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Arithmetic properties of

the generalized trigonometric functions *

Shingo Takeuchi
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1 Introduction

Let p, ¢ € (1,00) be any constants. We define sin, 4z by the inverse function of

P e dt 0< <1
sin, , @ := . A= z <1,
d ! d 2 11
t
—9¢in~ 11 = — == —_
Tpg = 28in, , 1 = 2/0. A=~ qB (p*’ q) , (1.1)

where p* := p/(p—1) and B denotes the beta function. The function sin, 4z is increasing in
[0, 7p,¢/2] onto [0,1]. We extend it to (m,4/2, Tpg| by sing g (7,4 — z) and to the whole real
line R as the odd 2m, -periodic continuation of the function. Since sin,,z € C*(R), we also
define cosp g by €08y q @ := (sin, o z)'. Then, it follows that

| cospq z|P + |sing g z|? = 1.

In case p = ¢ = 2, it is obvious that sin, 7, cos,q 2 and m,4 are reduced to the ordinary
sinz, cosz and m, respectively. This is a reason why these functions and the constant
are called generalized trigonometric functions (with parameter (p, q)) and the generalized ,
respectively.

Originally E. Lundberg introduced the generalized trigonometric functions in 1879; see
[32] for details. After his work, there are a lot of literature on the generalized trigonometric
functions and related functions. See [11, 12, 19, 21, 23, 28, 29, 31, 32, 35] for general
properties as functions; [18, 19, 20, 28, 33, 38] for applications to differential equations
involving p-Laplacian; [6, 12, 13, 21, 22, 28, 39] for basis properties for sequences of these
functions.

In particular, let us explain the work [20] of Drabek and Mandsevich. They reintroduced
the generalized trigonometric functions with two parameters to study an inhomogeneous
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eigenvalue problem of p-Laplacian. They gave a closed form of solutions (), u) of the eigen-

value problem
—([W/P7u) = Nu|"?u,  u(0) = u(L) =0.

Indeed, for any n = 1,2, ..., there exists a curve of solutions (A, g, u, r) with a parameter
R € R\ {0} such that

4 ("Tpa\P  pipg
M= (F2) 1R (1.2)
un,r(Z) = Rsin,, (ng,q z) (1.3)

(Figure 1). Conversely, there exists no other solution of the eigenvalue problem. In this sense,
the generalized sine function sin, 4 z is also called the (p, q)-eigenfunction of the p-Laplacian.
Thus, the generalized trigonometric functions play important roles to study problems of the

p-Laplacian.
0 A 0} i I { A 0 .

Figure 1: The bifurcation diagrams in cases p > ¢, p=gq and p < gq.

2

As above, there are many works in which the generalized trigonometric functions are
used to study problems of existence, bifurcation and oscillation. However, any arithmetic
properties are almost unknown though they are generalizations of the classical trigonometric
functions.

This is a survey of author’s recent studies [27, 40, 41, 42, 43] about arithmetic properties
of the generalized trigonometric functions.

This paper is organized as follows. Section 2 is devoted to prepare basic properties
of the generalized trigonometric functions. In Section 3, we will present new multiple-angle
formulas which are established between two kinds of the generalized trigonometric functions,
and apply the formulas to generalize classical topics related to the trigonometric functions
and the lemniscate function. Concerning these functions, no multiple-angle formula has
been known except for the classical cases and a special case discovered by Edmunds, Gurka
and Lang, not to mention addition theorems. In Section 4, the generalized trigonometric
functions are applied to the Legendre form of complete elliptic integrals, and a new form
of the generalized complete elliptic integrals of the Borweins [7] is presented. According to
the form, it can be easily shown that these integrals have similar properties to the classical
ones. In particular, it is possible to establish a computation formula of the generalized
7 in terms of the arithmetic-geometric mean, in the classical way as the Gauss-Legendre
algorithm for 7 by Salamin and Brent. Moreover, an alternative proof of Ramanujan’s cubic
transformation can be also given. In Section 5, Legendre’s relation for the complete elliptic
integrals of the first and second kinds is generalized. The proof depends on an application of
the generalized trigonometric functions and is alternative to the proof for Elliott’s identity.
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Finally, in Section 6, we give a proof of Legendre’s relation of the incomplete elliptic integrals
for our future works.

2 Preparation

Let p, g € (1,00) and z € (0,7p,4/2). It is easy to see that

Y4 in? .
cosp & +sing =1,

: r_ r— 9 g1 2-p
(smp,q z) = CO0Spq T, (cosp,q x) = psmm zcos, T,
q
p—1_ Vv _ _ 4 s g-1
(cosp’q z) = > sin, .- T.

If we extend to these formulas for any z € R, then the last one, for example, corresponds to
(| cosp g z|P~2 cospq ) = —i| sin, , 2|92 sin, 4 & (2.1)
p.a p.q Pl pq T :
From the differentiation of inverse functions,
1
. dt
p*—1y—1 =
(Cosp‘,p ) (y) - L (1 _ tp)l/P"’ 0 S Y S 1’

hence r
- 1y— z
sing! ),y + (cosh. ;) Hy) = -1’2—”.

Therefore, for z € [0, mp~ ,/2] we have

i *
: p*p _ P -1
sing. 5 (T - x) = CO8ps, T, (2.2)
=1 (Tpp .
COSp (T - :1:) = sing-p . (2.3)

Also, the following function is useful:

sin, , 2n+1
= /l),q 1 3 x # mwp’q’ n e Zo
| cospq z|P/97L cOsp 4 z 2

Tp,a(T) :

Then, it follows immediately from (2.2} that

Lemma 2.1. Forz € (0, ,/2), Tpr p(z) = 1 implies z = mp. ,/4. Moreover, sin,!, (27/7) =
cos,t, (271P") = . /4.

3 Multiple-angle formulas
For the details of this section, we refer the reader to [41].

It is of interest to know whether the generalized trigonometric functions have multiple-
angle formulas unless p = ¢ = 2. A few multiple-angle formulas seem to be known. Actually,



in case 2p = g = 4, the function sin, 4 = siny 4  coincides with the lemniscate sine function
slz, whose inverse function is defined as

sl_lx::v/ di .
Jo 1—¢4

Furthermore, 7 4 is equal to the lemniscate constant zo := 2s1™1 1 = 2.6220 - - - . Concerning
slz and w, we refer the reader to [37, p.81], [44] and [45, §22.8]. Since slz has the multiple-
angle formula

2slzv1 —sltx w
d@r)="2"V- "5 T << Z, (3.1)
1+sl*z 2
we see that 98
sing 4 (2z) = —Sln2,4ﬂ':(1082,4 :v’ 0<z< 7r2’4.
1+sing,z 2

Also in case p* = ¢ = 4, it is possible to show that sin,,z = sin4/3,4i:: can be expressed in
terms of the Jacobian elliptic function, whose multiple-angle formula yields

2sing/g4 cost’? .
sing s (22) = / 4 3"2/3 0<z< ”423’4. (3.2)
\/1 +4sing 5, 08,55, @

The formula (3.2) was investigated by Edmunds, Gurka and Lang [22, Proposition 3.4]. They
also proved an addition theorem for sings 4 = involving (3.2). Such reductions to the elliptic
functions have previously been used by Cayley [16] and Lindqvist and Peetre [30].

3.1 Results

We will present multiple-angle formulas which are established between two kinds of the
generalized trigonometric functions with parameters (2,p) and (p*, p).

Theorem 3.1 ([41]). For p € (1,00) and z € [0,27%/Pmy | = [0, mpe /2], we have
sin , (2%/7z) = 2*/7siny , zcosh. ' @ (3.3)
and

cosyp (2°/P1) = cosh. ,z —sink. [z

=1-2sinp, 2 = 2cosh. ,x — 1. (3.4)

Moreover, for x € R, we have
sing , (2%/7z) = 2%/ siny. , | cospe , [P 2 cOSpe p T (3.5)
and

cosy,p (22P2) = | cosyr p [P — | singe , [P

=1 —2|sing , z|? = 2| cospp x| — 1. (3.6)

79



Proof. Let € [0, 7y ,/4]. Then, y = sin,,z € [0,277/?] by Lemma 2.1. Setting tP =
(1—(1-s?)Y/2)/2in

R Y di
sin,.,y = A ——(1 i

we have
9-1-1/pgp-1
- y(4(1—yP))1/? (1— sp)1/2(1 —(1- sp)l/Z)l—l/p ds
Sy p ¥ = / 2-T+1/p(1 1 (1 — s7)1/2)1-1/p
— 92/ / s
0 =7
that is,

singty = 2727 sing ! (y(4(1 — y7))'/7). 3.7)

Hence we obtain
. . *_1
sing (2%/7z) = 2/ siny , z cosh. ' x,

and (3.3) is proved. In particular, letting y = 27/? in (3.7) and using Lemma 2.1, we get

T2,p

Tp* - .-
PP 9-2/p s1n2,1,1 — STF7p"

4
which implies

T2p _ Tp*p
% — 2 . (3-8)

Next, let £ € (Mpep/4,Tpr p/2] and y := 7pep/2 — x € [0,7pe ,/4). By the symmetry
properties (2.2) and (2.3), we obtain

2/p i P =1, 92/ osPT s
2°/P singe p T COSpe ;- T = 277 COSe, Y SiNpe Y-

According to the argument above, the right-hand side is identical to sing (22/Py). Moreover,
(3.8) gives
singp (2%/Py) = sing p (Mo — 2%/P x) = sing, (2¥7z).

The formula (3.4) is deduced from differentiating both sides of (3.3). Moreover, (3.5) and
(3.6) come from the periodicities of the functions. O

In Theorem 3.1, the fact (3.8) is the special case n = 2 of the following identity.

Theorem 3.2 ([41]). Let2<n<p+1. Then

=’n,1—n/p71'_"_ SR g,

W—L,PTF;;%,P U W,ﬁﬁm ,,_lvl”’rﬁ,ll ) T

p—1

Proof. Set x = 1/n and y = 1/p in the formula of the beta function (see [45, §12.15,
Example])

1 Tie Bz +k/n,y)
n™  TTzi B(ky,v)
and use (1.1). We omit the details. O

B(nz,ny) = , n>2,z,y>0
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We give a series expansion of m,« , as a counterpart of the Gregory-Leibniz series for 7.
It is worth pointing out that 7., is the area enclosed by the p-circle |z|P + |yP = 1 (see
[28, 31)).

Theorem 3.3 ({41]).

Z(Q/P

~ n! pn+1

2% 2+p  (2+P@+2)
plp+1)  p*(2p+1)  3p3(3p+1) ’

where (a), = T'(a +n)/T(a) = ala+1){(a+2)---(a+n —1) and T denotes the gamma
function.

Proof. Let x € (0,1). Differentiating the inverse function of 7+ ,(x), we have

x dt
_1. _
Ty p(Z) = /0 —(1 T

Hence
=2/P\ pn gy — ,.Zoo (2/p)n (—2?)"
I') / e ( n )f dl=2z 2o Tm (3'9)

By Abel’s continuity theorem [45, §3.71], the series above converges to 7,.,(1) (see for
instance [45, §2.31, Corollary (ii)]). From Lemma 2.1, we concludes the theorem. O
Remark 3.1. Combining (3.5) and (3.6), we can assert that 75, and 7, , satisfy the multiple-
angle formula

22/Pr .
Tz’p(z?/pz) - |TP P(( ))
P*\p

which coincides with that of the tangent function if p = 2.

3.2 Appications

The following curious fact is the consequence of a straightforward calculation with (1.2),
(1.3), (3.5) and (3.8).

Theorem 3.4 ([41]). Letn € N and p € (1,00). Let u be an eigenfunction with (n—1)-zeros
in (0, L) for an eigenvalue A > 0 of the eigenvalue problem

=W PP2uY = MulP""2u,  u(0) =u(l) =0, (3.10)

and v an eigenfunction with n-zeros in (0,L) for an eigenvalue pu > 0 of the eigenvalue

problem
— (W' [P72"Y = ploP" 20, o(0) = /(L) = 0. (3.11)

Then, the product w = uv is an eigenfunction for the eigenvalue & = 2p*(A\p)/? with (2n—1)-
zeros in (0, L) of the eigenvalue problem

2w, w(0) =w(L)=0. _ (3.12)

v
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Such a relation between the eigenvalue problems of the p-Laplacian and that of the
Laplacian may be known. However, we can not find a literature proving it, while the assertion
in case p = 2 is trivial because

. (mr )cos(mr )—lsi 2nm
w=sin (—a 7%)=gsin| =)
Proof of Theorem 3.4. By (1.2) and (1.3), the solution (X, u) of (3.10) can be expressed as
follows:

_ nﬂ'p,p*)l) p—p*
r= () (R

u(z) = Rsiny - (nﬂLp’p* x) , R#0.

Similarly, by the symmetry (2.2), the solution (p,v) of (3.11) is represented as
= (") 1P,
NTp pr —2 N p*
v(z) =Q ‘cosm, ( z‘p )‘ COSp ( z’p ’E) , Q#0.
Applying (3.5) in Theorem 3.1 and (3.8) to the product w = uv, we have
. NTp p+ Npp \[P~2 Ny p+
w(z) = RQsingp- ( [ij a:) Icosp,p* ( zp x)| COSp p+ (—iix)

. 2N
= 2"2/1’ RQ Sing,p* (ﬂ-x) ,

L

which belongs to C?(R) and has (2n — 1)-zeros in (0, L). Therefore, by (2.1) with p =2, a
direct calculation shows
p*-2 N p*
Sing p+ ( z’p :z:)

« [T v\ 2 N p*
w" = —p*2!~2P (—z’p) Rleinzm-( 2P x)

L
. xo3-4fp (TT2p* 2 9 -2
P2 (—L ) IRQ)| w. (3.13)
On the other hand, (3.8) gives
Our =24 (2222 P (3.14)
Combining (3.13) and (3.14), we obtain (3.12). O

Moreover, we can also apply Theorems 3.1-3.3 to the following problems (I)-(IV).
(I) An alternative proof of (3.2). It should be noted that the multiple-angle formula (3.3)
in Theorem 3.1 allows (3.2) to be rewritten in terms of the lemniscate function sl z = sing 4 x:

V25l (v2z) O<gp<™Bs_ @

sing/z4 (2z) = ————tx. < = —
\/1+sl4 (\/ﬁz) 4 2v2

where the last equality above follows from (3.8) with 74 = w. This indicates that it is
possible to obtain (3.2) from the multiple-angle formula (3.1) for the lemniscate function.
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(II) A pendulum-type equation with the p-Laplacian. It is possible to give a closed form
of solutions of the pendulum-type equation

~(|0'1P7%¢') = XP(p — 1)| sing , P2 singy , 0.

In case p.= 2, this equation is the ordinary pendulum equation —#” = A2sinf and it is
well known that the solutions can be expressed in terms of the Jacobian elliptic function.
We can obtain an expression of the solution for the pendulum-type equation above by using
our special functions involving a generalization of the Jacobian elliptic function in [38, 39].
There are studies of other (forced) pendulum-type equations with p-Laplacian versus sin 6
in [36]; versus sin,, 8 in [1], for the purpose of finding periodic solutions.

(III) Catalan-type constants. Catalan’s constant, which occasionally appears in estimates
in combinatorics, is defined by

G= 22n+1)2 0.9159 - - -

n=0

We can find a lot of representation of G in [9]; for a typical example,

1 [

The multiple-angle formula (3.3) gives a generalization of (3.15) as

T e N i
/0 dz=>" . (3.16)

2/p sing, nl  (pn+1)2

n=0

In case p = 2, the formula (3.16) coincides with (3.15). Moreover, for p = 4 we obtain the
interesting formula for the lemniscate function:

=/ (1/2)n (=1)"
\/_/ sl7 nz=0 nl (471,+1)2'

(IV) Series expansions of the lemniscate constant w. The lemniscate constant w has the
formula ([44, Theorem 5]):

w_1+1+i+5+ PG
2 10 208 ()l 4n+1

where (—1)! := 1. For this, using Theorem 3.3 with (3.8), we can obtain

@ _y 1 n 1 5 (2n — 1) (1)
2/2 10 24 208 @n)!' 4n+1
which does not appear in Todd [44] and seems to be new. We can also produce some other
formulas of =.



4 Gauss-Legendre algorithm for 7,

For the details of this section, we refer the reader to [40, 43].
The complete clliptic integrals of the first kind and of the second kind

/2 1
K(k) —/ ___ 4 _/ dt
o V1-k%sin?d  Jo V(1)1 - ke

/2 1 — 12/2
E(k)=/ \/1—k2sin26d9=/ VlTkt—;dt
0 0 -

are classical integrals which have helped us, for instance, to evaluate the length of curves
and to cxpress exact solutions of differential equations.

In this section we give a generalization of the complete elliptic integrals as an application
of the generalized trigonometric functions. For this, we need the generalized sine function
sin, z and the generalized 7 denoted by m,, where sin, z is the inverse function of

il ain—l g — * dt . 0<z<1
sin, " x 1= sin, , ¥ = L =) <z<l1,
and 7, is the number defined by

1
dt 2m
— —9gin~11 = =
Tp 1= Tpp = 2sin," 1 = 2/0 A=) ~ psm(a/p)’

Clearly, singz = sinz and s = w. These two appear in the eigenvalue problem of one-
dimensional p-Laplacian:

—(| )P %Y = MulP %,  u(0) =u(1) =0.

Indeed, the eigenvalues are given as A, = (p—1)(nm,)?, n =1,2,3,..., and the corresponding
eigenfunction to A, is u,(z) = sin, (nmyz) for each n.

Remark 4.1. The behavior of ), with respect to p is interesting; see [26].

4.1 Generalized elliptic integrals with one-parameter

Now, applying sin, z and 7, to the complete elliptic functions, we define the complete p-
clliptic integrals of the first kind Ky(k) and of the second kind F,(k): for p € (1,00) and
kel0,1) '

Kofk) i /wp/2 do _/1 dt (41)

PR o (U= kesing )1 Jo (1 — ) Up(1 — kep)1-1/p '
/2 1 /1 — gpep\ VP

E,(k) = /0 (1 — kP sink 6)*/7 df = /0 ( % ) dt. (42)

Here, each second equality of the definitions is obtained by setting sin, § = t. It is easy to
see that for p = 2 these integrals are equivalent to the classical complete elliptic integrals

84
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K(k) and E(k). The complete p-elliptic integrals have similar properties to the complete
elliptic integrals.

It is worth pointing out that the Borweins [7, Section 5.5] define the generalized complete
elliptic integrals of the first and of the second kind by

K(k) := -g—F (% -, % +s; 1;k2> ,
1 1
Es(k) := gF (—5 —53 + s; 1;k2)

for |s] < 1/2 and 0 < k < 1. Here, F(a,b;c; z) denotes the Gaussian hypergeometric series
defined for |z| <1 as

Flo )= 3 e,

n=0

where a, be R, ¢# —~1,-2,... and
(@) :=ala+1)a+2)---(a+n—-1), (a):=1

Note that Kq(k) = K (k) and Eq(k) = E(k). According to Euler’s integral representation
(see [3, Theorem 2.2.1] or [45, p.293]), we have

K, (k) = cos7rs/ dt
8 - 2S+ 1 0 (1 _ tﬁ)@(l _k2ti‘%'—1)1_25;1’

2 23;—1
Fy(k) = ] /1 1 — k%t dl
2541 o 1— tza1

m ™
Ks(k) = ;Kp(kwp), Es(k’) = W_Ep(k2/p)1
p P

Thus

where p = 2/(2s+1). We emphasize that the complete p-elliptic integrals (4.1) and (4.2) give
representations of the generalized complete elliptic integrals in the Legendre form with the
generalized trigonometric functions. The advantage of using the complete p-elliptic integrals
lies in the fact that it is possible to prove formulas of the generalized complete elliptic
integrals simply as well as that of the classical complete elliptic integrals. For example, we
have known the following Legendre relation between K(k) and E(k) (see [3, 7, 25, 45]).

™
=7

BRK'(k) + K (K)E'(k) ~ K(R)K'(k) =

(4.3)
where k' := /1 — k2, K'(k) := K(k') and E'(k) := E(k’). For this we can show the following
relation between K, (k) and E,(k).

Theorem 4.1 ([40]). For k € (0,1)

Ep(k) Ky (k) + K (k) By (k) ~ Ko (k) Ky (k) = 2. (4.4)

where k' := (1 — kP)/?, K] (k) := Ky(K') and E}(k) := E,(k').
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In fact, it is known in [7] that K,(k) and E (k) also satisfy the similar relation

TCOSTTS

E, (k)K/, (k) + K, (k)EL(k) — K (k)K, (k) = 201+ 25)

to (4.4), which follows from Elliott’s identity (5.3) below. In contrast to this, our approach
with generalized trigonometric functions seems to be more elementary and self-contained.
In fact, (4.4) is more extended to an equivalent one to Elliott’s identity in Section 5.

4.2 Gauss-Legendre algorithm

We prepare the auxiliary integral

Lab /2 df
p(a,0) = /0 (aP cosp 0 + bP sin? 6)1-1/7

Using I,, we can write K,(k) = I,(1,k'), where k' := (1 — kP)'/,

4.2.1 Case p=2

In case p = 2, all the objects above coincide with the classical ones. As far as the complete
elliptic integrals are concerned, the following fact is well-known (see [3, 7] for more details):
Let a > b > 0, and assume that {a,} and {b,} are the sequences satisfying ag = a, by = b

and +b
an+1=“”2 " bapr = Vanbs, n=0,1,2,. ...

Both the sequences converge to the same limit as n — oo, denoted by Ma(a,b), the
arithmetic-geometric mean of a and b. It is surprising that

I5(an, by) = I(a,b) foralln=0,1,2,...,

so that we can obtain the celebrated Gauss formula

o 1

T 2My(1,VI - RE)

Combining (4.5) with & = 1/4/2 and the Legendre relation (4.3), Brent [10] and Salamin
[34] independently proved the following famous formula of x:

1 2
4M, (1, —)
T = ) \/E .
1= 2"H(a2 —12)
n=1

Ka(k) (4.5)

(4.6)

We emphasize that (4.6) is known as a fundamental formula to Brent-Salamin’s algorithm,
or Gauss-Legendre’s algorithm, for computing the value of .
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4.2.2 Casep=3

We are interested in finding a formula as (4.6) of m, for p # 2. We take the sequences

an + 2b, 3/ (a2 + anby, + b2)by,
Apy1 = _'3—_, bn+1 = 3 s

As in the case of p =2, both the sequences converge to the same limit M3(a,b) as n — co.
The important point is that

anI3(an, by) = al3(a,b) foralln=0,1,2,...,

n=0,1,2.... (4.7)

and hence
_ T3 1

2 Ms(1,¥T-F)
Then, by (4.8) with k = 1//2 and the Legendre relation (4.4) with p = 3, we obtain
1\2
2Ms3 (1, 3—>
T3 = = V2 , G = yad — b3
1-2 Z 3™y + cp)en
n=1

K3(k) (4.8)

Actually, (4.8) is identical to the result of the Borweins [8, Theorem 2.1 (b)] (with some
trivial typos). In either proof, it is essential to show Ramanujan’s cubic transformation: for

ke (0,1]
12 3 12 1-k\°
Flz,211-8)=—F(= 21 (—2) . 4.9
(3’37 ) 1+ 2k (33 (1+2k>> (49)
This identity has been proved by, for instance, the Borweins [8], Berndt et al. [5, Corollary
2.4] or [4, Corollary 2.4 and (2.25)], and Chan [17], though Ramanujan did not leave his
proof. Moreover, the use of the generalized elliptic integrals can give an alternative proof

with elementary calculation; see [40] for details.
By Theorem 4.1 and (4.8), we obtain the following formula of 3.

Theorem 4.2 ([40]). Leta =1 and b= 1//2. Then

1 2
2Ms (1, —=
2 (135)

1-2 Z 3™(an + cn)en
n=1

T3 =

k]

where {a,} and {b,} are the sequences (4.7) and ¢, := /a3 — b3.

It is a simple matter to obtain other formulas for 73 if we combine 73 = 44/37/9 =
2.418 .- with a formula as (4.6). The former converges quadratically to m3 and the latter
does cubically. On the other hand, our formula in Theorem 4.2 converges cubically to ms
(Table 1). However, we are not interested in such trivial formulas obtained from those of
m, and it is not our purpose to study the speed of convergence and we will not develop this
point here.
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- 25 digits Error
q | 2-418399152309345558425031 | 2.9449 x 10712
q2 | 2.418399152312290467458771 | 4.0425 x 10~%°
g3 | 2.418399152312290467458771 | 1.0367 x 10~*
qs | 2.418399152312290467458771 | 1.8728 x 10757

2
2am+1

Table 1: Convergence of gm tO T3, where Qm = 125 ™ 3 (anten)en”

4.2.3 Casep=414
We give the following result of 7, for p = 4.

Theorem 4.3 ([43]). Let a > b > 0, and assume that {a,} and {b,} are the sequences
satisfying ag = a, by = b and

2 3b2 2 b2 2
Gni1 = \/ﬁ%, bos1 = 4, (‘L’W—j;")—b'i n=0,1,2,.... (4.10)

Then, both the sequences converge to the same limit Mj(a,b) as n — oo, and m4 can be

represented as
1\2
2M, (1, 4—)
T4 = ) \/5
1-Y 2" \/ah — b}
n=1

where ag = a =1 and by = b= 1/v/2.

bl

To show Theorem 4.3, it is crucial to prove
a214(an, by) = a®I4(a,b) foralln=0,1,2,...,

which yields
T4 1

2 My(1, V1 - k%)

(cf. (4.5) and (4.8)). Here we rely on Ramanujan’s transformation (see [4, Theorem 9.4,
p. 146]):
13 1-z2)? 13
Flo,5Ll1—(——) |=V1+3zF(-,>1;2%).
<4a4a ) (1+3Z)> +3I (474a ,Z)

4.2.4 Other cases

IX’4 (k) =

It would be desirable to establish a formula of 7, for any p # 2, 3, 4 but we have not been
able to do this. Our ultimate goal of this study is to generalize the strategy of Brent and
Salamin, based on the Legendre relation and the Gauss formula, to the case p # 2.

5 Legendre’s relation

For the details of this section, we refer the reader to [42].



5.1 Generalized elliptic integrals with three-parameters .

Let k € [0,1). We consider generalizations of K (k) and E(k) as
! dt
Kp»q,r(k) =A (1 _ tq)l/p(]. _ kqtq)l/.ra
1 (1 _ kqtq)l/r
where p € P* := (—00,0) U (1,00] and ¢, 7 € (1,00). In case p =g =71 = 2, K, 4.(k) and
Epqr(k) are reduced to the classical K(k) and E(k), respectively. For p = oo we regard
Kpqr and Ep g, as

! dt
Koaolt) = | g

1
Eogr(k) i= / (1 — k%)Y de.
0

Let s* be the number such that 1/s+1/s* = 1 for s. Under the convention that 1/00 = 0
and 1/0 = oo, we should note that s € P* if and only if s* € (0, 00), particularly, co* = 1.

There is a lot of literature about the generalized complete elliptic integrals. K4, is
introduced in [38] with a generalization of the Jacobian elliptic function with a period of
4K, 4p to study a bifurcation problem of a bistable reaction-diffusion equation involving p-
Laplacian. Relationship between K4, and F, g, has been observed in [14, 46]. Regarding
K 4+, another generalization of Jacobian elliptic function with a period of K, ,,~ is given
and the basis properties for the family of these functions are shown in [39]. Moreover, K, 4~
is also applied to a problem on Bhatia-Li’s mean and a curious relation between K, ,,« and
E,4p is given in [27)].
~ Our purpose in the present section is to generalize Legendre’s relation (4.3) to the gen-
eralized complete elliptic integrals above.

To state the results, we will give some notations. For p € P* and ¢ € (1,00), let m,,
be the constant defined in (1.1). In particular, me, = 2 for any q € (1,00). We write
Kpg = Kpgq, Epgi= Epgqq for p e P*and ¢ € (1,00).

Theorem 5.1 ([42]). Let p e P*, ¢, r € (1,00) and k € (0,1). Then

M Ts,r
Ep,q,r(k)Kp,T,q" (k,) + Kp,q,r* (k)Epmq(k/) - Kp,q,r‘ (k)Kp,T,q*(kl) = %’ (5.1)

where k' == (1 — k)" and 1/s =1/p —1/q.
Corollary 5.1 ([42], Case ¢ =71). Let p € P*, g € (1,00) and k € (0,1). Then

Tp,gTs,
Ep,q(k)Kp,q(k,) + Kp,q(k)Ep,q(k’) - Kp,q(k)Kp,q(k') = %1 (5-2)

where k' == (1 — k9% and 1/s = 1/p—1/q.
Remark 5.1. In particular, if p = ¢, then (5.2) coincides with (4.4) in Theorem 4.1 since
Kpp = Kp, Epp = Ep and Ty g = 2.

In fact, (5.1) is equivalent to Elliott’s identity (5.3) below. The advantage of our result
lies in the facts that it is understandable without acknowledge of hypergeometric functions
and that its proof gives an alternative proof for Elliott’s identity with straightforward cal-
culations. :
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5.2 Proof of Theorem 5.1

The following property immediately follows from the definitions of K4, and E, 4.

Proposition 5.1 ([42]). Let p € P*, ¢, r € (1,00). Then, K, 4.(k) is increasing on [0,1)
and '
M
Kpgr(0) = %,
{oo f1l/p+1/r>1,

lim K. (k)= Tug/2 Wu=1/p+1/r) if1/p+1/r <1;

k—1-0
and E,4.(k) is decreasing on [0,1] and

T, T,
Ep,q,r(o) = %7 Ep,q,r(l) = 2q (I/v=1/p—1/r).

Now, we apply the generalized trigonometric function to the generalized complete elliptic
integrals. For p € P* and ¢, r € (1,00), using sing ¢ @ (sineq 6 = 6 for p = co) and m, 4, we
can express Ky (k) and E,, (k) as follows.

Tp,a/2 dé
Kpqr(k) = S S
par(k) /0 (1 — kasind  O)1/r
Tp,a/2
Epqr(k) = /0 (1 - k9sing ,0)"/" do.

Then, we see that the functions K, 4, (k) and E,, (k) satisfy a system of linear differ-
ential equations.

Proposition 5.2 ([42]). Letp € P*, q, r € (1,00). Then,

dEp g, _ Q(Ep,q,r — Kpar)

dk rk !
dKpgr _abpgr— (a — k) Kp g
dk k(1 — k) ’

where a :=1+g/r — q/p.

Proof. We consider the case p # co. Differentiating B, , (k) we have

-1 _
(1— ke Sing,q g)1/r df = rk(Ep,q,r Kpar)-

dFp gr _q /”rvq/2 k91 Sing,qe
dk r Jo

Next, for Kp g (k)

dKpgr _ 4 /”m/2 k?~'sing 6 i
0 (

de 1 — k9sing  6)1+1/r




Here we see that

d ( — COS;,/;* 9 ) _ q(l - kq) Sing:zl GCOSI,?’/T 0

db (1 — kasind | g)1/r re(1 — k9sing | )1/
s —1 _ . o 1/ * .
0—}7171;!,2 20035"’ b= 9—»111;2, 2(1 singq 0)F =0;

so that we use integration by parts as
dKpgr K1 /"m/? d —cosbls 6 . .
—ar = - ’ fcost/r~1 9 df
dk 1=k )y  db \(1—kesind, )1/ | e

ka1 [ — siny, o 6 cosh7! 6 ] /2
1—ka [(1— kasing 0)1/ |

=1 [ Tpa/2 p/r* - ind
X / ».al cospq 0 (COSZQQ _ (a/r —q/p) Smp,qe) 4o
0

1w (1= kesind_0)/™ o/

cospg 6
_ ke /”M/ ? cosp .0 = (q/r — q/p)sing 6
=% ), (T~ kesing,, 0)

kot ”/"""’/2 (1+q/r—q/p)(1 — k?sin] ,6) — (1 +q/r — q/p— k%)
0

dé

= ; . de
1— ke ka(1 — kasing  6)1/7
- (L+9/r —q/p)Epgr — (1 + /7 — q/p — k) Kp g
k(1 — ko) ’
The case p = oo is proved similarly. This completes the proof. O

Proposition 5.2 now yields Theorem 5.1.

Proof of Theorem 5.1. Let k' := (1—kN)Y7, B} (k) := Eppq(K) and K}, (k) := Kppg-(K').
As dk'/dk = —(q/r)k?!/(K')"!, Proposition 5.2 gives

dEpgr 9(Epgr = Kpgr)

dk rk '
dKpgr  aBpgr—(a—kO)Kpgr
dk k(k")r ’
dB,., KN=E, + K, )
dk (k) ’
Ay g Q(=DE 4+ (b= (K)) K}, ge)
dk rk(k')" ’

where a:=1+¢/r—g/pand b:=1+1/q—r/p.



We denote the left-hand side of (5.1) by L(k). A direct computation shows that

d
~ Lk
i L)
dE, dKy,,
= S Ko+ Foar
Ky, Ee  dKpgr K, , 0
+ d]’: E;’,Tq + K Pgr* gk‘.lq ;kq KIIJ’I‘Q KP’QJ'*#
dE dK,,
= ;akq Kll?,'r, « + (Epgr — Kpgr) (;k -
dK, B,
+ (;]:L’" (Eglzrq K}’”'q )+ prq,r* (;k;q
q(Epgr — Kpgr) q(=bE) .+ (b— (K)) K}, 0e)
= _%' Kz,nq‘ + (Epgr — Kpgn) - ‘bra k(K B
) — (a— KK, 45 kq_l( Ellmq + Kzlrmq")
+ Lper (kl)r P (Ezlﬂ'q prq <)+ Kpgr - (kY
bq a
= —W(EPJ,T - Pa% )( prg prq ) k_(IF)T,-(EP'q,T - P(I"‘*)( prg prq )
ar — by
= W(Ep,q,r - KP‘I""‘)(EZI)Tq K;J,r,q*)'

Since ar — bg = 0, we see that dL/dk = 0. Thus L(k) is a constant C.
We will evaluate C' as follows. Since

|(Kp,q,r* - Ep,q T)Kl

PiTyq*

mral? ! q oind 1/r
:/0 ((1 s, O) — (1 - k%sin] , 0) ) dé

y /”w/2 dé
o (1= (k) sing, 0)1e

_ /w,, a/2 k%sin? , 0 0. /r,. /2 4o
o (1 — k9sing  6)1/ o (cosp,r 6 + ksiny . 0)1/¢"
S qup,q,’r*(k) . %ﬂ;r
Tk ),
we obtain lim,40(Kpgr — Epgr) K, = 0. Therefore, from Proposition 5.1
C = Jim Kog By = K (0) Bprg(1) = 22122,
where 1/s = 1/p — 1/q. Thus, we conclude the assertion. O

Finally, we will give a remark for Theorem 5.1. From the series expansion and the
termwise integration, it is possible to express the generalized complete elliptic integrals by



Gaussian hypergeometric functions

111 1
Kpgr(k) = W_;ﬁF (—, ST ‘§kq) )

grp g
m, 1 11 1
Epgr(k) = %F (E, g + E;kq) .

By these expressions and letting 1/p =1/2 -5, 1/¢g=1/2+a, 1/r=1/2—cand k7 = x
in (5.1), we obtain Elliott’s identity (see Elliott [24]; see also [2], [3, Theorem 3.2.8] and [25,
(13) p. 85]):

P 1/2+a,—1/2—c;x P 1/2—a,1/2+c;1_x
a+b+1 b+c+1
P 1/2+a,1/2—c;“_ P —1/2—a,1/2+c;1_q}
a+b+1 b+c+1
1/2+a —¢ - :
_F /24 a,1/2 (;:r P 1/2 a,1/2+(;1_x
a+b+1 b+c+1
_ Tla+b+1)T(b+c+1)
T Tla+b+e+3/2)T(b+1/2)
for |al, |c| < 1/2 and b € (—=1/2,00), where T" denotes the gamma. function. Also, letting
1/p=2—c—aand 1/¢g=1—ain (5.2) of Corollary 5.1, we have the identity of [2, Corollary
3.13 (5)] for @ € (0,1) and ¢ € (1 — a,00). A series of Vuorinen’s works on Elliott’s identity

with his coauthors starting from [2] deals with the concavity/convexity properties of certain
related functions to the left-hand side of (5.3).

(5.3)

6 Legendre’s relation for the incomplete elliptic inte-
grals

Legendre has also showed a relation as (4.3) for the incomplete elliptic integrals; see Cayley’s
monograph [15, p.136]. However, the proof is slightly complicated and we still have not
generalized the relation to the generalized (incomplete) elliptic integrals. For our future
work, we will give an elementary proof of Legendre’s relation for the incomplete elliptic
integrals.

Let A be the function of ¢ and k as A(¢, k) := v/1 — k2sin® ¢. Using A, we denote the
incomplete elliptic integrals of the first kind F, the second kind E and the third kind II by

¢ de
Fo)= [

¢
B, k) = / A6, k) db,
0
¢ d6
II k) = .
(¢, k) Au—mmemg
Moreover, A'(1, k) := A(, k'), F'(1, k) :== F(, k'), E'(,k) := E(, k) and II' (¢, n, k) :=
(), n, &').
Then, it is possible to obtain the following derivative formulas.
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Lemma 6.1.
dA (¢, k) _ k sin? ¢

e Alg k)
dF(¢.k)  E(p,k) — (K')*F(¢,k)  ksin¢cos
dk k(k')? - (R)A(g, k)
dE(¢a k) — E(¢) k) _ F(¢7 k)
dk k ’ .
dll{o,n, k k in
G0 — iy (B0 - @71, - 000,
dA'(1p, k) ksin®ep
dk~ A(p,k)’
dF'(Y. k) E'(4,k) — K*F'(4,k) | sinycosy
ak (K')2k kA (. k)
dE'(p.k) _ k(E'($,k) — F'(y, k)
dk ()2 :
dil' (), n, k) 1 , - (k)% sin 1) cos ¥
i =~ (P00 - F e - LR

Proof. We give only the formula of the derivative of TI(¢, n, k).
di /“7’ ksin® 6 .
dk — Jo (1—nsin®g)A3
k /¢ (1 — k%sin?6) — (1 — nsin’f)
n—k2 J, (1~ nsin®9)A3

¢
__*k_ - | LAY
n — k2 o A3

do

Here,
/¢1g_ 1 /¢ (1 — k%sin?0)? — k(1 — 2sin? @ + k?sin* §) i
o A3 1—k2 J, A3
1 ¢1—2sin%6 + k?sin* @
=——(E-§
wr (¢ AS ).
and
d (sinfcosf _1—23in20+k2sin40'
do A - A3 ’
so that we have
/‘ﬁgg_ 1 E_k2sin¢cos¢
o A3 - (k/)z A :
Thus,
dll k k?sin ¢ cos ¢
= [E— (K- T
& = e (50 22
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Now, let us define

L(¢., k) := E(¢,k)F' (¢, k) + F(¢, k) E' (¢, k) — F(¢.k)F'(, k).
M(¢ P, k) = csc? (] H(¢1 — cot? ¥, k) - F(éa k)v
M' (1, ¢, k) := M (4, ¢, k') = csc® g1 (1, — cot? ¢, k) — F'(¢h, k),
N($,, k) = tan @ A(¢, k)M’ (), ¢, k) + tanp A' (v, k)M (¢, 1, k).
Then, it follows from Lemma 6.1 that

Lemma 6.2.

dL(¢,, k)  dE(¢,k)sintpcosp N dE' (1, k) sin ¢ cos ¢
dk T dk Ay, k) dk A(g, k)’

aM(6,9,K) _ N TR
dk - kA,('L/),k)z (COS l/)E(d)y k) A ('7’!)) k) F(¢7 k)
k2 sin ¢ cos ¢ cos? i
2 —cot? ). k) —
+kTI(p, — cot” 1, k) AGF ),
dM' (3, ¢, k) k 2 ;v -
= — A(¢.
ik PR (" S (W k) — AG.k)*F (4. k)
k')? sin 1 cos 1 cos? ¢
+(K)2TT' (1, — cot? ¢, k _{ ,
(KI5, = ot g, ) — 0200
dN(¢,9,k) _ dE(¢ k)sinipcosyp  dE'(Y,k)sinpcos
dk n dk Ay, k) dk A, k)
Proof. 1t is sufficient to show the formulas of L, M and N.
dL dFE dF' dF dE' dF dF’
R 7 ZE4+F Rl ~ A
T P T >
dE _, dF' dF, _, . _dE'
_%F +(E-F) i +E]€—(E —F)+de
F-F

:TFIJF(E‘F)(_ ek T RN

E— (K')F ksingcos¢ , , k(E — F')
+ (T~ s )& -FE (‘W)
_ F' E —KF  sintcosyp
- 6P (T - T+
P E— (K)*F ksingcos¢p kF
+(n - F) ( k(k')2 - (k’)zA - (k,)z)

E' — K*F'  sintcos 1/;)

—(E-F) (FI_ E' N sinl/)cos1/)) (- FY) (E— F  ksingcos ¢

(K')2k kA k(K2 (K)2A
_ E— Fsintycosy n k(F' — E')sin ¢ cos ¢
ok N (k)2 A

_ dEsinycosy iE_’sinqﬁcosq&
T dk A’ dk A ’
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Mo dF
ak ~ “CVik "~ dk

_ k no k% sin ¢ cos ¢

- o gy (B (- SR

_(E- (K')2F a ksin¢cos¢)
k(k")? (k')2A
_ kcsc? 1 1 kcsc?ap
B ((k’)z(k2 +cot2y) k(k’)z) E+ EF k2 + cot? 1/)H
ksin ¢ cos ¢ (_ k% csc? e +1
(k’)2A k2 + cot?
_cos’y k ksin ¢ cos ¢ (k)% cos®
- (A/)2F+ l" (A:)zn + (k)2A (A)2
2 2
_k(AI)_Z (cos2 YE — (A')’F + K11 — k smg&coAsgbcos lb) )

/ M
)—i—tanv,b(dA M+ A'd )

da
("M dk dk
¢(k1n¢) &2 T — )
' 2 v N2TT (k') sin ¢ cos 9 cos® ¢
+A (k’)2A2 (cos QFE — A*F' + (K')°I1 A
.2
+ tany (kszll 1/)((:5(:2 YII — F)
, 1 9 nNeq g2 k? sin ¢ cos ¢ cos? 9
AIGE <cos YE + (A)*F — K*TI + A
_ kcos’¢ , kcos?¢ k sin 9 cos 1) cos? ¢
= tan¢ ( NN AN
cos® cos? ) k sin ¢ cos ¢ cos?
+taw< R Y VY
ksmqﬁcosq& , smq/zcosd;
_ﬁsingbcomp _ dEsinycosy
T odk A kA

a

Now, we are in a position to show the Legendre relation of the incomplete elliptic integrals.

Theorem 6.1 (Legendre). Let ¢, 4 € (0,7/2) and k € (0,1). Then

L(¢,’(/)ak)+N(¢71/)ak) =5
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Proof. It follows from Lemma 6.2 that

d
—_ L =
dk( +N)=0,

which implies that L + N = C, a constant independent of k. Moreover, as k — +0 we can
show that

(E—F)F =0,

sin

tan pAM’ — tan™? (smzp)
tan ¢

FE' 4 tanpA'A — tan™ (ta“‘/’),

Therefore,

T ., .1 (tang¢ oy sing) w
C—kli)rilo(L+N)—tan (sinw + tan ) =2

]

As ¢, v — w/2, we have L(¢,9,k) — L(k) and N(¢,%,k) — 0. Thus, we obtain
Legendre’s relation (4.3) as a corollary of Theorem 6.1.
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