Geometric means on gyrogroups

Takuro Honma

Graduate School of Science and Technology, Niigata University

1 Introdiction

Abraham Albert Ungar initiated the theory of gyrogroups in 1989 [1] associated with the study of Einstein's velocity addition in the theory of special relativity. It is the study of analytic hyperbolic geometry. A gyrogroup has a weak associativity. It is a generalization of a group. The set of all positive invertible elements in a unital C^* -algebra is an example of a gyrogroup. It is difficult to give an appropriate definition for "the geometric mean" of more than two points on a gyrovector space because of nonassociativity and noncommutativity of the operation. So we define a geometric mean for the Einstein gyrovector space.

2 Einstein gyrovector space

Einstainian velocities with the Einstain's velocity addition based on the special theory of relativity is a gyrocommutative gyrogroup. Let V be a real Hilbert space. Let V_1 be an open unit ball of V, that is,

$$\mathbb{V}_1 = \{ \mathbf{v} \in \mathbb{V} : ||\mathbf{v}|| < 1 \}.$$

The Einstein addition \oplus_E on \mathbb{V}_1 is a binary operation on \mathbb{V}_1 given by the equation

$$\mathbf{a} \oplus_E \mathbf{b} = \frac{1}{1 + \mathbf{a} \cdot \mathbf{b}} \Big\{ \mathbf{a} + \frac{1}{\gamma_{\mathbf{a}}} \mathbf{b} + \frac{\gamma_{\mathbf{a}}}{1 + \gamma_{\mathbf{a}}} (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} \Big\},$$

where $\gamma_{\mathbf{u}}$ is the Lorentz gamma factor defined by

$$\gamma_{\mathbf{u}} = \frac{1}{\sqrt{1 - \|\mathbf{u}\|^2}}.$$

These \cdot and $\|\cdot\|$ denote the usual inner product and the norm of \mathbb{V} respectively. Einstein scalar multiplication \otimes_E is given by the form

$$r \otimes_E \mathbf{a} = \frac{(1 + \|\mathbf{a}\|)^r - (1 - \|\mathbf{a}\|)^r}{(1 + \|\mathbf{a}\|)^r + (1 - \|\mathbf{a}\|)^r} \frac{\mathbf{a}}{\|\mathbf{a}\|}$$
$$= \tanh(r \tanh^{-1} \|\mathbf{a}\|) \frac{\mathbf{a}}{\|\mathbf{a}\|},$$

where $r \in \mathbb{R}$, $\mathbf{a} \in \mathbb{V}_1 \setminus \{\mathbf{0}\}$ and $r \otimes_E \mathbf{0} = \mathbf{0}$. By Theorem 6.84 in [2], $(\mathbb{V}_1, \oplus_E, \otimes_E)$ is defined by a gyrovector space.

We define the set $\|\mathbb{V}_1\| = \{\pm \|\mathbf{v}\| : \mathbf{v} \in \mathbb{V}_1\} \subset \mathbb{R}$, which coincides with the open interval (-1, 1). $\|\mathbb{V}_1\|$ admits addition \oplus_E' and scalar multiplication \otimes_E' given by the following:

$$a \oplus_E' b = \frac{a+b}{1+ab}$$
$$r \otimes_E' a = \tanh(r \tanh^{-1} a)$$

where $a, b \in ||\mathbb{V}_1||$ and $r \in \mathbb{R}$. These two operator is induced by \oplus_E and \otimes_E . $(||\mathbb{V}_1||, \oplus_E', \otimes_E')$ is a real one dimensional space.

3 The metric space on $(\mathbb{V}_1, \oplus_E, \otimes_E)$

The gyrometric is defined by

$$d(\mathbf{a}, \mathbf{b}) = \|\mathbf{a} \ominus_E \mathbf{b}\| \in |\mathbb{V}_1|,$$

where $\mathbf{a}, \mathbf{b} \in \mathbb{V}_1$ and $\mathbf{a} \ominus_E \mathbf{b} = \mathbf{a} \oplus_E (-\mathbf{b})$. The gyrometric is not a metric. It satisfies the following properties:

- (1) $d(\mathbf{a}, \mathbf{b}) \ge 0$ for every $\mathbf{a}, \mathbf{b} \in \mathbb{V}_1$, $d(\mathbf{a}, \mathbf{b}) = 0 \Leftrightarrow \mathbf{a} = \mathbf{b}$.
- (2) $d(\mathbf{a}, \mathbf{b}) = d(\mathbf{b}, \mathbf{a})$ for all $\mathbf{a}, \mathbf{b} \in \mathbb{V}_1$.
- (3) The gyrotriangle inequality:

$$d(\mathbf{a}, \mathbf{b}) \le d(\mathbf{a}, \mathbf{c}) \oplus_E' d(\mathbf{c}, \mathbf{b})$$

for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{V}_1$.

We define a metric on \mathbb{V}_1 induced the gyrometric; $f: \|\mathbb{V}_1\| \to \mathbb{R}$ is $f(x) = \tanh^{-1}(x)$. Then f is monotonic and satisfies the following properties:

- (F1) $f(a \oplus_{E}^{\prime} b) = f(a) + f(b)$ for all $a, b \in ||V_1||$
- (F2) $f(r \otimes_E' a) = rf(a)$ for all $a \in ||V_1||$ and $r \in \mathbb{R}$.

We define $\delta(\mathbf{a}, \mathbf{b}) = f(d(\mathbf{a}, \mathbf{b}))$, where $\mathbf{a}, \mathbf{b} \in \mathbb{V}_1$.

Proposition 1. The map δ give a metric on \mathbb{V}_1 ; (\mathbb{V}_1, δ) is a complete metric space.

4 Gyromidpoints and gyrocentroids

Ungar defined the gyromidpoint $\mathbf{P}_{\mathbf{ab}}^m$ of two elements $\mathbf{a}, \mathbf{b} \in \mathbb{V}_1$ given by

$$\mathbf{P}_{\mathbf{ab}}^{m} = \frac{\gamma_{\mathbf{a}}\mathbf{a} + \gamma_{\mathbf{b}}\mathbf{b}}{\gamma_{\mathbf{a}} + \gamma_{\mathbf{b}}},$$

By a natural extension, Ungar [2] define the gyrocentroid \mathbb{C}^m_{abc} of three elements $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{V}_1$ written by

$$\mathbb{C}_{\mathbf{a}\mathbf{b}\mathbf{c}}^m = \frac{\gamma_{\mathbf{a}}\mathbf{a} + \gamma_{\mathbf{b}}\mathbf{b} + \gamma_{\mathbf{c}}\mathbf{c}}{\gamma_{\mathbf{a}} + \gamma_{\mathbf{b}} + \gamma_{\mathbf{c}}}.$$

The gyromidpoint $\mathbf{P}_{\mathbf{ab}}^m$ satisfies some desirable properties one would expect for means, for example the permutation invariance and the left gyrotranslation invariance which is given by

$$\mathbf{x} \oplus_E \mathbf{P}^m_{\mathbf{a}\mathbf{b}} = \mathbf{P}^m_{(\mathbf{x} \oplus_E \mathbf{a})(\mathbf{x} \oplus_E \mathbf{b})}.$$

But the gyrocentroid does not satisfy the left gyrotranslation invariance. In the case of the three points $\mathbf{0}, \mathbf{0}, \mathbf{c}$, $\mathbb{C}_{\mathbf{abc}}^m \neq \frac{1}{3} \otimes_E \mathbf{c}$ by the simple calculation. In this paper we will give a definition of a geometric mean alternatively to remove these difficulties.

5 Definition of the geometric mean

We define the geometric mean $G(\mathbf{a}, \mathbf{b}, \mathbf{c})$ of three elements $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{V}_1$ as in the following. Starting from $\mathbf{a}_0 = \mathbf{a}, \mathbf{b}_0 = \mathbf{b}, \mathbf{c}_0 = \mathbf{c}$, we define $\mathbf{a}_m, \mathbf{b}_m, \mathbf{c}_m$ by induction on m. Suppose that $\mathbf{a}_{m-1}, \mathbf{b}_{m-1}, \mathbf{c}_{m-1}$ are defined. Then

$$\mathbf{a}_m = \mathbf{a}_{m-1} \# \mathbf{b}_{m-1}, \mathbf{b}_m = \mathbf{b}_{m-1} \# \mathbf{c}_{m-1}, \mathbf{c}_m = \mathbf{c}_{m-1} \# \mathbf{a}_{m-1}$$

where $\mathbf{x} \# \mathbf{y}$ is the gyromidpoint of \mathbf{x} and \mathbf{y} . Then $\lim_{m\to\infty} \mathbf{a}_m$, $\lim_{m\to\infty} \mathbf{b}_m$, $\lim_{m\to\infty} \mathbf{c}_m$ exist and they coincide with each other. Define the common limit as M_{∞} . We define $G(\mathbf{a}, \mathbf{b}, \mathbf{c}) = M_{\infty}$. $G(\mathbf{a}, \mathbf{b}, \mathbf{c})$ is permutation invariant. By a simple calculation, $G(\mathbf{0}, \mathbf{0}, \mathbf{c}) = \frac{1}{3} \otimes_E \mathbf{c}$ holds. We define the geometric mean for any finite number of elements as follows. Let Δ_n be a n-points set of V_1 . We define the geometric mean $G(\Delta_n)$ by induction of the number of elements n by generalizing the way as above.

Definition 1. (1) Let $\Delta_2 = \{\mathbf{a}_1, \mathbf{a}_2\} \subset \mathbb{V}_1$. We define $G(\Delta_2) = \mathbf{a}_1 \# \mathbf{a}_2$.

(2) Suppose that we have defined the geometric mean $G(\Delta_n)$ for any Δ_n . Let $\Delta_{n+1} = \{\mathbf{a}_1, \mathbf{a}_2, \cdots, \mathbf{a}_{n+1}\} \subset \mathbb{V}_1$. Put $\mathbf{a}_i^0 = \mathbf{a}_i$ for $i = 1, 2, \cdots, n+1$. For a positive integer m, we define \mathbf{a}_i^m for $i = 1, 2, \cdots, n+1$ by induction on m as follows. Suppose that \mathbf{a}_i^{m-1} for $i = 1, 2, \cdots, n+1$ is defined, put

$$\mathbf{a}_{i}^{m} = G(\{\mathbf{a}_{1}^{m-1}, \mathbf{a}_{2}^{m-1}, \cdots, \mathbf{a}_{i-1}^{m-1}, \mathbf{a}_{i+1}^{m-1}, \cdots, \mathbf{a}_{n+1}^{m-1}\})$$

for $i = 1, 2, \dots, n+1$. The point \mathbf{a}_i^m is well defined since we suppose that $G(\Delta_n)$ is defined for an n-point set Δ_n .

Put $\Delta_{n+1}^m = \{\mathbf{a}_1^m, \mathbf{a}_2^m, \cdots, \mathbf{a}_{n+1}^m\}$. Then the limit $\lim_{m \to \infty} \mathbf{a}_i^m$ exists for each $i = 1, 2, \cdots, n+1$ and they coincide with each other. Define the common limit by M_{∞} . We define $G(\Delta_{n+1})$ to be M_{∞} .

This definition is a modification of the definition of the geometric mean for a positive definite matrices by Ando, Chi-Kwong Li and Mathias[5]

6 A proof of the existence of and the coincidence of $\lim_{m\to\infty} \mathbf{a}_i^m$

To prove the existence of $\lim_{m\to\infty} \mathbf{a}_i^m$ and the coincidenceness of each other, we need some preparations. We define a gyroline and a gyrosegment in the Einstein gyrovector space.

Definition 2. Let \mathbf{a}, \mathbf{b} be elements of \mathbb{V}_1 . The gyroline $L(\mathbf{a}, \mathbf{b}) = \{\mathbf{a} \oplus_E t \otimes_E (\ominus_E \mathbf{a} \oplus_E \mathbf{b}) : t \in \mathbb{R}\}$. The gyrosegment $S(\mathbf{a}, \mathbf{b}) = \{\mathbf{a} \oplus_E t \otimes_E (\ominus_E \mathbf{a} \oplus_E \mathbf{b}) : 0 \le t \le 1\}$.

 $\mathbf{a}\#_t\mathbf{b} = \mathbf{a} \oplus_E t \otimes_E (\ominus_E \mathbf{a} \oplus_E \mathbf{b})$ is called a gyro t-point on a gyroline or gyrosegment. If $t = \frac{1}{2}$ then it is the gyromidpoint, that is

$$\mathbf{a}\#\mathbf{b}=rac{1}{2}\otimes_E(\mathbf{a}\boxplus_E\mathbf{b}),$$

where \coprod_E is coaddition on $(\mathbb{V}_1, \oplus_E, \otimes_E)$ defined by the following;

$$\mathbf{a} \boxplus_E \mathbf{b} = \frac{\gamma_{\mathbf{a}} + \gamma_{\mathbf{b}}}{\gamma_{\mathbf{a}}^2 + \gamma_{\mathbf{b}}^2 + \gamma_{\mathbf{a}} \gamma_{\mathbf{b}} (\mathbf{a} \cdot \mathbf{b}) - 1} (\gamma_{\mathbf{a}} \mathbf{a} + \gamma_{\mathbf{b}} \mathbf{b}).$$

Proposition 2. Coaddition \coprod_E is commutative, thus $\mathbf{a}\#\mathbf{b} = \mathbf{b}\#\mathbf{a}$.

By Proposition2, the gyromidpoint is permutation invariant.

We define a gyroconvex set and a gyroconvex hull in the Einstein gyrovector space.

Definition 3. A subset C of V_1 is gyroconvex set if for any $\mathbf{a}, \mathbf{b} \in C$, $S(\mathbf{a}, \mathbf{b}) \subset C$.

Definition 4. $X \subset \mathbb{V}_1$. A gyroconvex hull of X is defined by:

$$conv(X) = \cap \{C \subset \mathbb{V}_1 : X \subset C \text{ and } C \text{ is convex}\}.$$

These definitions are modifications of definitions of the geometric mean for a positive definite matrices by Bhatia and Holbrock[4]. By a simple calculation, we have the following property.

Proposition 3. The set C_m for every $m \in \mathbb{N} \cap \{0\}$ is defined by induction. Let $C_0 = X$. If C_{m-1} is defined, then put $C_m = \bigcup_{\mathbf{a}, \mathbf{b} \in C_{m-1}} S(\mathbf{a}, \mathbf{b})$. A gyroconvex hull of X can be written by

$$conv(X) = \bigcup_{m=0}^{\infty} C_m.$$

We show an inequality which is related gyromidpoints. It plays a crucial role in the proof of the convergence of the sequence $\{\mathbf{a}_i^m\}$ we have defined before.

Theorem 1. For any $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{V}_1$ we have

$$d(\mathbf{a}\#\mathbf{b}, \mathbf{a}\#\mathbf{c}) \leq \frac{1}{2} \otimes_E' d(\mathbf{b}, \mathbf{c}).$$

This theorem is proved by a simple calculation. By applying gamma identities, we have

$$= \frac{\left(\frac{1}{2} \otimes_{E} d(\mathbf{b}, \mathbf{c})\right)^{2} - d^{2}(\mathbf{a} \# \mathbf{b}, \mathbf{a} \# \mathbf{c})}{\left(1 + \gamma_{\mathbf{b} \ominus_{\mathbf{E}} \mathbf{c}} \gamma_{\mathbf{c} \ominus_{\mathbf{E}} \mathbf{a}} - (\gamma_{\mathbf{a} \ominus_{\mathbf{E}} \mathbf{b}}^{2} + \gamma_{\mathbf{b} \ominus_{\mathbf{E}} \mathbf{c}}^{2} + \gamma_{\mathbf{c} \ominus_{\mathbf{E}} \mathbf{a}}^{2}) + 1\right\}}{(1 + \gamma_{\mathbf{b} \ominus_{\mathbf{E}} \mathbf{c}})(1 + \gamma_{\mathbf{a} \ominus_{\mathbf{E}} \mathbf{b}} + \gamma_{\mathbf{b} \ominus_{\mathbf{E}} \mathbf{c}} + \gamma_{\mathbf{c} \ominus_{\mathbf{E}} \mathbf{a}})^{2}}.$$
(6.1)

Applying the left gyrotranslation of \mathbf{c} , put $\mathbf{A} = \bigoplus_E \mathbf{c} \oplus_E \mathbf{a}$, $\mathbf{B} = \bigoplus_E \mathbf{c} \oplus_E \mathbf{b}$, we calculate the numerator of (6.1),

$$\begin{aligned} & 2\gamma_{\mathbf{A}\ominus_{\mathbf{E}}\mathbf{B}}\gamma_{\mathbf{A}}\gamma_{\mathbf{B}} - (\gamma_{\mathbf{A}\ominus_{\mathbf{E}}\mathbf{B}}^2 + \gamma_{\mathbf{A}}^2 + \gamma_{\mathbf{B}}^2) + 1 \\ & = \frac{\|\mathbf{A}\|^2\|\mathbf{B}\|^2 - (\mathbf{A} \cdot \mathbf{B})^2}{(1 - \|\mathbf{A}\|^2)(1 - \|\mathbf{B}\|^2)} \ge 0. \end{aligned}$$

Note: I would like to thank Professor Akinari Hoshi for his calculation about the numerator by computer. By his calculation I convinced that the numerator is greater than or equal to 0. Finally I succeeded to prove it. Theorem 1 is followed by Corollary 1.

Corollary 1. $\delta(\mathbf{a}\#\mathbf{b}, \mathbf{a}\#\mathbf{c}) \leq \frac{1}{2}\delta(\mathbf{b}, \mathbf{c})$ and hence

$$\delta(\mathbf{a}\#\mathbf{b}, \mathbf{c}\#\mathbf{d}) \leq \frac{1}{2}\delta(\mathbf{b}, \mathbf{d}) + \frac{1}{2}\delta(\mathbf{a}, \mathbf{c})$$

Moreover, since $g(t) = \delta(\mathbf{a} \#_t \mathbf{b}, \mathbf{c} \#_t \mathbf{d})$ is continuous, then g is convex, i.e.,

$$\delta(\mathbf{a}\#_t\mathbf{b}, \mathbf{c}\#_t\mathbf{d}) \le (1-t)\delta(\mathbf{a}, \mathbf{c}) + t\delta(\mathbf{b}, \mathbf{d})$$

especially,

$$\delta(\mathbf{a}\#_t\mathbf{b}, \mathbf{a}\#_t\mathbf{c}) \le t\delta(\mathbf{b}, \mathbf{c})$$

We define $diam(X) = \sup\{\delta(\mathbf{x}, \mathbf{y}) : \mathbf{x}, \mathbf{y} \in X\}$. We have the following properties. By Corollary 1, we have the following

Proposition 4. If $diam(\{\mathbf{x}_0, \mathbf{y}_0, \mathbf{x}_1, \mathbf{y}_1\}) \leq M$, then for arbitrary $\mathbf{x} \in S(\mathbf{x}_0, \mathbf{x}_1)$ and $\mathbf{y} \in S(\mathbf{y}_0, \mathbf{y}_1)$, $\delta(\mathbf{x}, \mathbf{y}) \leq M$ holds.

Proposition 5 is proved by applying Proposition 3 and Proposition 4.

Proposition 5. Let X be a subset of V_1

$$diam(conv(X)) = diam(X)$$
.

Considering the geometric mean of three elements, by Corollary 1 and Proposition 5, we have

$$diam(conv(\Delta_3^m)) \le \frac{1}{2} diam(conv(\Delta_3^{m-1})).$$

Since (\mathbb{V}_1, δ) is a complete, there exists $M_{\infty} \in \mathbb{V}_1$ such that $\bigcap_{m=0}^{\infty} conv(\Delta_3^m) = \{M_{\infty}\}$ by the Cantor's intersection principle. So the limit of \mathbf{a}_i^m exists for i = 1, 2, 3 and they coincide with each other.

7 Properties of the geometric mean

To prove the existence of the geometric mean, we assume the following inequality by induction.

Theorem 2. For any sets of n elements in \mathbb{V}_1 , $D_n = \{\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n\}$, $D'_n = \{\mathbf{a}'_1, \mathbf{a}'_2, \dots, \mathbf{a}'_n\}$ the following inequality holds:

$$\delta(G(D_n), G(D'_n)) \le \frac{1}{n} \sum_{i=1}^n \delta(\mathbf{a}_i, \mathbf{a'}_i).$$

We can prove the existence of the geometric mean of more than three elements by a similar way as above. The geometric mean satisfies following properties which is proved by induction.

Theorem 3. The geometric mean $G(\Delta_n)$ satisfies the permutation invariance and the left gyrotranslation invariance;

$$G(\mathbf{x} \oplus_E \Delta_n) = \mathbf{x} \oplus_E G(\Delta_n),$$

where $\mathbf{x} \oplus_E \Delta_n = \{\mathbf{x} \oplus_E \mathbf{y} : \mathbf{y} \in \Delta_n\}.$

References

- [1] A. A. Ungar, The relativistic noncommutative nonassociative group of velocities and the Thomas rotation, Result. Math. 16 (1989), 168–179
- [2] A. A. Ungar, Analytic Hyperboric Geometry and Albert Einstein's Special Theory of Relativity, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. 2005. xviii+463 pp. ISBN: 981-256-457-8
- [3] A. A. Unger, A Gyrovector Space Approach to Hyperbolic Geometry, Synthesis Lecture on Mathematics and Scatistics, 4. Morgan & Claypool Publishers, Williston, VT, 2009. xii+182 pp. ISBN: 978-1-59829-822-2
- [4] R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means, Linear Algebra Appl. 413 (2006), 594-618
- [5] T. Ando, Chi-Kwong Li and R.Mathias, Geometric means, Linear Algebra Appl. 385 (2004), 305-334