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1 Introdiction

Abraham Albert Ungar initiated the theory of gyrogroups in 1989 [1] associated with the
study of Einstein’s velocity addition in the theory. of special relativity. It is the study of
analytic hyperbolic geometry. A gyrogroup has a weak associativity. It is a generalization of
a group. The set of all positive invertible elements in a unital C*-algebra is an example of a
gyrogroup. It is difficult to give an appropriate definition for ”the geometric mean” of more
than two points on a gyrovector space because of nonassociativity and noncommutativity of

the operation. So we define a geometric mean for the Einstein gyrovector space.

2 Einstein gyrovector space

Einstainian velocities with the Einstain’s velocity addition based on the special theory of
relativity is a gyrocommutative gyrogroup. Let V be a real Hilbert space. Let V; be an open
unit ball of V, that is,

Vi={veV:|v|<1}.

The Einstein addition ©g on V; is a binary operation on V; given by the equation

adgb= H;b{a-i_ —ab—i— + (a b)a}
where 7y, is the Lorentz gamma, factor defined by
_ 1
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These - and || - || denote the usual inner product and the norm of V respectively. Einstein

scalar multiplication @g is given by the form
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where r € R,a € V;\{0} and r ® 0 = 0. By Theorem 6.84 in [2], (V1,®g,Qg) is defined by
a gyrovector space.

We define the set | V1] = {£||v]| : v € V1} C R, which coincides with the open interval
(-1, 1). ||V1|| admits addition &%, and scalar multiplication ®% given by the following:
a+b

14 ab
7 ®)p a = tanh(r tanh ' a)

adpb=

where a,b € ||V1|| and r € R. These two operator is induced by ®g and ®g. (||Vil, ®g, %)

is a real one dimensional space.

3 The metric space on (Vi, ®g, ®F)
The gyrometric is defined by
d(a,b) = [lacgeb| € [V,

where a,b € V; and a©g b = a®g (—b). The gyrometric is not a metric. It satisfies the

following properties:

(1) d(a,b) > 0 for every a,b € V1, d(a,b)=0<a=Db.
(2) d(a,b) =d(b,a) for all a,b € V;.
(3) The gyrotriangle inequality:

d(a,b) < d(a, c) & d(c,b)
for all a,b,c € V3.

We define a metric on V; induced the gyrometric; f : |V1|| = R is f(z) = tanh™!(z). Then

f is monotonic and satisfies the following properties:

(F1) f(a @l b) = f(a) + f(b) for all a,b € ||[V1|
(F2) f(r®ga)=rf(a)forallac|Vyi and r € R.

We define é(a, b) = f(d(a,b)), where a,b € V;.

Proposition 1. The map § give a metric on Vq; (Vi,8) is a complete metric space.

4 Gyromidpoints and gyrocentroids

Ungar defined the gyromidpoint P}, of two elements a, b € V; given by

m _ Yad+ b
e+

y
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By a natural extension, Ungar [2] define the gyrocentroid C . of three elements a,b,c € V;
written by
m _ Yag+ b+
abc =~ o . .~ *
Ya + Vb + Ve
The gyromidpoint P7} satisfies some desirable properties one would expect for means, for

example the permutation invariance and the left gyrotranslation invariance which is given by
x @ Po, = Pligpa)(x@sb)

But the gyrocentroid does not satisfy the left gyrotranslation invariance. In the case of the
three points 0,0,c, CI} . # % ®E ¢ by the simple calculation. In this paper we will give a

definition of a geometric mean alternatively to remove these difficulties.

5 Definition of the geometric mean

We define the geometric mean G(a, b, c) of three elements a,b,c € V; as in the following.
Starting from ap = a,bg = b, ¢y = ¢, we define a,,, by,, ¢, by induction on m. Suppose that

Am—1,Pm—_1,Cm—1 are defined. Then
Ay, = a’m—l#bm—ln bm = bm—l#cm-—lycm = cm—l#am'—l

where x#7y is the gyromidpoint of x and y. Then lim,, o0 am, limy 00 Bm, im0 Cy exist
and they coincide with each other. Define the common limit as M. We define G(a, b,c) =
Moo G(a, b, ¢) is permutation invariant. By a simple calculation, G(0,0,c) = % ®E ¢ holds.
We define the geometric mean for any finite number of elements as follows. Let A, be a n-
points set of V;. We define the geometric mean G(A,,) by induction of the number of elements

n by generalizing the way as above.

Definition 1. (1) Let Az = {ay,a2} C V1. We define G(Az) = a; #asz.
(2) Suppose that we have defined the geometric mean G(A,) for any A,. Let Apy1 =
{a1,a2,+* ,ant1} C V1. Putad =a; fori=1,2,--- ,n+ 1. For a positive integer m,
m—1

we define aj* for 1 =1,2,--- ,n+ 1 by induction on m as follows. Suppose that a;
fori=1,2,..- ,n+1 is defined, put

al* =G({al" ", ap ™, LAl Al el )

fori=1,2,--- ,n+1. The point a]* is well defined since we suppose that G(Ay,) is
defined for an n-point set A,,.
Put AT, = {al*,al’,---,a%,}. Then the limit lim, ,o al" ezists for each i =
1,2,--- ,n+ 1 and they coincide with each other. Define the common limit by M.
We define G(Ap+41) to be Moo
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This definition is a modification of the definition of the geometric mean for a positive
definite matrices by Ando, Chi-Kwong Li and Mathias(5]

6 A proof of the existence of and the coincidence of lim,, , a"

To prove the existence of lim, ., a]* and the coincidenceness of each other, we need some

preperations. We define a gyroline and a gyrosegment in the Einstein gyrovector space.

Definition 2. Let a,b be elements of Vi. The gyroline L(a,b) = {a®rt®r (Sga®grb) :
t € R}. The gyrosegment S(a,b) = {a®pt®p (©Gga®eb) : 0 <t <1}

a#:b = a®pt Qp (Opa®p b) is called a gyro t-point on a gyroline or gyrosegment. If
¢t = ; then it is the gyromidpoint, that is
1
a#b = 5 Rr (a HBg b),
where Hg is coaddition on (V1,®g, ®r) defined by the following;

Ya+ 7
Ya? + 12 +7am(a-b) =1
Proposition 2. Coaddition Bg is commutative, thus a#b = b#a.

alBHgb= ('yaa+'ybb).

By Proposition2, the gyromidpoint is permutation invariant.

We define a gyroconvex set and a gyroconvex hull in the Einstein gyrovector space.
Definition 3. A subset C of V1 is gyroconvez set if for any a,b € C, S(a,b) C C.

Definition 4. X C V. A gyroconvez hull of X is defined by:
conv(X)=nN{C CV; : X CC and C is convec}.

These definitions are modifications of definitions of the geometric mean for a positive definite

matrices by Bhatia and Holbrock[4]. By a simple calculation, we have the following property.

Proposition 3. The set Cy, for every m € NN {0} is defined by induction. Let Co = X. If
Crn—1 18 defined, then put Cp, = Uabec,,_,5(a,b). A gyroconvex hull of X can be written by

conv(X) = U Cin.
m=0

We show an inequality which is related gyromidpoints. It plays a crucial role in the proof

of the convergence of the sequence {a*} we have defined before.
Theorem 1. For any a,b,c € V; we have

d(afb, a#c) < -;— ®% d(b,c).
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This theorem is proved by a simple calculation. By applying gamma identities, we have

(% ®g d(b, c))2 — d*(a#b, a#c)

2{2’Yaenb'YbGEC'YceEa - ('Yaesbz + 'Ybescz + 'YCGEGF) + 1}
(1 + ege)(l +Yaceb + Tbope + Yeora)? ’
Applying the left gyrotranslation of ¢, put A = Spc &g a,B = ©gc &g b, we calculate the

(6.1)

numerator of (6.1),

2va0B7A7B — (YacsB> +7a% +8%) +1
_ [IAPIB]? = (A -B)?

- TAI? - 817 =

Note: I would like to thank Professor Akinari Hoshi for his calculation about the numerator
by computer. By his calculation I convinced that the numerator is greater than or equal to 0.

Finally I succeeded to prove it. Theorem 1 is followed by Corollary 1.
Corollary 1. 6(a#hb,a#c) < 16(b,c) and hence

(attb, c#d) < 20(b,d) + 25(a,c)
Moreover, since g(t) = 6(a#:b,c#:d) is continuous, then g is convez, i.e.,
d(a#b, c#:d) < (1 —t)d(a,c) + td(b,d)

especially,

d(a#tb,a#:c) < té(b,c)

We define diam(X) = sup{d(x,y) : X,y € X}. We have the following properties. By

Corollary 1, we have the following

Proposition 4. If diam{({xo,yo0,%1,y1}) < M, then for arbitrary x € S(xo,x1) and y €
S(Yanl); J(X, y) < M holds.

Proposition 5 is proved by applying Proposition 3 and Proposition 4.
Proposition 5. Let X be a subset of V1
diam(conv(X)) = diam(X).

Considering the geometric mean of three elements, by Corollary 1 and Proposition 5, we
have 1
diam(conv(AF)) < Ediam(conv(Agn_l)).
Since (V1,0) is a complete, there exists Mo, € V1 such that (,._, conv(AT) = {M} by the
Cantor’s intersection principle. So the limit of aJ* exists for 2 = 1, 2,3 and they coincide with

each other.



7 Properties of the geometric mean

To prove the existence of the geometric mean, we assume the following inequality by induc-

tion.

Theorem 2. For any sets of n elements in Vi, D, = {aj,az,---,a,}, D, =

{a’y,a',--- ,a’y} the following inequality holds:

5(G(Dn), G(D) < %gé(aﬁa’»-

We can prove the existence of the geometric mean of more than three elements by a simdlar

way as above. The geometric mean satisfies following properties which is proved by induction.

Theorem 3. The geometric mean G(A,) satisfies the permutation invariance and the left

gyrotranslation invariance;
' G(x g An) =x0r G(An),

where X®p A, = {X@Opy : y € A},
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