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FURUTA INEQUALITY AND p-wA(s,t) OPERATORS
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ABSTRACT. The aim of this paper is to introduce small history
with Furata’s inequality and relating class of p-wA(s, t) operators.

1. INTRODUCTION

Let B(#) be the algebra of all bounded linear operators on a complex
Hilbert space H. In 1987, Furuta [5] proved the follwing inequality.

Theorem 1. [Furuta inequality]
Let 0 < p,q,r € R and A,B € B(H) satisfy0 < B< A. Ifp+2r <

pt2r

27
(14 2r)q and 1 < q, then B% < (B’APBT)% and (ATBPA’")% <A 7.

This is a good extension of Lowner-Heinz’s inequality ([7] and [12]).

Theorem 2. [Lowner-Heinz’s inequality]
Let A,B € B(H) satisfy0< B< A and 0<p<1. Then BP < AP.

Recall that an operator T is said to be hyponormal if T*T > TT™*. For
T € B(H), set |T| = (T*T)% as usual. By taking U|T|z = Tz for z € H and
Uz =0 for z € ker |T|, T has a unique polar decomposition T' = U|T'| with
ker U = ker |T|. Aluthge [1] defined Aluthge transformation 7' = |T {%U |T]%,
and studied interesting properties of p-hyponormal operators for 0 < p < 1.

Definition 3. T € B(H) is said to be p-hyponormal if (T*T)? > (T'T*)?
where p € (0,1].

The class of p-hyponormal operators is a generalization of the class of
hyponormal operators by Lowner-Heinz’s inequality. Aluthge [1] proved
follwing result.

Theorem 4. Let T' be p-hyponormal. If0 < p < 1/2, then T is (p+1/2)-
hyponormal. If 1/2 < p <1, then T is hyponormal.

This is a epoc making result. Aluthge transformation is a strong tool
of operator theory and many applications has been studied, for example,
Putnam ineqality, Fuglede Putnam type theorem, Wyle type theorem. I
think that generalization of class of operators may be good way to investigate
non-normal operators. Furuta [6] and Yoshino [17] definded generalized
transformation T'(s,t) = |T|*U|T|* with 0 < s,¢ and Yanagida [15], Ito [8],
Yamazaki [9], Fujii, Jung, Lee, Nakamoto [4] studied wA(s,t) operators.



180

Definition 5. T is said to be wA(s,?) if

(1.1) (T*PIT P |T* [y > |7
and
(1.2) IT?* > (IT*|T*[*|T ) .

Hence generalized Aluthge transformation T'(s,t) of wA(s,t) operator T
enjoys the following property.

Proposition 6. Let T be wA(s,t). Then
T (s, 8)| 7% > |T*
and v
T > |T(s,t)*|5F .

Hence
27

IT(s,8)[% > [T > |T(s, )| 5%
for all r € (0, min{s, t}].

Ito and Yamazaki [9] proved that (1.1) implies (1.2). This is a good
result. This means that class of wA(s,t) operators are coincides with A(s,t)
operators.

Definition 7. T is said to be A(s,t) if
(1.3) (IT* [T 2|7 )75 > |72

Class A(1,1) is said to be class A and class A(1/2,1/2) is said to be
w-hyponormal [4, 9, 15]. Prasad and Tanahshi [16] definded p-wA(s,t) op-
erator for 0 <p<1land0< s,t,s+t <1 as follows.

Definition 8. T is said to be p-wA(s, t) if

(1.4) (T [T |22|T* ) 35 > |72t
and
(1.5) T2 > (IT|*|T*|#|T|°) .

Hence p-wA(s,t) operator is a generalization of wA(s,t) operator by
Lowner-Heinz’s inequality. The aim of this paper is to prove several prop-
erties of p-wA(s,t) operaor and show some open problems of p-wA(s,t)
operaor. Main results are proved in [16] and [2].

2. RESULTS

At first, we show generalized Aluthge transformation 7'(s,t) of p-wA(s,t)
operator T' enjoys the following property [16].

Theorem 9. Let T be p- wA(s,t). Then
2pt 2pt
IT'(s, t)|*+ > |T|*
and ape
|T[*° > |T(s, t)*| =+ .
Hence 2or e
T (s, 8)| 5% 2 |T|*" 2 |T (s, t)*| 5+



for all r € (0, min{s, t}].
Proof.
(IT* [T 2o T ) e > |
> (UITIU T PU|TItU*) 5 > Ul
U (|T|tU*]TI2sU|T|t)§% U* > U|T|**'U*( [8, Lemma 2.1])
= (|TIU*|T[*UIT|)* > [T[2P( [8, lemma 2.1])
= |T(s,8)| 7 > [T,
Also,
(ITJS|T**|T}%) = < T2
<> (IT]UITPU TI?) 7% < [T
= [{T(s, )Y < [T,
O

Next we show class of p-wA(s,t) operators are decreasing class of opera-
tors with 0 < p < 1 and increasing with 0 < s,¢ < 1. The proof is essentially
due to C. Yang and J. Yuan ([19] Proposition 3.4).

Lemma 10. If T is p-wA(s,t) and 0< § < 8,0<t<t,0<p1 <p <1,
then T is p1-wA(s1, t1).

Proof. Let T be p-wA(s,t). Then

(2.1) (IT* TP T )% > |T°|%P
and
(2.2) (T2 > (|T|*|T*[*|T|")%.

We prove that T is p-wA(s1,%1). Then T is p;-wA(s1,t1) by Lowner-Heinz’s
inequality.
t
Let A; = (|T*[t|T|%|T*t)*% and By = |T*[*P. Since (1) implies 4; >

B, we have
1+r2

2 T2\ p2tr2
(Bf AP BP ) > Byt

for any 72 > 0 and py > 1 by Furuta’s inequality [5]. Let

t ~t
ﬁZt,P2=8+ 21,7‘2=ﬂ—20-
tp tp

Then

tp+B—t

(I Prrpeire) =7 > s

Hence we have

(i P ir£) ™7 > T2
forany 0 <w<tp+p8-—t.

181



182

Let .
1:8) = (ITI*IT* 2 T)*) **°
for 3 > t. Then
ﬁ/ﬂ_w}ﬁr,;

fs(ﬁ) = {(|T|s|T*|2ﬂ|TIs) s+8
= hre
= { iz (pirere) e
> { i P e Pl
= { Iy pero )

= fs(B + w).

Hence fs(B) is decreasing for 8 > ¢.
Then, by (2.2),

(TP > (IT°|T**|T)*)
= {fs(t)}p
3P
> {fs(t)}? = (IT°|T* " |T)°) ¥ .
Let Ay = |T|?*? and By = (|T|*|T*[2|T|*) 4. Then
1+’r3

3 3 \ p3+r3
14713 2 RP3 A2
AR > (A2 B3’ A; )

for any r3 > 0 and p3 > 1 by Furuta’s inequality [5]. Let

p3 = S:'ptl >1,r3= Sls;s >0
Then
|T|2sp+231—2s > (IT’51|T*’2t1IT|sl) szjl_j—t;s
Since
sptsi—s—sip=(s—3s)(1—-p) =0,
we have

S1P

(TP > (s |7 P ) e

Similarly, we have

(T e o) ¥ > (TR,

Hence T is p-wA(s1,%1).

The following result seems new, even for class A(s,t) operators.

Theorem 11. If T is p-wA(s,t) and T is invertible, then T~ is p-wA(t, s).
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Proof. Let T = U|T| the polar decomposition of 7. Then
IT—1|2 — (T—l)*T—l — (T*)-—lT—l — (TT*)—I — |T*|_2.

Hence
77 = [T
Also,
(T2 = (T YT =TYT* " = (T*T) " = T2
Hence
(T4 = 7|~
Then
(@Y 1T~ 2Tty Py
= (|T|=°|T*|~2|T| )%
= (|T*|T* [T )+
2 lT]—2sp — I(T—l)*|2sp
and

(T @Yy 2o Ty e
= (|77 T2 Ty e
= (|T* [T 2|7 )
S IT*|_2tp — ]T—1|2tp‘

Corollary 12. If T is A(s,t) and T is invertible, then T~ is A(t,s).

Let 0 < p <1 and S,T € B(H) be non zero operators. In [3], Duggal
proved that tensor product T' ® S is p-hyponormal if and only if T and S
are p-hyponormal. The passage of calss A operators is studied by Jeon and
Duggal [10]. Tanahashi and Cho [13] proved that the tensor product T ® S
is of class A(s,t) if and only if T and S are class A(s,t). Now we will prove
similar result for p-class wA(s, t) operators by adopting the ideas in [13],[10].

Lemma 13. [11] Let T1,T%, 51,52 € B(H) be non negative operators. If
Ty # 0 and Sy # 0, then the following conditions are equivalent.

N1 ®5<T®S,.

(2) There exists ¢ > 0 such that Ty < cT1 and S; < c¢18,.

Lemma 14. [13] Let T = U|T| and S = V|S| be the polar decompositions
of T, S € B(H). Then the following assertions hold.

(1) |T®S|=|T|®]8S]|.

2)T®S=URV)(|T|®|S|) is the polar decomposition of T ® S.

(3) (T'® S)(s,t) =T(s,t) ® S(s,t) for s,t > 0.

Theorem 15. Let S,T € B(H) be non zero operators. Then T ® S is
p-wA(s,t) if and only if S, T are p-wA(s,t).



Proof. Let S,T € B(H) be non zero p-class wA(s,t) operators and § =
2t
V|S|,T = U|T| be polar decomposions of S,T. Then |T(s,t)|s+ > |T|2»
2t;
and |S(s,t)*|s_+12 > |S|%*P by Theorem 9. By applying Lemma 14, we obtain
2tp 2tp
[(T'® S)(s,t)[*+ = [T(s,%) ® S(s,t)| >+
= [T(s, )1 15(s,H)| % > [TP7 @|SPP = |T & S,
Similarly, we have
T ® S > {(T ® 5)(s, 1)} | .

Hence T ® S is p-wA(s, t).
Conversely, suppose that T ® S is p-wA(s,t). Then

(T ® 8)(s,8)| ¥ = [T(s, 1) ¥ @ |S(s, 8)|
Z ITI2tp ® !S|2tp — IT ® S|2tp
and 20p
IT ® 81> > [{(T® S)(s,t)}* |++.
Hence there exists ¢ > 0 such that
2p 2t
c|T(s,t)|+¢ > [T|*P
and
¢ [S(s,1)| > [S[P
by Lemma 13. Let = be a unit vector. Then
2tp
NT|"%z|* = (|T**z,z) < (c[T(s, t)|** 2, z)
< [T (s, )| 7| = | T(s, )| 5
22
= c|[|TI°U|T["||=+
2tp
<c(IT@)-1- 1T =+ = clliT™®|>.
Hence 1 < ¢. Similarly,
2
1S = (|S[*z, 2) < (¢S (s, 8)] ¥, )
< cY1S(s, 1) 7|2 = ¢S (s, )
1 t 22
= ¢ |||SIPV|S[||=+
2tp
<c (ISP -1 IS *F = ¢ M| |12,
Hence 1 < ¢™!. Hence ¢ = 1. This implies

|T(s, )|+ > |T|2P

and
1S(s, 1)|5% > |S[2.
Similarly we have
TP > |{T(s,)}" |
and
IS > |{S(s, 0)}* |+F5.
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Thus T and S are pwA(s,t). a

Corollary 16. Let S,T € B(H) be non zero operators. Then T ® S is
p-A(s,t) if and only if S, T are p-A(s,t).

Theorem 17. Let T € B(H) be p-wA(s,t) with 0 < s,t,s+t =1 and
0<p<1. Let pe® € C be an isolated point of o(T) and 0 < p. Then the
Riesz idempotent E for T with respect to pe® is self-adjoint with

ran E = ker(T — pe®) = ker ((T — pew)*) .
and coincides with the Riesz idempotent E(s,t) for T(s,t) with respect to
peif
Proof. Since o(T) = o(T (s, t)) by Lemma 6 of [14], pe' is an isolated point
of o(T(s,t)). Since T'(s,t) is rp-hyponormal for all r € (0, min{s, t}], E(s,t)
is self-adjoint and satisfies
ran E(s,t) = ker (T(s, t) — pew) = ker(T — pe')
and _
pew ¢ 4 (T(sv t)lran E(s,t)) .
Since ker(T — pe'®) = ran E(s,t) reduces T, we have
T =pe® T on H =ran E(s,t) ®ran (1 — E(s,t)).

Then T" is also class p-wA(s,t) and T'(s,t) = T(s,t)|ran (1-E(s,t))- Hence
pe® ¢ a(T' (s t)) = o(T") by Lemma 6 of [14]. Hence T’ — pe is invertible
and T — pe? = 0@ (" — pe'®). This implies ker(T — pe'®) = ker (T — pe'®)*)
and

1 ,
F=_— / (2 = pe® L @ (2 — T)~'dz = 1@ 0 = E(s,?)
2mi J,
where + is a small circle containing pe®. O

Theorem 18. Let T € B(H) be p-wA(s,t) with0< s,t,s+t<1and0<
p<1. Let(T~- pew)x — 0 for T, € H with ||z,|| = 1 and pe® € C,0 < p.
Then (|T| — p)an, (U — €@y, (U — €®)*zy,, (T — pei®)*z, — 0.

Proof. We may assume s+t = 1 by Lemma 10. Since
(T(s, t) — peie) Tz = |T° (T - pew) Zn — 0,
we have .
(T(s,t) - pew) |T|°z, — 0,
because T'(s,t) is rp-hyponormal for all r € (0, min{s,¢}]. Hence
0+ (T(s, t) — pew)* (T(s,t) - pew) |T %,
= (IT(.H = 72) [T
— pe™® (T(s, t) — pew) Tz — p (T(s, t)— peie)* Ty

This implies
(IT(s,t)]* = p*) |T|*zn — 0
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and
(T (s, )™ = ) IT|*zn — 0.
Similarly, we have
(IT(s,t)*|"" = o) |IT°z — 0.
Hence
0 ((IT(5,8)|"® = p"?) |T|*Tn, |T|*zn)
2 ((IT]™" = p™) |T|°zn, |T|°zn)
2 ((IT(s,8)*"" = p") [Tz, [T|°n) — .

This implies
(T = p™) IT|*zn, |T|*zn) — 0.
Since & € (0, min{s, t}], we have

((IT1% = o) 710, [T*20) — 0
by the same argument. Then
I (IT1% = %) 1Tz
= (717 - o%)" [Tl [T2)

= (1T — ) [Tz, T2} — 20 (111 ~ 5 ) (T2, T2,

— 0.
Hence
(IT1# = o%) T)°zn — 0
and so
(IT| = p) IT°zn — 0.
Then
IT|(IT| - p)zn = |TI*"*(IT| — p)IT|*zn — 0.
Since
0 = im(|T|(|T| — p)Zn, Zn)

= lim |||T|zn || — plim(|T|zn, zn)

= lim || Tz, | — plim(|T|2p, z,)

= p* — plim(|T|zn, z,),
we have

(IT|2zn, zn) = p

and

IUT| = p)zal® = | Tlenl? - 20(|T|2n, z0) + p*
—pt =202+ p2=0.
This implies
(IT| = p)zn — 0.
Since
0« (T — pe)ap, = U (|T| = p) 2 + p(U — €®)z,



187

and 0 < p, we have
(U - e®)z, — 0.
Also,
(U — €Yz, |? = [U*z0||? = (U*en, e Pz,) — (6 P2y, Urzn) + 1
<1—€®a,, Uzy) — e O (Uzp,zn) + 1
< =2y, (U - ®)ay,) — e (U — ), z,) — 0.

Hence
(U — ) *z, -0
and
(T — pe®®)*zp, = |T|(U — €®)*zp, + e~ (IT| - p)zs — 0.

Open problems

It is known that class A operator satisfies Putnam type inequality. How-
ever it is not known that Putnam type inequality holds for p-wA(s,t) op-
erators. It seems a difficult problem. We note some open problems for
p-wA(s,t) operators.

(1) M. Ito and T. Yamazaki [9] proved that A(s,t) implies wA(s,t). How-
ever it is not known whether p-class A(s,t) implies p-wA(s,t) for 0 <p <1
or not.

(2) It is known that if T" is class A(s,t) and M C H is a T-invariant
subspace, then T'|aq is class A(s,t). However it is not known whether this
property holds for p-wA(s,t) operator T.

(3) It is known that class A operator T' is normaloid. But it is not known
that p-wA(s,t) operator T is normaloid or not.
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