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Velocity and acceleration at a point on the paths
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1. Introduction.

This report is based on [13]. Let A and B be strictly positive linear operators on
a Hilbert space H. An operator T on H is said to be positive (denoted by T' > 0) if
(T¢,€) > 0 for all £ € H and T is said to be strictly positive (denoted by T > 0) if T’
is invertible and positive.

Fujii and Kamei [1] defined the following relative operator entropy for A, B > 0:

S(A|B) = A?log(A"2BA™%)A3.
Furuta [6] defined generalized relative operator entropy as follows (see also [8]):
S.(A|B) = A3(A"iBA 7)*log(A"2BA"%)A? (a€R).

We know immediately Sy(A|B) = S(A|B).
Yanagi, Kuriyama and Furuichi [16] introduced Tsallis relative operator entropy as
follows:
A, B-A

T.(AB) = 2L (ae 0,1,

where A i, B = A3(A~3 BA~7)*A3 is the weighted geometric operator mean (cf. [15]).
T
Since l%a = log a holds for a > 0, we have Tp(A|B) = lig‘l) To(A|B) = S(A|B).
x (2%
For A, B > 0, we define a path A f; B as follows ([2, 3, 5, 7, 12, 14] etc.):

Al B= A3(A"iBA"1)'A? (t€R),

which is passing through A = Ay Band B= Al B. If ¢t € [0,1], the path At B
coincides with A #; B (cf. [15]). So we can extend Tsallis relative operator entropy
T,(A|B) for o € R. We remark that Ay B = B lj1_; A holds for t € R (cf. [7]). We
know immediately that

d d
t=0 t=a

T.(A|B) can be regarded as the average rate of change of A fi; B fromz =0to z = a.
We illustrate an image for S(A|B), S.(A|B) and To(A|B) in Figure 1.
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Figure 1. An image of S(A|B), S.(A|B) and T,(A|B).

In [10], we introduced noncommutative ratio R(v; A, B) on the path A l; B as
follows:

Definition. For A,B > 0 and v € R, we define
R(v;A,B) = (Atf, B)A™.

We have the following relation by applying noncommutative ratio R(v; A, B) to S,(A|B)
[10]:

R(v; A, B)Su(A|B) = Susu(A|B) = %Aats

t=u+v

This relation means that R(v; A, B) is the ratio of S, (A|B) and Sy4,(A|B).
For A,B > 0, t € [0,1] and r € [—1,1], the operator power mean A {; , B is defined
as follows:

Aﬁt,rBEA%{(l—t)I-H( “3BAT3) s A {AV, (A4, B)}.

We remark that A ff, B = B fi_+, A holds for t € [0,1] and r € [-1,1] (cf. [9, 11]).
The operator power mean is a path combining A = A fo, B and B = A #, B,
and interpolates the arithmetic operator mean, the geometric operator mean and the
harmonic operator mean.
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arithmetic operator mean
AV;B=(1-t)A+1tB
T’r=1
geometric operator mean
Abe B3 Ay, B= Ab(A-dBA-byad
~Lr=—1
harmonic operator mean
AA B=(A1V, B!
. J

For A, B >0, a € [0,1] and 7 € [-1, 1], expanded relative operator entropy Sur(A|B)
and generalized Tsallis relative operator entropy T,,.(A|B) are defined as follows (cf.

[9]):

d
Sur(AB) = Z At,, B
AAB) = g AN B|

_ % _ _% _1\" %_1 (A—%BA'%)T—I 1
= A [{(1 a)I+a(A BA 5)} : Ab
= (Afar B)(A Va (A4, B))™'So,(A|B) (r #0),

Sao(AIB) = limS,,(A|B) = Sa(A|B),
— Aﬁa,r B-A T

Tur(AlB) = “Hr 222 (o 20), Ty (41B) = T, (A|B) = T(AIB).

We remark that Sp.(A|B) = T,(A|B), S1,(A|B) = -T,(B|A) and T} ,(A|B)=B- A
hold for r € [-1,1].
In [5], S(A|B) and Sp,(A|B) are given as the viewpoints of the velocity on the

paths A §; B and A f;, B at t = 0 respectively since S(A|B) = % Al Bl and

t=0
Sor(A|B) = % At B ‘ . According to this viewpoint, it is natural to call So(A|B)

and S, ,(A|B) the velocitites? on the paths Ay B and A f;, B at t = « respectively.

In this report, we introduce the accelerations A,(A|B) and A, (A|B) on the paths
Al B and A f:, B at t = a, and we can show that the properties of the acceleration
are inherited from those of velocity. In section 2, we discuss some properties of velocity
Sa(A|B) and the acceleration A, (A|B). In section 3, we show properties of the velocity
Sar(A|B) and the acceleration A, ,(A|B) on the path A f;, B which are similar to
those shown in the section 2.

2. Velocity and acceleration on the path A 4, B.

Since S,(A|B) can be considered as the velocity on the path Al Batt=a. In
this section, we introduce the acceleration on the path A ; B and we show that the
acceleration inherits the properties from S,(A|B).

Since the relative operator entropy S,(A|B) is regarded as the velocity on the path
Ay B att = «, it is natural to call the derivative of S;(A|B) the acceleration on
Al B.
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Definition 2.1. For A,B > 0 and a € R, we define the acceleration on the path
Aty B att=a as follows:

d
t=a

The acceleration A, (A|B) is represented explicitly as follows:

Theorem 2.2. Let A,B >0 and o € R. Then

Aa(A|B) = Sa(A|B)AT'S(A|B) = Si(A|B)(A ta B)™'Sa(AlB).
In particular,

Ao(A|B) = S(A|B)A~'S(A|B).

Proof. For a > 0, we have p
o ¢ _ gt 2
7’ loga = a’(loga)”.
Then

Au(AB) = S5(AB)

t=a
L 2
= AH(aiBAH) (log(a~1BA)) 4}
= A3(A"3BA 2)%log(A"7BA"7)A3A 'A% log(A 2 BA"2)A3
= Sa(A|B)AT'S(A|B),
which shows the first equality. On the other hand, we have

Sa(A|B)AT'S(A|B) = Sa(A|B)(A ha B)™'(A o B)AT'S(A|B)
Sa(A|B)(A e B)™'Sa(A|B).

O

Remark. The equation %(t) —¥(t)(v(t)) ~14(t) = 0 for a smooth function (t) is called
geodesic equation. If v(t) = A b B, then ¥(t) = S;(A|B) and #(t) = A:(A|B). Hence,
the function 4(t) = A l; B satisfies the geodesic equation by Theorem 3.2. It shows
that the path A f; B is the geodesic in B(H)* which is a manifold consisting of all
positive invertible operators on a Hilbert space H (see [4]).

We show some properties of the velocity and the acceleration on the path At B.
The next lemma is fundamental in our discussion.

Lemma 2.3. ([11]) For A,B >0 and z,y, € R,
(A ny B) ha (A ha: B) = A |1(1—¢>z)y+oz:t B
holds.

Let Ab, Band Al B (z,y € R) be arbitrary points on the path A fi; B. Concerning
the velocity So(A b, B|A b, B) and the acceleration Ay (A iy B|A i, B) at t = a, we
have the following relations.
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Theorem 2.4. Let A,B >0 and o,z,y € R. Then

1) Sa(Aly BlAY: B) = (z = Y)Sa-a)y+aa(AlB).

(2) As(Aly BlA b B) = (z-9)’Aua-ay+as(A|B).

Proof. (1) This relation was already proved in [11].

(2) By (1) in Theorem 2.4, Theorem 2.2 and Lemma 2.3, we have

A«(A 'y B|A . B)

= Sa(Aly BlAYs B)(Aby B) ha (Al B))™'Sa(A by B|A b, B)
= (x - y)zs(l—a)y+az(A|B)(A h(l—a)y+ax B)-ls(l—a)y+az(A|B)
= (1" - y)zA(l—u)y+az(A|B)‘

The next Corollary 2.5 is an immediate consequence of Theorem 2.4.
Corollary 2.5. For A,B >0 and a,z,y € R, the following hold:
(1) Sa(BIA) = ~Si-a(AlB) and Au(BIA) = Ar_a(A|B).
(2) Sa(A|Af: B) = 18.(A|B) and Au(A|At, B) = 2°A..(A|B).
(3) Sa(A by BlAlyt1 B) = Sayy(A|B) and Ay(Aly B|A by+1 B) = Agty(A|B).

Conversely, the statements (1) and (2) or statements (2) and (3) in Corollary 2.5 imply
Theorem 2.4, so we have

Theorem 2.6. For A,B >0 and o, z,y € R, the following statements hold and they
are equivalent.

(1) Sa(A hy BIA hz B) = (IIJ - y)S(l-a)y-\Lax(AIB)'
(2)  Sa(BlA) = ~Si-a(AIB) and Sa(AlA b, B) = wSus(Al|B).
(3)  Sa(AlAle B) = 2Ses(AlB) and Sa(Ab, BlA by B) = Saiy(A|B).

Proof. We have only to show that (2) implies (1) and (3) implies (1).
(2) = (1) It is trivial if y = 0. If y # 0, we have

At B = Atz (Al B) = (Al B) s A
Then

Sa(A'ty B|A i, B) vz

—Sayn (A1 BIA)
X

= LTS, (A4, B) = (o 1)Se-amres(AIB)

Sa(Aty BI(Aty B) as 4) =

(3) = (1) From Lemma 2.3, we get
Sa(A hy BIA hz B) Sa(A hy B'(A hy B) hz—y (A IJy+1 B))
(z - Y)Sa(z-y)(A by B|A by11 B)
= (2~ Y)Sa@-y+y(AlB) = (= = ¥)Sa-ay+e(A|B).



Theorem 2.7. For A,B >0 and o, z,y € R, the following statements hold and they
are equivalent.

(1)  Aa(Aby BlAb: B) = (z— y)zA(l-a)y+ax(A|B)-

(2)  Aa(B|A) = Ai_a(A|B) and A.(A|A b, B) = 22A,.(A|B).

(3)  Au(AJAb; B) = 2°Aa(A|B) and Au(Atly B|A by B) = Asiy(A|B).
Proof. This relation can be obtained by similar way to Theorem 2.6. O

Next, we show the properties of the velocity and the acceleration related to the
noncommutative ratio R(v; A, B).

Theorem 2.8. For A,B >0 and u,v € R, the following hold:
(1) R A B)S,(AB) = Suru(AIB) = Su(A b BIA by, B).
(2)  R(v;A B)AAIB) = Auro(AlB) = Au(A bo BlA floss B).
Proof. (1) This result was shown in [10].
(2) By (1) in Theorem 2.8, Theorem 2.2 and (3) in Corollary 2.5, we have
R(v; A, B)AJAIB) = R(v; A, B)S.(A|B)A™'S(A|B)
= Suro(A|B)AT'S(AIB) = Auio(A|IB) = Au(Aby B|A i1 B).

O
Corollary 2.9. For A,B >0 and v € R, the following hold:
(1) R(v; A, B)S(A|B) = S,(A|B).
(2) R(v; A, B)Ao(A|B) = A.(A|B).
Furthermore, we obtain an extension of Theorem 2.8.
Theorem 2.10. Let A,B >0 and a,v,z,y € R. Then
(1) R(v; A, B)Sa(Aty B|Aly B) = Sa(A byt B|A tz1y B).
(2) R(v; A, B)Aa(A lly Bl|A bz B) = Aa(A bytv B|A o4 B).
Proof. (1) By (1) in Theorem 2.4 and (1) in Theorem 2.8, we have
R(v;A,B)Sa(Aly BlAt: B) = (z-y)R(v; A, B)S1-a)y+as(AlB)
= (2= Y)St-ap+acte(AlB)
= {{@+v) = (y+ )} Su-a)@+v) et (A B)
= Su(A bytv B|A borv B).
(2) By (2) in Theorem 2.4 and (2) in Theorem 2.8, we have
R(v; A, B)Aa(A by Bl|Ab, B) = (z—y)*R(v; A, B)Aq-a)y+az(A|B)
= (z- y)2A(1-—a):’l+aa:+v(A|B)
= {@@+9) = (¥ + )}’ Ag-a)y+o)+atern) (4 B)
= Ax(A by B|A bpyo B).
O

We remark that the following proposition holds on the noncommutative ratio, and also
we can give an alternative proof of Theorem 2.10 by using this proposition.
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Proposition 2.11. For A,B > 0 and v,z,y € R, the following hold:
R(v(z —y); A,B) = R(v;Aly B,Al. B).
Proof. By using Lemma 2.3, we have

R(’U(Z‘ - y); A’ B) = (A hu(z—y) B)A-l

= A2(A"TBAT3)" WA A~E(ATEBATT) VATE
(A ba—vyy+oy B)(Aly B)™' = ((Aly B) b (Al B)) (A Yy B)™!
R(v;Ahy B,A b, B).

O

Alternative proof of Theorem 2.10. (1) By Proposition 2.11 and (1) in Theorem 2.8,
we have

R4, B)Su(A ty BlA L B) = R (A1, B,A% B) 5u(At BlA b B)

= Sa((Aly B) b, (A B)l(Aly B) b2 41 (A b B))

z—y

Sa(A -2yt BlAY_ w2 t1): B)

-y

= Sa(A t,y+v BlA hw+v B)

(2) This relation can be obtained by the similar way to (1). O

3. Velocity and acceleration on the path A f;, B.

In this section, we introduce the velocity and the acceleration on the path A f;, B
and show their properties.

We know that the path A f;, B has similar properties to those of A fj; B. For
example,

Lemma 3.1. ([14]) For A,B >0, a,z,y € [0,1] and r € [-1, 1],
(A ﬁy,r B) ﬁa,r (A o B) = A n(l—a)y+ax,r B

holds.

Theorem 3.2. ([11]) For A,B >0, a € [0,1] and r € [-1,1],
Sar(AlB) = (Afar B)(A Va (Al B))™ S0, (A]B)
holds.
Theorem 3.2 shows that (A o, B)(A V4 (A f, B))~! is a partial extension of the

noncommutative ratio on A f; B.
We introduce the acceleration on the path A #;, B as follows:



Definition 3.3. For A,B >0, o € [0,1] and r € [~1,1], we define A, .(A|B) as

d
-Aa,r(AlB) = Est,r(AlB)

t=a

We call it the acceleration on the path A f;, B att = c.

The acceleration A, ,(A|B) is represented explicitly as follows:

Theorem 3.4. Let A,B>0, a€0,1] and r € [-1,1]. Then

Aar(A|B) (1 =7)Sar(A|B)(A Vo (Al B))-ISOJ(AIB)

(1 =7)Sar(A|B)(A far B)_lsa,r(A'B)~

Proof. We have shown the case r = 0 in Theorem 2.2. Hence, we have only to show

the case r # 0. Since

d

= 5::(A|B) 2
kL g \\FR[(ATEBATE T
= (1-r)A {(1 t)I+t( BA )} ( - ) A
_ 1 _ S\ L ATEBATE I
= (1-1)A [{(1 t)I+t(A BA )} - lA

xAH (-1 41 (abBach)) " aviad (A-%B’i-%)r =yt
= (1=7)S+(A|B)(A V. (A, B))"'T,(A|B)
= (1-7)Se(A|B)(A V, (A, B)) " So,(A|B),
we have

Aar(A|B) = (1 =7)Sar(A|B)(A V4 (A b, B))™1S,.(A|B).
On the other hand, by Theorem 3.2, we have

(1—7)Ss-(A|B)(A Vq (Al B))2S0+(A|B) = (1-7)Ss(A|B)(Aflar B) ™ S4-(4|B).

From Theorem 3.4, we have the following properties for A, (A|B).
Corollary 3.5. For A,B > 0, the following hold:

1) Axo(AlB) = Al(A|B) (a € [0,1]).
2) Aor(AlB) = (1 —1)So-(AIB)A Sy, (AB) (r € [-1,1]).

By Lemma 3.1 and Theorem 3.4, we obtain similar properties discussed in section

2. First, we show similar relations to Theorem 2.4 and Corollary 2.5.
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Theorem 3.6. Let A,B >0, a,z,y € [0,1] and r € [-1,1]. Then

0 Sar(A tyr Bl fuy B) = (== 1)Sa-apysans(AIB).
(2) Aa,r(A ﬁy,r BIA ﬂz,r B) = (.’L’ - y)2A(1—a)y+aa:,r(AlB)-

Proof. (1) By using Lemma 3.1, we have
Sar(A Yy, BlA fsr B)
d
EZ (A ﬂy,r B) ut,r (A ux,r B)
t=a
Lim (A ﬁy,r B) ﬂa+v,r (A ﬁa:,r B) _ (A ﬁy,r B) ﬁa,r (A ﬂm,r B)

v—0 v
= lim A 3(1—(C¥+'U))y+(a+v)m"r B-A ﬁ(]-a)y.;.w, B
- v—0 v
= (z—y)lim A fa-ayytasto@—y)r B — A ba-a)ytasr B
o0 (@ -y

= (.’Z‘ - y)S(1_a)y+ax,r(A|B)'

(2) From (1) in Theorem 3.6 and Lemma 3.1, we obtain

Aor(A flyr BlA fzr B)
1~ 1)Sar(A tyr BlA s B)((A tyr B) for(A oy B)) ™ Sar(A fyr BIA ey B)
- ’I‘)(:L‘ - y)2S(1—a)y+az,r (AIB)(A ﬁ(l—a)y+aa:,r B)_ls(l—a)y+ax,r(A|B)

= (
= (1
= (IL‘ - y)2A(1-—a)y+az,r (A,B)

Corollary 3.7. For A,B >0, a,z € [0,1] and r € [-1,1], the following hold:
(1)  Sar(BJ|A) = —S1-ar(A|B) and Sa,(AlA #zr B) = zSasr(A|B).

(2)  Aur(BlA) = Ai—ar(A|B) and Aar(AlAtzr B) = 22 Ase.(A|B).

Second, we obtain the relations similar to Theorem 2.6 and Theorem 2.7 as follows:

Theorem 3.8. For A,B >0, o,z,y € [0,1] and r € [-1,1], the following (1) and
(2) are equivalent.

(1) SOL,T(A ﬁy,r BlA ﬁz,r B) = (:E - y)S(l—a)y+am,r(AlB)'
@) Sar(BlA) = —S1-ar(A|B) and Sap(AlAfer B) = ©Sass(AB).

Theorem 3.9. For A,B >0, a,z,y € [0,1] and r € [-1,1], the following (1) and
(2) are equivalent.

(1) -Aa,r(A ﬁy,r BIA u:c,r B) = ('T - y)2~A(1-a)y+az,r(A|B)-
(2) Aar(BlA) = Ai_or(A|B) and Aar(AlA e, B) = 22 Agr(A|B).
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