = expu by

1 o

To(a )_\/_ A \/Tdu—\/_ for a > 0, (3.50)
1 [« 1 o . =
Too(a)Eﬁ A —\/ﬁdu=ﬁln(26. —1+42y/ex(e —1)) for o > 0, (3.51)

respectively, see (3.1) and (1.6). The following Lemma 3.15(i) determines the shape of Teo(cx) on
(0,00), and Lemma 3.15(ii) is a basic comparison theorem for the time map formula Tp, T, and

To- Lemma 3.15(i) is obvious, cf. Theorem 1.3. In addition, for fixed « > 0, since exp ( ::u) isa

strictly increasing function of a > 0, we obtain that

fo(w) =1 < folu) =exp (aa_fu,) = exp (1 _T_L E) <expu= foo(u) for a > 0.

a

‘Thus Lemma 3.15(ii) follows by modification of the proofs of [17, Theorems 2.3-2.4]; we omit the
proof.

Lemma 3.15. Consider (3.1), (3.50) and (3.51). Let Moo = 0.878 and cro = In (21—:&) ~ 1.187
be two numbers defined in (1.7) and (1.8), respectively. The following assertions (i)—(ii) hold:

(1) limg_ o+ Too(a) = limg—yee Too (@) = 0. In addition, T () > 0 on (0,as) , Thy(0teo) = 0 and
Tl () <0 on (G, 00).

(ii) For any fixed o > 0 such that Ty(a) is a continuous, strictly decreasing function of a > 0.
Moreover,

\/2& =To(a) = lixg+ Ta(@) > To(a) > lim Ta(a) = Teo(a) for @ >0 and a > 0.
a— - a—00 .

Throughout this paper, for @ > ap, by Lemma 3.2, let aps(a) and a,,(a) denote the local
maximum and the local minimum pomts of Ty(a) on (0, oo) where apr < am, respectively. See
Figure 3.1(i).

Lemma 3.16. Consider (1.1) with a > ag. Then the following assertions (i)—(iii) hold:

(i) am(a) is a strictly decreasing and continuous function of a > aq. Furthermore, ap(a) < w(a)
for a > ag.

(i) o (a) is a continuous function of a > ag. Furthermore, oy (a) is a strictly increasing functmn
on (ag,a] and pe(a) < ay(a) for a > a.

(iii) For a > ag,

oo = al_l_g;0 ay(a) < aplae) < lim apy(a) = lim am(a) < apla) < alir{:oam(a) = oo0.

a—»ao a—>a0
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Proof of Lemma 3.16. We divide this proof into next Steps 1-6.

Step 1. We prove that aps(a) < w(a) for a > ag, and a(a) is a strictly decreasing function of
a both on (ag, 6) and [6,00). Let a; > ap be given. Since Ty, (apr(a1)) = 0 and T} (ap(a1)) <0,
and by Lemmas 3.7, 3.8 and 3.12, we observe that apr(a1) < n(a1) < w(ai). Then we see that
ap(a1) < w(ar) = w(ag) for either ag < a1 < ag < 6 or 6 < a; < az. So by Lemma 3.12, we see
that T, (am(e1)) < Ty, (apr(ar)) = 0 for either ap < a1 < ag < 6 or 6 < a1 < az. So by Lemma
3.14, ap(ag) < apr(aq) for either ap < a3 < ag < 6 or 6 < a3 < ag. Thus, ap(a) is a strictly
decreasing function both on (ao, 6) and [6, c0).

Step 2. We prove that ayy,(a) is a strictly increasing function of a on (ag7 @). By Lemma 3. 4( )s
we see that f,(a) > 0,(u) for 0 < u < @ and a > p3(a). It follows that T (a) > 0 for a > p3(a)
by (3.27). So by Lemma 3.4(i), we further see that am(a) < p3(a) < 12 = w(a) for a € (ag, al.
Assume that a9 < a1 < a2 < &. By Lemma 3.12, we observe that T} (am(a1)) < T, (am(a1)) = 0.
It follows that aym(a1) < am(a2) by Lemma 3.14. Thus, am,(a) is a strictly increasing function on
(ao, ﬁ] . »

Step 3. We prove that lim,_, .+ ap(a) < lm,_, .+ am(a) and

oo = lim apr(a) < ay(a) < hrn ap(a) < am(a) for a > ag. (3.52)

a—>a0

Since 0 < ap(a) < w(a) < 12 for @ > ag, and by Step 1, we see that lima__)aar ap(a) and
lim,—, o cepr(a) both exist. Suppose to the contrary that limg_,eo ps(a) # oo Then we have two
cases. Case 1: limg_o0 apr(@) < oo and Case 2: limg—o0 apr(a) > loo-
Assume that Case 1 holds. Then aps(a1) < aoo for some a; > 6 by Step 1. We let
=

1

Emln {ozoo - aM(al) am(al) - aM(al)}
Clearly, § > 0. We let a € (an(a1), anm(a1) +8) be given. Then
ap(ar) < a < ap(ar) + 6 < an(a),

ap(a1) <o <ap(ar) +6 < ax (= 1.187) <w(a) for a > a;. ' (3.53)

So by Lemma 3.15, we have that T; (@) < 0 and T},(e) > 0. Then by (3.53), Lemmas 3.6 and
3.12, we find that
' 0 < Tho(a) = alggo To(a) < T, (o) <0,

which is a contradiction.

Assume that Case 2 holds. We let 8 € (@0, im0 @ar(a)) be given. By Step 1 and Lemma
3.15, we see that T,(8) > 0 and T (8) < 0 for a > 6. So by Lemma 3.6(ii) we find that
0 > T/ (B) = limg—eo To(B) > 0, which is a contradiction.

Thus, by above discussions, we obtain that lim,_o apr(a) = @e. In addltlon, by Lemma
3.4(i), we see that 8,(c) > 04(u) for 0 < u < & < p1(a) and a > 4. It follows that Tj,(a) > 0 for
0 < a < pi(a) and a > 4 by (3.27). So ap(a) > pi(a) for a > ag. Since ap < 4.08 by Lemma 3.2,
and by Lemma 3.15 and (3.30), we observe that '

. ’ 2652 102
al—lf.?;f ap(a) > pr(ag) > p1(4.08) = o5 6—23\/5 (= 3.078) > we > ap(6), (3.54)
lim apr(a) > pi(6) = 12— 6v/3. (~ 1.608) > e (= 1.187). (3.55)

a—6~
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Since limg—,00 @pr(a) = aeo, and by Step 1, (3.54) a;nd (3.55), we further observe that

Qoo = lim ap(a) < apm(a) < hm ap(a) fora > ag.
a—00 a—ag
Next,.we prove that lima_m;r apm(a) < am(a) for a > ap. By Lemmas 3.7 and 3.8, we obtain
that apr(a) < n(a) for @ > ag. So by (3.9) and Lemmas 3.5 and 3.8, we observe that
lim am(a) < n(ag) = k(ag) < k(@) = p2(a@) < pa(a) < am(a) fora>a. (3.56)
a—ag .
Assume that there exists az € (ap,d) such that am,(az) < lima_)a+ ap(a). Then there exists

az € (ag, az) such that am(as) < ap(as). Since am(az) < ap(as) < w(a) for a3 < a < ay, and by
Lemma 3.12, we observe that

0 =T,,(am(a)) < Ty, (am(as)) < T, (enr(az)) =0,

which is a contradiction. So by (3.56), lim,—e, apr(a) < am(a) for a > agp. So (3.52) holds. In addi-
tion, by Step 2 and (3.52), we see that lm,_,,+ am (a) exists and lima__,agr apy(a) <lim__, of Om (a).
Step 4. We prove that ’

ap : (ag,00) — (aoo, lim aM(a)> is surjective, (3.57)
a—4a0
oy (ag, 00) — ( hm am(a), ) is surjective. (3.58)
G,-)llo

The proofs of (3.57) are (3.58) are omitted.

Step 5. We prove assertions (i) and (ii). By Step 1 and (3.57), we have that ap(a) < w(a)
for @ > ap, and aps(a) is a strictly decreasing and continuous function of @ both on (ag,6) and
[6,00). To prove assertion (i), it is sufficient to prove that aps(6) = lim,_,¢- aar(a). By (3.57), we
see that ap(6) > lim, g~ ap(a). Suppose to the contrary that aps(6) > lim, _g- aM( ). Then
there exists § > 0 such that ap(6) > aps(a) for 6 — § < a < 6. Furthermore, :

apm(a) < ap(6) <w6=3<w(a) for 6 —5 < a<86. _ (3.59)

By (3.59) and Lemma 3.12, we further see that Tg(aa(a)) < To(am(a)) =0for 6 —6<a < 6. It
follows that apr(6) < apr(a) for 6—8 < a < 6. It is a contradiction. Thus lim,_,g- apr(a) = ap(6).
It implies that cpz(a) is a strictly decreasing and continuous function of a on (agp, 00). Thus assertion
(i) holds. '
By Step 2 and (3.58), am,(a) is a continuous function on (ag,a]. By Lemmas 3.2, 3.5(ii) and
3.8, we see that :
ap(a) < p(a) < k(a) < pz(a) < am(a) for a > a. (3.60)

So we further see that T/ (c) has a unique zero am,(a) on [pa(a), o) for a > @ and

2
TV (am(a)) = T2 (am(a)) + ——Ta{am(a)) >0 fora>a
» am(a) 4
by Lemma 3.7. Then by the Implicit Function Theorem, a,,(a) is a continuous function on [, o).
It follows that ay,{a) is a continuous function on (ag, c0). Thus by Step 2-and (3.60) assertion (ii)
holds.
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Step 6. We prove assertion (iii). By (3.52), it is sufficient to prove that

lim apm(a) = lim an(a) < am(a) < lim apla) = oo for a > ag. (3.61)
a—ag a—*a[," a—00

By [12, Theorem 2.2], we see that
a(a—2)

P1(@) < fluxllog < 7(@) = 2222 < (@) < flun oo for a2 at, (3:62)

where a* is defined in (1:3). So we observe that limg_,00 @ (a) > limg oo p2(a) = oco. It follows
that aim(a) < limg—e @ (a) = oo for a > aq.

For the sake of convenience, we let o™ = lim T ap(a) and a~ = lim,_,,+ am(a). By Step
3, ot < o~. Suppose to the contrary that o < o~. Then we assert that T, (8) > 0 for some
B € (at,a™). Otherwise, Ty, (o) = 0 for all a € (a*,a™). It is a contradiction by Lemmas 3.6, 3.7
and 3.11. By (3.52), we find that

ap(e) <ot <B<a <apm(a) forap<a<a,

which implies that T,(8) < 0 < T, (8) for ag < a < &. It is a contradiction by Lemma 3.6(ii). So
a™ =a~. Then (3.61) holds. It implies that assertion (iii) holds.

The proof of Lemma 3.16 is complete. B

We are in. a position to prove Lemma 3.3 by applying Lemmas 3.2, 3.5-3.7, 3.11, 3.14 and 3.16.
Proof of Lemma 3.3. Since x(a) < 8 < w(a) for 4 < a < ap by Lemma 3.5(i), we see that
T)(e) > Tp (@) 2 0 for 0 < o < k(a) and 4 < a < ap. Suppose to the contrary that there exists
Ba > k(a) for some a € (4,a0) such that T.(3,) = 0. So by Lemma 3.7, T2(3,) > 0. It implies
that T, () has a local minimum point at 3, > &(a). It is a contradiction by Lemma 3.2. Thus,
Ti(c) >0 for ¢ >0 and 4 < a < ag. So assertion (i) holds. v

Next, we prove assertion (ii) of Lemma 3.3. By Lemma 3.16(iii), we obtain that aps(a) < ap <
am(a) for a > ag where ap = lm,_, .+ apmla) = lima—ma‘ am(a). It follows that T, (ag) < O for
a > ag. Moreover, T, (ap) < 0 by Lemma 3.6(ii). By Lemmas 3.2 and 3.14, T, (cp) = 0 and
Ty, (@) > 0 for a € (0,00)\{ao}. We assert that y(ap) < ag < k(ag). Indeed, if ag < v(ap), and
" by Lemma 3.16(i)-(ii), then there exists a > ag such that ap(a) < ap < am(a) < y(ap). It is a
contradiction by Lemma 3.6(i). So y(ag) < ap. Since T, (ap) = T, (o), and by Lemma 3.7, we
find that ap < K(ag). So y(ap) < o < K(ag).

The proof of Lemma. 3.3 is complete. B

4.-Proof of The Main Result

Proof of Theorem 2.1. As mentioned in Section 3, to prove Theorem 2.1(i), (ii) and (iii), it is
sufficient to prove that there exists a number ag &~ 4.069 satisfying 4 < ap < @ =~ 4.107 such that
parts (M1), (M2) and (M3) hold, respectively. Notice that ordering properties of positive solutions
of (1.1) in Theorem 2.1(i) can be obtained easily. We have that part (M1) holds immediately by
Lemmas 3.1, 3.2 and 3.16(iii); part (M2) holds immediately by Lemmas 3.1 and 3.3(ii); and part
{M3) holds immediately by Lemmas 3.1 and 3.3(i). Furthermore, by numerical simulation, we find
that ag = 4.069. ‘
The proof of Theorem 2.1 is complete. B
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