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SOME NORM INEQUALITIES FOR MATRIX MEANS
TAKEAKI YAMAZAKI

ABSTRACT. This report is based on [3]. Inequalities for unitarily invariant norms
of power means of positive definite matrices are presented. Also Heron and Heinz
means are treated.

1. INTRODUCTION
Let P, be a set of all positive definite n—by-n matrices.

Definition 1 (Matrix mean, [6]). For A, B € P,, MM(A, B) is called matrix mean if
it satisfies the following conditions:

(i) A< C and B < D imply
IM(A, B) < M(C, D),
(11) for C = C*,
CM(A,B)C <M(CAC,CBC),
(iii) if A, } A and B, | B, then
DM(An, Bn) L M(A, B),
(iv) M(I,I) = 1.
Matrix means can be characterized by matrix monotone functions as follows:

Theorem A ([6]). For each matrix mean M, there exists a unique matriz monotone
function f : Rt — R* such that

f)I =M, zI) (zeR")
and for A, B € P,, the formula
M(A, B) = A2 f(AT BAT)A?
holds. A function f is called the representing function of a matriz mean 9.

The weighted geometric mean of A, B € P, is a typical example of matrix means
which is defined by

(1.1) Af\B = AT(AT BA7 ) A3,
Especially, if A = 1, then AfB denotes Af;/;B. If A and B commute with each other,
then

AfyB = A" 2B* = exp[(1 — \)log A + Alog B].
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For the geometric mean, the following norm inequality is very famous.

Theorem B ([1]). For A,B € P,

log A +log B
1asB] < fowp (242

holds for any unitarily invariant norm || - ||.

In the recent years, the weighted geometric mean has been extended to the means
of n-matrices. There are some definition of geometric means of n-matrices. But the
following Karcher mean is known as the best one of geometric means.

Definition 2 ([7]). For A = (A4, ..., An) € P and w = (wy, ..., wn) € (0,1)™, s.t.,
o, w; = 1, the Karcher mean A(w; A) is defined by unique solution X € P, of the
following matrix equation;

m
S wilog X T AXT =0.
i=1
The representing function of the Karcher mean of two matrices is given by the
matrix equation:

(1-MNlog X' +MX1=0

since f(z)I = X = A(1 — M\, \;1,zI). It is equivalent to f(z)] = X = z*. Hence the
Karcher mean of A, B € P, is Af\B. Moreover, If {A;, ..., A,,} is commutative, then

f: W; IOg A,] .

i=1

Alw; A) = AT* - AP = exp

For the Karcher mean, we have an extension of Theorem B as follows.

Theorem C ([5]). For A = (Ay,...,An) € P and w = (w1, ..., wn) € (0,1)™, s.t.,
i wi=1,

HA(w; Al < fexp [Z w; log A{I [

i=1
holds for any unitarily invariant norm | - ||.

Moreover the Karcher mean is extended to the following power mean.

Definition 3 ([8]). For A = (4y,...,An) € P and w = (wy, ..., wy) € (0,1)™, s.t.,
Yo w; =1, and t € [-1,1] \ {0}, the power mean P;(w;A) is defined by the unique
solution X € P, of the following matrix equation;

i wiXﬁtAi =X.

i=1

Power mean interpolates the arithmetic-Karcher-harmonic means, in fact, we have
the arithmetic, Karcher and harmonic means by letting ¢t = 1, ¢ — 0 and ¢t = —1,
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respectively. If w = (%,..,1), then P,(A) denotes Pi(w;A), simply. For the 2-

gt
matrices case, the representing function of the power mean is a unique solution of the

following equation.
(1= N)Xtd + A\Xti(z]) = X,
since f(z)] = X = P,(1 — A\, \; I, zI). It is equivalent to
X1 =N+ A = X.

Therefore .
T

f@)I =X =[(1-NI+I]*.
Hence for A,B € P,, A€ [0,1] and t € [-1,1] \ {0},

1
P(1— A\ A, B) = A [(1 —A) + ,\(A%*BA%-‘y] it

If {Ay, ..., An} is commutative, then

Piw; A) = (Z wiAf)
i=1

One might expect that the power mean also satisfies the similar norm inequality to
Theorem C. However, we have shown an inequality for the spectral norm case only.

Theorem D ([9]). For A = (Ai,...,An) € P and w = (wy, ..., wy) € (0,1)™, s.t
TLwi=1, andt €[0,1],

IPw; M) < | (_Z wiAz)

holds for the spectral norm || - ||.

1
t

Hence, our problem is as follows:
Problem. For A = (Ay, ..., An) € P andw = (w1, ..., wn) € (0,1)™, s.t., S e wy =
1, and t € [0,1], does
1

I Pe(ew; A < (Z wﬁ?)

hold for any unitarily invariant norm || - || #

In this report, we shall treat only Schatten p-norms for discussing the above prob-
lem. Let A € M, and s;(A), ..., sn(A) be the singular values of 4, i.e., the eigenvalues
of |A| such that

$1(4) > - > s,(A).

For 1 < p, Shatten p-norm of A is defined by

Al = (z si4) )

Every Shatten p-norm is a unitarily invariant norm for 1 < p < oo. Especially, if
A € P,, then ||All; = tr(A), ||A]l2 = [tr(A2)])? and ||A]le = ||A|| (spectral norm).
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2. THE POWER MEAN FOR 2-MATRICES
In this section, we shall discuss the problem in the case of 2-matrices case.

Theorem 1. For A,B € P,,
a3+ B}
1Pya(A, B, < | (—2—)
holds for p=1,2,00.
To prove Theorem 1, we will use the Furuta inequality.

Theorem E (Furuta inequality, [4]). Let A,B € P,. If A> B > 0, then for each
r >0,

W

(ASAPA%)s > (A5BPAS)e  and (B5APB3)s > (BiBPBS)3
hold forp >0, ¢ > 1 with (1 +7r)g>p+r.

Poof of Theorem 1. The case p = 0o has been already shown in [9)].
The case p = 1. Since
I+ (A% BA%)?
2

2
Pij2(A,B) = A3 ] Az = i(A+B+2AuB)

1 1\ 2
hold, it is enough to show
tr(A+ B+ 2AB) < tr(A + B + AT B2 + B1A3).
It is equivalent to
tr(A4B) < %tr(A%B% + BhAD).

It has been already shown in [2]. Therefore, the case p =1 is proven.
The case p = 2. By the similar argument to the case p = 1, it is enough to show

(2.1) tr ((A+ B +2A4B)*) < tr ((A+B+A%B% +B%A%)2>.

We can calculate that
tr ((A+ B + 2A§B)?) = tr (A% + 2AB + B? + 4A(AB) + 4B(A}4B) + 4(AfB)?)
and
1 1 2
tr ((A + B+ AiB% + BfA%) >

=tr (A2 +4AB + B? + 4A3B% + 443 B3 + 2(A%B%)2) .



Then (2.1) is equivalent to the following trace inequality.
tr (2A(A4B) + 2B(A4B) + 2(AtB)?) < tr (AB +2A%B3 + 243B% + (A%B%)2) .
Firstly, we shall show
tr ((A4B)?) < tr ((A3B})?) < tr (4B).
B3z A

The first inequality follows from [|A$B|| < [|AiBZAi|| for any unitarily invariant
norm in [2]. In fact,

|AZBEAR|2 = tr ((A%B%A%)2) =tr ((A%B%)2)
holds. The second inequality follows from the Lieb-Thirring inequality, i.e.,
tr((AB)™) < tr(A™B™).
Next, we shall show tr(A(A$B)) < tr(A%B%). To prove this, we shall show
143 (44B) A% < | AIB A%

for any unitarily invariant norm. By considering the untisymmetric tensor technique,
it is enough to show

AiB3AT <1 = Ai(AjB)AT<I.
It is equivalent to
Bi <A% = (A7BAT)I<A2
It follows from Theorem E. tr(B(A$B)) < tr(A3B%) can be shown by the same way
since AfB = B}JA holds. Therefor the proof is completed. O
3. THE HERON AND HEINZ MEANS

In this section, we shall discuss similar norm inequalities to Theorem 1 for the
Heron and Heinz means. Because these means have similar forms to the power mean

4P, /5(A,B) = A+ B + 2A4B.

Definition 4 (Heron and Heinz means). Let A, B € P, and ¢ € [0,1]. Then the
Heron and Heinz means of A and B are defined as follows:

A+B B,

(1) Heron mean: (1 —t)
Al B + Bf; A

2
If A and B commute with each other, we have

(1-1)

and

(ii) Heinz mean:

Nf=
D=

A+B+tAﬂB=(1—t)A+ +t\/AB—(1—t)A+B A:B

+B3A
2
Af,B+ BfA A3IB3 4+ BiA?
2 B 2 '
By the similar way to the proof of Theorem 1, we have the following result.
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Theorem 2. For A,B € P, and t € [0,1],
(0 A+ B <
P

(1- t)_Z_ + tAfB
(ii) || At:B + Bt All, < |At-tBt + AtBl-t”p
hold for p=1,2.

1.1 1.1
(l—t)A-’z-B +tAzB§-;-BzA2

P

4. TRACE INEQUALITY FOR THE POWER MEAN OF SEVERAL VARIABLES
In this section, we shall give a solution of the problem for the trace norm.

Theorem 3. For A = (Ay, ..., Am) € P and t € (0,1],

1
1 m t
12, < | (;E:Az) I
i=1

hold for p =1, 00.

Proof. The case p = oo has been already shown in [9].
The case p = 1. Let X = P,(A). Then X satisfies

1 m
X = — X Ai.
- g H
We have

tr(X) =tr (% iXﬁtAi)

= % zm: tr(XﬁtAT)

i=1

1 m
<23 er(xita
< tr(X A7)

i=1

1 ¢
_ 1-t | L t
=tr (X [m ; A{I )

<tr ((l—t)X—i—t [%Xm:Ag]?) ,

where the inequalities are obtained by
tr(Af;B) < tr(A**B*) < tr(1 —t)A + tB)

in [2]. Hence we have 1
$r(P(A)) < tr ([% 3 A;?] ) .
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