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Abstract

We give a brief introduction to the theory of continuous quasi-orthogonal decom-
position, which is one of the major ingredients of the proof of the Bieberbach
conjecture by L. de Branges. However, since it seems that the original text includ-
ing this theory is no longer available, we refer mainly to Vasyunin-Nikol’skif 5].
Furthermore, there is a slight difference between our article and [5]. Our approach
to main results is based on the formulation of Ando [1].

1 Integral operators

Definition 1.1. Let H be a separable Hilbert space. An H-valued function f on the
closed interval [a,b] is said to be L?-Bochner integrable if there exists a sequence
of H-valued step functions {fn}n>1 satisfying the following (i) and (ii):

(1) 11fn(8) = f(8)ll2e = 0 (n — o0) a.e.,
b
(i) [ 1o, ds < oo
The set of all L?>-Bochner integrable functions is denoted by L*(H).

Let G be another separable Hilbert space. We consider families of operators
Ts: H — G (a < s < b) satisfying the following two conditions:
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(i) M :=sup,c,< ||Ts|| is finite, that is, {T}},<s<s is uniformly bounded,
(ii) T is continuous in the strong sense with respect to the variable s.

Since Ty belongs to L?(#) for any y in G and

b .
| / (), Ty ds| < (b— @) M|[flzllvll (€ G),

the conjugate linear functional

b
pivm (6 T ds (weQ)
a
is bounded and
lell < (6= a)2M|| fl|z20)-

Hence, by the Riesz representation theorem, there exists an element z in G such
that

vlo = [, T as
and. '
llzllg = llell < (b= a)*/2M|| fllz23- (1L.1)
This 2z will be denoted by
/b T.f(s) ds.

Then we have the following identity:

b b
< / T.1(s) ds, )g = f (T.f(),0)g ds (v € G).

Further, we set \
T: L*(H) = G, ']I‘f~=/ T.f(s) ds.

Then the inequality (1.1) means that T is bounded.

2 Shmuly’an’s theorem

Let S be a bounded linear operator from .’H to G. Then we endow the pull-back
norm |[Sz| a4(s)y = || Pxer sy~ %||7 on the range of S. Then M(S) = (ran S, || - || rs))
is a Hilbert space, and which is called the de Branges-Rovnyak space induced by S.
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Further, if S is contractive, then H(S) = M(y/Ig — SS¥) is called the de Branges-
Rovnyak complement of M(S) (for details, see Ando [1], Sarason [3], Seto [4] or
Vasyunin-Nikol’skii [5]).

We need a theorem due to Shmuly’an (see Corollary 2 in Fillmore-Williams [2])
for our proof of the main theorem.

Theorem 2.1 (Shmuly’an). Let S be a bounded linear operator from H to G.
Then, for any u in G, u belongs to ran S if and only if

{y, w|

oy =

sy 1Syl
Further, then ||ul|p(s) = 7.

Proof. This proof is taken ﬁ‘om Ando [1]. First, we suppose that v = Sz. Then
we have that ' '

(v, wygl = [, Sz)g| = [(S"y, )a| < [|S"Yllaull2]l2

for any y in G. Hence we have that v < ||z|ly. Therefore v is finite. Next,
conversely, we suppose that «y is finite. Then, setting

p: S8y (y,u)g (S'y #0),

¢ is well defined as a linear functional on ran S*. Indeed, if S*y = 0, then, for any
z € (ker $*)* and any € > 0, we have that

0 < [y +ez,u)g| <5 (y + 2)lln = el S™2lln-

It follows from this that (y,u)g = 0. Further, by the assumption that v is finite,
¢ can be extended as a bounded linear functional on ranS*. Then, by the Riesz
representation theorem, there exists a vector z in TanS™ such that

<y’ u)Q = SO(S*y) = (S*ya x}?-t

for any y in G and v = ||z||3. Therefore we have that v = Sz. Lastly, norm
identity ||u|| sy = < follows from the property of the above z. Indeed, v =

|zl = llP(kerS)J-"Ell’H = ||u||M(S)- ]



3 Integral representation

Let’s recall that T f is defined by the identity

b b
< / T.f(s) ds,y)g = / (), Ty ds (y € G).

Since T is continuous in the strong sense, (f(s), 7. y)3 is measurable for any y in
G, that is, so is Tsf(s) in the weak sense. Further, it is well known that the weak
measurability implies the strong measurability in separable cases. Hence T f(s) is
measurable in the strong sense. Moreover, we note that

b
f T,Ty ds
a .

converges to a non-negative self-adjoint operator acting on G, because T is con-
tinuous in the strong sense with respect to the variable s.
The next theorem is fundamental in this article.

Theorem 3.1. .
M(T) = M(( / T.T? ds)'?). (3.1)

Particularly, for any u in M(( f: T, T ds)'/?), there exists some f in L*(H) such
that

b
u= / T.f(s) ds
and . 2 s 2
I Tre) sl agum < [ 1Ty .
In this sense, we may write

M(( / "I ds)?) = / " M) ds.

Proof. This proof is based on that of Theorem 3.6 in Ando [1], where sums of two
de Branges-Rovnyak spaces are discussed'. We set

b
S = (/ CI;TS* dS)

We divide our proof into three steps.

1/2

1See also lines 7-8 in p. 260 of Fillmore-Williams [2].
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(Step 1) We shall show that M(S) < M(T) (which means that M(S) is embed-
ded into M(T) contractively). If u = Sz, then, by Theorem 2.1 and

b
Il = ISulls = [ 12wl ds (e g),
we have that

Iy, w)gl? (y, ug|?
lullfas) = sup S5 = sup ——————
MO T IS stz [P Tyl ds

is finite. Hence
p: e (yug (f(s)=T)y)

defines a bounded linear functional on the closure of
{f € L](H) : y € G st. f(s) =Ty}

Then, it follows from the Riesz representation theorem that there exists a function
g in L*(H) such that

(v, w)g = (f,9) 129 and  |Julliys) = ll9llZ200)-
Further, we have that
(yr U)g = <f7 g)Lz('H)

b

~ [Ty g ds
o

~ [ . Tuats) ds
-

= (v, f Tig(s) ds)g.

Hence, we have that
b
u =~/ Ts9(s) ds =Tg.
a
Therefore u belongs to M(T) and
lulldacry < N9llZzp0 = llulliaes)-

Thus we concludes that M(S) — M(T).



(Step 2) We shall show that M(T) < M(S). Let u be a vector in M(T). Then
we may assume that u = Tf where f is taken from (ker T)1. It follows from this
assumption that [|u|[},q) = [|fl|32()- Further, for any y in G, we have that

(0, u)g = (v, / T,1(s) ds)g

a

b
- / 0 Tof()g ds
ab
- / T2y, () ds.
Hence we have that

sl < ([ 1Tzl as) [ 15 a0
= lgll32(oo el 2y
where we set g(s) = Tb. This inequality means that the linear functional
pig= (vu)g (9(s) = Ty)
is bounded and ||¢|| < |lu||sm()- Further we have that

2 2
ap Lo _ (vl

NSaE = = llell* < llulldaey-
syro IS5 stuo0 f: 1 Tryl3, ds M

Therefore, by Theorem 2.1, u belongs to ranS and ||u||ss) < |[u|| rcr)-
(Step 3) Step 1 and Step 2 conclude the identity (3.1). Finally, we shall show
norm inequalities. Setting

T, : L*(H) = L*(G), f~Tf()
b
T 20) 56, 9 [ 9(o) ds

we have that T = T,T;, and it is easy to see that T; and T, are bounded. We also
note that
(ker T1)* = {f € L*(H) : f(s) € (ker T})*}.
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Then we have that

b
I TF6) Aol g2z amy = 1T

= | T2Ta f R eramyy
= "P(ker'll'z'll'l)-l-f"%z(’){)

< ”-P(ker'll’l)J-f"i'*’(’H)

b

= [ IPraery DO, s
a
b

— [ 1P £(5) I ds
a
b

— [T R ds.

This concludes the proof. O

4 Evolution families

Let {Ts}a<s<s be a family of contractive linear operators acting on a Hilbert
space H. We suppose that there exists a two-parameter family of contractions
{T}s}a<r<s<p satisfying the following (i), (ii), (iii) and (iv):

(i) Ty =T, T,s (r < s),

(ii) Tre = TrsTst (r < s < 1),

(i) T2 = I,

(iv) T, is sufficiently smooth to do calculus.
Then {T,s}a<r<s<p is called an evolution family.
Lemma 4.1. We set

OTs

. RT Ts — Iy
Us) = G, lr=s = lim ==

Then the following formulas hold.

(1)

8;1;5 = Q(r) T},

(ii) % — _T,,0(s),
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(m) ( TrsT*) = T,s(2Re Q(s))T},

Proo f.
L,

T Ty,
= : |t_r = ( ot lt—'r)Trs = Q(T)Trs~

or ot
Thus we have (1) Next,

_ aT"rs BT st
( )ls—t ( TrsTst)ls=t - (KTst + Trsg)l.s:t
and 9T,;/0s =0 lmply (ii). It is easy to see that (iii) follows from (ii). ]

By (iii) of Lemma 4.1, we have that

2Re5) = (o (LT Hocs

Further, since T3, is contractive, for r < t < s, we have that
1Tzl = 1T Trell3, < 1Tl

Hence (T,sT;,x, x)3 is a decreasing function with respect to the variable s. There-

fore we have that
ReQ(s) > O.

Now, we shall consider operator A(s) defined by
- A(s)A(s)" =2ReQ(s),
where A(s) is assumed to be continuous and uniformly bounded.

Theorem 4.1. Forr < t, H(T,) has the following integral representation:

()= [ MEAE) ds

in the sense of Theorem 3.1. Particularly, for any f € L*(H),

I [ Tud6)16) dsliuy < [ WAooy do < [ 156 ds

Proof. By the definition of A(s) and (iii) of Lemma 4.1, we have that

/ TrsA(s)(TrsA(s))" ds =/ T,s(2Re Q(s))Ty, ds

,,
t
= TTST* d
/, 3 ) ds
= I — T,T.
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By Theorem 3.1, this implies the integral representation of H(7,s). Further,
[ T @)56) sl < [ 16 o 05
= [ WP s SO ds
< [ WPuwsco SO a5

t
- / IAS) () Raage ds-

Thus we obtain norm inequalities. O

5 Weighted quasi-orthogonal integrals
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Let o(s) be a positive-operator valued differentiable function on [a, b]. Further, we

assume that o(s) is invertible and o(s)™! is uniformly bounded on #2. We shall
consider the one-parameter family of Hilbert spaces {H, : H, = M(c7%(s)) (a <
s < b)} associated with o.

Lemma 5.1. Let {Trs}asrssgb be an evolution family acting on o Hilbert space H.
Then T, is contractive as an operator from H, to H, if and only if

A(s) = o’(s) + 2 Re(a(5)2(s)) > O. (5.1)

Proof. Since
(xa y)?is = (0'(8)1/23), 01/2(3)y>?'l = (0’(3)1’, y)?'la

it is easy to see that T, is contractive as an operator from H; to #, if and only if
Tro(r)Trs < o(s). (5.2)

We shall show that (5.1) and (5.2) are mutually equivalent. First, we suppose
(5.1). Then we have that

8 % %
EZ(Tsta (8)Tst) = T3A(s)Ts 2 O
by Lemma 4.1. Hence

i
o(t) — Tho(r) T = / %(T;a(s)Tst) ds > 0.

21f not, then we will deal with o(s) + &l (¢ > 0).
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Thus we obtain (5.2). Next, conversely, we suppose (5.2). Then, we have that
((U(S) — ﬁSU(T)T,.s)iIJ, x)H

(0(s) = o)z, ) = (01 (Ts = D 83 — (T2, = Do () Tz, 2o

= ((¢'(r) + 2Rea(r)Q(r))z, z)n

as s tends to r by Lemma 4.1. Thus we obtain (5.1). O

Let {T,.s € L(Hs,H,) : a < r < s < b} be a contractive evolution family in the
sense of Lemma 5.1. We set

o(s) = 7(s)"7(s),

where we assume that 7(s) is differentiable. Then we define ﬁs as follows:

Trs
Hs —) Hr

r(s)l lr(r) (5.3)

H —_ H,
TTS

that is, we set
Tys = 7(r)Trs7(s) 7"

Then, trivially, {ﬁs}ogsgsl has the evolution property:
T Tw=Tn (a<r<s<t<b).

Further, 7(s) : Hs — H is a unitary operator. Indeed, let u be any vector in .
Then we have that
I7(s)o~ 2 (s)ully, = (o ()27 (s) 7 (s)o(s) /2, uy
= |lull3,
= ||0(3)_1/2u”,2/\4(0(3)—1/2)
= [lo(s) " ull3,,.
The adjoint operator of 7(s) : #, — H will be denoted by 7(s)# (needless to say,

7(s)* denotes the adjoint operator of 7(s) : X — ). The adjoint operator of
T,s : Hs — H, is also denoted by T%. Then it is trivial that

Trs = 7(r)Tpsr(s)! and (Tp,)* = 7(s)Thr(r).
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Definition 5.1. ’H::g; (T7s) denotes the de Branges-Rounyak complement induced

by Tys : Hs — H.,, that is, we set :
HZE:;(TTS) =M (\/ Iy, — TrsT"‘is) .

Let Q and A be operators corresponding to the evolution family {is}QSTSSSb.

Theorem 5.1. Let {1,s € L(Hs,H,) : a <7 < s < b} be a contractive evolution
family in the sense of Lemma 5.1. We set T = 7-'A. Then HZ?:))(T,%) (a<r<

t < b) has the following integral representation:
. t
HO(T) = [ MT(E) ds
in the sense of Theorem 3.1. Particularly, for any f € L*(H),

t t t
I [ Tr@1(6) dsligey ) < [ PO Bariy ds < [ £ ds.

Proof. Since

/ T T(s)T(s)!TE, ds = / T (s) A (s)R(s)*r(s)TE, ds

T T

B / ()T A(8)A(s) Ty (r) ds

— (0 [ T2 Refi(e)T, de)r(r)
= T(r)"(/ %(—isi*s) ds)7(r)

= 7(r)} (I — T T3)7(r)

= I’H,, — ntngt

by (iii) of Lemma 4.1, applying Theorem 3.1 to T;,I'(s), we obtain the integral

representation of ’Hzg)) (Tyt). Further,

t 11
I [ D@ dsliy ) < [ IRLE SO i ds
t
— [ WPracr o SR, ds
i
< [ VPrarios (6) 1 ds

t
Sy ALCHET s

Thus we obtain norm inequalities. O
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6 Isometric representation

We shall consider the following differential equation: ,
#'(r) = Qr)z(r) — g(r), (6.1)
where g(r) = I'(r) f(r) for some fixed f in L2(#H). Then the solution of (6.1) is

written as follows: R .
z(r) = Tz (b) + / Trs9(s) ds. (6.2)

Indeed, since

1 b b
T (/ Tr+h,sg(3) ds — / /I',rsg(s) ds)
h r+h i o

b T; _ T’r 1 r+h
= / %g(s) ds — E/ Tr1h,s9(s) ds

b
= [0 Tg(e) ds—g(r) (b 0)
= Q(r)(z(r) — Trz(b)) — g(r).
Hence we have that
2'(r) = Qr)Trpz(b) + Q(r)(2(r) — Tz(b)) — g(r)
= Qr)z(r) - 9(r).

Here, we should note that (6.2) gives a de Branges-Rovnyak decomposition of z(r)
with respect to 174 : Hy — H,. Hence we have that

b .
IoIBy, < IT2®)cry + 1| | T sl
r o(r)\ T

b
<la®ly+ [ o6 By 45

by Theorem 5.1. Therefore we have the inequality

b
eI, = la®) < [ 196 Bare oo 63)
r
Lemma 6.1. A = oTT*0 as operators acting on H.

Proof. Differentiating the operator identity 7(r)Tys = Tys7(s) on H with respect

to r, we have that

() Ty + 7(r)QUP) The = Q(r)Trs7(s). |



Further, putting r = s, we have that _
' 7(s) + 7(s)Q(s) = Qs)7(s).
It follows from the above identity that
ANt = Q1 + QT
=7+ 1) + (7' + TQ)*r
=0 +0Q+ Qo
=A.
Further, since I' = 7‘15, we have that o' = 7*A. This concludes the proof. [

Theorem 6.1. Let z(r) be the solution of (6.1). Then (6.3) is an equality if and
only if one of the following (i) and (i) is satisfied:

(1) (o(s)z(s))’ + Q(s)*o(s)x(s) = 0,

(%) o(s)x(s) = Tro(r)z(r). |
Proof. Let z(r) be the solution of (6.1). We set

_ b
F() = o), ~ Ie®)lB, ~ [ 196 By 5

and choose h from L*(H) satisfying '(s)h(s) = g(s) and [|h(s)|| = ||g(s)|lrmesy®-
Then, by (6.1) and Lemma 6.1, we have that

F'(r) = (o' (r)z(r), z(r))n + 2Re{o(r)2'(r), 2(r))x + l9(r) 3wy
= (0'(r)z(r), z(r))n + 2Re(a(r){Q(r)z(r) — g(r)}, 2(r))n + 19 Rucriry)
= (A(r)z(r), z(r))n — 2Re(o(r)T(r)h(r), z(r))2 + | ()13,
= [T(r)*o(r)z(r) — h(r)ll5,-
Hence F(r) = 0 if and only if h = I"*oz, because F'(b) = 0.

Suppose that h = Ioz. Then, by Lemma 6.1, we have that 0g = Az, and
which implies (i) by (5.1) and (6.1). Conversely, we suppose (i). Then it follows
from (5.1) and (6.1) that Az = oz. Hence we have that oI'(I"oz — h) = 0
by Lemma 6.1, that is, [*ox — h belongs to kerI". Since h and oz belong to
(kerT')*, we have that h = I™oz. '

Finally, it is easy to see that (i) and (ii) are mutually equivalent by Lemma
4.1. : ' O

3Since I' : f + I'(-)f(*) is a bounded linear operator acting on L?(#), we may take h from
(ker ).
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